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Abstract: The distribution of the incubation period of the novel coronavirus disease
that emerged in 2019 (COVID-19) has crucial clinical implications for understanding
this disease and devising effective disease-control measures. Our study is based on
a cross-sectional and forward follow-up study that collected the duration times
between a specific observation time and the onset of COVID-19 symptoms for
individuals. The original study further proposed a mixture forward-incubation-
time epidemic model, which is a mixture of an incubation-period distribution and
a forward time distribution, to model the collected duration times and to estimate
the incubation-period distribution of COVID-19. In this study, we provide sufficient
conditions for the identifiability of the unknown parameters in the aforementioned
epidemic model when the incubation period follows a two-parameter distribution.
Under the same setup, we propose a likelihood ratio test (LRT) for testing the
null hypothesis that the mixture forward-incubation-time epidemic model is a
homogeneous exponential distribution. The testing problem is nonregular because a
nuisance parameter is present only under the alternative. We establish the limiting
distribution of the LRT and identify an explicit representation for it, and obtain
the limiting distribution of the LRT under a sequence of local alternatives. Our
simulation results indicate that the LRT exhibits desirable type-I errors and power.
Lastly, we analyze a COVID-19 outbreak data set from China to illustrate the
usefulness of the LRT.
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1. Introduction

As the novel coronavirus disease that emerged in 2019 (COVID-19) spread
rapidly worldwide, the World Health Organization (WHO) declared the COVID-
19 outbreak a global pandemic on March 10, 2020. Currently, COVID-19 is
still spreading around the world, posing a significant threat to global public
health and affecting global economics and social development. As of January 7,
2022, the WHO had identified over 300 million confirmed cases of COVID-19,
and observed more than 5 million deaths. Countries are fighting this pandemic
by imposing measures such as isolation policies, travel restrictions, lockdowns,
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and social distancing. Of these measures (Cohen and Kupferschmidt (2020))),
quarantining people who may have been exposed to COVID-19 seems to be the
most effective way of preventing further disease transmission.

The incubation period of an infectious disease is the time between exposure
to it and the first appearance of symptoms. Thus, an accurate estimation of the
incubation-period distribution, or incubation distribution, is crucial (especially
in regions where the epidemic is severe) for determining the length of appropriate
quarantine periods for individuals who suspect they may have been exposed to
the virus. In the literature, estimating incubation distributions has attracted
much attention (Sartwell (1950); Kalbfleisch and Lawless| (1989); Struthers and
Farewell (1989); Kalbfleisch and Lawless (1991); |[Farewell et al.| (2005); Wilkening
(2008)), and studies on COVID-19 are still ongoing; see |Backer, Klinkenberg
and Wallingal (2020), (Guan et al.| (2020), Lauer et al| (2020)), [Li et al.| (2020),
Linton et al.| (2020), Liu et al.| (2021)), |Qin et al.| (2020), Rahman et al.| (2020),
Wang et al.| (2020b), and Liu, Ma and Jiang| (2022)), among others. The current
results are based mostly on clinical experience or empirical statistical analysis
of contact-tracing data. However, such data may be inaccurate because of the
patient’s recall bias or the interviewer’s personal judgment on the possible date of
exposure, rather than the actual date. For additional discussions, see |Qin et al.
(2020)).

The lockdown of Wuhan, the capital city of Hubei province in China,
provided an opportunity to estimate accurately the incubation distribution of
COVID-19. |Qin et al.|(2020) designed a new cross-sectional and forward follow-
up study, in which they collected the duration times between departing Wuhan
and the onset of symptoms for 1,211 confirmed cases in people who left Wuhan
before the lockdown with no COVID-19 symptoms, and then developed symptoms
outside Wuhan; further details on the study and data collection can be found
in Section 5. Using the theory of renewal processes, they proposed a mizture
forward-incubation-time epidemic model to model the 1,211 observed duration
times and to estimate the incubation distribution. This mixture model overcomes
the issues of biased sampling, and considers the possibility that some patients may
have been exposed to COVID-19 on their way out of Wuhan.

Herein, we follow the approach and model setup of (Qin et al.| (2020). Let Y
be the incubation period with probability density function (pdf) f(¢). Consider a
specific observation time that is either (i) the time of exposure to the disease, or
(ii) some time thereafter, but before the onset of symptoms. However, whether
the situation pertains to (i) or (ii) is unknown. For example, |Qin et al| (2020)
chose the observation time of an individual to be their departure time from
Wuhan. Furthermore, let A be the time between the exposure time and the
departure time, and V' be the forward time calculated from the departure time
to the symptom-onset time, given that the departure time is after the exposure
time, but before the symptom-onset time, that is, Y > A. Treating this as a
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renewal process that reaches equilibrium, it can be shown that the conditional
pdf of V given Y > A is given approximately by

_ oty
I uf(y)dy

(Linton et al.| (2020)); |Qin| (2017, Chap. 2)). See Section S1 of the Supplementary
Material for a derivation of the form of g(¢). As|Qin et al. (2020) point out, the
study cohort may contain heterogeneous subpopulations: individuals who left
Wuhan by train, bus, or plane were more likely to have come into contact with
COVID-19, because they were in a crowded environment with possible human-to-
human transmission of the virus. A similar argument pertains to the COVID-19
outbreak that occurred from late January to early February in 2020 onboard the
Diamond Princess cruise ship (Verity et al.| (2020)).

g(t) fort >0

In the following, we use the duration-time data from Wuhan in |Qin et al.
(2020) to introduce the mixture forward-incubation-time epidemic model, in
which the observation time of an individual is their departure time from Wuhan.
Let T be the duration time between departure from Wuhan and the onset of
symptoms. We consider two cases, namely, A = 0 and A > 0; the variable T
satisfies T =Y if A=0, and T = V if A > 0. Assuming that A and Y are
independent, the conditional pdf of T' given A = 0 is the pdf f(z) of Y. Note
that A > 0 is equivalent to T =V =Y — A > 0, and thus the conditional pdf
of T given A > 0 is the conditional pdf of V given Y > A or ¢(t). Furthermore,
denote p as the proportion of individuals who contracted COVID-19 as they left
Wuhan, that is, p = P(A = 0). Because we have no idea who contracted the
disease before departure (A > 0) and who did so while departing (A = 0), T
follows the mizture forward-incubation-time epidemic model (Qin et al.| (2020))

h(t) =pf(t) + (1 —p)g(t), t>0. (1.1)

Note that we can observe only T, and not Y or V. Let t1,...,t, be n observed
duration times that are independent and identically distributed (i.i.d.) copies of
T.

Note that there may exist a third portion of individuals who were infected
outside Wuhan after departure. In this study, we assume that this portion of
individuals does not exist, for two reasons. First, it is theoretically challenging
to derive the pdf of the duration time for this portion of individuals. Additional
work is required, and the results developed under model can serve as a
starting point for further research. Second, the goodness-of-fit test in Section S2
of the Supplementary Material seems to suggest that model provides an
adequate fit to the duration-time data from Wuhan.

Throughout this paper, we focus on model with f(t) = f(t; A\, «), the
pdf of a general two-parameter distribution. Then, the pdf of T' becomes
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h(t; A, a,p) = pf(t; A, o) + (1 = p)g(t; A, ), >0, (1.2)

and ty,...,t, are n ii.d. observations from h(t; \,c,p). Under the mixture
model , Deng et al| (2021) discuss the asymptotic properties of the max-
imum likelihood estimators (MLEs) and the likelihood ratio statistic of the
unknown parameters (A, a, p), under the assumption that (A, a, p) are identifiable.
However, this assumption does not always hold. A counter example is the
Weibull pdf f(t; A, @) = Aa(tA\)* L exp{—(At)*}I(¢t > 0). It can be verified that
f(t; A, ) = g(t; A, @) when o = 1. This implies that p is not identifiable in
when f(¢; A\, @) is a Weibull pdf with o = 1, and so we cannot use the asymptotic
results in Deng et al. (2021) in such a situation. A similar conclusion holds when
f(t A a) = {T(a)} ' A*t> Lexp(—At)I(t > 0), a gamma pdf.

In this study, we complement the work of Deng et al. (2021)) in two ways.
First, we provide sufficient conditions for the identifiability of (A, «,p). Our
results indicate the following: (i) (A, a,p) is identifiable when f(¢; )\ «) is a
lognormal, Weibull or gamma pdf, but not when it is an exponential pdf; (ii)
(A, «) is identifiable, but p is not, when f(t; A, ) is an exponential pdf. Second,
we propose a likelihood ratio test (LRT) to test the null hypothesis that f(¢; A, «)
is an exponential pdf. Under this null hypothesis, h(t; \, a, p) also becomes an
exponential pdf, so the proposed LRT also tests the homogeneity in model .
Note that the nuisance parameter p disappears under the null model, and is only
identified under the alternative hypothesis.

The problem of a nuisance parameter unidentified under the null hypothesis
has long been recognized in the literature as a nonregular problem (Davies| (1977,
1987)). Because of the partial identifiability of the nuisance parameter, classical
inference methods such as the LRT may lose their usual statistical properties.
The limiting distribution of the LRT often involves complex stochastic processes
(Liu et al|(2020a)). The homogeneity testing problem under a two-component
mixture model has been studied extensively in the literature; for example, see
Liu and Shao| (2003)), Chen and Li (2009)), and |Chen, Li and Liu/ (2020)), and the
references therein. To the best of our knowledge, these papers assume that the
two components come from the same distribution family, and do not share any
underlying parameters. However, under model , the two components are
not from the same distribution family and share the common parameters (A, «).
Thus, the existing results cannot be applied to the testing problem under model
2.

Despite the aforementioned challenges, we obtain the limiting distribution of
the LRT for the nonregular testing problem, that is, testing the null hypothesis
that h(t; A, «, p) is the pdf of a homogeneous exponential distribution. We show
that the asymptotic null distribution of the LRT is the supremum of a chi-squared
process, and identify an explicit representation of the limiting distribution that
can be used for rapid numerical calculation of the asymptotic critical values or
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p-values of the proposed LRT. The results of finite-sample simulations show that
the proposed LRT has tight control of type-I error rates and appreciable power
in general. The proposed LRT is then used to analyze COVID-19 data from
China. Following Qin et al. (2020), we choose f(t; A, «) to be a Weibull pdf.
Our analysis results indicate that the mixture forward-incubation-time model
produces a better fit than that with a homogeneous exponential distribution.
Note that all of our results are based on the parametric model , and
violating this model assumption may lead to invalid analysis results. This raises
the goodness-of-fit test problem of model in applications. We suggest using
the goodness-of-fit test in Deng et al.| (2021]) to check the validity of model
based on tq,...,t,; this test is reviewed briefly in the Supplementary Material.
The rest of this paper is organized as follows. In Section 2, we discuss
sufficient conditions for the identifiability of (A, a, p) in model , and apply
the results to the case where f(t;)\, a) is a Weibull, gamma, or lognormal
pdf. In Section 3, we establish the nonregular asymptotic distribution of
the LRT for testing the null hypothesis that h(t; A, «,p) is a homogeneous
exponential distribution, and provide an explicit representation of this asymptotic
distribution. Here we also derive the asymptotic distribution of the proposed
LRT under a sequence of local alternatives. We report our simulation results
in Section 4, and in Section 5, and we analyze real COVID-19 outbreak data
from China. Finally, we conclude the paper with a discussion in Section 6. For
convenience of presentation, all proofs are given in the Supplementary Material.

2. Identifiability of (A, a, p)

Identifiability is important in the application of the mixture forward-
incubation-time epidemic model in ([1.2). If some model parameters are not
identifiable, then their point estimators cannot be consistent, and standard
inferences for other parameters that are identifiable may be questionable. In
this section, we establish the identifiability of (A, o, p) in model under the
following conditions on f(t; A\, «). Let F'(t; A, &) be the cumulative distribution
function corresponding to f(¢; A, a).

Al. Given (A, ), lim; o, f(t; A\, a)/{1 — F(t; \, )} exists and is either finite or
0.

A2. When (A, 1) # (Ao, ), limy oo f(t; A1, 1) /{f(t; A2, 0)} exists and is

either zero or oo.

A3. When (A1, 1) # (A2, 2), both lim; o f(t; A1, 1)/{1 — F(t; A2, a2)} and
limy o f(t; Aa, 0) /{1 — F(t; A1, 1)} exist and are either zero or co.
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Theorem 1. Assume model (1.2) and conditions A1-A3. Let

o [GA @)
t—oo 1 — F(t; N\, )

Suppose h(t; A, a1,p1) = h(t; Ny, e, p2) for all t > 0.
(a) If A(A1, 1) =0 or oo, then (A1, a1, p1) = (A2, 2, p2).

(b) If 0 < A(M\1, 1) < 00, then (A,0q) = (Aa, aa). Furthermore, if f(t; A\, 1)
/{1 — F(t; A1, 1)} is not a constant function of t, then p; = po; otherwise,
p1 and py are not necessarily the same.

After some calculus, it can be verified that conditions A1-A3 are satisfied
by a Weibull, gamma, or lognormal distribution. We can further verify that
A(X, ) = 0 for a lognormal distribution, A(A, ) = A for a gamma distribution,
and A(\,a) = 0 or oo if @ # 1 and A(N\,a) = X if @ = 1 for a Weibull
distribution. Applying the results in Theorem 1 to Weibull, gamma, and
lognormal distributions, we have the following identifiability results.

Corollary 1. Under model (1.2,
(a) (p, A, @) are identifiable when f(t; A, &) is the pdf of a lognormal distribution;

(b) (p, A\, ) are identifiable when f(t; A, «) is the pdf of a Weibull or gamma
distribution, but not when it is the pdf of an exponential distribution;

(c) (A, «) are identifiable, but p is not, when f(t; X\, ) is the pdf of an exponen-
tial distribution.

Deng et al.|(2021) mention the identifiability property of (A, a, p), but do not
give a formal proof. The results in Theorem 1 and Corollary 1 provide formal
justifications, and further indicate when the results of Deng et al.| (2021) are
applicable and when they are not.

3. Testing Whether Incubation Distribution is Exponential
3.1. The LRT

Corollary 1 indicates that the parameter p is not identifiable when f(¢; A, )
is the pdf of an exponential distribution under model . Because of this, the
asymptotic results in |Deng et al.| (2021) are not applicable in such a situation.
In this section, we propose an LRT to check whether f(¢; A, a) is the pdf of
an exponential distribution or, equivalently, whether h(t; A, o, p) is the pdf of a
homogeneous exponential distribution, based on n i.i.d. observations ti,...,t,

from model ([1.2)).
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Throughout this section, we assume that the following condition is satisfied.
CO. There exists a unique aq such that f(t; A\, ag) = g(t; A, ap), for all ¢ > 0.

Condition CO is satisfied by a Weibull or gamma distribution with ag = 1, and
condition CO is satisfied if and only if f(¢; A, ) is the pdf of an exponential
distribution. Under condition CO0, testing the null hypothesis that f(¢; A, «) is
the pdf of an exponential distribution is equivalent to testing

Hy:a=aqay versus H;:a# ap. (3.1)

Note that under model , the case of o = «p indicates that individuals in
the cross-sectional and forward follow-up study are homogeneous, and that the
duration time 7" defined in Section 1 follows an exponential distribution. When
o # «p, there are heterogeneous subgroups of individuals in the cross-sectional
and forward follow-up study. In this case, we favor using the mixture model
to model the distribution of T'. Theoretically, detecting the existence of such
heterogeneous subpopulations is an important initial step before applying the
mixture model . If we were to apply model to homogenous duration
times, then the MLE of (), a, p) would no longer have asymptotic normality. Con-
sequently, the Wald-type confidence intervals for the quantiles of the incubation
period may not have the nominal asymptotic coverage probabilities.

A natural solution to the testing problem is one based on likelihood.
Given the n observations ¢4, ..., t, from model , the log-likelihood of (A, «, p)
is .

fn()\7 Oé,p) = Z log {pf(tu )‘7 Oé) + (1 - p)g(tu )\) Oé)} .
i=1
Let (5\, &, p) be the MLE of (A, «, p) under the full model, and let Mo be the MLE
of A\ under the null model, that is,

(S\,d,ﬁ) = argmax £, (\, a, p), o = argmax £, (X, o, 1).
A,a,p A

Note that under the null model, p does not appear, and A is the only parameter to
be estimated. We set p = 1 under the null model for convenience of presentation.
The LRT statistic for (3.1]) is defined as

R, =2 {sup Lo\, p) — sup £, (A, ao, 1)} =2 {Kn(j\,d,ﬁ) — £, (o, o, 1)} .
A,a,p A

We reject the null hypothesis Hy in (3.1)) if the observed value of R,, exceeds some
critical value determined by its limiting distribution, presented in Section 3.2.
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3.2. Asymptotic null distribution of the LRT

We require some notation before presenting the asymptotic results of the
LRT statistic R,,. Let (Ao, o) be the true values of (A, &) under the null model,
and define

[t o, ao)

Note that under condition CO,

_Of(ti; Mo, ) /O _9g(ti; Mo, ) /O

Xi 9 3
f(ti;AOaOZO) ? g(ti;)‘OaaO)

Y

89(75“ )\0, Oéo)/a)\ o
g(ts; Aoy o)

f(tis Mo, o) = g(ti3 Ao, )  and X;.

Define b; = (X;,Y;1,Y;s)" and denote the variance-covariance matrix

Bll BlQ B13
B = Var(b,-) = Bgl BQQ B23 y (32)
B31 BBQ de

where the variance is taken with respect to the null model. Furthermore, define

By Bi3Bis | Bi
et} — Bay — By — Z1s
B, 012 23 33 B, + B,
B? B? 2B,B
— B Ba: — 2By, — 212 213 | 2712013
022 22 + D33 23 B, Bu + B,

o011 = Bsg —

For any py,ps € [0, 1], let

U(p17p2) = p1pP2022 + (p1 +p2)012 + 011- (33)

Our asymptotic results about R,, rely on conditions C1-C5, given in Section
S3 of the Supplementary Material; they are typical regularity conditions in the
literature on finite mixture models.

Theorem 2. Suppose that conditions CO and C1-C5 in the Supplementary
Material are satisfied. Under model (1.2) and the null hypothesis in (3.1), as

n — 00,

R, — R = sup Z*(p)

0<p<1

in distribution, where Z(p) is a Gaussian process with zero mean, unit variance,
and covariance function

Cov{Z(p1), Z(p2)} = \/a(pf(g;?(; p2)’

0<p,p <1
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Theorem 2 shows that the LRT statistic R, has a nonregular limiting
distribution that is the supremum of a x?-process, and, in general, it does not
have a closed form and is difficult to calculate numerically. Instead, we derive
an equivalent representation of R that is simpler in form, and more convenient
in terms of calculating the distribution function or quantiles of R using the
Monte Carlo method.

We require some additional notation. Consider the following polar transfor-
mation: (cosf,sinf) = (c1(p), c2(p)), where

V011 — 01s /02 and  cy(p) = (p+012/022)\/022'

o(p,p) a(p,p)

a(p) =
To find a simple representation for R, we require the following additional
condition.

C6. There exist A; and A, such that —7/2 < A} < Ay < 7/2 and

{(c1(p), c2(p)) : 0 <p <1} ={(cosh,sinf) : A; <O < Ay}

Under condition C6, we define the three sets
A ={n: 20-n)=1
v={n:, max cos’(0—n) =1},

. 200 _ 0\ — e
Ag—{n.%{l&z}?zz]cos (0 —n) = cos®(n — As)},

_ . 200 _ ) — 2,
As ={n: jnax  cos (0 —n) =cos*(n — Ay)}.

If both A; and A, are positive, then these sets have the following explicit forms:
Al = [Al,Ag] U [Al - T, Ag — 7'('},

A, = [AQ,A+g]u[A2—W,A—ﬂ,

Ay = [AJF;T,W} U=, A, — 7] U {A—;,Al], (3.4)
where A = (A; + A,y)/2. Figure 1 shows A;-Aj; graphically when f(¢; )\, «) is a
Weibull pdf.

Theorem 3. Assume the conditions of Theorem 2 and condition C6 hold.
Furthermore, suppose that p* and n are two independent random variables that
follow a x3 and a uniform distribution on [—m, x|, respectively. Then, R has the
same distribution as

T(p*,n) = p*{I(n € A1) + I(n € As) cos®(1 — Ag) + I(n € Az) cos®(n — Ay}
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A A

A;

A;

A Az

Figure 1. Graphical representation of sets Aj, Ao, and Az when f(t; )\, a) is a Weibull
pdf.

Note that Ay, Ag, and A;-Az may depend on Ag. We can estimate Ay using
5\0, the MLE of A under the null model. Based on Theorem 3, we propose the
following Monte Carlo procedure for approximating the distribution and quantiles
of R. First, we generate a large number (e.g., M = 10®) of independent copies
of (p?,n), denoted by (p?,n;) (i = 1,...,M). Then, we take the empirical
distribution of {T'(p?,n;),i = 1,...,M} to approximate the distribution of
R. Accordingly, we can calculate the approximate p-value of the LRT or the
approximate quantiles of R, which may serve as critical values of the proposed
LRT.

The results in Theorems 2 and 3 rely on the forms of o(-,-) in and
(A1, As) in condition C6. In the following, we identify two examples satisfying
conditions C0-C6, and work out their o(-,-) and (Aq, Ay).

Example 1 (Weibull distribution). Recall that the pdf of a Weibull distri-
bution is given as f(t; A\, a) = Aa(tA)* P exp{—(At)*}(t > 0). It can be shown
that o(p1, p2) = pip2(72/6 — 1) + (p1 + p2)(2 — 72/6) + /3 — 3 and

4 —6m2—36
A; = arccos (\/27:1 — 307;2 n 108) , Ay = arccos (

Because both A; and A, are positive, A;-A3 take the forms in (3.4)).

Example 2 (Gamma distribution). Recall that the pdf of a gamma distr-
ibution is given as f(t; A\, a) = {T(a)} At Lexp(=At)I(t > 0). It can be
shown that o(p1,p2) = pip2 (72/6 —5/4) + (p1 + p2) (7/4 — 72/6) + 7%/3 — 13/4

and
A — arccos 47t — 5472 4 144
b (472 —39) (272 —15) [
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47t — 5472 + 144
Ay = arccos .
(22 — 12)(27% — 15)

Again, both A; and A, are positive, so A;-A; take the forms in ((3.4)).

As we can see, o(+,-) and (A, Ay) for a Weibull or gamma distribution are
independent of \y. Thus, there is no need to estimate Aq when using Theorem 3
for these two distributions.

3.3. Asymptotic power of the LRT

In this subsection, we study the asymptotic power of the proposed LRT. We
consider the following sequence of local alternatives that are indexed by n:

H' : X =Xo, p=po, a=ag+on""2 (3.5)

where § is a fixed constant, independent of n. The following theorem presents
the asymptotic distribution of R,, under H.

Theorem 4. Assume the conditions of Theorem 2 hold. Under the local
alternative hypothesis H! in (3.5)), as n — oo,

R, — sup {Z(p) +w(p,po)}’ (3.6)

0<p<1

in distribution, where w(p,po) = 0o(p,po)/\/o(p,p), and Z(p) is defined in
Theorem 2.

Note that the result in Theorem 4 has two important applications. First,
it is useful for local power analysis for a potential alternative model with the
model parameters (A, a, p). We can insert this model into the local sequence and
obtain § = n'/? (o — ). Then, we can assess the power of R, for detecting this
alternative model based on the limiting distribution under the local alternative.
Second, the result in Theorem 4 provides insight on the power trend under
different alternative models; for example, if f(¢; A\, ) is the pdf of a Weibull
distribution, then |w(p, py)| increases as § departs from zero or p, increases. This
implies that the power of R, increases as « departs from ay = 1 and/or the
value of p under the alternative model increases. This trend is confirmed in the
following simulation study.

4. Simulations

In this section, we use simulations to check whether the limiting distribution
of R, provides an accurate approximation of its finite-sample distribution. We
consider four sample sizes: n = 100, 200, 500, and 1000. Following |Qin et al.
(2020), we choose f(t; A, ) to be a Weibull pdf, and set the true value of A to
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Table 1. Type-I error rates (in %) of R,, at a significance level of 10%, 5%, or 1%.

n Significance level
10% 5% 1%

100 106 54 1.1
200 102 52 1.1
500 10.1 5.1 1.0
1,000 10.1 5.0 1.0

(a): n=100 (b): n=200
o [
15 ) 15
£ E
< <
g 10 % 10
= =
.2 .2
B 5 B 5
a = =8 -
g g
3} =
0 — 0 —
T T T T T T T T
0 5 10 15 0 5 10 15
Theoretical quantiles Theoretical quantiles
(¢): n=500 (d): n=1000
15 © 15 °
172 ° 172}
2 <
= =
g 10+ S 104
ES ES
=3 &
= =
2 2
-
a3 B 5]
g =
m m
0 — 0 —
T T T T T T T T
0 5 10 15 0 5 10 15
Theoretical quantiles Theoretical quantiles

Figure 2. Quantile-quantile plots of R,, for different sample sizes.

one. Note that under H, in , the true value of « is one and p disappears.
The simulated type-I errors of R, based on 10° repetitions are summarized in
Table 1. The simulation results show that the proposed LRT has tight control
of type-I error rates for all combinations of sample size and significance level.
Figure 2 shows the quantile-quantile plots of the LRT. As can be seen, the limiting
null distribution of R,, provides an adequate approximation of its finite-sample
distribution, even when the sample size is as small as 100.
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Table 2. Power (in %) of R, at a significance level of 10%, 5%, or 1%.

n Significance level Significance level
10% 5% 1% 10% 5% 1%
(p, ) = (0.15,1.35) (p, ) = (0.15,1.65)

100 58.4 45.3 224 89.7 81.9 59.5
200 81.9 72.2 47.5 99.2 98.2 92.5
500 99.2 98.1 92.0 100.0 100.0 100.0
1,000 100.0  100.0 99.9 100.0 100.0 100.0
(p, ) = (0.40,1.35) (p, a) = (0.40,1.65)
100 76.7 65.3 394 97.8 95.4 84.7
200 95.0 90.4 74.0 100.0 100.0 99.5
500  100.0 99.9 99.6 100.0 100.0 100.0
1,000 100.0 100.0 100.0 100.0 100.0 100.0
(p, @) = (0.65, 1.35) (p, ) = (0.65, 1.65)
100 90.2 82.7 60.2 99.9 99.7 97.9
200 99.4 98.6 93.0 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0 100.0
1,000  100.0 100.0 100.0 100.0 100.0 100.0

Next, we evaluate the power of the proposed LRT. We consider two true
values of «a, namely, 1.35 and 1.65, and three true values of p, namely, 0.15,
0.40, and 0.65. The simulated powers based on 10* repetitions are summarized
in Table 2. We observe that the proposed LRT exhibits appreciable power in all
the cases considered. Furthermore, its power increases as p or « increases. This
trend agrees with the local power analysis after Theorem 4.

5. Application to COVID-19 Data

The outbreak of COVID-19 in Wuhan, China, in December 2019 attracted
worldwide attention (Li et al| (2020); Wang et al. (2020a); [Tu et al. (2020))).
To prevent its spread, the Chinese government decided to lock down Wuhan
on January 23, 2020. From public reports, many people left Wuhan before the
lockdown, with no symptoms of COVID-19, but then later developed symptoms
outside Wuhan.

Deng et al.| (2021) provide data based on confirmed cases of COVID-19
reported in publicly available sources, such as provincial and municipal health
commissions in China and the health authorities in other countries, as of February
15, 2020. The duration time for a patient was recorded as the time difference
between leaving Wuhan and the earliest onset of symptoms (e.g., fever, cough).
Our analysis involves a sample size of 1,211 cases and satisfies the design criteria
of the mixture forward-incubation-time epidemic model . These criteria
include the following. (1) The included cases were of people who left Wuhan
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showing no COVID-19 symptoms, but then later developed symptoms elsewhere
after traveling. Hence, cases of people whose first symptoms occurred before
traveling were not included in the sample. (2) The date of leaving Wuhan had
to be between January 19, 2020, and January 23, 2020, for the following reasons:
(2a) before January 19, 2020, the public were as yet unaware of the severity of
COVID-19, so there may have been a chance that a patient was actually infected
outside Wuhan after they left; (2b) after January 23, 2020 (the date of the Wuhan
lockdown), not many cases are available, resulting in an average follow-up time
for the onset of symptoms as long as 25 days. This sample size of 1211 is relatively
large compared with other incubation-period studies on COVID-19.

Following (Qin et al.| (2020), we use model with f(t; A, «) a Weibull pdf
to analyze the 1,211 observed duration times. At the beginning of the outbreak,
it was more likely to observe someone who had been infected closer to their
departure date, because the number of infections grew exponentially. This may
invalidate the assumptions for deriving the forward time distribution (Qin et al.
(2020); Liu et al.| (2020b)), so we are concerned about the validity of the model
assumptions in for the 1,211 observed duration times. To address this
concern, [Deng et al.| (2021) performed a goodness-of-fit test for model . The
asymptotic p-value of this test is found to be 0.37, which indicates that model
with f(¢; A, @) being a Weibull pdf provides a reasonable fit to the 1,211
observed duration times; see the Supplementary Material for more details. Next,
we test for a« = 1 or, equivalently, whether the data come from a homogeneous
exponential distribution, by using the proposed LRT when f(¢; A, «) is a Weibull
pdf.

All observed duration times are integers between zero and 22 days, and, in
theory, our proposed method may not be directly applicable. For illustration, we
impute the value of the observed integer value ¢ by using a random number from
U(4,4 + 1), the uniform distribution on (4,7 + 1); for example, the frequency for
zero days is 82. Therefore, we generate 82 observations from U(0,1). After that,
we apply the proposed testing procedure to the imputed data set. We repeat
the procedure 1,000 times and obtain 1,000 estimates of (A, c, p) and 1,000 LRT
statistics R,. Based on these 1,000 repetitions, the averages of the estimates for
(A, a,p) are (0.655,0.135,1.645). The values of R, range from 202.9 to 234.3,
and because the p-value of any LRT statistic in [202.9,234.3] is almost zero, this
provides overwhelming evidence for rejecting the null hypothesis of o = 1.

We also analyze the data after adding 0.5 to each duration time, that is,
any integer datum i is replaced with the midpoint of the interval (i,i 4+ 1).
The resulting R, is around 230.7, with a p-value still almost zero. From both
analyses, we conclude with statistical significance that the population distribution
of the observed duration times cannot be modeled well enough by an exponential
distribution.
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The above analysis results indicate that the data contain heterogeneous
subgroups. Unfortunately, we have no idea who in the cohort contracted the
disease before, and who did so immediately upon departure, so it is more
reasonable to use the mixture forward-incubation-time epidemic model than
using a homogeneous exponential distribution to model the observed duration
times.

6. Conclusion

In this paper, we have provided sufficient conditions for the identifiability
of the parameters in model and applied the results to Weibull, gamma,
and lognormal distributions. We have also proposed an LRT for testing the null
hypothesis that h(t; A, a,p) in is the pdf of a homogeneous exponential
distribution, and have derived the limiting distribution of the LRT under the
null model and under a sequence of local alternatives. Our simulation results
and an analysis of COVID-19 outbreak data demonstrate the usefulness of the
LRT. These results strengthen the epidemiological application of the mixture
forward-incubation-time epidemic model and enrich the literature on COVID-19
data analysis.

The proposed method relies on the model assumptions in . When
analyzing different data sets for COVID-19 or for a new infectious virus, a
goodness-of-fit test for the model assumptions in is required before using
the proposed LRT. We may also model the incubation-period distribution f(t)
nonparametrically in (1.1)). However, (p, f) may not be identifiable under this
setup. Some reasonable assumptions are required to ensure model identifiability,
and we leave this as a future research topic.

Supplementary Material

The online Supplementary Material contains a derivation of the form of g(t), a
goodness-of-fit test for model ([1.2)), conditions C1-C5, and proofs of Theorems 1—
4.
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