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Abstract: Due to the dimension and the dependency structure of genetic data, com-

posite likelihood methods have found their natural place in the statistical methodo-

logy involving such data. After a brief description of the type of data one encounters

in population genetic studies, we introduce the questions of interest concerning the

main genetic parameters in population genetics, and present an up-to-date review

on how composite likelihoods have been used to estimate these parameters.
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1. Introduction

Composite likelihoods have been extremely influential in population gene-
tics. A prime example of this is that such methods have led to the first ever fine-
scale recombination map of the human genome (McVean et al. (2004), Myers
et al. (2005)), which is useful for understanding the biology and evolution of
recombination, and also for interpreting the results of genome-wide association
studies. As ever-increasingly large and complicated data sets are collected, the
use and importance of composite likelihood methods for analysing such data will
also increase.

Composite likelihoods are based upon calculating likelihoods for a subset of
the data, and then combining these likelihoods as if each subset of the data were
independent. Parameter estimates are constructed by maximising the resulting
composite likelihoods. Examples include taking the product of the marginal
probability of each data point, or basing inference from likelihood for all pairs
of data points (Cox and Reid (2004)). See Lindsay (1988), Varin and Vidoni
(2005), Varin (2008), Varin, Reid, and Firth (2011) and references therein for
further details.

In general there are two main motivations for using composite likelihood ap-
proaches. The first is computational, as calculating likelihoods for subsets of data
is often substantially easier than calculating the full-likelihood for the complete
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data set. The second is that it avoids the need to model higher order dependen-
cies in the data, and thus gives inferences that are based only on modelling of
appropriate marginal or low-dimensional aspects of the data.

Within genetics it is the first of these motives that has led to the wide-
spread use of composite likelihoods. This article reviews some of the important
applications of composite likelihoods within population genetics. We aim to give
an overview of the extent to which composite likelihoods are used, as well as the
different approaches used for constructing composite likelihoods. We also review
the few existing theoretical results there are specifically for the application of
these methods in genetics.

The article is organized as follows. In Section 2 we introduce the basic no-
tions in genetics that are important for understanding the problems presented
in this paper. The reader familiar with genetics can skip this section. Further,
in Section 3, we describe typical genetic data, explain the types of inference
problems that are of interest, and give a non-technical introduction to the first
statistical methods that were used to analyze this type of data. In the next
sections we explore how composite likelihoods are used in estimating the recom-
bination rate (Section 4) and in genetic mapping (Section 5). Other uses of
composite likelihoods for answering various problems in genetics are considered
in Section 6.

2. Genetics: Basic Terminology

Although most of the methods presented here can be applied to non-human
genetic data, we will, for simplicity, focus on human genetics. Each human has 46
chromosomes consisting of 23 pairs of chromosomes. Chromosomes are made up
of sequences of nucleotides, the DNA bases. Chromosomes range in size from 250
million bases (250 Mb) for chromosome 1, to 50 Mb for chromosome 21. The total
length of the genome is approximately 3,000 Mb. For each pair of chromosomes,
one was inherited from the mother, and the other one from the father. Only part
of this DNA is functional: the genes. Each gene, therefore, exists then in double:
humans have one “variant” of a certain gene on one chromosome, and another
“variant” (possibly the same) on the other chromosome. These “variants” are
called alleles. Because humans have two versions of each gene, they are called
diplöıd.

Several biological events change the chromosomes over time when they are
transmitted from one generation to another. The events that we consider here,
which will have considerable importance in the rest of the paper, are mutation
and recombination. A mutation changes the genetic code at one locus (a locus is
a precise position on a chromosome), this can be a single nucleotide change or a
more complex event. Further, when chromosomes are transmitted from parent
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Figure 1. Illustration of the transmission of genetic material in a family unit.
Square indicates male, and circle female. One can see that child 3 and 5 are
recombinants.

to offspring, the offspring does not receive a copy of just one of that parent’s
pair of chromosomes, but a mosaic of that parent’s pair of chromosomes. The
process that creates this mosaic is recombination. For example, consider the child
numbered 3 in Figure 1; his “left” chromosome is a mix of the two chromosomes
his father has inherited. We say that a recombination has occurred between sites
2 and 3 (in child 3), because, on the chromosome inherited from his father, the
DNA at site 2 does not come from the same parental chromosome as the DNA
at site 3.

The recombination fraction between two loci is defined as the probability
that a recombination occurs between the two loci. The expected number of re-
combination events between two loci defines the genetic distance between these
two loci, expressed in Morgans. This is in contrast with the physical distance
between the two loci, which is the number of base pairs (bp) separating them.
There are no direct ways to translate genetic distances into physical distances
because recombination rates vary over the genome (McVean et al. (2004)). How-
ever, we expect the recombination fraction between two loci to be very small if
these two loci are close, and the recombination fraction to be 1/2 if these two
loci are far apart (if the two loci are completely unlinked, due to independent
assortment, the probability of a recombination is 1/2).
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3. The Nature of Genetic Data and Statistical Tools

First, we describe how the data are collected. Here we focus on genetic
data from one of two sources: individuals in pedigrees, and in population sam-
ples. Each of these sources induces some form of dependency in the data: in a
pedigree, all individuals are directly linked; in a population, the sampled indi-
viduals are also related, albeit more distantly, but the nature of their relatedness
is unknown. For both sources it is possible to collect phenotypic and genetic
information for each individual under study. The phenotypic information usu-
ally consists of a trait under study (the disease status, or another measure of
health, for example); genetic information is extracted from biological material
(blood sample, for example). The available genetic information has changed over
time, particularly with respect to the amount of data that is available. Today,
the information can consist of a complete DNA sequence on a short scale (i.e. a
chromosomal segment), data from thousands of sites across a larger region of a
chromosome, or even data from hundreds of thousands of sites across the whole
genome.

A genetic marker is a DNA sequence with a known location on the genome;
the genetic marker is segregating if there exist variations in the sample at that
site. One can imagine a set of genetic markers for one individual to be a sample
of the genetic code along a chromosome at specific locus (see Figure 2). The
markers most commonly used in genetics exhibit binary variation, and are called
single-nucleotide polymorphisms (SNPs).

If we have genetic information from an individual at a set of SNPs, we know
the two alleles that person has for each SNP – that is we know the DNA bases
at each of the SNP locations that are present on that person’s two chromosomes.
However we commonly do not know on which chromosome each base is. For
example, if we take individual 1 in Figure 2, we would not know that the two
sequences are TCTC and TTAG, only that the alleles at the first marker are T/T, the
alleles at the second marker are T/C, etc; this is called genotype data. Data that
consisted of the sequences on each of the two chromosomes is called haplotype
data, with each sequence being a haplotype. It is possible, albeit costly, to get
haplotype data experimentally. Alternatively we can estimate the haplotypes
from genotype data (see e.g., Stephens, Smith, and Donnelly (2001)).

The basic example of a pedigree is a collection of members from the same fam-
ily. Conditional upon on the pedigree (and other factors, like allele frequencies in
the population), a likelihood can be defined and one can estimate recombination
rates. The form of this likelihood can be complex. Markov Chain Monte Carlo
(MCMC) methods are often used in this context (Thompson (2000)). When we
estimate the recombination fraction between some genetic markers and a disease
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haplotypes genotypes

1
TGCATTTCAGTCTGAAACGGTCCCCTAGGCTCCGCCTGTCCTCCATA

TGCATTTCAGTCTGAAATGGTCCCCAAGGCTCGGCCTGTCCTCCATA

-----T-----------C-------T------C--------------

-----T-----------T-------A------G--------------

TCTC

TTAG

0011

0100

TTTG

TCAC

0110

0001

2
TGCATTTCAGTCTGAAACGGTCCCCAAGGCTCCGCCTGTCCTCCATA

TGCATATCAGTCTGAAATGGTCCCCAAGGCTCGGCCTGTCCTCCATA

-----A-----------T-------A------G--------------

-----T-----------C-------A------C--------------

ATAG

TCAC

0001

1100

TTAG

ACAC

0100

1001

Figure 2. Illustration of a (very short) piece of chromosome (47 base pairs)
for individuals 1 and 2; one can see four genetic markers (SNP1 to SNP4).
Data would consist of either the haplotype or genotype for each person. At
each SNP we observe just two of the four bases present. For most analyses the
specific base (A, C, G or T) does not matter, and the data are summarised
in binary for each SNP on each chromosome.

gene in a pedigree, we estimate the location of the disease gene on the chromo-
some. Such analyses, called “linkage analyses”, have been successful in mapping
disease genes but, because of the relatively small number of recombinations in
a pedigree, the precision of the estimate is around 1cM, which corresponds to a
million base pairs, and is much too coarse for physical mapping.

3.1. Population data

Population data consist of data from a sample of unrelated individuals. The
size of such a sample ranges usually from a hundred to a thousand individuals.
Whilst unrelated, the genetic data from these individuals will still be dependent.
If we consider a single locus and trace the ancestry of the chromosomes, as
we go back in time different pairs or sets of chromosome will share a common
ancestor. The information about these common ancestors can be compactly
described through a genealogy. This genealogy determines the dependence in the
data at that locus (see Figure 3 (a) for an example of such a genealogy).
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Figure 3. Example of a genealogy of three sequences of three genetic mar-
kers. Dots along the edges correspond to mutation events; moving back in
time (from bottom to top), we have a coalescent event when two branches
merge into one (two sequences find a common ancestor), and a recombination
event when a branch split in two: we have here only one recombination event,
between sites two and three. Solid lines (b, c, d) denote a genealogy at a
particular site. (a) genealogy for the three sequences, (b) genealogy at site
1, (c) genealogy of site 2, (d) genealogy of site 3.

If there were no recombination, then we would have the same genealogy at
all loci in our sample (like genealogies (b) and (c), for site 1 and 2, in Figure 3). If
our data consisted of unlinked loci then we would be able to treat the data (and
genealogies) as independent across loci. However for most data we have a small
recombination fraction between loci. This means the genealogies at different loci
are different, but dependent, and there are strong and complex dependencies in
the data both across chromosomes and across loci.

This dependence, both across loci and across individuals, makes inference
from population data challenging. The most common approach to inference is
to introduce an appropriate stochastic model for the genealogy (or genealogies)
of the sample. Given the genealogical information, calculating likelihoods is
normally straightforward. Thus we have a classical missing-data framework,
where the genealogical information is the missing data, and calculation of, say,
the likelihood function requires averaging over all possible genealogies for the
data.

The most widely used stochastic model for the genealogy is the coalescent
process (Kingman (1982a,b)). This process can be derived from the Wright-Fisher
model for the forward evolution of the genetic diversity within a population. In
its simplest form it provides a model for the genealogy at a single locus under
certain simplifying assumptions for the evolution of the underlying population
such as no selection, random-mating and a constant population size. For more
details see, for example, Nordborg (2007), Hein, Schierup, and Wiuf (2005),
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Nordborg and Tavaré (2002), Tavaré, S. and Zeitouni, O. (2004), and Wakeley
(2008).

The power and popularity of the coalescent derives first from a robustness
result, showing that the coalescent process is the correct stochastic process for
the genealogy of a sample for a wide-range of models for the forward-evolution
of the population. Second, the coalescent can be easily extended to various de-
mographic models, for example, allowing varying population sizes and certain
forms of non-random mating. It can also be extended to model the joint distri-
bution of genealogies at different loci in the presence of recombination. Lastly,
in most cases it is easy and computationally efficient to simulate the coalescent,
and hence simulate population genetic data under a range of different modelling
assumptions.

The parameters of the coalescent are population-scaled rates. For exam-
ple, rather than depending on the expected number of recombination events per
meiosis between two loci, r say, the coalescent will depend on a rate ρ = 4Nr,
where N is called the effective sample size. Similarly, the mutation model will be
parameterised by a mutation rate θ = 4Nu, where u is the mutation probability
per meiosis.

3.2. Inference for population data

The estimation of the “full likelihood” (using all sequences and all sites in the
sample) has stimulated much research over the past two decades; see Stephens
(2007) for a comprehensive review. The key to these inference methods is how
to efficiently average over all genealogies consistent with the data. In practice
Monte Carlo methods are used to do this (at least approximately), but even here
implementation is difficult due to the large set of possible genealogies at each
locus.

The first full-likelihood method was an importance sampling method due
to Griffiths and Tavaré (1994a,b,c). Stephens and Donnelly (2000) proposed im-
provements to the method by suggesting an approximation to an optimal proposal
density for importance sampling. The method of Griffiths and Tavaré (1994a,b,c)
has been extended to the coalescent with recombination (Griffiths and Marjoram
(1996, 1997), Fearnhead and Donnelly (2001)). An alternative approach is based
upon Markov chain Monte Carlo (Kuhner, Yamato, and Felsenstein (1995, 1998,
2000); Wilson and Balding (1998)).

These methods can be computationally efficient for analysing data at a single
locus, and can analyse small sample sizes (up to 100 chromosomes) at a small
number of bi-allelic loci (of the order of 5 to 10). However, they do not scale to
analysing the size of data currently being generated: data from 100s of chromo-
somes at maybe 1000s of loci. It is this that has motivated the use of composite
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likelihood methods for analysing population genetic data. Indeed, composite
likelihood approaches enable us to split a large data set into smaller pieces, for
each of which a likelihood function can be calculated.

3.3. Notation and results on dependence

In our discussion of composite likelihood methods for population genetic data
we focus on methods for analysing haplotype data. This is both for simplicity,
and because many composite likelihood methods require such data. In practice
using such methods is not problematic, as there are efficient procedures that can
accurately infer haplotypes from genotype data (Stephens, Smith, and Donnelly
(2001)).

We will focus on data from N chromosomes, corresponding to N/2 individ-
uals. Each chromosome will be typed at L loci. For concreteness we will assume
each locus is a SNP, and thus the genetic type of a chromosome at each locus
will be one of two possibilities. Mathematically we can represent this data by a
binary matrix D of dimension L×N , with Din denoting the genetic type (allele)
of the nth chromosome at the ith SNP. For a given SNP, i say, we know that for
any n and m that Din = Dim means that the nth and mth chromosome share the
same genetic type at this SNP, while Din 6= Dim means that they have different
genetic types at that SNP. The actual value of Din is arbitrary (that is if we
switched all the 0s and 1s within any row of D then we have an identical data
set). Most methods we describe allow for missing data – though for simplicity
we will ignore this possibility.

We will use Di to denote that data just at the ith SNP, and D(i,j) to denote
the data just at the ith and jth SNP and so on. For consecutive SNPs we will
use D(i:j) to denote data from SNPs i, i+1, . . . , j. To help distinguish D(i,j) from
Din we use the convention that chromosomes are denoted by n or m, and SNPs
by i, j or k.

We will denote the physical location of SNP i by xi, and assume that x1 <

x2 < · · · < xL. We introduce a recombination rate function ρ(x) defined so that
the recombination rate between SNPs i and j, with i < j is ρ(xj) − ρ(xi). Note
that ρ(x) is an increasing function. If the recombination rate per bp is assumed
constant then ρ(xj) − ρ(xi) = ρ̄[xj − xi], for an appropriate constant ρ̄.

A key result which affects the implementation of composite likelihood
methods for population genetic data is the following, which demonstrates long-
range dependence across loci.

Theorem 1. (Fearnhead (2003)) Consider the coalescent with recombination
for a sample of N chromosomes. Let π1(·) denote the marginal probability mass
function of data at a single SNP, and π2(·, ·;λ) the joint probability of data at
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two SNPs separated by a recombination rate λ. Then there exists a K such that
for any Di and Dj,

|π1(Di)π1(Dj) − π2(D(i,j); λ)| <
K

λ
.

Thus if we have a constant recombination rate, the dependence between
two SNPs decays like the inverse of the distance between the SNPs. The result
in Fearnhead (2003) is for the simplest coalescent with recombination, but this
result holds generally (Wiuf (2006)).

4. Estimation of the Recombination Rate

We first focus on composite likelihood methods for estimating recombina-
tion rates. There are two basic approaches that have been used: one based on
analysing data from pairs of SNPs, and the other based on analysing data from
contiguous regions of 5 to 10 SNPs. First we will introduce both these methods
for estimating the recombination rate under a model where the rate between
two SNPs is proportional to the physical distance between the SNPs. This is
termed a constant recombination rate model, as the rate per bp is constant. We
will then discuss empirical and theoretical results for these methods. Finally we
will briefly discuss extensions of these methods, particularly to estimating more
general recombination rate models.

4.1. Composite likelihood methods for constant recombination rate
models

The first composite likelihood method for estimating recombination rates
was introduced by Hudson (2001), see also McVean, Awadalla, and Fearnhead
(2002). This is based on combining the likelihood for all pairs of SNPs in the
data. We will describe the idea under a constant recombination rate model,
which is parameterised by a recombination rate per bp, ρ̄, and a set of nuisance
parameters, φ. The latter can include parameters governing the mutation model,
such as mutation rate, and the demographic model, such as details of how the
population size has varied over time, or parameters for models which allow non-
random mating. We describe inference conditional on an estimated (or assumed)
value of φ. For simplicity we drop this conditioning from our notation.

As above let π2(D(i,j); ρ̄(xj − xi)) be the probability of the data at SNPs
i and j, given the recombination rate between them is ρ̄(xj − xi). Then the
composite likelihood of Hudson (2001), which we will call a pairwise likelihood
(Cox and Reid (2004)) is

PwL(ρ̄) =
L∏

i=1

L∏
j=i+1

π2(D(i,j); ρ̄(xj − xi)).
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The key to the computational efficiency of this model is that for data from
N chromosomes there are of the order of just N3 possible values for the data
D(i,j). Thus the individual likelihood functions π2(D(i,j); λ) can be tabulated
for all possible values of D(i,j) and for a suitable grid of λ, for sample sizes up
to N ≈ 100. Once stored, evaluating the pairwise likelihood is computationally
cheap unless L is extremely large.

The likelihoods for each pair of SNPs can be calculated in a number of ways.
The simplest is by simulating from the appropriate coalescent model and storing
the observed frequencies of each value for D(i,j). Hudson (2001) uses an improved
version of this idea, where genealogies at each SNP are simulated, the probability
of D(i,j) given each pair of genealogies is calculated and then averaged over a large
sample of pairs. This approach can be used for any demographic model (see also
Carvajal-Rodriguez, Crandall, and Posada (2006)), but is currently restricted to
mutation models that do not allow more than one mutation on the genealogy at
each SNP. An alternative approach was taken by McVean, Awadalla, and Fearn-
head (2002), who use importance sampling to calculate the likelihood function
under a more general mutation model, but only allow the simplest demographic
model for the coalescent.

The second composite likelihood method is based on splitting the data in
subregions of consecutive SNPs (Fearnhead and Donnelly (2002)). Define the
size of each subregion as containing k SNPs. Further define the joint probability
mass function of data at k SNPs as πk(D(i:i+k−1)|ρi:i+k−1), where ρi:i+k−1 =
ρ̄(xi+1 − xi, . . . , xi+k−1 − xi+k−2) is the vector of the k − 1 recombination rates
between each pair of consecutive SNPs. Then the composite likelihood is defined
as

LC(ρ̄) =
L−k+1∏

i=1

πk(D(i:i+k−1)|ρi:i+k−1).

Calculating this composite likelihood is computationally more expensive than
calculating the pairwise likelihood, as it is no longer possible to tabulate the
likelihoods for each possible value of D(i:i+k−1). Instead the terms πk(D(i:i+k−1)

|ρi:i+k−1) are calculated using the importance sampling method of Fearnhead
and Donnelly (2002). Obviously by setting k = L we recover the full-likelihood
for the data, and in general the larger the value of k the more accurate will
the resulting inference be. However, the larger k the harder it is to accurately
estimate πk(D(i:i+k−1)|ρi:i+k−1). In practice, Fearnhead and Donnelly (2002)
suggest taking k between 5 and 10 as giving a reasonable compromise between
statistical and computational efficiency.

Currently this composite likelihood method can only be calculated under
the simplest demographic model for the coalescent, however it does allow for
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mutation models with recurrent mutation, and allows for joint inference of the
mutation and recombination parameters.

4.1.1. Example

To demonstrate the application of composite likelihood methods, we consid-
ered analysing SNP data from the HABP2 gene from the SeattleSNPs database
(Crawford et al. (2004)). The original data consist of genotypes from 23 Euro-
peans and 24 African Americans. We focus on analysing the African American
data, and first use PHASE (Stephens, Smith, and Donnelly (2001)) to infer hap-
lotypes.

The resulting data set consists of 188 SNPs across an approximately 40kb
region. A graphical deciption of the data is shown in Figure 4 (left-hand plot),
where we plot the correlation in genetic types for each pair of SNPs. High
correlation between a pair of SNPs reflects the idea that the frequency of genetic
type at one SNP depends strongly on the genetic type at the other SNP on that
haplotype. Low correlation suggests that there is little dependence between the
genetic types on a haplotype at the two SNPs. This is a common plot for data
as the more the recombination between two SNPs then the smaller the amount
of correlation that would be expected to be observed. The idea of the pairwise
likelihood is that for each pair of SNPs a log-likelihood curve is calculated, and
these are summed to provide a composite log-likelihood curve from which the
recombination rate is estimated. This can be viewed as a theoretically justified
way of combining the information in the amount of correlation between each pair
of SNPs, which is shown in Figure 4, to provide an estimate of the recombination
rate.

For simplicity we focus on analysing data from a 10kb region, starting at po-
sition 10kb (this region corresponds to the highlighted square in Figure 4.) This
region itself has 79 SNPs, which is substantially more than could be analysed via
full-likelihood methods. We first implemented the composite likelihood method
of Fearnhead and Donnelly (2002), using 72 overlapping subregions each of which
contained 8 consecutive SNPs. Results are shown in Figure 4 (right-hand plot),
where we show a random sample of log-likelihood curves for the sub-regions, to-
gether with the final composite log-likelihood curve. The final estimate of the
recombination rate is 4.0 per kb. However, there is substantial variation in the
log-likelihood curves, and the position of their maximum, across the individual
sub-regions. Possible explanations include it being a feature of the sampling vari-
ability in the log-likelihood curves, but also that the assumption of a constant
recombination-rate across this 10kb region may not be appropriate. We return
to the latter point in Section 4.3.
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Figure 4. SNP Data from 24 African Americans for the HABP2 gene.
Left-hand plot shows the pairwise correlation between each pair of SNPs:
light shading shows high correlation, darker shading shows lower correlation.
Right-hand plot shows results from analysing data from positions 10kb-20kb
using the composite likelihood method of Fearnhead and Donnelly (2002). In
grey are a sample of 20 log-likelihood curves from sub-regions; in bold is the
composite log-likelihood curve obtained by summing log-likelihood curves
from all 72 sub-regions. All log-likelihood curves have been shifted to have
a maximum value of 0.

We also used the pairwise likelihood method to estimate the recombina-
tion rate, using the method of McVean, Awadalla, and Fearnhead (2002). This
method gave an estimate of the recombination rate of 2.5 per kb, which is no-
ticeably different from that of the first composite likelihood method. The reason
for a difference is that the two methods use different information. The pairwise
likelihood methods use information from quite distant SNPs. The method of
Fearnhead and Donnelly (2002) uses information only from nearby SNPs, but
uses the additional information that is contained in the haplotype patterns of
multiple SNPs. Note that it could be possible to combine the information from
the two composite likelihood approaches, again using the idea of composite like-
lihood to sum the composite likelihood curves from the two methods. This has
been considered by Smith and Fearnhead (2005) who showed that such an ap-
proach can improve the accuracy of estimates, but that the improvement is quite
small.

4.2. Empirical and theoretical results

One empirical study of the accuracy of composite likelihood methods for
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estimating recombination rates is found in Smith and Fearnhead (2005). The
main conclusion from that was that the two composite methods described here
were roughly as accurate as each other: the pairwise likelihood method does
better for regions were the recombination rate is small, and the method of Fearn-
head and Donnelly (2002) does better when the recombination rate is larger.
The explanation for this is that the information from pairs of SNPs decays as
the recombination rate between them increases. As such the pairwise likelihood
method benefits more from using information from SNPs that are a large physical
distance apart when the recombination rate is lower. Overall, the main advantage
of the pairwise method is its speed, which can be orders of magnitude quicker
than the alternative composite likelihood approach.

The only theoretical results about the above two composite likelihood meth-
ods concern the consistency of estimates for ρ̄. These results come from Fearn-
head (2003). A necessary condition for consistent estimators is that the marginal
likelihoods used within the composite likelihood model are correctly specified.
Essentially this means that the expected log-likelihood curve, with expectation
over repeated draws of the data, from a sub-region or pair of SNPs will have its
maximum at the true parameter value. If we analyse sequence data using the
pairwise method, then it is common just to use pairs of sites that segregate within
the sample. Theorem 4 of Fearnhead (2003) shows that if we do not account for
the conditioning on segregation in defining our log-likelihood then any resulting
pairwise likelihood estimator will not be consistent.

For a similar reason, satisfying this condition is non-trivial for SNP data
due to needing to account for the ascertainment procedure used in choosing the
SNP locations (see e.g., Nielsen and Signorovitch (2003)). More importantly,
if the demographic model that is used is incorrect, then again we will not get
consistent estimators of the recombination rate. This is investigated empirically
by Fearnhead and Smith (2005), who show that the resulting biases, for large
samples, in the composite likelihood methods are generally small across a range
of demographic scenarios. Furthermore, these are particularly small when trying
to estimate how recombination rates vary between different genomic regions.

In the following we now ignore this issue and assume that these likelihoods
are correctly specified, and for the pairwise likelihood that we know, or have
consistent estimators of, the nuisance parameters (mutation rates). Under these
assumptions we give a brief overview of existing theoretical results.

The asymptotic regime considered is as the number of SNP loci tends to
infinity. The information in the data is bounded as the number of chromosomes
N → ∞, and we do not obtain consistent estimators as N → ∞. Fearnhead
(2003) shows that the composite likelihood estimator of the recombination rate
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of Fearnhead and Donnelly (2002) is consistent as L → ∞. This follows almost
directly from the result of Theorem 1, which is sufficient to show that

Var
(

1
L − k + 1

LC(ρ̄)
)

→ 0,

as L → ∞. As a result we have that LC(ρ̄)/(L − k + 1) converges in probability
to the expected log-likelihood for a sub-region, and hence (under further mild
conditions) that the maximum value of LC(ρ̄) is attained for the value of ρ̄

for which the expected log-likelihood has its maximum. Under the assumptions
above this is the true parameter value. However, the rate of decay of this variance
is log(L)/L, which suggests that the variance of the composite likelihood is also
of order log(L)/L, as compared to the more normal 1/L rate of convergence. The
extra log(L) term is due to the slow rate of decay of dependence in population
genetic data.

Fearnhead (2003) was unable to show that the pairwise likelihood estimator
of ρ̄ was consistent. This is due to a combination of the slow rate of decay in
dependence plus also that the information contained in D(i,j) about ρ̄ also decays
as xj−xi gets large. However, estimators based on a weighted pairwise likelihood,

WPwL(ρ̄) =
L∏

i=1

L∏
j=i+1

π2(D(i,j); ρ̄(xj − xi))w(xj−xi),

are consistent for appropriate weight functions w(x). In particular we get con-
sistent estimators if we choose w(x) such that

w(x) =

{
1 if x < C,

0 if x ≥ C,

for some C. Empirical results in Smith and Fearnhead (2005) show that this
choice of weight function leads to more accurate estimates of the recombination
rate for values of C of the order of 10,000bps. Note that this choice leads to
pairwise likelihood methods that scale well to large L as their complexity is
linear, rather than quadratic, in L; this is what is used in McVean et al. (2004).

Important open theoretical questions include results on the asymptotic dis-
tribution for estimators of ρ̄, and also deriving consistent estimators for the vari-
ance of the composite likelihood based estimates of ρ̄. The former is non-trivial
due to the dependence structure across loci within population genetic models;
the latter is difficult because of the dependence that exists both across loci and
across chromosomes.
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4.3. Estimating varying recombination rates

An important extension of these composite likelihood methods has been the
inference about more general recombination models. Of particular importance,
as motivated by the data in Section 4.1.1, is to infer whether, and how, recom-
bination rates vary across a region of interest. Pioneering work in McVean et al.
(2004) shows how the pairwise likelihood can be used to fit a model where the
recombination rate function ρ(x) is piecewise linear, thus allowing the recombi-
nation rate per bp to vary across the chromosome.

The pairwise likelihood can be extended to a pairwise likelihood for a general
recombination rate function, ρ(x), in an obvious way. The inference mechanism is
to introduce a prior on ρ(x), defined by a distribution for the number and position
of changepoints where the recombination rate per bp is allowed to change, and
a distribution for this rate per bp between successive changepoints. If we denote
this prior by π(ρ(x)), then McVean et al. (2004) base inference on a (pseudo)
posterior which is proportional to π(ρ(x))PwL(ρ(x)). Samples from this posterior
were generated by Markov chain Monte Carlo.

The use of the pairwise likelihood to define this posterior cannot really be
justified in a formal sense. In particular, the resulting posterior substantially
under-estimates the uncertainty in the ρ(x). In practice this approach is closely
related to basing inference on a penalised likelihood, with the prior being the
mechanism that penalises how much ρ(x) varies (through a probabilistic penalty
on the number of changepoints allowed). MCMC then just gives an efficient pro-
cedure for finding values of ρ(x) that have a high penalised likelihood. However,
even if viewed as a penalised likelihood approach, it is unclear how to choose
the penalty function (prior), and what the resulting theoretical properties of the
estimate of ρ(x) are.

To demonstrate this approach, we return to the HABP2 data set of Section
4.1.1. Here we analyse data from the whole gene, using the method of McVean
et al. (2004) We implemented their procedure a number of times with different
degrees of penalty in the definition of the prior. For each choice of prior we
ran the MCMC algorithm, using the software LDhat, for 10 million iterations.
Each run took a matter of minutes on a desktop PC. The results are displayed
in Figure 5.

We notice the effect that the size of penalty within the prior has on the esti-
mates, with the estimates of the recombination rate varying substantially more
for the smallest penalty. The differences are practically important. For example,
a region of high recombination rate (often called a recombination hotspot, see
below), at around 25kb is only detected with two of the three choices of penalty.
Also the different penalties give different inferences for the region of high recom-
bination close to 15kb, with alternative explanations of either one or two distinct
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Figure 5. Results of analysis of variable recombination within the HABP2
gene using pairwise likelihood. We present three point estimates of how
the recombination rates vary across the gene, each for different degrees of
penalty. Numerical values were 2 (lightest grey, smallest penalty), 20, and
100 (black, largest penalty).

regions of high recombination. Currently, the choice of penalty is based purely
on empirical evidence – with suggestions of values close to the middle of the three
choices we used for Figure 5.

This approach to estimating how the recombination rate varies across the
genome has proved immensely influential. McVean et al. (2004) was one of the
first papers to quantify the substantial rate variation within the human genome,
and Myers et al. (2005) produced the first fine-scale recombination map of the
human genome. Related composite likelihood approaches have attempted to de-
tect regions of the genome with substantially higher recombination rates than
expected, so called recombination hotspots (Fearnhead and Smith (2005), Myers
et al. (2005), Fearnhead (2006), Auton and McVean (2007)). These have led
to the first human recombination hotspot map (Myers et al. (2005)), and un-
derstanding about the cause and evolution of recombination hotspots (see e.g.,
Winckler et al. (2005), Myers et al. (2008)).

4.4. Software

Software is freely available for implementing the composite likelihood meth-
ods. The pairwise likelihood approach can be implemented using code from Dick
Hudson, available from http://home.uchicago.edu/~rhudson1/, or within the
software LDhat, available from http://www.stats.ox.ac.uk/~mcvean/LDhat/.
The latter is able to perform inference for variable recombination rates, and
is arguably the most popular software for estimating recombination rates from
population data.

http://home.uchicago.edu/~rhudson1/
http://www.stats.ox.ac.uk/~mcvean/LDhat/
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Software implementing the composite likelihood method of Fearnhead and
Donnelly, including methods for detecting hotspots, is available from
http://www.maths.lancs.ac.uk/~fearnhea/Software.html.

We used the program sequenceLDhat, available from the latter website, and
the LDhat software to produce the results for the HABP2 gene.

5. Association and Fine Genetic Mapping

In medical genetics, one of the main interests is to map a gene, i.e. to
locate the position of a gene causing a disease, or any phenotype of interest, on
a chromosome. When this is done, in subsequent research, molecular biologists
can examine the code of the gene in the hope of preventing the disease. Linkage
analysis in families has been the traditional way of mapping genes. However,
because of the relatively limited number of recombination events, it is difficult
to precisely locate the position of the gene that one is looking for; this is why
population data is often used instead. Usually, the result of a linkage analysis
is to identify one or several chromosomal regions of interest likely to contain the
“disease gene”.

Mapping of disease-genes works because of what is called linkage disequilib-
rium (LD). This concept refers to the non-random association of alleles at nearby
loci. To understand the concept of LD, one has to imagine that, at some time
in the past, a mutation causing the trait of interest appeared on a particular
chromosome of the population. There is consequently dependence between this
mutation site and nearby sites, and because of recombination, this dependence
will decrease over time. Indeed, in proportion to the genetic distance between
the mutation site and the considered site, recombinations can break the original
mutant chromosome into pieces, and eventually the two sites are no longer trans-
mitted together. The dependence between two alleles, due to their linkage or for
other reasons, is called allelic association (see Elston (2000) for more details).

Association and mapping studies are usually conducted to study rare dis-
eases. In order to get enough cases, the data usually come from a case/control
study. The phenotype of interest can be quantitative or qualitative (usually
diseased/non-diseased). For each individual in the sample, genetic markers are
obtained for the region of interest. This region either corresponds to a region
previously identified by linkage analysis in families, or it corresponds to the whole
genome. The latter is called a genome scan.

We can classify methods using composite likelihoods for association or map-
ping in three categories. The first one assumes independence of marker loci, the
second one assumes independence of individuals, and the last one takes into ac-
count the dependence between markers and individuals, but works only for small

http://www.maths.lancs.ac.uk/~fearnhea/Software.html


60 FABRICE LARRIBE AND PAUL FEARNHEAD

regions in the sequence.

5.1. Independence of marker loci

The first approach is to build a marginal likelihood for each marker, and then
form a composite likelihood by assuming independence of markers. In short, we
can view this methodology as a pairwise likelihood approach, where the pair is
formed by a genetic marker and the disease gene. Most of these methods use
a special parameter to model the association between a marker and the disease
gene, a parameter that is assumed to be a function of the distance between the
genetic marker and the disease gene. Then, these approaches define a probability
model, or use an existing one, to describe the data given the chosen parameter.
Assuming independence of the markers, a composite likelihood is then built and
used to obtain an estimate of the parameter of interest. Although all these meth-
ods have their own particularities, we present only a brief outline; the interested
reader can refer to the included bibliography.

The first one of these methods was proposed by Terwilliger (1995): for a
given genetic marker, and assuming that a particular allele is associated with
the disease gene, the LD is measured by the increase in the frequency of this
allele on the case chromosome; he defines a parameter λk, which depends on
the recombination fraction between the disease gene and the marker k. Using
simple probability rules and some assumptions about the genetic model, the
probability of the data can be evaluated. A composite likelihood is then formed
to combine the probability over all the markers loci, and a maximum composite
likelihood estimate of the parameter is obtained. Xiong and Guo (1997) define
a likelihood for one marker under a Wright-Fisher model, and approximate this
likelihood using a first order Taylor series; then, a composite likelihood over all
the markers loci is defined. They show that Terwilliger’s method is actually
a particular case of their method. Service et al. (1999) extend the Terwilliger
approach by using triplets of markers, instead of pairs. Furthermore, a similar
approach to Terwilliger’s can be found in Devlin, Risch, and Roeder (1996),
except that they take into account the stochastic aspect of the genealogy. Their
LD parameter is the robust attributable risk (estimated by using joint frequencies
of alleles between a marker and the disease), and this risk can be formulated
in terms of a recombination fraction between the marker and the disease; they
show (by simulation) that, under a Wright-Fisher model, a function of the robust
attributable risk approximately follows a gamma distribution. As the probability
of the data at one marker can be approximated given the distance between the
marker and the disease gene, a composite likelihood is constructed by multiplying
the likelihoods for each marker, and the location of the disease gene can then
be estimated. Another important contribution to this type of method is the
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work of Collins and Morton (1998); the general idea of their work is similar
to the methods described above. Details of all these methods in the context
of composite likelihood can be found in Lazzeroni (2001), Rannala and Slatkin
(2000), and in Li (2008).

5.2. Independence of sequences

The second type of method using composite likelihoods consists of building
a marginal likelihood for each sequence, and forming a composite likelihood by
assuming that the sequences are independent, conditional on the type of the
common ancestor of the sample. This approach is equivalent to assuming that
the genealogy of the sampled chromosomes is star shaped (all the sequences are
directly related to a common ancestor, giving a star shaped genealogy - ∗ -
where the ancestor is the centre of the star, and the branches are the sequences),
which in practice is likely not to be the case given that the sequences share the
same history by the hypothesis of LD. In contrast, Slatkin and Rannala (2000)
note that the star genealogy makes sense in a very rapidly growing population.
The methods of Terwilliger (1995), described above, actually fall into this second
category: the independence of markers within sequences, and the independence
of sequences themselves is assumed (Rannala and Slatkin (2000)).

A different and more interesting example of this type of method is the one
proposed by McPeek and Strahs (1999). They elegantly model the probability
to observe a sequence, taking into account recombination and mutations, if the
ancestral haplotype is known. Conditional upon a common ancestor and the lo-
cation of the disease mutation, they develop a marginal likelihood for a sequence
of markers using a coalescent model. Considering the ancestor and the location
of the disease mutation as parameters, they propose a composite likelihood to
combine the likelihood for all the sequences, evaluated by a hidden Markov algo-
rithm. They obtain a point estimate and confidence interval; to take into account
the shared ancestry of chromosomes (ignored by the composite likelihood), they
proposed a correction factor that inflates standard error. Morris, Whittaker, and
Balding (2000) and Liu et al. (2001) have transposed the McPeek and Strahs
(1999) approach into a Bayesian framework.

5.3. Full likelihood on a subset of the data

Attempting to use all the information, while taking into account the depen-
dence existing in both marker loci and sequences, comes to a relatively similar
problem to the one described in Section 4, where the recombination rate was the
parameter of interest. The main difference is that in the present case, the recom-
bination rate is assumed to be known, and we wish to estimate the location of
a disease mutation, while in the previous approach one estimated the unknown
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recombination rate. The inference methods presented in Section 3.2 could be
used here by changing the parameter of interest.

The first attempt to map a gene with a full likelihood approach was done in
Larribe, Lessard, and Schork (2002). They describe the genealogy by using the
coalescent with recombination, and adapt the importance sampling procedure
proposed by Griffiths and Marjoram (1996) to estimate the position rT of a
disease mutation. Assuming a simple genetic model, the joint probability of the
genetic data D and the phenotypic data T assuming the disease mutation is at
position rT , π(D,T |rT ), can be estimated. The procedure involves estimating
the likelihood independently for each of the L − 1 inter marker intervals; note
that the resulting likelihood is not a continuous function of rT .

Although this approach is appealing because it uses all available information
and takes the structure of the genealogy and the dependence between markers
correctly into account, the method is so computer intensive that it is difficult to
use it with sequences containing more than a few markers.

To reduce the computation size, while keeping the coalescent with recombi-
nation as a model for the genealogy, Larribe and Lessard (2008) propose to use
windows of markers, similarly to Fearnhead and Donnelly (2002) (see Section
4.1). Let Dg be the genetic data within the gth window, then the likelihood
contribution from this window is π(Dg, T |rT ). In practice there are two prob-
lems in estimating these likelihoods, and thus the composite likelihood. First
the likelihood is evaluated independently for each marker interval in each win-
dow, and these can be difficult to estimate accurately. This poses a real problem
given that we have to compare likelihoods from different intervals and windows.
Second, π(Dg, T |rT ) does not use the same data from one window g to another.
Therefore, a conditional marginal likelihood is defined for marker interval m in
window g:

Lm,g(rT ) =
πg(Dg, T |rT )

πg(Dg)
,

where rT lies within marker interval m in window g, and πg(Dg) is the observed
sample configuration in windows g. This conditional marginal likelihood is eval-
uated in two steps for each interval m in window g: the numerator and the
denominator have to be evaluated independently. Larribe and Lessard (2008)
define a composite-conditional-likelihood:

CCL(rT ) =
L−1∏
m=1

 ∏
g∈G(m)

Lm,g(rT )

wm

,

where G(m) is the set of windows that cover interval m. This composite-
conditional-likelihood is a weighted product of conditional likelihood functions
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associated with windows of k contiguous marker loci, where one conditions on
the observed sample configuration at those genetic markers; the weight wm is
inversely proportional to the number of windows of that size encompassing the
location of the mutation.

For example, if windows of size two are considered, then the likelihood is
evaluated using pairs of contiguous markers, and the pairs are considered in-
dependent; this likelihood is very quick to compute, but does not give better
estimates than simple pairwise statistics. If only one window of L contiguous
markers is taken, then CCL(rT ) is proportional to the full likelihood and would
give the same estimate as before. Although windows can be disjoint, the current
implementation uses overlapping windows. It is shown by simulation that the
larger the window size, the closer CCL(rT ) estimates the full likelihood L(rT )
and the more difficult–computationally it is to evaluate the likelihood.

Simulation results show that the composite likelihood method gives similar
results to the full likelihood as long as the windows are not too small (win-
dows had to be approximately greater than 6 markers in size in the examples
considered). Moreover, the improvement in calculation time is drastic, and the
composite likelihood method allows inference from large data sets that would be
impossible to analyse using full likelihood methods.

5.4. Comparison of methods

Few studies compare how different approaches behave. Garner and Slatkin
(2002) estimate the position of a disease gene by using information on two mark-
ers, under a coalescent framework. They then compare this method to a single-
marker likelihood and a composite likelihood by simulations. As expected, the
method using two markers at the same time give a smaller confidence interval;
their results show that the composite likelihood estimate can be biased.

Currently there are no theoretical results for any of these composite like-
lihood methods. One problem with deriving such results is that many of the
composite likelihood methods are based on combining approximate likelihoods
for subsets of the data – and it is not even clear what the properties of these
approximate likelihoods are. There are also issues about appropriate asymp-
totic regimes. For example, increasing data by typing more markers that will be
further and further away from the disease gene is unlikely to lead to consistent es-
timates of the position of the disease gene because the information in each marker
will decay quickly with its distance from the disease gene. While asymptotics
based on increasing sample size of individuals are likely to have substantially
different properties depending on whether the disease gene is one of the marker
loci or not. In the former case it should be possible to consistently estimate the
position of the gene. By comparison, if the disease gene is not a marker locus,
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consistent estimators are unlikely as, by chance, the markers in highest linkage
disequilibrium with the disease gene may not be those closest to it.

6. Other Uses of Composite Likelihoods

Beside estimation of recombination rates, association and fine mapping meth-
ods, composite likelihoods have also been used in other contexts in statistical
genetics. Here we give a brief overview of two areas, with indicative references.

6.1. Detecting genes under selection

Finding genes which are under selective pressure is of interest, as these genes
are more likely to be linked to diseases. Also understanding the selective pressures
on the human genome is informative about human evolution. Such genes can be
detected by looking at the patterns of diversity at neutral markers near the gene.
For example, a gene which has undergone a recent selective sweep, that is a
favourable gene allele has rapidly increased in frequency in the population due to
positive selection, will be surrounded by less genetic variation than other genes.
Population genetic models can describe the likely patterns of genetic diversity at a
single marker around a selective sweep, and composite likelihood methods can be
used to combine such information across multiple marker loci. Kim and Stephan
(2002) propose such a composite likelihood approach to test the hypothesis of
selective sweep, the distribution under the null hypothesis being obtained by
simulation (see also Zhu and Bustamante (2005)). Meiklejohn et al. (2004) use
similar techniques for a related model of positive selection. In a similar context
of selection, Kim and Nielsen (2004) propose a new composite likelihood by using
pairs of sites (instead of a single site), where the distribution of various allelic
configurations is obtained by simulation, in the way Hudson (2001) computed
recombination (see Section 4.1).

Patterns of selection are often similar to those obtained under certain de-
mographic models (e.g., how the population size has varied over time). Related
work has been done to make the above inferences about selection robust to the
underlying demographic model. The key idea is that demography affects diver-
sity across the whole genome, while selection affects diversity locally. See for
example Jensen et al. (2005). Composite likelihood methods have contributed to
the production of genome-wide maps of genes under recent selection (Pickrell et
al. (2009)).

6.2. Inference of demography

Composite likelihood methods have been used to infer the demographic his-
tory of a population, or a number of populations. Questions addressed include
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how the population size has varied over time, to what extent there is random
mating within a population, how much migration is there between populations,
and how and when did current distinct populations evolve from ancestral popula-
tions. Different demographic models will potentially affect the observed genetic
diversity in a sample in different ways, though there is difficulty in inferring be-
tween different demographic, biological, and selective models that produce similar
patterns in data. There is great scope for composite likelihood methods and the
effect of demography should be seen on markers across the whole genome, hence
there is a need for practicable methods that can combine information across a,
potentially large, number of marker loci.

Composite likelihood methods are most naturally defined based on likelihood
data at a single marker, or for data at a small number of closely linked markers.
For example, Gray et al. (2009) use the approach of Sawyer and Hartl (1992)
to model the data at individual sites, and then derive a composite likelihood
under the assumption of independence of data across sites. Plagnol and Wall
(2006) infer ancestral human population structure based on data from 135 genes.
They summarise the data within each gene by a set of summary statistics, calcu-
late the likelihood of this set of summary statistics under different models, and
then combine these likelihoods to produce a composite likelihood. Alternatively,
Meligkotsidou and Fearnhead (2007) use composite likelihood to estimate models
of spatial spread of a population, where they combine likelihoods from pairs of
chromosomes.

Wiuf (2006) gives theoretical results supporting approaches that combine
likelihoods at single markers, or regions of markers. Using a generalisation of
Theorem 1, Wiuf shows that dependence across a genome decays as the inverse
of genetic distance, and thus composite likelihood estimates of parameters in
demographic models will be consistent as the number of markers increases.

7. Conclusion

Composite likelihoods are extensively used within genetics. The main moti-
vation for this is computational: composite likelihood methods can scale so that
they are computationally feasible for the large genetic data sets being generated.
As data sets get bigger we would expect the importance and use of composite
likelihood methods to also increase.

Currently, different composite likelihood methods are justified by empirical
results (mainly through simulation studies) rather than theoretically. While the
complex dependencies, across both individuals and markers, can make theoretical
analysis of composite likelihood methods challenging, we feel there is an impor-
tant role for developing practically relevant theory to underpin the application
of these methods within genetics.
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Important open questions relate to the asymptotic distribution of composite
likelihood estimators: under what conditions will this be Gaussian, and how can
we consistently estimate the variance of this distribution? For pairwise likelihood
methods (e.g., Section 4.1) can we characterise what the optimal weights would be
for the likelihood term for each pair of markers, and how these should decay with
the distance between the markers? For applications in disease-gene mappings,
results on the regimes under which we get consistent estimators, and how the rate
of convergence differs for different approaches (such as assuming independence
across markers or across individuals) are also important.
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