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Abstract: The distribution of the incubation period of the novel coronavirus disease

that emerged in 2019 (COVID-19) has crucial clinical implications for understanding

this disease and devising effective disease-control measures. Our study is based on

a cross-sectional and forward follow-up study that collected the duration times

between a specific observation time and the onset of COVID-19 symptoms for

individuals. The original study further proposed a mixture forward-incubation-

time epidemic model, which is a mixture of an incubation-period distribution and

a forward time distribution, to model the collected duration times and to estimate

the incubation-period distribution of COVID-19. In this study, we provide sufficient

conditions for the identifiability of the unknown parameters in the aforementioned

epidemic model when the incubation period follows a two-parameter distribution.

Under the same setup, we propose a likelihood ratio test (LRT) for testing the

null hypothesis that the mixture forward-incubation-time epidemic model is a

homogeneous exponential distribution. The testing problem is nonregular because a

nuisance parameter is present only under the alternative. We establish the limiting

distribution of the LRT and identify an explicit representation for it, and obtain

the limiting distribution of the LRT under a sequence of local alternatives. Our

simulation results indicate that the LRT exhibits desirable type-I errors and power.

Lastly, we analyze a COVID-19 outbreak data set from China to illustrate the

usefulness of the LRT.
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1. Introduction

As the novel coronavirus disease that emerged in 2019 (COVID-19) spread

rapidly worldwide, the World Health Organization (WHO) declared the COVID-

19 outbreak a global pandemic on March 10, 2020. Currently, COVID-19 is

still spreading around the world, posing a significant threat to global public

health and affecting global economics and social development. As of January 7,

2022, the WHO had identified over 300 million confirmed cases of COVID-19,

and observed more than 5 million deaths. Countries are fighting this pandemic

by imposing measures such as isolation policies, travel restrictions, lockdowns,
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and social distancing. Of these measures (Cohen and Kupferschmidt (2020)),

quarantining people who may have been exposed to COVID-19 seems to be the

most effective way of preventing further disease transmission.

The incubation period of an infectious disease is the time between exposure

to it and the first appearance of symptoms. Thus, an accurate estimation of the

incubation-period distribution, or incubation distribution, is crucial (especially

in regions where the epidemic is severe) for determining the length of appropriate

quarantine periods for individuals who suspect they may have been exposed to

the virus. In the literature, estimating incubation distributions has attracted

much attention (Sartwell (1950); Kalbfleisch and Lawless (1989); Struthers and

Farewell (1989); Kalbfleisch and Lawless (1991); Farewell et al. (2005); Wilkening

(2008)), and studies on COVID-19 are still ongoing; see Backer, Klinkenberg

and Wallinga (2020), Guan et al. (2020), Lauer et al. (2020), Li et al. (2020),

Linton et al. (2020), Liu et al. (2021), Qin et al. (2020), Rahman et al. (2020),

Wang et al. (2020b), and Liu, Ma and Jiang (2022), among others. The current

results are based mostly on clinical experience or empirical statistical analysis

of contact-tracing data. However, such data may be inaccurate because of the

patient’s recall bias or the interviewer’s personal judgment on the possible date of

exposure, rather than the actual date. For additional discussions, see Qin et al.

(2020).

The lockdown of Wuhan, the capital city of Hubei province in China,

provided an opportunity to estimate accurately the incubation distribution of

COVID-19. Qin et al. (2020) designed a new cross-sectional and forward follow-

up study, in which they collected the duration times between departing Wuhan

and the onset of symptoms for 1,211 confirmed cases in people who left Wuhan

before the lockdown with no COVID-19 symptoms, and then developed symptoms

outside Wuhan; further details on the study and data collection can be found

in Section 5. Using the theory of renewal processes, they proposed a mixture

forward-incubation-time epidemic model to model the 1,211 observed duration

times and to estimate the incubation distribution. This mixture model overcomes

the issues of biased sampling, and considers the possibility that some patients may

have been exposed to COVID-19 on their way out of Wuhan.

Herein, we follow the approach and model setup of Qin et al. (2020). Let Y

be the incubation period with probability density function (pdf) f(t). Consider a

specific observation time that is either (i) the time of exposure to the disease, or

(ii) some time thereafter, but before the onset of symptoms. However, whether

the situation pertains to (i) or (ii) is unknown. For example, Qin et al. (2020)

chose the observation time of an individual to be their departure time from

Wuhan. Furthermore, let A be the time between the exposure time and the

departure time, and V be the forward time calculated from the departure time

to the symptom-onset time, given that the departure time is after the exposure

time, but before the symptom-onset time, that is, Y > A. Treating this as a
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renewal process that reaches equilibrium, it can be shown that the conditional

pdf of V given Y > A is given approximately by

g(t) =

∫∞
t

f(y)dy∫∞
0

yf(y)dy
for t > 0

(Linton et al. (2020); Qin (2017, Chap. 2)). See Section S1 of the Supplementary

Material for a derivation of the form of g(t). As Qin et al. (2020) point out, the

study cohort may contain heterogeneous subpopulations: individuals who left

Wuhan by train, bus, or plane were more likely to have come into contact with

COVID-19, because they were in a crowded environment with possible human-to-

human transmission of the virus. A similar argument pertains to the COVID-19

outbreak that occurred from late January to early February in 2020 onboard the

Diamond Princess cruise ship (Verity et al. (2020)).

In the following, we use the duration-time data from Wuhan in Qin et al.

(2020) to introduce the mixture forward-incubation-time epidemic model, in

which the observation time of an individual is their departure time from Wuhan.

Let T be the duration time between departure from Wuhan and the onset of

symptoms. We consider two cases, namely, A = 0 and A > 0; the variable T

satisfies T = Y if A = 0, and T = V if A > 0. Assuming that A and Y are

independent, the conditional pdf of T given A = 0 is the pdf f(x) of Y . Note

that A > 0 is equivalent to T = V = Y − A > 0, and thus the conditional pdf

of T given A > 0 is the conditional pdf of V given Y > A or g(t). Furthermore,

denote p as the proportion of individuals who contracted COVID-19 as they left

Wuhan, that is, p = P (A = 0). Because we have no idea who contracted the

disease before departure (A > 0) and who did so while departing (A = 0), T

follows the mixture forward-incubation-time epidemic model (Qin et al. (2020))

h(t) = pf(t) + (1− p)g(t), t > 0. (1.1)

Note that we can observe only T , and not Y or V . Let t1, . . . , tn be n observed

duration times that are independent and identically distributed (i.i.d.) copies of

T .

Note that there may exist a third portion of individuals who were infected

outside Wuhan after departure. In this study, we assume that this portion of

individuals does not exist, for two reasons. First, it is theoretically challenging

to derive the pdf of the duration time for this portion of individuals. Additional

work is required, and the results developed under model (1.1) can serve as a

starting point for further research. Second, the goodness-of-fit test in Section S2

of the Supplementary Material seems to suggest that model (1.1) provides an

adequate fit to the duration-time data from Wuhan.

Throughout this paper, we focus on model (1.1) with f(t) = f(t;λ, α), the

pdf of a general two-parameter distribution. Then, the pdf of T becomes
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h(t;λ, α, p) = pf(t;λ, α) + (1− p)g(t;λ, α), t > 0, (1.2)

and t1, . . . , tn are n i.i.d. observations from h(t;λ, α, p). Under the mixture

model (1.2), Deng et al. (2021) discuss the asymptotic properties of the max-

imum likelihood estimators (MLEs) and the likelihood ratio statistic of the

unknown parameters (λ, α, p), under the assumption that (λ, α, p) are identifiable.

However, this assumption does not always hold. A counter example is the

Weibull pdf f(t;λ, α) = λα(tλ)α−1 exp{−(λt)α}I(t > 0). It can be verified that

f(t;λ, α) = g(t;λ, α) when α = 1. This implies that p is not identifiable in (1.2)

when f(t;λ, α) is a Weibull pdf with α = 1, and so we cannot use the asymptotic

results in Deng et al. (2021) in such a situation. A similar conclusion holds when

f(t;λ, α) = {Γ(α)}−1λαtα−1 exp(−λt)I(t > 0), a gamma pdf.

In this study, we complement the work of Deng et al. (2021) in two ways.

First, we provide sufficient conditions for the identifiability of (λ, α, p). Our

results indicate the following: (i) (λ, α, p) is identifiable when f(t;λ, α) is a

lognormal, Weibull or gamma pdf, but not when it is an exponential pdf; (ii)

(λ, α) is identifiable, but p is not, when f(t;λ, α) is an exponential pdf. Second,

we propose a likelihood ratio test (LRT) to test the null hypothesis that f(t;λ, α)

is an exponential pdf. Under this null hypothesis, h(t;λ, α, p) also becomes an

exponential pdf, so the proposed LRT also tests the homogeneity in model (1.2).

Note that the nuisance parameter p disappears under the null model, and is only

identified under the alternative hypothesis.

The problem of a nuisance parameter unidentified under the null hypothesis

has long been recognized in the literature as a nonregular problem (Davies (1977,

1987)). Because of the partial identifiability of the nuisance parameter, classical

inference methods such as the LRT may lose their usual statistical properties.

The limiting distribution of the LRT often involves complex stochastic processes

(Liu et al. (2020a)). The homogeneity testing problem under a two-component

mixture model has been studied extensively in the literature; for example, see

Liu and Shao (2003), Chen and Li (2009), and Chen, Li and Liu (2020), and the

references therein. To the best of our knowledge, these papers assume that the

two components come from the same distribution family, and do not share any

underlying parameters. However, under model (1.2), the two components are

not from the same distribution family and share the common parameters (λ, α).

Thus, the existing results cannot be applied to the testing problem under model

(1.2).

Despite the aforementioned challenges, we obtain the limiting distribution of

the LRT for the nonregular testing problem, that is, testing the null hypothesis

that h(t;λ, α, p) is the pdf of a homogeneous exponential distribution. We show

that the asymptotic null distribution of the LRT is the supremum of a chi-squared

process, and identify an explicit representation of the limiting distribution that

can be used for rapid numerical calculation of the asymptotic critical values or
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p-values of the proposed LRT. The results of finite-sample simulations show that

the proposed LRT has tight control of type-I error rates and appreciable power

in general. The proposed LRT is then used to analyze COVID-19 data from

China. Following Qin et al. (2020), we choose f(t;λ, α) to be a Weibull pdf.

Our analysis results indicate that the mixture forward-incubation-time model

produces a better fit than that with a homogeneous exponential distribution.

Note that all of our results are based on the parametric model (1.2), and

violating this model assumption may lead to invalid analysis results. This raises

the goodness-of-fit test problem of model (1.2) in applications. We suggest using

the goodness-of-fit test in Deng et al. (2021) to check the validity of model (1.2)

based on t1, . . . , tn; this test is reviewed briefly in the Supplementary Material.

The rest of this paper is organized as follows. In Section 2, we discuss

sufficient conditions for the identifiability of (λ, α, p) in model (1.2), and apply

the results to the case where f(t;λ, α) is a Weibull, gamma, or lognormal

pdf. In Section 3, we establish the nonregular asymptotic distribution of

the LRT for testing the null hypothesis that h(t;λ, α, p) is a homogeneous

exponential distribution, and provide an explicit representation of this asymptotic

distribution. Here we also derive the asymptotic distribution of the proposed

LRT under a sequence of local alternatives. We report our simulation results

in Section 4, and in Section 5, and we analyze real COVID-19 outbreak data

from China. Finally, we conclude the paper with a discussion in Section 6. For

convenience of presentation, all proofs are given in the Supplementary Material.

2. Identifiability of (λ, α, p)

Identifiability is important in the application of the mixture forward-

incubation-time epidemic model in (1.2). If some model parameters are not

identifiable, then their point estimators cannot be consistent, and standard

inferences for other parameters that are identifiable may be questionable. In

this section, we establish the identifiability of (λ, α, p) in model (1.2) under the

following conditions on f(t;λ, α). Let F (t;λ, α) be the cumulative distribution

function corresponding to f(t;λ, α).

A1. Given (λ, α), limt→∞ f(t;λ, α)/{1− F (t;λ, α)} exists and is either finite or

∞.

A2. When (λ1, α1) ̸= (λ2, α2), limt→∞ f(t;λ1, α1)/{f(t;λ2, α2)} exists and is

either zero or ∞.

A3. When (λ1, α1) ̸= (λ2, α2), both limt→∞ f(t;λ1, α1)/{1− F (t;λ2, α2)} and

limt→∞ f(t;λ2, α2)/{1− F (t;λ1, α1)} exist and are either zero or ∞.
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Theorem 1. Assume model (1.2) and conditions A1-A3. Let

A(λ, α) = lim
t→∞

f(t;λ, α)

1− F (t;λ, α)
.

Suppose h(t;λ1, α1, p1) = h(t;λ2, α2, p2) for all t > 0.

(a) If A(λ1, α1) = 0 or ∞, then (λ1, α1, p1) = (λ2, α2, p2).

(b) If 0 < A(λ1, α1) < ∞, then (λ1, α1) = (λ2, α2). Furthermore, if f(t;λ1, α1)

/{1− F (t;λ1, α1)} is not a constant function of t, then p1 = p2; otherwise,

p1 and p2 are not necessarily the same.

After some calculus, it can be verified that conditions A1-A3 are satisfied

by a Weibull, gamma, or lognormal distribution. We can further verify that

A(λ, α) = 0 for a lognormal distribution, A(λ, α) = λ for a gamma distribution,

and A(λ, α) = 0 or ∞ if α ̸= 1 and A(λ, α) = λ if α = 1 for a Weibull

distribution. Applying the results in Theorem 1 to Weibull, gamma, and

lognormal distributions, we have the following identifiability results.

Corollary 1. Under model (1.2),

(a) (p, λ, α) are identifiable when f(t;λ, α) is the pdf of a lognormal distribution;

(b) (p, λ, α) are identifiable when f(t;λ, α) is the pdf of a Weibull or gamma

distribution, but not when it is the pdf of an exponential distribution;

(c) (λ, α) are identifiable, but p is not, when f(t;λ, α) is the pdf of an exponen-

tial distribution.

Deng et al. (2021) mention the identifiability property of (λ, α, p), but do not

give a formal proof. The results in Theorem 1 and Corollary 1 provide formal

justifications, and further indicate when the results of Deng et al. (2021) are

applicable and when they are not.

3. Testing Whether Incubation Distribution is Exponential

3.1. The LRT

Corollary 1 indicates that the parameter p is not identifiable when f(t;λ, α)

is the pdf of an exponential distribution under model (1.2). Because of this, the

asymptotic results in Deng et al. (2021) are not applicable in such a situation.

In this section, we propose an LRT to check whether f(t;λ, α) is the pdf of

an exponential distribution or, equivalently, whether h(t;λ, α, p) is the pdf of a

homogeneous exponential distribution, based on n i.i.d. observations t1, . . . , tn
from model (1.2).
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Throughout this section, we assume that the following condition is satisfied.

C0. There exists a unique α0 such that f(t;λ, α0) = g(t;λ, α0), for all t > 0.

Condition C0 is satisfied by a Weibull or gamma distribution with α0 = 1, and

condition C0 is satisfied if and only if f(t;λ, α0) is the pdf of an exponential

distribution. Under condition C0, testing the null hypothesis that f(t;λ, α) is

the pdf of an exponential distribution is equivalent to testing

H0 : α = α0 versus H1 : α ̸= α0. (3.1)

Note that under model (1.2), the case of α = α0 indicates that individuals in

the cross-sectional and forward follow-up study are homogeneous, and that the

duration time T defined in Section 1 follows an exponential distribution. When

α ̸= α0, there are heterogeneous subgroups of individuals in the cross-sectional

and forward follow-up study. In this case, we favor using the mixture model (1.2)

to model the distribution of T . Theoretically, detecting the existence of such

heterogeneous subpopulations is an important initial step before applying the

mixture model (1.2). If we were to apply model (1.2) to homogenous duration

times, then the MLE of (λ, α, p) would no longer have asymptotic normality. Con-

sequently, the Wald-type confidence intervals for the quantiles of the incubation

period may not have the nominal asymptotic coverage probabilities.

A natural solution to the testing problem (3.1) is one based on likelihood.

Given the n observations t1, . . . , tn from model (1.2), the log-likelihood of (λ, α, p)

is

ℓn(λ, α, p) =
n∑

i=1

log {pf(ti;λ, α) + (1− p)g(ti;λ, α)} .

Let (λ̂, α̂, p̂) be the MLE of (λ, α, p) under the full model, and let λ̂0 be the MLE

of λ under the null model, that is,

(λ̂, α̂, p̂) = argmax
λ,α,p

ℓn(λ, α, p), λ̂0 = argmax
λ

ℓn(λ, α0, 1).

Note that under the null model, p does not appear, and λ is the only parameter to

be estimated. We set p = 1 under the null model for convenience of presentation.

The LRT statistic for (3.1) is defined as

Rn = 2

{
sup
λ,α,p

ℓn(λ, α, p)− sup
λ

ℓn(λ, α0, 1)

}
= 2

{
ℓn(λ̂, α̂, p̂)− ℓn(λ̂0, α0, 1)

}
.

We reject the null hypothesis H0 in (3.1) if the observed value of Rn exceeds some

critical value determined by its limiting distribution, presented in Section 3.2.
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3.2. Asymptotic null distribution of the LRT

We require some notation before presenting the asymptotic results of the

LRT statistic Rn. Let (λ0, α0) be the true values of (λ, α) under the null model,

and define

Xi =
∂f(ti;λ0, α0)/∂λ

f(ti;λ0, α0)
, Yi1 =

∂f(ti;λ0, α0)/∂α

f(ti;λ0, α0)
, Yi2 =

∂g(ti;λ0, α0)/∂α

g(ti;λ0, α0)
.

Note that under condition C0,

f(ti;λ0, α0) = g(ti;λ0, α0) and
∂g(ti;λ0, α0)/∂λ

g(ti;λ0, α0)
= Xi.

Define bi = (Xi, Yi1, Yi2)
⊤ and denote the variance-covariance matrix

B = Var(bi) =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 , (3.2)

where the variance is taken with respect to the null model. Furthermore, define

σ11 = B33 −
B2

13

B11

, σ12 = B23 −B33 −
B12B13

B11

+
B2

13

B11

,

σ22 = B22 +B33 − 2B23 −
B2

12

B11

− B2
13

B11

+
2B12B13

B11

.

For any p1, p2 ∈ [0, 1], let

σ(p1, p2) = p1p2σ22 + (p1 + p2)σ12 + σ11. (3.3)

Our asymptotic results about Rn rely on conditions C1-C5, given in Section

S3 of the Supplementary Material; they are typical regularity conditions in the

literature on finite mixture models.

Theorem 2. Suppose that conditions C0 and C1-C5 in the Supplementary

Material are satisfied. Under model (1.2) and the null hypothesis in (3.1), as

n → ∞,

Rn → R = sup
0≤p≤1

Z2(p)

in distribution, where Z(p) is a Gaussian process with zero mean, unit variance,

and covariance function

Cov
{
Z(p1), Z(p2)

}
=

σ(p1, p2)√
σ(p1, p1)σ(p2, p2)

, 0 ≤ p1, p2 ≤ 1.



MIXTURE FORWARD-INCUBATION-TIME EPIDEMIC MODEL 2227

Theorem 2 shows that the LRT statistic Rn has a nonregular limiting

distribution that is the supremum of a χ2-process, and, in general, it does not

have a closed form and is difficult to calculate numerically. Instead, we derive

an equivalent representation of R that is simpler in form, and more convenient

in terms of calculating the distribution function or quantiles of R using the

Monte Carlo method.

We require some additional notation. Consider the following polar transfor-

mation: (cos θ, sin θ) =
(
c1(p), c2(p)

)
, where

c1(p) =

√
σ11 − σ2

12/σ22√
σ(p, p)

and c2(p) =
(p+ σ12/σ22)

√
σ22√

σ(p, p)
.

To find a simple representation for R, we require the following additional

condition.

C6. There exist ∆1 and ∆2 such that −π/2 < ∆1 < ∆2 < π/2 and{(
c1(p), c2(p)

)
: 0 ≤ p ≤ 1

}
= {(cos θ, sin θ) : ∆1 ≤ θ ≤ ∆2}.

Under condition C6, we define the three sets

A1 = {η : max
θ∈[∆1,∆2]

cos2(θ − η) = 1},

A2 = {η : max
θ∈[∆1,∆2]

cos2(θ − η) = cos2(η −∆2)},

A3 = {η : max
θ∈[∆1,∆2]

cos2(θ − η) = cos2(η −∆1)}.

If both ∆1 and ∆2 are positive, then these sets have the following explicit forms:

A1 = [∆1,∆2] ∪ [∆1 − π,∆2 − π],

A2 =

[
∆2,∆+

π

2

]
∪
[
∆2 − π,∆− π

2

]
,

A3 =

[
∆+

π

2
, π

]
∪ [−π,∆1 − π] ∪

[
∆− π

2
,∆1

]
, (3.4)

where ∆ = (∆1 + ∆2)/2. Figure 1 shows A1-A3 graphically when f(t;λ, α) is a

Weibull pdf.

Theorem 3. Assume the conditions of Theorem 2 and condition C6 hold.

Furthermore, suppose that ρ2 and η are two independent random variables that

follow a χ2
2 and a uniform distribution on [−π, π], respectively. Then, R has the

same distribution as

T (ρ2, η) = ρ2{I(η ∈ A1) + I(η ∈ A2) cos
2(η −∆2) + I(η ∈ A3) cos

2(η −∆1)}.
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Figure 1. Graphical representation of sets A1, A2, and A3 when f(t;λ, α) is a Weibull
pdf.

Note that ∆1, ∆2, and A1-A3 may depend on λ0. We can estimate λ0 using

λ̂0, the MLE of λ under the null model. Based on Theorem 3, we propose the

following Monte Carlo procedure for approximating the distribution and quantiles

of R. First, we generate a large number (e.g., M = 108) of independent copies

of (ρ2, η), denoted by (ρ2i , ηi) (i = 1, . . . ,M). Then, we take the empirical

distribution of {T (ρ2i , ηi), i = 1, . . . ,M} to approximate the distribution of

R. Accordingly, we can calculate the approximate p-value of the LRT or the

approximate quantiles of R, which may serve as critical values of the proposed

LRT.

The results in Theorems 2 and 3 rely on the forms of σ(·, ·) in (3.3) and

(∆1,∆2) in condition C6. In the following, we identify two examples satisfying

conditions C0-C6, and work out their σ(·, ·) and (∆1,∆2).

Example 1 (Weibull distribution). Recall that the pdf of a Weibull distri-

bution is given as f(t;λ, α) = λα(tλ)α−1 exp{−(λt)α}I(t > 0). It can be shown

that σ(p1, p2) = p1p2(π
2/6− 1) + (p1 + p2)(2− π2/6) + π2/3− 3 and

∆1 = arccos

√
π4 − 6π2 − 36

2π4 − 30π2 + 108

 , ∆2 = arccos

√
π4 − 6π2 − 36

π4 − 6π2

 .

Because both ∆1 and ∆2 are positive, A1-A3 take the forms in (3.4).

Example 2 (Gamma distribution). Recall that the pdf of a gamma distr-

ibution is given as f(t;λ, α) = {Γ(α)}−1λαtα−1 exp(−λt)I(t > 0). It can be

shown that σ(p1, p2) = p1p2 (π
2/6− 5/4) + (p1 + p2) (7/4− π2/6) + π2/3 − 13/4

and

∆1 = arccos

{√
4π4 − 54π2 + 144

(4π2 − 39)(2π2 − 15)

}
,
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∆2 = arccos

{√
4π4 − 54π2 + 144

(2π2 − 12)(2π2 − 15)

}
.

Again, both ∆1 and ∆2 are positive, so A1-A3 take the forms in (3.4).

As we can see, σ(·, ·) and (∆1,∆2) for a Weibull or gamma distribution are

independent of λ0. Thus, there is no need to estimate λ0 when using Theorem 3

for these two distributions.

3.3. Asymptotic power of the LRT

In this subsection, we study the asymptotic power of the proposed LRT. We

consider the following sequence of local alternatives that are indexed by n:

Hn
a : λ = λ0, p = p0, α = α0 + δn−1/2, (3.5)

where δ is a fixed constant, independent of n. The following theorem presents

the asymptotic distribution of Rn under Hn
a .

Theorem 4. Assume the conditions of Theorem 2 hold. Under the local

alternative hypothesis Hn
a in (3.5), as n → ∞,

Rn → sup
0≤p≤1

{Z(p) + ω(p, p0)}2 (3.6)

in distribution, where ω(p, p0) = δσ(p, p0)/
√
σ(p, p), and Z(p) is defined in

Theorem 2.

Note that the result in Theorem 4 has two important applications. First,

it is useful for local power analysis for a potential alternative model with the

model parameters (λ, α, p). We can insert this model into the local sequence and

obtain δ = n1/2(α− α0). Then, we can assess the power of Rn for detecting this

alternative model based on the limiting distribution under the local alternative.

Second, the result in Theorem 4 provides insight on the power trend under

different alternative models; for example, if f(t;λ, α) is the pdf of a Weibull

distribution, then |ω(p, p0)| increases as δ departs from zero or p0 increases. This

implies that the power of Rn increases as α departs from α0 = 1 and/or the

value of p under the alternative model increases. This trend is confirmed in the

following simulation study.

4. Simulations

In this section, we use simulations to check whether the limiting distribution

of Rn provides an accurate approximation of its finite-sample distribution. We

consider four sample sizes: n = 100, 200, 500, and 1000. Following Qin et al.

(2020), we choose f(t;λ, α) to be a Weibull pdf, and set the true value of λ to
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Table 1. Type-I error rates (in %) of Rn at a significance level of 10%, 5%, or 1%.

n Significance level

10% 5% 1%

100 10.6 5.4 1.1

200 10.2 5.2 1.1

500 10.1 5.1 1.0

1,000 10.1 5.0 1.0

Figure 2. Quantile-quantile plots of Rn for different sample sizes.

one. Note that under H0 in (3.1), the true value of α is one and p disappears.

The simulated type-I errors of Rn based on 105 repetitions are summarized in

Table 1. The simulation results show that the proposed LRT has tight control

of type-I error rates for all combinations of sample size and significance level.

Figure 2 shows the quantile-quantile plots of the LRT. As can be seen, the limiting

null distribution of Rn provides an adequate approximation of its finite-sample

distribution, even when the sample size is as small as 100.
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Table 2. Power (in %) of Rn at a significance level of 10%, 5%, or 1%.

n Significance level Significance level

10% 5% 1% 10% 5% 1%

(p, α) = (0.15, 1.35) (p, α) = (0.15, 1.65)

100 58.4 45.3 22.4 89.7 81.9 59.5

200 81.9 72.2 47.5 99.2 98.2 92.5

500 99.2 98.1 92.0 100.0 100.0 100.0

1,000 100.0 100.0 99.9 100.0 100.0 100.0

(p, α) = (0.40, 1.35) (p, α) = (0.40, 1.65)

100 76.7 65.3 39.4 97.8 95.4 84.7

200 95.0 90.4 74.0 100.0 100.0 99.5

500 100.0 99.9 99.6 100.0 100.0 100.0

1,000 100.0 100.0 100.0 100.0 100.0 100.0

(p, α) = (0.65, 1.35) (p, α) = (0.65, 1.65)

100 90.2 82.7 60.2 99.9 99.7 97.9

200 99.4 98.6 93.0 100.0 100.0 100.0

500 100.0 100.0 100.0 100.0 100.0 100.0

1,000 100.0 100.0 100.0 100.0 100.0 100.0

Next, we evaluate the power of the proposed LRT. We consider two true

values of α, namely, 1.35 and 1.65, and three true values of p, namely, 0.15,

0.40, and 0.65. The simulated powers based on 104 repetitions are summarized

in Table 2. We observe that the proposed LRT exhibits appreciable power in all

the cases considered. Furthermore, its power increases as p or α increases. This

trend agrees with the local power analysis after Theorem 4.

5. Application to COVID-19 Data

The outbreak of COVID-19 in Wuhan, China, in December 2019 attracted

worldwide attention (Li et al. (2020); Wang et al. (2020a); Tu et al. (2020)).

To prevent its spread, the Chinese government decided to lock down Wuhan

on January 23, 2020. From public reports, many people left Wuhan before the

lockdown, with no symptoms of COVID-19, but then later developed symptoms

outside Wuhan.

Deng et al. (2021) provide data based on confirmed cases of COVID-19

reported in publicly available sources, such as provincial and municipal health

commissions in China and the health authorities in other countries, as of February

15, 2020. The duration time for a patient was recorded as the time difference

between leaving Wuhan and the earliest onset of symptoms (e.g., fever, cough).

Our analysis involves a sample size of 1,211 cases and satisfies the design criteria

of the mixture forward-incubation-time epidemic model (1.2). These criteria

include the following. (1) The included cases were of people who left Wuhan
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showing no COVID-19 symptoms, but then later developed symptoms elsewhere

after traveling. Hence, cases of people whose first symptoms occurred before

traveling were not included in the sample. (2) The date of leaving Wuhan had

to be between January 19, 2020, and January 23, 2020, for the following reasons:

(2a) before January 19, 2020, the public were as yet unaware of the severity of

COVID-19, so there may have been a chance that a patient was actually infected

outside Wuhan after they left; (2b) after January 23, 2020 (the date of the Wuhan

lockdown), not many cases are available, resulting in an average follow-up time

for the onset of symptoms as long as 25 days. This sample size of 1211 is relatively

large compared with other incubation-period studies on COVID-19.

Following Qin et al. (2020), we use model (1.2) with f(t;λ, α) a Weibull pdf

to analyze the 1,211 observed duration times. At the beginning of the outbreak,

it was more likely to observe someone who had been infected closer to their

departure date, because the number of infections grew exponentially. This may

invalidate the assumptions for deriving the forward time distribution (Qin et al.

(2020); Liu et al. (2020b)), so we are concerned about the validity of the model

assumptions in (1.2) for the 1,211 observed duration times. To address this

concern, Deng et al. (2021) performed a goodness-of-fit test for model (1.2). The

asymptotic p-value of this test is found to be 0.37, which indicates that model

(1.2) with f(t;λ, α) being a Weibull pdf provides a reasonable fit to the 1,211

observed duration times; see the Supplementary Material for more details. Next,

we test for α = 1 or, equivalently, whether the data come from a homogeneous

exponential distribution, by using the proposed LRT when f(t;λ, α) is a Weibull

pdf.

All observed duration times are integers between zero and 22 days, and, in

theory, our proposed method may not be directly applicable. For illustration, we

impute the value of the observed integer value i by using a random number from

U(i, i + 1), the uniform distribution on (i, i + 1); for example, the frequency for

zero days is 82. Therefore, we generate 82 observations from U(0, 1). After that,

we apply the proposed testing procedure to the imputed data set. We repeat

the procedure 1,000 times and obtain 1,000 estimates of (λ, α, p) and 1,000 LRT

statistics Rn. Based on these 1,000 repetitions, the averages of the estimates for

(λ, α, p) are (0.655, 0.135, 1.645). The values of Rn range from 202.9 to 234.3,

and because the p-value of any LRT statistic in [202.9, 234.3] is almost zero, this

provides overwhelming evidence for rejecting the null hypothesis of α = 1.

We also analyze the data after adding 0.5 to each duration time, that is,

any integer datum i is replaced with the midpoint of the interval (i, i + 1).

The resulting Rn is around 230.7, with a p-value still almost zero. From both

analyses, we conclude with statistical significance that the population distribution

of the observed duration times cannot be modeled well enough by an exponential

distribution.
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The above analysis results indicate that the data contain heterogeneous

subgroups. Unfortunately, we have no idea who in the cohort contracted the

disease before, and who did so immediately upon departure, so it is more

reasonable to use the mixture forward-incubation-time epidemic model (1.2) than

using a homogeneous exponential distribution to model the observed duration

times.

6. Conclusion

In this paper, we have provided sufficient conditions for the identifiability

of the parameters in model (1.2) and applied the results to Weibull, gamma,

and lognormal distributions. We have also proposed an LRT for testing the null

hypothesis that h(t;λ, α, p) in (1.2) is the pdf of a homogeneous exponential

distribution, and have derived the limiting distribution of the LRT under the

null model and under a sequence of local alternatives. Our simulation results

and an analysis of COVID-19 outbreak data demonstrate the usefulness of the

LRT. These results strengthen the epidemiological application of the mixture

forward-incubation-time epidemic model and enrich the literature on COVID-19

data analysis.

The proposed method relies on the model assumptions in (1.2). When

analyzing different data sets for COVID-19 or for a new infectious virus, a

goodness-of-fit test for the model assumptions in (1.2) is required before using

the proposed LRT. We may also model the incubation-period distribution f(t)

nonparametrically in (1.1). However, (p, f) may not be identifiable under this

setup. Some reasonable assumptions are required to ensure model identifiability,

and we leave this as a future research topic.

Supplementary Material

The online Supplementary Material contains a derivation of the form of g(t), a

goodness-of-fit test for model (1.2), conditions C1–C5, and proofs of Theorems 1–

4.
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