ON CONSTRUCTION OF OPTIMAL EXACT CONFIDENCE INTERVALS

Weizhen Wang

Wright State University and Tianjin University of Finance and Economics

Abstract: For a given confidence interval, the central value is more likely to be equal to the parameter than a boundary value is. However, when considering two null hypotheses with hypothesized values that are equal to these two values, neither of the hypotheses should be rejected, because both values are inside the interval. Here, we propose a method called the h-function method that can be used to identify any two values in an interval. The proposed method improves confidence intervals by modifying an approximate interval, including a point estimator, to be exact, and by refining an exact interval to be a subset of the previous interval. We demonstrate the proposed method by applying it to three data sets. Simulation results are given in the Supplementary Material.

Key words and phrases: Admissible confidence interval, difference of two proportions, infimum coverage probability, p-value, vaccine efficacy.

1. Introduction

Many $1 - \alpha$ confidence intervals are approximate, and their confidence coefficients may be much smaller than the nominal level $1-\alpha$. This results in unreliable inferences, as shown in the well-known Wald interval for a proportion (Brown, Cai and DasGupta (2001)). Is there a way of improving on such intervals for reliable inferences? Furthermore, when the underlying distributions are discrete, an exact two-sided interval is often conservative, especially when it is equal to the intersection of two one-sided $1 - \alpha/2$ intervals (Agresti (2013)). Is there a way of making an exact interval uniformly shorter, without lowering $1 - \alpha$? These two general questions are important in many fields, including clinical trials, and are the motivation for this study.

There is a one-to-one mapping between a family of tests and a confidence set. Let Θ be the range of a parameter of interest θ , and let S be a sample space. For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a level- α test of $H_0: \theta = \theta_0$.

Corresponding author: Weizhen Wang, Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA. E-mail: weizhen.wang@wright.edu.

Then,

$$C(\underline{x}) = \{\theta_0 \in \Theta : \underline{x} \in A(\theta_0)\}$$
(1.1)

is a $1 - \alpha$ confidence set for θ . Conversely, let $C(\underline{x})$ be a $1 - \alpha$ confidence set. Then,

$$A(\theta_0) = \{ \underline{x} \in S : \theta_0 \in C(\underline{x}) \}$$
(1.2)

is the acceptance region of level- α for H_0 . A confidence set (or interval) is typically derived from the tests, but solving $C(\underline{x})$ from $A(\theta_0)$, as in (1.1), is complicated. A minor goal of this study is to simplify this process.

A key feature of a confidence interval is that its confidence coefficient, defined as the infimum coverage probability over the entire parameter space (Casella and Berger (2002)) should be no smaller than the nominal level $1 - \alpha$. To avoid ambiguity in discussion, a $1 - \alpha$ exact confidence interval means that it has a confidence coefficient of at least $1 - \alpha$, that is, the $1 - \alpha$ interval of Casella and Berger (2002). In contrast, a $1 - \alpha$ (approximate) confidence interval means that the nominal level is set to $1 - \alpha$, but its confidence coefficient can be any number in [0, 1].

Ideally, a $1 - \alpha$ approximate interval will have a confidence coefficient close to $1 - \alpha$, which may not happen in practice, even for a large sample size. For example, let $X \sim Bino(n, p)$ be a binomial with *n* trials and a success probability *p*. Here, the well-known Wald internal for *p*,

$$\hat{p} \pm 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \text{ for } \hat{p} = \frac{X}{n},$$
(1.3)

is used as a 95% interval. However, it is a zero exact interval, because it has a zero confidence coefficient. In fact, a $1 - \alpha$ Wald interval always has a zero confidence coefficient for any sample size n and any α in [0,1] (Brown, Cai and DasGupta (2001); Agresti (2013)). In addition, a point estimator, if used as a confidence interval, has a zero confidence coefficient, but can be modified to be an exact interval, as shown later. Therefore, it is safe to assume that the confidence coefficient of a $1 - \alpha$ approximate interval has a range of [0,1].

The requirement that a confidence coefficient be no smaller than $1-\alpha$ is often violated by an approximate interval. Thus, a major concern is whether inferential conclusions are reliable, because its confidence coefficient is seldom reported, but can be much smaller than $1-\alpha$. For instance, Huwang (1995) proved this for the Wilson interval (Wilson (1927)) for large samples. On the other hand, an approximate interval is easy to access. It is of great interest to build an exact interval based on a given approximate interval. This is the first major goal of

2740

this study. To the best of our knowledge, limited research has been done on this problem.

One common way of obtaining a $1 - \alpha$ exact two-sided interval is to take the intersection of two exact one-sided $1 - \alpha/2$ intervals, for example, the conservative Clopper–Pearson interval (Clopper and Pearson (1934)). It is also of great interest to shrink a given $1 - \alpha$ exact interval to an optimal one, which is the second major goal of this study. This can be easily applied to contingency tables, including, but not limited to, the establishment of a new treatment. Casella (1986), Wang (2014), and Casella and Robert (1989) refined exact intervals for a proportion or a Poisson mean. However, their methods are valid only for a single-parameter distribution family.

We address the above three problems by proposing an h-function related to the p-value for test construction that is also a function over the parameter of interest for interval construction. This idea was used by Blaker (2000) and Agresti and Min (2001) to derive exact intervals in some special cases. Here, we use it for the first time to modify and/or refine any interval (including the intervals of Blaker (2000) and Agresti and Min (2001), thus solving the challenging problem of improving any interval when nuisance parameters exist and the sample space is discrete. The main idea is to identify any two values outside (or inside) the interval using the function T_2 in (2.4). More precisely, for an approximate interval, those parameter values that are outside, but close to the interval are likely added to the interval. However, the boundary values for an exact, but conservative interval are removed. As a result, the interval becomes either exact or shorter. The following example helps to understand the two major goals.

Example 1. Consider the two-arm randomized trial in Essenberg (1952) that tests the effect of tobacco smoking on tumor development in mice. In the smoking group, tumors were observed on 21(=x) mice out of $23(=n_1)$ mice; in the control group $(y, n_2) = (19, 32)$. Here, X and Y are two independent binomials with two tumor rates p_1 and p_2 , respectively. The difference, $d = p_1 - p_2$, is used to evaluate the smoking effect. As shown in Table 4, d is estimated by the 95% Wald-type interval, maximum likelihood estimator, exact score-test interval (Agresti and Min (2001)), or exact two-one-sided interval (Wang (2010)). Both approximate intervals have a zero confidence coefficient. Is there a way of improving them to have a confidence coefficient of at least 0.95? For the two exact intervals, how do we make them shorter, while maintaining the confidence coefficient of at least 0.95?

The remainder of this paper is organized as follows. In Section 2, we formally introduce the h-function method for constructing $1 - \alpha$ exact optimal confidence intervals. In Section 3, we discuss three applications of the proposed method. Section 4 modifies any one-sided interval to the smallest interval. Section 5 concludes the paper. All proofs are relegated to the Appendix.

2. A Theory for Deriving Optimal Two-Sided Intervals

Suppose \underline{X} is observed from a distribution with a joint cumulative distribution function $F_{(\theta,\underline{\eta})}(\underline{x})$, specified by a parameter vector $(\theta,\underline{\eta})$ in a parameter space H. Here, θ is the parameter of interest, and $\underline{\eta}$ is the nuisance parameter vector. The null hypothesis H_0 is $\theta = \theta_0$, $\theta \leq \theta_0$, or $\theta \geq \theta_0$, for a fixed value θ_0 , corresponding to two-sided, lower one-sided, and upper one-sided intervals, respectively. Next, we introduce the h-function method and use it to construct optimal exact intervals.

2.1. The h-function method

A p-value $p(\underline{X})$ is valid for H_0 if, for every $0 \le \alpha \le 1$, $\sup_{\theta \in H_0} P_{(\theta,\underline{\eta})}(p(\underline{X}) \le \alpha) \le \alpha$ (Casella and Berger (2002)). For simplicity, we drop the subscript $(\theta,\underline{\eta})$. The p-value at \underline{x} can be defined by a given test statistic $T(\underline{X})$ using $p(\underline{x}) = \sup_{\theta \in H_0} P(T(\underline{X}) \le T(\underline{x}))$ if a small value of $T(\underline{X})$ supports H_A . An example of $T(\underline{X})$ is the likelihood ratio test statistic. The p-value $p(\underline{X})$ depends on both \underline{X} and θ_0 , and so is rewritten as

$$h(\underline{X}, \theta_0) = p(\underline{X}). \tag{2.1}$$

The left-hand side is called the h-function, and is a function of both \underline{X} and θ_0 ; in contrast, $p(\underline{X})$ is a function of \underline{X} only. Using $h(\underline{X}, \theta_0)$, the exact level- α acceptance region for H_0 and the $1 - \alpha$ exact confidence set for θ are given by

$$A(\theta_0) = \{ \underline{x} : h(\underline{x}, \theta_0) > \alpha \} \text{ and } C(\underline{x}) = \{ \theta_0 : h(\underline{x}, \theta_0) > \alpha \},$$
(2.2)

respectively. Both are obtained by solving the same inequality, $h(\underline{x}, \theta_0) > \alpha$, but in terms of two different arguments, \underline{x} and θ_0 . Hence, the constructions of the test and the confidence set are unified. They are simpler than the approaches in (1.1) or (1.2) because of the intermediary h-function in (2.1). We call this the h-function method. Blaker (2000) used a special h-function to derive confidence intervals in some discrete distributions of one parameter. This method is now applied to improve any given interval in a general case with nuisance parameters. The set $C(\underline{x})$ may not be an interval. Let \overline{A} denote the smallest simply connected set containing the set A. Thus, $\overline{C(\underline{x})}$ is always an interval, and its infimum coverage probability over H is not smaller than $1 - \alpha$. Casella and Berger (2002, p.431) provide an example that shows the difference between $C(\underline{x})$ and $\overline{C(\underline{x})}$. Throughout this paper, we use $C(\underline{X})$ to denote $\overline{C(\underline{X})}$ and ICP(C) to denote the confidence coefficient of $C(\underline{X})$.

In general, a test statistic may also depend on θ_0 , and thus have the form $T(\underline{X}, \theta_0)$. Let $K(\underline{x}, \theta_0) = \{y : T(y, \theta_0) \le T(\underline{x}, \theta_0)\}$. Then,

$$h(\underline{x},\theta_0) = \sup_{(\theta,\underline{\eta})\in H_0} P(K(\underline{x},\theta_0)) = \begin{cases} \sup_{\substack{(\theta,\underline{\eta})\in H_0}} \sum_{\underline{y}\in K(\underline{x},\theta_0)} f_{(\theta,\underline{\eta})}(\underline{y}) \\ \sup_{\substack{(\theta,\underline{\eta})\in H_0}} \int_{K(\underline{x},\theta_0)} f_{(\theta,\underline{\eta})}(\underline{y}) d\underline{y}, \end{cases}$$
(2.3)

where $f_{(\theta,\underline{\eta})}$ is either the joint probability mass function or the probability density function of \underline{X} , and the probability $P(K(\underline{x},\theta_0))$ is a function of the nuisance parameter vector η .

2.2. Modifying a given two-sided confidence interval

For convenience, consider the closed interval $C_0(\underline{X}) = [L_0(\underline{X}), U_0(\underline{X})]$ for θ , which we improve using the h-function method. Consider the hypotheses $H_0: \theta = \theta_0$ vs. $H_A: \theta \neq \theta_0$ for a given θ_0 . We introduce a test statistic

$$T_2(\underline{X},\theta_0) = T(L_0(\underline{X}), U_0(\underline{X}), \theta_0), \qquad (2.4)$$

for some function $T(l, u, \theta_0)$, where the subscript 2 means "two-sided". They may satisfy some or all of the following three conditions:

- (a) a small value of $T_2(\underline{X}, \theta_0)$ is in favor of H_A ;
- (b) $T(l, u, \theta_0) \ge 0$ if and only if $\theta_0 \in [l, u]$;
- (c) for fixed $l_1 \leq l_2 \leq u_2 \leq u_1$, $T(l_2, u_2, \theta_0) \leq T(l_1, u_1, \theta_0)$, for any θ_0 .

Here are three choices of T_2 that satisfy the three conditions. The first $T_2^D(\underline{X}, \theta_0)$ uses $T(l, u, \theta_0) = \min\{\theta_0 - l, u - \theta_0\}$. When the range of θ is nonnegative, define 0/0 = 1. The second $T_2^R(\underline{X}, \theta_0)$ has $T(l, u, \theta_0) = \min\{\theta_0/l, u/\theta_0\} - 1$. The third $T_2^I(\underline{X}, \theta_0)$ has $T(l, u, \theta_0) = I_{[l,u]}(\theta_0) - 1$, using the indicator function for the interval [l, u].

The h-function based on $T_2(\underline{x}, \theta_0)$ is

$$h_2(\underline{x},\theta_0) = \sup_{H_0} P(T_2(\underline{X},\theta_0) \le T_2(\underline{x},\theta_0)).$$
(2.5)

Following (2.2), the level- α acceptance region and $1 - \alpha$ exact confidence interval are

$$A_2(\theta_0) = \{ \underline{x} : h_2(\underline{x}, \theta_0) > \alpha \} \text{ and } C_0^M(\underline{x}) = \overline{\{ \theta_0 : h_2(\underline{x}, \theta_0) > \alpha \}},$$
(2.6)

respectively. In the rest of the paper, let \overline{A} denote the smallest closed simply connected set that contains the set A. The superscript "M" refers to a modification. For a nonnegative integer k, $C_0^{Mk}(\underline{x})$ is the resultant interval when the modification process of (2.4), (2.5), and (2.6) is applied to $C_0(\underline{X})$ k consecutive times. For example, $C_0^{M(k+1)}(\underline{x}) = (C_0^{Mk})^M(\underline{x})$, for any $k \ge 0$. The following theorems discuss the properties of $C_0^M(\underline{X})$ and its variant. First, what is the confidence coefficient of $C_0^M(\underline{X})$?

Theorem 1. Suppose T_2 in (2.4) satisfies Condition (a). For a given interval $C_0(\underline{X})$,

- (i) the h-function $h_2(\underline{X}, \theta_0)$ in (2.5) is a valid p-value for the test statistic $T_2(\underline{X}, \theta_0)$;
- (ii) the interval $C_0^M(\underline{X})$ given in (2.6) is a $1-\alpha$ exact interval, that is, $ICP(C_0^M) \ge 1-\alpha$.

The theorem modifies the interval $C_0(\underline{X})$ of any level, including a point estimator, to be an exact interval $C_0^M(\underline{X})$. Furthermore, unlike rejecting or accepting H_0 by checking whether $C_0^M(\underline{X})$ includes θ_0 , a p-value can be calculated using $h_2(\underline{x}, \theta_0)$, which is a new usage of a confidence interval.

2.3. Refining a $1 - \alpha$ exact two-sided confidence interval

When $C_0(\underline{X})$ is exact, the modified interval $C_0^M(\underline{X})$ is also exact, from Theorem 1. However, what is the relationship between $C_0(\underline{X})$ and $C_0^M(\underline{X})$?

Theorem 2. Suppose T_2 in (2.4) satisfies Conditions (a) and (b).

- (i) If $C_0(\underline{X})$ is a 1α exact interval, then $C_0^M(\underline{x})$ is a subset of $C_0(\underline{X})$. In particular, if $T_2 = T_2^I$, then $C_0^M(\underline{X}) = C_0(\underline{X})$; that is, one should not use T_2^I to improve an exact interval.
- (ii) For any interval $C_0(\underline{X})$, $C_0^{M2}(\underline{X})$ is a subset of $C_0^M(\underline{X})$.

2744

For a fixed θ_0 , the p-value $h(\underline{X}, \theta_0)$ identifies two sample points \underline{x}_1 and \underline{x}_2 related to $H_0: \theta = \theta_0$. If $h(\underline{x}_1, \theta_0) > h(\underline{x}_2, \theta_0) > \alpha$, then both sample points fail to reject H_0 , but \underline{x}_1 is more supportive of H_0 because it has a larger p-value. However, when using an acceptance region of level α , both points belong to the region, and we cannot tell which point supports H_0 more. The h-function in (2.5) plays a similar role of identifying two parameter values θ_1 and θ_2 using the test statistic T_2 in (2.4). For an observed \underline{x} , traditionally, one tests $H_0: \theta = \theta_1$ (or θ_2) by checking whether θ_1 (or θ_2) belongs to $C_0(\underline{x})$. If both belong to $C_0(\underline{x})$, we fail to reject $\theta = \theta_1$ and $\theta = \theta_2$, but cannot tell which statement is more likely to be true. We now quantify this by introducing $T_2(\underline{x}, \theta_0)$ as a function of θ_0 . That is, $\theta = \theta_1$ is more likely if $T_2(\underline{x}, \theta_1) > T_2(\underline{x}, \theta_2)$. Thus, we should use T_2^D or T_2^R but not T_2^I (which is a constant over $C_0(\underline{x})$) to shrink an exact interval, as in Theorem 2.

The modification process can be applied to an exact interval multiple times, generating a subset interval each time. What is the smallest interval from this process?

Theorem 3. Suppose T_2 in (2.4) satisfies Conditions (a) and (b). For an exact interval $C_0(\underline{X})$ and a sample point \underline{x} , let $C_0^{M\infty}(\underline{x}) = \bigcap_{k=0}^{+\infty} C_0^{Mk}(\underline{x})$. Then,

(i) the interval $C_0^{Mk}(\underline{x})$, as a set of θ , is nonincreasing in k, for $k \ge 0$;

- (ii) $C_0^{M\infty}(\underline{X})$, contained in $C_0^{Mk}(\underline{X})$, for any k, is a 1α exact interval;
- (iii) if $C_0^{Mk}(\underline{X}) = C_0^{M(k+1)}(\underline{X})$, for some $k \ge 0$, then $C_0^{M\infty}(\underline{X}) = C_0^{Mk}(\underline{X})$.

One concern when deriving $C_0^{M\infty}(\underline{X}) = C_0^{Mk}(\underline{X})$ is a possibly large k. In Theorem 3, the constant $k = k_{\underline{X}}$ is independent of the sample points. Next, we state that this k depends on the sample point \underline{x} , that is, $k = k(\underline{x})$ and $k_{\underline{X}} = \sup_{\{\text{all } \underline{x}\}} k(\underline{x})$. This makes the computation of $C_0^{M\infty}(\underline{X})$ at $\underline{X} = \underline{x}$ simpler, because $k(\underline{x}) \leq k_{\underline{X}}$.

Theorem 4. Suppose T_2 in (2.4) satisfies Conditions (a), (b), and (c). For an exact interval $C_0(\underline{X})$ and a fixed sample point \underline{x} , if $C_0^{Mk}(\underline{x}) = C_0^{M(k+1)}(\underline{x})$, for some $k = k(\underline{x}) \geq 0$, then $C_0^{M(k+2)}(\underline{x}) = C_0^{M(k+1)}(\underline{x})$. Therefore, $C_0^{M\infty}(\underline{x}) = C_0^{Mk}(\underline{x})$.

Can $C_0^{M\infty}(\underline{X})$ be shortened further? A sufficient condition for an admissible $C_0^{M\infty}(\underline{X})$ is stated below. A $1-\alpha$ exact interval $C(\underline{X})$ is admissible if any interval $C'(\underline{X})$, which is a subset of, but not equal to $C(\underline{X})$, has a confidence coefficient strictly less than $1-\alpha$.

Theorem 5. Let \underline{X} be a random observation on a finite sample space S, and let T_2 in (2.4) be T_2^D or T_2^R . For an interval $C_0(\underline{X})$, if the confidence limits $L_0^{M\infty}(\underline{X})$ and $U_0^{M\infty}(\underline{X})$ of the interval $C_0^{M\infty}(\underline{X})$ are both one-to-one functions, then $C_0^{M\infty}(\underline{X})$ is admissible.

When $L_0^{M\infty}$ and $U_0^{M\infty}$ are not one-to-one functions, Theorem 5 indicates that an improvement upon $C_0^{M\infty}$ may occur only at those <u>x</u> at which $L_0^{M\infty}$ or $U_0^{M\infty}$ are tied. The modification process is still helpful for deriving admissible intervals, as shown in Section 3.2.

3. Applications of Improving a Given Two-Sided Interval

In this section, we focus on the choice of $T_2 = T_2^D$. We estimate three parameters: (i) a proportion p, based on a binomial $X \sim Bino(n, p)$; (ii) the difference of two proportions $d = p_1 - p_2$, based on two independent binomials; and (iii) the difference of two proportions d_m , based on a match-paired multinomial observation. These parameters are widely used in practice, including clinical trials, but there is no consensus on which intervals are best.

3.1. Estimating a proportion

Consider an interval $C_p(x) = [L_p(x), U_p(x)]$ that satisfies

$$U_p(x) = 1 - L_p(n - x), \ \forall x \in [0, n].$$
 (3.1)

We apply the modification process in (2.4), (2.5), and (2.6) repeatedly to each of six intervals C_{pi} to generate the modified intervals C_{pi}^{M} and $C_{pi}^{M\infty}$, for $i = 1, \ldots, 6$: (1) the Wald interval C_{p1} (approximate, given in (1.3)); (2) the Wilson interval (Wilson (1927)) C_{p2} (approximate, Agresti (2013, p.14); (3) the maximum likelihood estimator $C_{p3}(X) = X/n$ (approximate); (4) the Clopper–Pearson interval (Clopper and Pearson (1934)) C_{p4} (exact, Agresti (2013, p.603)); (5) the Blaker interval (Blaker (2000)) C_{p5} (exact, Agresti (2013, p.605))); and (6) the Wang interval (Wang (2014)) C_{p6} (exact).

Intervals C_{p1} and C_{p2} are derived using the asymptotic normality, and C_{p3} is just a point estimator. Their confidence coefficients are much lower than $1 - \alpha$. Intervals C_{p4} and C_{p5} are generated using the h-function method (2.2) using h-function $h_{p4}(x, p_0) = \min\{2\min\{P_{p_0}(X \leq x), P_{p_0}(X \geq x)\}, 1\}$ and the test statistic $T_{p5}(x, p_0) = \min\{P_{p_0}(X \leq x), P_{p_0}(X \geq x)\}$, respectively. Interval C_{p6} is derived from a refining algorithm over C_{p4} , and is admissible. In fact, C_{p5} and C_{p6} are subsets of C_{p4} .

Table 1 contains these intervals over all sample points, their confidence coef-

Table 1. The lower confidence limits of (1) the 95% Wald interval C_{p1} , the modification C_{p1}^{M} , and the 22nd modification $C_{p1}^{M22} (= C_{p1}^{M\infty})$; (2) the 95% Wilson interval C_{p2} , $C_{p2}^{M} (= C_{p2}^{M\infty})$; (3) the sample-proportion estimator C_{p3} , $C_{p3}^{M} (= C_{p3}^{M\infty})$; (4) the Clopper–Pearson interval C_{p4} , $C_{p4}^{M} (= C_{p4}^{M\infty})$; (5) the Blaker interval C_{p5} , $C_{p5}^{M} (= C_{p5}^{M\infty})$; (6) the Wang interval $C_{p6} (= C_{p6}^{M\infty})$; and the infimum coverage probability (ICP) and total interval length (TIL) for n = 16. The upper limits are given by (3.1).

X	0	1	2	3	4	5	6	7	8	ICP
C_{p1}	0.0000	-0.0562	-0.0371	-0.0038	0.0378	0.0853	0.1377	0.1944	0.2550	0
C_{p1}^M	0.0000	0.0000	0.0000	0.0000	0.0189	0.0426	0.0688	0.0972	0.1275	0.9500
C_{p1}^{M22}	0.0000	0.0000	0.0000	0.0000	0.0902	0.1321	0.1708	0.1708	0.1708	0.9500
C_{p2}	0.0000	0.0111	0.0349	0.0659	0.1018	0.1416	0.1848	0.2309	0.2799	0.8362
C_{p2}^M	0.0000	0.0032	0.0226	0.0531	0.0902	0.1321	0.1777	0.2122	0.2719	0.9500
C_{p3}	0.0000	0.0625	0.1250	0.1875	0.2500	0.3125	0.3750	0.4375	0.5000	0
C_{p3}^M	0.0000	0.0032	0.0226	0.0531	0.0902	0.1321	0.1777	0.2187	0.2719	0.9500
C_{p4}	0.0000	0.0015	0.0155	0.0404	0.0726	0.1101	0.1519	0.1975	0.2465	0.9578
C_{p4}^M	0.0000	0.0032	0.0226	0.0531	0.0902	0.1321	0.1777	0.2017	0.2719	0.9500
C_{p5}	0.0000	0.0032	0.0226	0.0531	0.0902	0.1321	0.1746	0.2011	0.2717	0.9500
C_{p5}^M	0.0000	0.0032	0.0226	0.0531	0.0902	0.1321	0.1777	0.2011	0.2719	0.9500
C_{p6}	0.0000	0.0032	0.0226	0.0531	0.0902	0.1321	0.1777	0.2059	0.2719	0.9500
X	9	10	11	12	13	14	15	16		TIL
C_{p1}	0.3194	0.3877	0.4603	0.5378	0.6212	0.7129	0.8188	1.0000		6.0559
C_{p1}^M	0.1597	0.3374	0.4195	0.5000	0.5705	0.6478	0.7326	0.8291		7.8957
C_{p1}^{M22}	0.1708	0.3521	0.4294	0.5000	0.5705	0.6478	0.7326	0.8291		7.0650
C_{p2}	0.3317	0.3864	0.4440	0.5050	0.5699	0.6397	0.7167	0.8063		6.0974
C_{p2}^M	0.3075	0.3733	0.4370	0.5000	0.5629	0.6266	0.6924	0.7877		6.4978
C_{p3}	0.5625	0.6250	0.6875	0.7500	0.8125	0.8750	0.9375	1.0000		0
C_{p3}^M	0.3125	0.3750	0.4375	0.5000	0.5625	0.6250	0.6875	0.7812		6.4978
C_{p4}	0.2987	0.3543	0.4133	0.4762	0.5435	0.6165	0.6976	0.7940		6.9380
C_{p4}^M	0.3005	0.3689	0.4349	0.5000	0.5650	0.6310	0.6994	0.7982		6.4978
C_{p5}	0.3004	0.3682	0.4344	0.5000	0.5655	0.6317	0.6995	0.7988		6.5043
C_{p5}^M	0.3004	0.3682	0.4344	0.5000	0.5655	0.6317	0.6995	0.7988		6.4978
C_{p6}	0.3023	0.3834	0.4415	0.5000	0.5584	0.6165	0.6976	0.7940		6.4978

ficients, and the total interval lengths for n = 16. The confidence coefficients of the three approximate intervals are equal to 0, 0.8362, and 0, respectively, where the second value is given by Huwang (1995).

Following Theorem 1, the modified intervals C_{pi}^M and $C_{pi}^{M\infty}$ are all exact. For i = 4, 5, 6, C_{pi}^M is a subset of C_{pi} , from Theorem 2. The reduction in the interval length of C_{p4}^M over that of C_{p4} is noticeable, and $C_{p5}^M(x)$ shrinks $C_{p5}(x)$ at x = 6, 8, 10. Lastly, there is no improvement over C_{p6} , because it is proved to be admissible for any n and α in Wang (2014). In this sense, C_{p6} is the best of these exact intervals.

We also report C_{pi}^{MS} , the simulated version of C_{pi}^{M} , for i = 1, ..., 6, in the Supplementary Material to confirm our theoretical results, including Theorems 1 and 2. As expected, $C_{pi}^{MS} \approx C_{pi}^{M}$, for all *i*.

The final refined intervals $C_{pi}^{M\infty}$, except $C_{p1}^{M\infty}$, are all admissible, following Theorem 5, because their confidence limits have no ties, and $C_{pi}^{M\infty} = C_{pi}^{Mk}$ for a small k (=1 or 0). For a given $k \geq 1$, the ratio of the total interval lengths of C_{pi}^{Mk+1} and C_{pi}^{Mk} is not larger than one. If it is equal to one, then $C_{pi}^{M\infty} = C_{pi}^{Mk}$, by Theorem 3. The ratio is accurate up to the seventh decimal place. The five admissible intervals are different, but have the same total interval length of 6.4978. Four of them are generated using the proposed modification process. These results suggest that the best interval for p may not exist. Note that a point estimator for p can be modified to be an admissible interval without using its standard error.

Table 2 reports the confidence coefficients and total interval lengths for the intervals in Table 1 for two other values of n. The two quantities measure the reliability and the precision of the interval, respectively. Among a group of $1 - \alpha$ exact intervals, the one with the smallest total interval length is preferred. This criterion is also applied in Tables 3 and 5. Here, the confidence coefficients of the exact intervals should not be smaller than 0.95. To confirm these numerically, the confidence coefficient of an interval C(X) for p with a nondecreasing lower confidence limit L(X) is achieved at one of the values $L(x)^-$, for $x = 1, \ldots, n$, where a^- denotes the left limit of y when y approaches a; see Wang (2007). The confirmation is necessary to prevent potential errors in the numerical calculation. The modification process generates admissible intervals $C_{pi}^{M\infty}$, for $i = 2, \ldots, 6$, following Theorem 5. Intervals $C_{p4}^{M\infty}$, $C_{p5}^{M\infty}$, and C_{p6} have the smallest total interval length for each n, and the last one, already admissible, does not need to be modified. Thus, we recommend C_{p6} for practice.

3.2. Intervals for the difference between two independent proportions

The difference $d = p_1 - p_2$ is often used to compare of two proportions based on two independent binomials, $X \sim Bino(n_1, p_1)$ and $Y \sim Bino(n_2, p_2)$. Consider $H_0: d = d_0$ vs. $H_A: d \neq d_0$, for a fixed $d_0 \in [-1, 1]$. Under H_0 , $p_1 = d_0 + p_2$, for $p_2 \in D(d_0)$, where $D(d_0) = [0, 1 - d_0]$ if $d_0 \in [0, 1]$, and

Table 2. The infimum coverage probability (ICP) and total interval length (TIL) for confidence intervals for $p: C_{pi}, C_{pi}^{M}$, and $C_{pi}^{M\infty} (= C_{pi}^{Mk})$, for i = 1 (Wald), 2 (Wilson), 3 (the sample proportion), 4 (Clopper–Pearson), 5 (Blaker), and 6 (Wang), when $1 - \alpha = 0.95$ and n varies. The smallest TIL for each n is marked by * and an admissible interval is marked by [†].

n	C_p	ICP	TIL	C_p^M	ICP	TIL	$C_p^{M\infty}$	ICP	TIL
30	C_{p1}	0	8.3772	C_{p1}^M	0.9500	10.0999	C_{p1}^{M21}	0.9500	9.4420
	C_{p2}	0.8371	8.3933	C_{p2}^M	0.9500	8.7975	$^{\dagger}C_{p2}^{M13}$	0.9500	8.7960
	C_{p3}	0	0	C_{p3}^M	0.9500	8.8279	$^{\dagger}C_{p3}^{M8}$	0.9500	8.8278
	C_{p4}	0.9505	9.2705	C_{p1}^M	0.9500	8.7784	$^{\dagger}C_{p4}^{M16}$	0.9500	8.7726^{*}
	C_{p5}	0.9500	8.7814	C_{p5}^M	0.9500	8.7770	$^{\dagger}C_{p5}^{M16}$	0.9500	8.7726^{*}
	$^{\dagger}C_{p6}$	0.9500	8.7726^{*}		$C_{p6}^M = 0$	C_{p6}	($C_{p6}^{M\infty} = 0$	C_{p6}
100	C_{p1}	0	15.3772	C_{p1}^M	0.9500	16.7763	C_{p1}^{M20}	0.9500	16.4196
	C_{p2}	0.8379	15.3803	C_{p2}^M	0.9500	15.8488	$^{\dagger}C_{p2}^{M13}$	0.9500	15.8465
	C_{p3}	0	0	C_{p3}^M	0.9500	15.8648	$^{\dagger}C_{p3}^{M12}$	0.9500	15.8637
	C_{p4}	0.9503	16.3057	C_{p1}^M	0.9500	15.8214	$^{\dagger}C_{p4}^{M15}$	0.9500	15.8146^{*}
	C_{p5}	0.9500	15.8243	C_{p2}^M	0.9500	15.8176	$^{\dagger}C_{p5}^{M14}$	0.9500	15.8146^{*}
	$^{\dagger}C_{p6}$	0.9500	15.8146^{*}		$C_{p6}^M = 0$	\sum_{p6}		$C_{p6}^{M\infty} = 0$	C_{p6}

 $D(d_0) = [-d_0, 1]$ if $d_0 \in [-1, 0)$. Suppose $T_d(x, y, d_0)$ is a test statistic satisfying

$$T_d(x, y, d_0) = T_d(n_1 - x, n_2 - y, -d_0), \ \forall \ (x, y) \in S_d = [0, n_1] \times [0, n_2], \quad (3.2)$$

and a small value of $T_d(x, y, d_0)$ supports H_A . Its h-function is

$$h_d(x, y, d_0) = \sup_{p_2 \in D(d_0)} \sum_{\{(u, v) \in S_d: T_d(u, v, d_0) \le T_d(x, y, d_0)\}} p_B(u, n_1, p_2 + d_0) p_B(v, n_2, p_2),$$
(3.3)

where $p_B(x, n, p)$ is the probability mass function of Bino(n, p). The acceptance region of level- α for H_0 and the $1 - \alpha$ exact confidence interval for d are

$$A_d(d_0) = \{(x, y) : h_d(x, y, d_0) > \alpha\} \text{ and } C_d(x, y) = \overline{\{d_0 : h_d(x, y, d_0) > \alpha\}},$$
(3.4)

respectively. The following proposition simplifies the interval calculation by half.

Proposition 1. For a test statistic T_d satisfying (3.2), we have

$$U_d(x,y) = -L_d(n_1 - x, n_2 - y), \ \forall \ (x,y) \in S_d.$$
(3.5)

Four exact and approximate intervals C_{di} satisfying (3.5) are described below for i = 1, ..., 4. For each $C_{di}(x, y) = [L_{di}(x, y), U_{di}(x, y)]$, introduce $T_{di}(x, y, d_0) =$

 $T_2^D(L_{di}(x,y), U_{di}(x,y), d_0)$. We apply the modification process of (3.2), (3.3) and (3.4) to T_{di} to produce C_{di}^M and $C_{di}^{M\infty}$. Theorems 1 and 3 ensure that the modified intervals are exact, and that $C_{di}^{M\infty}$ is a subset of C_{di}^M . All intervals satisfy (3.5).

First, consider the score test statistic

$$T_{d1}^{*}(x, y, d_{0}) = \frac{-|\hat{p}_{1} - \hat{p}_{2} - d_{0}|}{\sqrt{\hat{p}_{1d}(x, y, d_{0})(1 - \hat{p}_{1d}(x, y, d_{0}))/n_{1} + \hat{p}_{2d}(d_{0})(1 - \hat{p}_{2d}(x, y, d_{0}))/n_{2}}}$$

where $\hat{p}_1 = x/n_1$, $\hat{p}_2 = x/n_2$, $\hat{p}_{2d}(x, y, d_0) = \arg \max_{p_2 \in D(d_0)} p_B(x, n_1, p_2 + d_0)p_B(y, n_2, p_2)$, and $\hat{p}_{1d}(x, y, d_0) = \hat{p}_{2d}(x, y, d_0) + d_0$. When $(x, y, d_0) = (n_1, 0, 1)$ or $(0, n_2, -1)$, the above ratio is 0/0, and so is defined to be zero. Its h-function $h_{d_1}^*$ follows (3.3) and generates an exact interval C_{d_1} , which is recommended by Agresti and Min (2001) and Fay (2010).

Second, following a series of works, originated by Buehler (1957), the smallest exact one-sided interval is derived under a given order on the sample space. A $1-\alpha$ exact two-sided interval C_{d2} for d is easily obtained by taking the intersection of the two smallest lower and upper one-sided $1 - \alpha/2$ intervals in Wang (2010). However, such intervals may be conservative (Agresti (2013)). When a nuisance parameter exists, including the current case, it is challenging to improve an exact, but conservative interval. The main difficulty is that the method of finding a confidence coefficient in Wang (2007) fails. However, the proposed modification process provides a promising effort to shrink C_{d2} .

The following approximate intervals are also considered: the Wald-type interval, and the maximum likelihood estimator $\hat{p}_1 - \hat{p}_2$ (used as an interval),

$$C_{d3}(X,Y) = \left[\hat{p}_1 - \hat{p}_2 \mp z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \right]$$
$$C_{d4}(X,Y) = [\hat{p}_1 - \hat{p}_2 \mp 0],$$

respectively, where $z_{\alpha/2}$ is the upper $\alpha/2$ th percentile of the standard normal distribution. They both have a zero confidence coefficient for any n_1 , n_2 , and α , and C_{d4} has a zero total interval length.

Table 3 reports the confidence coefficients and total interval lengths for these 95% intervals for different (n_1, n_2) . Each confidence coefficient is obtained from a large number of calculations: select 201^2 pairs of (p_1, p_2) , where p_1 and p_2 are both the multiples of 0.005, and 50,000 pairs of (p_1, p_2) following a uniform distribution; compute the coverage probabilities; use the minimum as the confidence coefficient.

2750

Table 3. The infimum coverage probability (ICP) and total interval length (TIL) for 12 95% intervals C_{di} , C_{di}^{M} , and $C_{di}^{M\infty} (= C_{di}^{Mk})$, for i = 1 (Score, exact), 2 (Wang, exact), 3 (Wald, approximate), 4 (maximum likelihood estimator, approximate), when (n_1, n_2) varies. The smallest TIL for the exact intervals is marked by * for each (n_1, n_2) .

(n_1, n_2)	C_{di}	ICP	TIL	C^M_{di}	ICP	TIL	$C_{di}^{M\infty}$	ICP	TIL
(5,6)	C_{d1}	0.9500	38.7295	C_{d1}^M	0.9500	38.5384	C_{d1}^{M17}	0.9500	38.4253
	C_{d2}	0.9511	41.7394	C_{d2}^M	0.9500	38.6381	C_{d2}^{M19}	0.9500	38.3833^{*}
	C_{d3}	0	34.2758	C^M_{d3}	0.9500	52.2953	C_{d3}^{M22}	0.9500	45.4999
	C_{d4}	0	0	C^M_{d4}	0.9500	39.5540	C_{d4}^{M18}	0.9500	39.1202
(10,15)	C_{d1}	0.9500	113.3737	C_{d1}^M	0.9500	112.1987	C_{d1}^{M18}	0.9500	111.5613^{*}
	C_{d2}	0.9515	116.8048	C^M_{d2}	0.9500	112.6569	C_{d2}^{M18}	0.9500	111.7894
	C_{d3}	0	106.2471	C^M_{d3}	0.9500	148.7108	C_{d3}^{M30}	0.9500	131.8738
	C_{d4}	0	0	C^M_{d4}	0.9500	120.7789	C_{d4}^{M2}	0.9500	120.7007
(23,32)	C_{d1}	0.9500	346.4825	C_{d1}^M	0.9500	344.3728	C_{d1}^{M20}	0.9500	342.6230
	C_{d2}	0.9503	347.4601	C^M_{d2}	0.9500	342.6516	C_{d2}^{M17}	0.9500	341.4697^*
	C_{d3}	0	332.3962	C^M_{d3}	0.9500	399.0738	C_{d3}^{M47}	0.9500	375.2666
	C_{d4}	0	0	C^M_{d4}	0.9500	372.2596	C_{d4}^{M17}	0.9500	370.0785

The final refined intervals, $C_{d1}^{M\infty}$ and $C_{d2}^{M\infty}$, for exact intervals are shorter than those, $C_{d3}^{M\infty}$ and $C_{d4}^{M\infty}$, for approximate intervals. Originally from a point estimator, $C_{d4}^{M\infty}$ is 'surprisingly' shorter than $C_{d3}^{M\infty}$. Although C_{d2} is wider than C_{d1} , $C_{d2}^{M\infty}$ performs better than, or as well as $C_{d1}^{M\infty}$. These results indicate that the modification process is effective in generating both accurate and precise intervals.

To determine whether C_{di}^{Mk} for an integer k is equal to $C_{di}^{M\infty}$, we use the ratio of the total interval lengths of two consecutive intervals $C_{di}^{M(k+1)}$ and C_{di}^{Mk} , as in Section 3.1. If it is equal to one, then, by Theorem 3, $C_{di}^{M\infty} = C_{di}^{Mk}$. However, on a sample point (x, y), k(x, y) in Theorem 4 may be much smaller than k. For example, when $(n_1, n_2) = (5, 6)$, $C_{d2}^{M\infty} = C_{d2}^{M19}$ for k = 19; however, $C_{d2}^M(0,5) = C_{d2}^{M2}(0,5) = [-0.9915, -0.2587]$. Thus, $C_{d2}^{M\infty}(0,5) = C_{d2}^M(0,5)$ for k(0,5) = 1, which is much smaller than 19.

Being a conservative interval, C_{d2} has a larger confidence coefficient and total interval length than those of C_{d1} . However, the modification process makes $C_{d2}^{M\infty}$ have the smallest total interval length, in general. If an interval has a small number of ties, then its modified interval tends to be short. This happens on C_{d2} . In contrast, $C_{d4} = \hat{p}_1 - \hat{p}_2$ has many ties. For instance, when $(n_1, n_2) = (10, 15)$, $C_{d4}(2i, 3i) = 0$, for $i = 0, \ldots, 5$. Then, $C_{d4}^{M\infty}(2i, 3i) = [-0.3834, 0.3834]$. As a result, $C_{d4}^{M\infty}$ is much longer than $C_{d2}^{M\infty}$.

Table 4. Four 95% confidence intervals and their modifications at (x, y) = (21, 19): $(C_{di}, C_{di}^M, C_{di}^M)$, for $i = 1, \ldots, 4$, and their lengths when $(n_1, n_2) = (23, 32)$. The smallest length of the exact intervals is marked by *.

C_{di}	lower	upper	length	C^M_{di}	lower	upper	length	$C_{di}^{M\infty}$	lower	upper	length
C_{d1}	0.0794	0.5228	0.4434	C_{d1}^M	0.0794	0.5223	0.4429	$C_{d1}^{M\infty}$	0.0794	0.5218	0.4424
C_{d2}	0.0946	0.5126	0.4180	C_{d2}^M	0.0968	0.5081	0.4113	$C_{d2}^{M\infty}$	0.0968	0.5038	0.4070^{*}
C_{d3}	0.1138	0.5248	0.4110	C_{d3}^M	0.0569	0.5486	0.4917	$C_{d3}^{M\infty}$	0.1185	0.5468	0.4283
C_{d4}	0.3193	0.3193	0	C^M_{d4}	0.0523	0.5442	0.4919	$C_{d4}^{M\infty}$	0.0529	0.5438	0.4909

The intervals $C_{di}^{M\infty}$ in Table 3 are not admissible because of ties in their confidence limits. However, they can be modified to be admissible by breaking the ties. When $(n_1, n_2) = (5, 6)$, the lower limits of $C_{d1}^{M\infty}$ are equal to -0.1942 at points (3,1) and (5,4). i) Break the ties by lifting the lower limit at one of the two points, say (3,1), to -0.19419, just a little larger than -0.1942, that is, introduce an interval C_{new} that has the same lower limits as $C_{d1}^{M\infty}$, except the lower limit at (3,1). ii) Compute the confidence coefficient of C_{new} . iii) If this confidence coefficient is less than 0.95, then $C_{d1}^{M\infty}$ cannot be shortened at (3,1); otherwise, apply the modification process to C_{new} and obtain $C_{new}^{M\infty}$, a subset of $C_{d1}^{M\infty}$. Repeat i), ii), and iii) for all other tied points and obtain an admissible interval. The total interval lengths for the admissible intervals obtained by improving $C_{d1}^{M\infty}$ and $C_{d2}^{M\infty}$ are 38.4077 and 38.3728, respectively.

Example 2. (Example 1 (continued)). The 12 intervals in Table 3 at (x, y) = (21, 19) are reported in Table 4. Interval $C_{d2}^{M\infty}(x, y)$ is equal to [0.0968, 0.5038], and has the shortest length, 0.4070, a confidence coefficient of 0.95, and the shortest total interval length, 341.4697.

3.3. Intervals for the difference between two dependent proportions

Consider a 2×2 contingency table with two binary variables, A (row) and B (column), where one is a success and zero is a failure. The random observation $(N_{11}, N_{10}, N_{01}, N_{00})$ follows a multinomial distribution with n trials and probabilities $(p_{11}, p_{10}, p_{01}, p_{00})$. The parameter of interest here is $d_m = P(A = 1) - P(B = 1) = p_{10} - p_{01}$. Let $T = N_{11} + N_{00}$ and $p_t = p_{11} + p_{00}$. The conditional distribution of N_{ij} for a given (N_{10}, T) does not involve p_{10} and p_{01} , so inferences about d_m should be based on (N_{10}, T) if following similar reasoning to that of the sufficiency principle. The reduced sample and parameter spaces are $S_M = \{(n_{10}, t) : n_{10} + t \in [0, n]\}$ and $H_M = \{(d_m, p_t) : d_m \in [-1, 1], p_t \in [0, 1 - |d_m|]\}$,

respectively. The probability mass function for (N_{10}, T) , in terms of (d_m, p_t) , is

$$p_M(n_{10}, t, d_m, p_t) = \frac{n!}{n_{10}! t! n_{01}!} \left(\frac{1 + d_m - p_t}{2}\right)^{n_{10}} p_t^t \left(\frac{1 - d_m - p_t}{2}\right)^{t - n_{10}}.$$

Wang (2012) proposed the smallest $1 - \alpha/2$ lower and upper one-sided intervals for d_m . Then, their intersection, denoted by $C_{d_m1}(N_{10}, T) = [L_{d_m1}(N_{10}, T), U_{d_m1}(N_{10}, T)]$, is of level $1 - \alpha$, and can be computed using the R-package "ExactCIdiff" (Shan and Wang (2013)). To derive $C_{d_m1}^M(n_{10}, t)$, let $T_{m1}(n_{10}, t, d_m) = T_2^D(L_{d_m1}(n_{10}, t), U_{d_m1}(n_{10}, t), d_m)$ and

$$h_{m1}(n_{10}, t, d_m) = \sup_{p_t \in [0, 1-|d_m|]} \sum_{\{(n'_{10}, t') \in S_M : T_{m1}(n'_{10}, t', d_m) \le T_{m1}(n_{10}, t, d_m)\}} p_M(n_{10}, t, d_m, p_t).$$
(3.6)

Following Theorem 2, the interval $C_{d_m1}^M(n_{10},t) = \overline{\{d_m: h_{m1}(n_{10},t,d_m) > \alpha\}}$ is exact and is a subset of $C_{d_m1}(n_{10},t)$. The upper limit can be computed from the lower limit using $U_{d_m1}^M(n_{10},t) = -L_{d_m1}^M(n_{01},t)$. Repeat the modification process k times so that $C_{d_m1}^{M\infty} = C_{d_m1}^{Mk}$.

Fagerland, Lydersenb and Laakec (2013) provide a good summary of the approximate and exact intervals for d_m , and recommend the Tango approximate score interval C_{d_m2} (Tango (1998)) and the Wald interval with a Bonett–Price Laplace adjustment C_{d_m3} (Bonett and Price (2012)). The modification process generates improved intervals for C_{d_m2} and C_{d_m3} . Next, we present a numerical comparative study for C_{d_m1} , C_{d_m2} , C_{d_m3} , and their modifications.

Example 3. Bentur et al. (2009) measured airway hyper-responsiveness status (Yes = 1, No = 0) in n(=21) children before (A) and after (B) stem cell transplantation, and observed $(n_{11}, n_{10}, n_{01}, n_{00}) = (1, 1, 7, 12)$. Thus, $(n_{10}, t) = (1, 13)$. Then, the maximum likelihood estimate for d_m is -0.2857. Table 5 reports nine 95% confidence intervals at (1, 13) for individual performance, and their confidence coefficient and total interval length for overall performance.

As expected, C_{d_m1} has the largest length and total interval length. However, the small total interval lengths for C_{d_m2} and C_{d_m3} are due to their incorrect confidence coefficients, 0.8367 and 0.9145, respectively. The modified intervals all have confidence coefficients no less than 0.95; $C_{d_m1}^{M\infty}$ is the shortest at (1,13) and has a slightly larger total interval length than $C_{d_m2}^{M\infty}$. One reason for the large total interval length of $C_{d_m3}^{M\infty}$ is that C_{d_m3} has many ties in its confidence limits, especially when n_{10} is close to n or zero.

Table 5 also reports the p-values for testing $H_0: d_m = 0$ that are associated

Table 5. Nine 95% confidence intervals $(C_{d_m i}, C_{d_m i}^M, C_{d_m i}^{M\infty})$, for i = 1 (Wang, exact), 2 (Tango, approximate), and 3 (Wald with Bonett–Price Laplace adjustment, approximate), the interval length at $(n_{10}, t) = (1, 13)$, and the infimum coverage probability (ICP) and total interval length (TIL) when n = 21. The smallest length and TIL of exact intervals are marked by *.

Part I: The nine intervals at $(n_{10}, t) = (1, 13)$												
	lower	upper	length		lower	upper	length		lower	upper	length	
					the p	o-value			the p-value			
$C_{d_m 1}$	-0.5214	-0.0126	0.5088	$C^M_{d_m 1}$	-0.5065	-0.0155	0.4910	$C_{d_m 1}^{M\infty}$	-0.4923	-0.0155	0.4768^{*}	
					0.0	4125			0.04393			
C_{d_m2}	-0.5173	-0.0260	0.4913	$C^M_{d_m 2}$	-0.5320	-0.0182	0.5138	$C_{d_m 2}^{M\infty}$	-0.5287	-0.0182	0.5105	
					0.04125				0.04215			
C_{d_m3}	-0.5084	-0.0133	0.4951	$C^M_{d_m3}$	-0.5000	0.0122	0.5122	$C_{d_m3}^{M\infty}$	-0.4997	0.0122	0.5119	
					0.0	7835			0.0	07835		
			Par	t II: T	he nine i	nterval's I	CPs and	d TILs				
	ICP	TIL			ICP	TIL			ICP	TIL		
$C_{d_m 1}$	0.9500	152.4780		$C^M_{d_m 1}$	0.9500	147.8739		$C_{d_m 1}^{M\infty}$	0.9500	146.8296		
C_{d_m2}	0.8376	144.1614		$C^M_{d_m 2}$	0.9500	147.7267		$C_{d_m 2}^{M\infty}$	0.9500	146.2317^{*}		
C_{d_m3}	0.9146	147.7201		$C^M_{d_m3}$	0.9501	152.3374		$C^{M\infty}_{d_m3}$	0.9500	149.2308		

with the modified intervals $C_{d_{mi}}^{M}$ and $C_{d_{mi}}^{M\infty}$ at (1, 13). The p-value corresponding to $C_{d_{m1}}^{M}$ is equal to $h_{m1}(1, 13, 0) = 0.04125$, where h_{m1} is given in (3.6). This is consistent with the fact that $C_{d_{m1}}^{M}(1, 13)$ excludes zero. However, $C_{d_{m3}}^{M}(1, 13)$ and $C_{d_{m3}}(1, 13)$ provide two different conclusions on including zero.

4. Modifying One-Sided Confidence Intervals

Assume that the range of the parameter θ is [A, B] for two known constants A and B. Consider $H_0: \theta \leq \theta_0$ vs. $H_A: \theta > \theta_0$. For a lower one-sided interval for $\theta, C_l(\underline{X}) = [L_l(\underline{X}), B]$ with $L_l(\underline{X}) \geq A$, let $T_{1l}(\underline{x}, \theta_0) = \theta_0 - L_l(\underline{x})$. A small value of T_{1l} supports H_A and $T_{1l}(\underline{x}, \theta_0) \geq 0$ if and only if $\theta_0 \geq L_l(\underline{x})$. The h-function is

$$h_{1l}(\underline{x},\theta_0) = \sup_{H_0} P(T_{1l}(\underline{X},\theta_0) \le T_{1l}(\underline{x},\theta_0)) = \sup_{\theta \le \theta_0} P(L_l(\underline{x}) \le L_l(\underline{X})).$$
(4.1)

Following (2.2), the level- α acceptance region for H_0 and the $1 - \alpha$ exact lower one-sided interval for θ are

$$A_{1l}(\theta_0) = \{ \underline{x} : h_{1l}(\underline{x}, \theta_0) > \alpha \} \text{ and } C_l^M(\underline{X}) = \overline{\{ \theta_0 : h_{1l}(\underline{x}, \theta_0) > \alpha \}},$$
(4.2)

respectively. As mentioned in Section 3.2, the smallest $1 - \alpha$ exact one-sided confidence interval under a given order can be constructed automatically. In the current case, the order is given by the function $L_l(\underline{X})$. More precisely, consider

the class of $1 - \alpha$ exact intervals

$$\mathcal{C}_l = \{ C(\underline{X}) = [L(\underline{X}), B] : L(\underline{x}') \le (=)L(\underline{x}) \text{ if } L_l(\underline{x}') \le (=)L_l(\underline{x}), \forall \underline{x}' \text{ and } \underline{x} \}.$$

The smallest interval contained in any interval in C_l is of interest. In contrast to Section 2, only one modification yields the smallest interval, which is a much stronger result than Theorems 1 through 4. This also establishes a connection between the h-function method and the construction of the smallest one-sided interval under an order.

Theorem 6. For a lower one-sided confidence interval $C_l(\underline{X}) = [L_l(\underline{X}), B]$ of any level,

- (i) the interval $C_l^M(\underline{X})$ given in (4.2) is a 1α exact interval;
- (ii) $C_l^{M\infty}(\underline{X}) = C_l^{Mk}(\underline{X})$, for k = 1;
- (iii) $C_l^M(\underline{X}) = [L_l^M(\underline{X}), B]$ is the smallest in C_l , that is, $L_l^M(\underline{X}) \ge L(\underline{X})$, for $[L(\underline{X}), B] \in C_l$.

Example 4. (Estimating vaccine efficacy). Under the setting of Section 3.2, vaccine efficacy (VE) is defined as $VE = 1 - r = 1 - p_1/p_2$, where r is the relative risk, and p_1 and p_2 are the rates of developing the disease for vaccinated people and unvaccinated people, respectively. We want a lower one-sided interval $C_{ve}(X,Y) = [L_{ve}(X,Y),1]$ for VE because we need a large VE. Let $U_r(X,Y)$ be the upper limit of the $1 - 2\alpha$ two-sided Koopman interval (Koopman (1984)) for r, which is recommended by Fagerland, Lydersenb and Laakec (2015). Then, $C_{ve}(X,Y)$ with the lower limit $L_{ve}(X,Y) = 1 - U_r(X,Y)$ is a $1 - \alpha$ approximate interval for VE. Following Theorem 6, $C_{ve}^M(x,y)$ is derived by solving

$$h(x, y, VE_0) = \sup_{\{1-p_1/p_2 \le VE_0\}} \sum_{\{(u,v): L_{ve}(x,y) \le L_{ve}(u,v)\}} p_B(u, n_1, p_1) p_B(v, n_2, p_2) > \alpha.$$

Janssen Biotech, Inc. (2021) reported that Johnson & Johnson's Janssen vaccine for Covid-19 has a point estimate of 81.7142% for the VE for the severe/critical group in South Africa, based on the data $(x, n_1, y, n_2) = (4, 2449, 22, 2463)$. Solve $h(4, 22, VE_0) > 0.05$ and obtain the smallest 95% exact lower one-sided interval $C_{ve}^M(4, 22) = [0.56564, 1]$. In contrast, $C_{ve}(4, 22) = [0.56566, 1]$. However, C_{ve} only has a confidence coefficient of 0.8000. Therefore, $C_{ve}^M(4, 22)$ is as precise, but much more reliable than $C_{ve}(4, 22)$. For the moderate to severe/critical group, $(x, n_1, y, n_2) = (23, 2449, 64, 2463)$, $\widehat{VE} = 63.8571\%$,

 $C_{ve}^{M}(23,64) = [0.46386,1], \text{ and } C_{ve}(23,64) = [0.46388,1]. \text{ Again, } C_{ve}^{M}(23,64)$ dominates $C_{ve}(23,64).$

Example 5. (The stochastically nondecreasing distribution family). Suppose X has a cumulative distribution function $F(x,\theta)$ that satisfies $F(x,\theta_1) \geq F(x,\theta_2)$, for any x and $\theta_1 \leq \theta_2$. This family includes all important singleparameter distributions. The modified interval $C_l^M(X)$ for the one-sided interval $C_l(X) = [X, B]$ is of interest. The interval $C_l(X)$ itself may be meaningless for estimating θ . For example, one would not use [X, 1] to estimate p when $X \sim Bino(n, p)$. Following (4.1), $h_{1l}(x, \theta_0) = \max_{\theta \leq \theta_0} P(x \leq X) = 1 - F(x^-, \theta_0)$, where x^- denotes the largest value of X less than x. The lower limit of $C_l^M(x)$ is $L_l^M(x) = \inf\{\theta_0 : 1 - F(x^-, \theta_0) > \alpha\}$. Theorem 6 ensures that $C_l^M(X)$ is the smallest interval among all $1 - \alpha$ exact intervals of the form [L(X), B] with a nondecreasing L(X). In particular, if $X \sim Bino(n, p)$, then $C_l^M(X)$ is the lower one-sided Clopper–Pearson interval of level $1 - \alpha$.

This example shows the importance of selecting a good order when constructing an interval. In particular, C_l is not a meaningful interval, but the good order of X still generates the smallest interval.

For an upper one-sided interval $C_u(\underline{X}) = [A, U_u(\underline{X})]$, let $T_{1u}(\underline{x}, \theta_0) = U_u(\underline{x}) - \theta_0$ and

$$h_{1u}(\underline{x},\theta_0) = \sup_{H_0} P(T_{1u}(\underline{X},\theta_0) \le T_{1u}(\underline{x},\theta_0)) = \sup_{\theta \ge \theta_0} P(U_u(\underline{X}) \le U_u(\underline{x})).$$
(4.3)

The level- α acceptance region for $H_0: \theta \ge \theta_0$ and the $1 - \alpha$ exact upper one-sided interval for θ are

$$A_{1u}(\theta_0) = \{ \underline{x} : h_{1u}(\underline{x}, \theta_0) > \alpha \} \text{ and } C_u^M(\underline{x}) = \overline{\{ \theta_0 : h_{1u}(\underline{x}, \theta_0) > \alpha \}}, \quad (4.4)$$

respectively. The following is a parallel result to Theorem 6; the proof is omitted.

Theorem 7. For an upper one-sided interval $C_u(\underline{X}) = [A, U_u(\underline{X})]$ of any level we have the following:

(i) The interval $C_u^M(\underline{X})$ given in (4.4) is a $1 - \alpha$ exact interval.

(*ii*)
$$C_u^{M\infty}(\underline{X}) = C_u^M(\underline{X}).$$

(iii) Define a class of $1 - \alpha$ exact upper one-sided intervals $C_u = \{C(\underline{X}) = [A, U(\underline{X})] : U(\underline{x}') \leq U(\underline{x}) \text{ if } U_u(\underline{x}') \leq U_u(\underline{x}), \forall \underline{x}' \text{ and } \underline{x}\}.$ Then, $C_u^M(\underline{X}) = [A, U_u^M(\underline{X})] \text{ is the smallest interval in } C_u.$

5. Discussion

A confidence interval can be obtained by converting a family of tests, and vice versa. However, we formally introduce a middle function, the h-function, that yields both a confidence interval and a test, which is a simpler, but more general approach. Although this idea was used by Blaker (2000) and Agresti and Min (2001), the process was not defined for the general setting , as it is here. More importantly, the proposed h-function method is now used for the first time to improve any confidence interval.

The effectiveness of the method is demonstrated in Sections 3 and 4. In particular, the method identifies the parameter values in a given confidence interval, and can be used in many applications, especially when the underlying distribution is discrete and contains nuisance parameters. Theorem 1 is easy to follow and powerful in its ability to modify any interval, including asymptotic intervals, point estimators, and credible intervals, to become exact intervals. This is a solution to the important problem that approximate intervals are easy to obtain, but not reliable. The modification process greatly enhances the reliability of these intervals, because an invalid inferential procedure is converted to be valid. When nuisance parameters exist, it is also important to improve an existing conservative interval. Theorem 2 is a successful effort to resolve this problem, because it delivers uniformly shorter exact intervals. Theorem 3 provides the smallest interval that can be generated by the modification process. When the final interval $C_0^{M\infty}$ is not admissible, owning to ties, one can break the ties and then apply the modification process to obtain an admissible interval. Furthermore, Theorems 6 and 7 establish a connection between the h-function method and the construction of the smallest one-sided interval based on an order. These results build a solid foundation for deriving optimal exact confidence intervals.

From a theoretical point of view, the interval construction in (2.4), (2.5), and (2.6) is an automatic process. However, it is computationally complex, particularly when trying to find the precise global maximum of $P\{K(\underline{x}, \theta_0)\}$ in (2.3) as a function of $\underline{\eta}$, and when solving the smallest and largest roots of the equation $h(\underline{x}, \theta_0) > \alpha$ as a function of θ_0 . To the best of our knowledge, no software can accomplish the two tasks both quickly and accurately. Note that $h(\underline{x}, \theta_0)$ is not continuous in θ_0 , in general. Our best effort for global optimization is based on a combination of a grid search and local optimization. This reduces to questioning whether the resultant interval (e.g., $C_0^{M\infty}$) is truly of level $1 - \alpha$, owing to a grid search that may not be fine enough. We intend selecting a large number of points for the search, which inevitably takes more time to compute. For example, this number is between 200 and 4,000 for a range of [-1,1] when deriving intervals for d. Additionally, each table reports the confidence coefficient required to ensure that an exact interval has a correct confidence coefficient.

There are several possible avenues for future research. First, we would like to establish the best choice of T_2 in (2.4) so that C_0^{Mk} converges to $C_0^{M\infty}$ fast. Second, we would like to construct an optimal confidence interval for a function of several parameters using existing intervals of those parameters. Third, we would like to combine several confidence intervals for the same parameter θ , where each interval uses only a part of the data set, to form an optimal interval that uses the whole data set.

Supplementary Material

We provide some simulation results to confirm the exact calculation of the confidence intervals in Table 1.

Acknowledgments

This work is partially supported by the Beijing Natural Science Foundation (No. 1222002). The author would like to thank the referee and the associate editor for their valuable suggestions. The author is also indebted to Professor Xiaotong Shen for the interpretation of Theorem 2.

Appendix: Proofs

Proof of Theorem 1. Following (2.5), $h_2(\underline{x}, \theta_0)$ is a valid p-value (Casella and Berger (2002, p.397)). Thus, $A_2(\theta_0)$ in (2.6) is the acceptance region of a level- α test, implying that interval $C_0^M(\underline{x})$ is of level $1 - \alpha$.

Proof of Theorem 2. We only need to prove the first claim because the second claim follows Theorem 1 and the first claim. To prove the first claim, it suffices to show $h_2(\underline{x}, \theta_0) \leq \alpha$ for any $\theta_0 \notin C_0(\underline{x})$. Let $Cover_{C_0}(\theta, \underline{\eta})$ be the coverage probability function of $C_0(\underline{X})$. So, $\inf_H Cover_{C_0}(\theta, \eta) \geq 1 - \alpha$.

First, consider the case of $\theta_0 < L_0(\underline{x})$. For $H_0: \theta = \theta_0$,

$$h_{2}(\underline{x},\theta_{0}) \stackrel{\theta_{0} < L_{0}(\underline{x})}{\leq} \sup_{H_{0}} P\{T_{2}(\underline{X},\theta_{0}) < 0\} \stackrel{(b)}{=} \sup_{H_{0}} [1 - P\{\theta_{0} \in C_{0}(\underline{X})\}]$$
$$\leq 1 - \inf_{H} Cover_{C_{0}}(\theta,\underline{\eta}) \leq \alpha.$$

Second, $h_2(\underline{x}, \theta_0) \leq \alpha$ similarly when $\theta_0 > U_0(\underline{x})$. Hence, $C_0^M(\underline{x}) \subset C_0(\underline{x})$.

When $T_2 = T_2^I$, $h_2(\underline{x}, \theta_0) = 1$ for any $\theta_0 \in C_0(\underline{x})$. Thus, $C_0^M(\underline{x}) = \{\theta_0 : h_2(\underline{x}, \theta_0) > \alpha\} \supset C_0(\underline{x})$.

Proof of Theorem 3. We only prove part ii) as the other claims are straightforward. Let $Cover_C(\theta, \underline{\eta})$ be the coverage probability function for an interval $C(\underline{X})$. Note that the indicator functions satisfy

$$I_{C_0^{M\infty}(\underline{x})}(\theta) = \lim_{k \to +\infty} I_{C_0^{Mk}(\underline{x})}(\theta), \ \forall \underline{x}$$

because $C_0^{Mk}(\underline{x})$ is nonincreasing and note that $Cover_{C_0^{Mk}}(\theta, \underline{\eta}) \geq 1 - \alpha$ for any $(\theta, \underline{\eta})$ because each interval $C_0^{Mk}(\underline{X})$ is of level $1 - \alpha$. Then, following the Dominated Convergence Theorem

$$Cover_{C_0^{M\infty}}(\theta,\underline{\eta}) = \lim_{k \to +\infty} E_{(\theta,\underline{\eta})}[I_{C_0^{Mk}(\underline{x})}(\theta)] = \lim_{k \to +\infty} Cover_{C_0^{Mk}}(\theta,\underline{\eta}) \ge 1 - \alpha.$$

Proof of Theorem 4. It suffices to prove the case of k = 0. i.e., if $C_0(\underline{x}) = C_0^M(\underline{x})$, then $C_0^M(\underline{x}) = C_0^{M2}(\underline{x})$. Denote $C_0(\underline{x}) = [L_0(\underline{x}), U_0(\underline{x})]$ and $C_0^M(\underline{x}) = [L_0^M(\underline{x}), U_0^M(\underline{x})]$. By definition, $T_2^M(\underline{x}, \theta_0) = T_2(\underline{x}, \theta_0)$. Also, $T_2^M(\underline{y}, \theta_0) \leq T_2(\underline{y}, \theta_0)$ for any \underline{y} due to $C_0^M(\underline{X}) \subset C_0(\underline{X})$ and Condition (c). Then,

$$h_2^M(\underline{x},\theta_0) = \sup_{H_0} P\{\underline{y}: T_2^M(\underline{y},\theta_0) \le T_2^M(\underline{x},\theta_0)\}$$
$$\geq \sup_{H_0} P\{\underline{y}: T_2(\underline{y},\theta_0) \le T_2^M(\underline{x},\theta_0)\} = h_2(\underline{x},\theta_0).$$

So, $C_0^M(\underline{x}) = \overline{\{\theta_0 : h_2(\underline{x}, \theta_0) > \alpha\}} \subset \overline{\{\theta_0 : h_2^M(\underline{x}, \theta_0) > \alpha\}} = C_0^{M2}(\underline{x}) \text{ and } C_0^M(\underline{x}) = C_0^{M2}(\underline{x}).$

Proof of Theorem 5. We only prove the case of $T_2 = T_2^D$. The proof for $T_2 = T_2^R$ is similar. Suppose the claim of theorem is not true. There exists a $1 - \alpha$ exact interval $C_1(\underline{X}) = [L_1(\underline{X}), U_1(\underline{X})]$ and a sample point \underline{x}_0 so that $C_1(\underline{x}_0) \subsetneq C_0^{M\infty}(\underline{x}_0)$ and $C_1(\underline{x}) = C_0^{M\infty}(\underline{x})$ if $\underline{x} \neq \underline{x}_0$. Without loss of generality, assume $L_0^{M\infty}(\underline{x}_0) < L_1(\underline{x}_0)$ and $U_0^{M\infty}(\underline{x}_0) = U_1(\underline{x}_0)$.

Since $L_0^{M\infty}(\underline{X})$ is a one-to-one function and assumes finite many values, we choose $L_1(\underline{x}_0)$ close to $L_0^{M\infty}(\underline{x}_0)$ so that none of the $L_0^{M\infty}(\underline{x})$'s belongs to interval $(L_0^{M\infty}(\underline{x}_0), L_1(\underline{x}_0))$. Denote $\epsilon = L_1(\underline{x}_0) - L_0^{M\infty}(\underline{x}_0)$, which can be any small positive number. Pick $\theta_0^* = L_1(\underline{x}_0) - \epsilon/m \in (L_0^{M\infty}(\underline{x}_0), L_1(\underline{x}_0))$ for a large positive integer m. Define $T_0(\underline{x}, \theta_0) = T_2^D(L_0^{M\infty}(\underline{x}), U_0^{M\infty}(\underline{x}), \theta_0)$ and $T_1(\underline{x}, \theta_0) =$

 $T_2^D(L_1(\underline{x}), U_1(\underline{x}), \theta_0)$. Then,

 $T_0(\underline{x},\theta_0) = T_1(\underline{x},\theta_0) \quad \forall \underline{x} \neq \underline{x}_0; \quad T_1(\underline{x}_0,\theta_0^*) < 0 < T_0(\underline{x}_0,\theta_0^*).$ (A.2)

Let $K_j(\underline{x}_0, \theta_0^*) = \{\underline{y} : T_j(\underline{y}, \theta_0^*) \le T_j(\underline{x}_0, \theta_0^*)\}$ for j = 0, 1. Claim

$$K_0(\underline{x}_0, \theta_0^*) = K_1(\underline{x}_0, \theta_0^*).$$
(A.3)

Suppose the claim (A.3) is true. Let h_0 and h_1 be the h-functions for T_0 and T_1 , respectively. Then,

$$h_0(\underline{x}_0, \theta_0^*) = \sup_{(\theta_0^*, \underline{\eta})} P\{K_0(\underline{x}_0, \theta_0^*)\} \stackrel{(A.3)}{=} \sup_{(\theta_0^*, \underline{\eta})} P\{K_1(\underline{x}_0, \theta_0^*)\} = h_1(\underline{x}_0, \theta_0^*).$$

Since $\theta_0^* \in C_0^{M\infty}(\underline{x}_0) = (C_0^{M\infty})^M(\underline{x}_0), h_0(\underline{x}_0, \theta_0^*) > \alpha$. On the other hand, since $\theta_0^* \notin C_1(\underline{x}_0)$ and $C_1^M(\underline{x}_0) \subset C_1(\underline{x}_0), \theta_0^* \notin C_1^M(\underline{x}_0)$, which implies $h_1(\underline{x}_0, \theta_0^*) \leq \alpha$. Therefore, $h_0(\underline{x}_0, \theta_0^*) \neq h_1(\underline{x}_0, \theta_0^*)$, a contradiction. Therefore, the claim of the theorem is true.

Now we prove the claim (A.3).

Case i). Suppose $U_0^{M\infty}(\underline{x}) \neq L_0^{M\infty}(\underline{x}_0)$ for any \underline{x} . Thus,

$$K_{0}(\underline{x}_{0},\theta_{0}^{*}) \stackrel{(A.2)}{=} \{ \underline{y} : \underline{y} \neq \underline{x}_{0}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{0}(\underline{x}_{0},\theta_{0}^{*}) \} \cup \{ \underline{y} : \underline{y} = \underline{x}_{0} \}$$

$$= \{ \underline{y} : \underline{y} \neq \underline{x}_{0}, T_{1}(\underline{y},\theta_{0}^{*}) \leq \theta_{0}^{*} - L_{0}^{M\infty}(\underline{x}_{0}) \} \cup \{ \underline{y} : \underline{y} = \underline{x}_{0} \}$$

$$= \{ \underline{y} : \underline{y} \neq \underline{x}_{0}, T_{1}(\underline{y},\theta_{0}^{*}) \leq \theta_{0}^{*} - L_{1}(\underline{x}_{0}) \}$$

$$\cup \{ \underline{y} : \underline{y} \neq \underline{x}_{0}, \theta_{0}^{*} - L_{1}(\underline{x}_{0}) < T_{1}(\underline{y},\theta_{0}^{*}) \leq \theta_{0}^{*} - L_{0}^{M\infty}(\underline{x}_{0}) \} \cup \{ \underline{y} : \underline{y} = \underline{x}_{0} \}$$

$$= \{ \underline{y} : \underline{y} \neq \underline{x}_{0}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{1}(\underline{x}_{0},\theta_{0}^{*}) \} \cup \emptyset \cup \{ \underline{y} : \underline{y} = \underline{x}_{0} \} = K_{1}(\underline{x}_{0},\theta_{0}^{*}).$$

Case ii). Suppose $U_0^{M\infty}(\underline{x}^*) = L_0^{M\infty}(\underline{x}_0)$ for some $\underline{x}^*(\neq \underline{x}_0)$. Such x^* must be unique.

$$\begin{split} &K_{0}(\underline{x}_{0},\theta_{0}^{*}) = \{\underline{y}:T_{0}(\underline{y},\theta_{0}^{*}) \leq T_{0}(\underline{x}_{0},\theta_{0}^{*})\} \\ &= \{\underline{y}:\underline{y} \neq \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{1}(\underline{x}_{0},\theta_{0}^{*})\} \cup \{\underline{y}:\underline{y} = \underline{x}^{*}, T_{0}(\underline{y},\theta_{0}^{*}) \leq T_{0}(\underline{x}_{0},\theta_{0}^{*})\} \\ &= \{\underline{y}:\underline{y} \neq \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{1}(\underline{x}_{0},\theta_{0}^{*})\} \cup \{\underline{y}:\underline{y} = \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq \theta_{0}^{*} - L_{0}^{M\infty}(\underline{x}_{0})\} \\ &= \{\underline{y}:\underline{y} \neq \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{1}(\underline{x}_{0},\theta_{0}^{*})\} \cup \{\underline{y}:\underline{y} = \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq \theta_{0}^{*} - L_{1}^{M\infty}(\underline{x}_{0})\} \\ &= \{\underline{y}:\underline{y} \neq \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{1}(\underline{x}_{0},\theta_{0}^{*})\} \cup \{\underline{y}:\underline{y} = \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq \theta_{0}^{*} - L_{1}^{M\infty}(\underline{x}_{0})\} \\ &= \{\underline{y}:\underline{y} \neq \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{1}(\underline{x}_{0},\theta_{0}^{*})\} \cup \{\underline{y}:\underline{y} = \underline{x}^{*}, T_{1}(\underline{y},\theta_{0}^{*}) \leq T_{1}(\underline{x}_{0},\theta_{0}^{*})\} \\ &= K_{1}(\underline{x}_{0},\theta_{0}^{*}). \end{split}$$

The proof is complete.

2760

Proof of Proposition 1. Note (3.2), $D(-d_0) = 1 - D(d_0)$ and $p_B(x, n, p) = p_B(n - x, n, 1 - p)$. Then,

$$\begin{split} h_d(n_1 - x, n_2 - y, -d_0) &= \sup_{p_2 \in D(-d_0)} \sum_{\{(u,v) \in S_d: T_d(u,v, -d_0) \le T_d(x,y,d_0)\}} p_B(n_1 - u, n_1, 1 - p_2 + d_0) \\ &\times p_B(n_2 - v, n_2, 1 - p_2) \\ &= \sup_{p'_2 \in D(d_0)} \sum_{\{(u',v') \in S_d: T_d(u',v',d_0) \le T_d(x,y,d_0)\}} p_B(u', n_1, p'_2 + d_0) p_B(v', n_2, p'_2) \\ &= h(x, y, d_0). \end{split}$$

Therefore, $h_d(x, y, U(x, y)) = h_d(n_1 - x, n_2 - y, -U(x, y))$, establishing (3.5).

Proof of Theorem 6. Part i) is similar to the proof of Theorem 1. Part iii) is similar to the proof of Theorem 4 in Wang (2010) and is skipped. Part ii) follows part iii).

References

Agresti, A. (2013). Categorical Data Analysis. 3rd Edition. John Wiley & Sons.

- Agresti, A. and Min, Y. (2001). On small-sample confidence intervals for parameters in discrete distributions. *Biometrics* 57, 963–971.
- Bentur, L., Lapidot, M., Livnat, G., Hakim, F., Lidroneta-Katz, C., Porat, I. et al. (2009). Airway reactivity in children before and after stem cell transplantation. *Pediatric Pulmonology* 44, 845–850.
- Blaker, H. (2000). Confidence curves and improved exact confidence intervals for discrete distributions. Canadian Journal of Statistics 28, 783–798.
- Bonett, D. G. and Price, R. M. (2012). Adjusted Wald confidence interval for a difference of binomial proportions based on paired data. *Journal of Educational and Behavioral Statistics* 37, 479–488.
- Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science 16, 101–133.
- Buehler, R. J. (1957). Confidence intervals for the product of two binomial parameters. Journal of the American Statistical Association 52, 482–493.
- Casella, G. (1986). Refining binomial confidence intervals. Canadian Journal of Statistics 14, 113–129.
- Casella, G. and Berger, R. L. (2002), Statistical Inference. 2nd Edition. Duxbury Press, Pacific Grove.
- Casella, G. and Robert, C. (1989). Refining Poisson confidence intervals. Canadian Journal of Statistics 17, 45–57.
- Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits in the case of the binomial. *Biometrika* 26, 404–413.
- Essenberg, J. M. (1952). Cigarette smoke and the incidence of primary neoplasm of the lung in albino mice. *Science* **116**, 561–562.

- Fagerland, M. W., Lydersenb, S. and Laakec, P. (2013). Recommended tests and confidence intervals for paired binomial proportions. *Statistics in Medicine* 33, 2850–2875.
- Fagerland, M. W., Lydersenb, S. and Laakec, P. (2015). Recommended confidence intervals for two independent binomial proportions. *Statistical Methods in Medical Research* 24, 224– 254.
- Fay, M. P. (2010). Two-sided exact tests and matching confidence intervals for discrete data. *The R Journal* 2, 53–58.
- Janssen Biotech, Inc. (2021). Janssen Ad26.COV2.S vaccine for the prevention of Covid-19. Vaccines and Related Biological Products Advisory Committee Meeting.
- Huwang, L. (1995). A note on the accuracy of an approximate interval for the binomial parameter. *Statistics and Probabilit Letters* **24**, 177–180.
- Koopman, P. A. R. (1984). Confidence intervals for the ratio of two binomial proportions. Biometrics, 40, 513–517.
- Shan, G. and Wang, W. (2013). ExactCIdiff: An R package for computing exact confidence intervals for the difference of two proportions. *The R Journal* 5, 62–70.
- Tango, T. (1998). Equivalence test and confidence interval for the difference in proportions for the paired-sample design. *Statistics in Medicine* 17, 891–908.
- Wang, H. (2007). Exact confidence coefficients of confidence intervals for a binomial proportion. Statistica Sinica 17, 361–368.
- Wang, W. (2010). On construction of the smallest one-sided confidence interval for the difference of two proportions. The Annals of Statistics 38, 1227–1243.
- Wang, W. (2012). An inductive order construction for the difference of two dependent proportions. Statistics and Probability Letters 82, 1623–1628.
- Wang, W. (2014). An iterative construction of confidence interval for a proportion. Statistica Sinica 24, 1389–1410.
- Wilson, E. B. (1927). Probable inference, the law of succession and statistical inference. *Journal* of the American Statistical Association **22**, 209–212.

Weizhen Wang

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China. E-mail: weizhen.wang@wright.edu

(Received September 2021; accepted April 2022)