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Abstract: For a given confidence interval, the central value is more likely to be equal

to the parameter than a boundary value is. However, when considering two null

hypotheses with hypothesized values that are equal to these two values, neither of

the hypotheses should be rejected, because both values are inside the interval. Here,

we propose a method called the h-function method that can be used to identify any

two values in an interval. The proposed method improves confidence intervals by

modifying an approximate interval, including a point estimator, to be exact, and by

refining an exact interval to be a subset of the previous interval. We demonstrate

the proposed method by applying it to three data sets. Simulation results are given

in the Supplementary Material.
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1. Introduction

Many 1−α confidence intervals are approximate, and their confidence coeffi-

cients may be much smaller than the nominal level 1−α. This results in unreliable

inferences, as shown in the well-known Wald interval for a proportion (Brown,

Cai and DasGupta (2001)). Is there a way of improving on such intervals for

reliable inferences? Furthermore, when the underlying distributions are discrete,

an exact two-sided interval is often conservative, especially when it is equal to the

intersection of two one-sided 1−α/2 intervals (Agresti (2013)). Is there a way of

making an exact interval uniformly shorter, without lowering 1 − α? These two

general questions are important in many fields, including clinical trials, and are

the motivation for this study.

There is a one-to-one mapping between a family of tests and a confidence set.

Let Θ be the range of a parameter of interest θ, and let S be a sample space. For

each θ0 ∈ Θ, let A(θ0) be the acceptance region of a level-α test of H0 : θ = θ0.
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Then,

C(x) = {θ0 ∈ Θ : x ∈ A(θ0)} (1.1)

is a 1 − α confidence set for θ. Conversely, let C(x) be a 1 − α confidence set.

Then,

A(θ0) = {x ∈ S : θ0 ∈ C(x)} (1.2)

is the acceptance region of level-α forH0. A confidence set (or interval) is typically

derived from the tests, but solving C(x) from A(θ0), as in (1.1), is complicated.

A minor goal of this study is to simplify this process.

A key feature of a confidence interval is that its confidence coefficient, defined

as the infimum coverage probability over the entire parameter space (Casella and

Berger (2002)) should be no smaller than the nominal level 1 − α. To avoid

ambiguity in discussion, a 1 − α exact confidence interval means that it has a

confidence coefficient of at least 1− α, that is, the 1− α interval of Casella and

Berger (2002). In contrast, a 1−α (approximate) confidence interval means that

the nominal level is set to 1−α, but its confidence coefficient can be any number

in [0, 1].

Ideally, a 1 − α approximate interval will have a confidence coefficient close

to 1 − α, which may not happen in practice, even for a large sample size. For

example, let X ∼ Bino(n, p) be a binomial with n trials and a success probability

p. Here, the well-known Wald internal for p,

p̂± 1.96

√
p̂(1− p̂)

n
for p̂ =

X

n
, (1.3)

is used as a 95% interval. However, it is a zero exact interval, because it has

a zero confidence coefficient. In fact, a 1 − α Wald interval always has a zero

confidence coefficient for any sample size n and any α in [0, 1] (Brown, Cai and

DasGupta (2001); Agresti (2013)). In addition, a point estimator, if used as a

confidence interval, has a zero confidence coefficient, but can be modified to be an

exact interval, as shown later. Therefore, it is safe to assume that the confidence

coefficient of a 1− α approximate interval has a range of [0,1].

The requirement that a confidence coefficient be no smaller than 1−α is often

violated by an approximate interval. Thus, a major concern is whether inferential

conclusions are reliable, because its confidence coefficient is seldom reported, but

can be much smaller than 1 − α. For instance, Huwang (1995) proved this for

the Wilson interval (Wilson (1927)) for large samples. On the other hand, an

approximate interval is easy to access. It is of great interest to build an exact

interval based on a given approximate interval. This is the first major goal of
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this study. To the best of our knowledge, limited research has been done on this

problem.

One common way of obtaining a 1−α exact two-sided interval is to take the

intersection of two exact one-sided 1−α/2 intervals, for example, the conservative

Clopper–Pearson interval (Clopper and Pearson (1934)). It is also of great interest

to shrink a given 1−α exact interval to an optimal one, which is the second major

goal of this study. This can be easily applied to contingency tables, including,

but not limited to, the establishment of a new treatment. Casella (1986), Wang

(2014), and Casella and Robert (1989) refined exact intervals for a proportion or

a Poisson mean. However, their methods are valid only for a single-parameter

distribution family.

We address the above three problems by proposing an h-function related

to the p-value for test construction that is also a function over the parameter of

interest for interval construction. This idea was used by Blaker (2000) and Agresti

and Min (2001) to derive exact intervals in some special cases. Here, we use it

for the first time to modify and/or refine any interval (including the intervals of

Blaker (2000) and Agresti and Min (2001), thus solving the challenging problem

of improving any interval when nuisance parameters exist and the sample space

is discrete. The main idea is to identify any two values outside (or inside) the

interval using the function T2 in (2.4). More precisely, for an approximate interval,

those parameter values that are outside, but close to the interval are likely added

to the interval. However, the boundary values for an exact, but conservative

interval are removed. As a result, the interval becomes either exact or shorter.

The following example helps to understand the two major goals.

Example 1. Consider the two-arm randomized trial in Essenberg (1952) that

tests the effect of tobacco smoking on tumor development in mice. In the smoking

group, tumors were observed on 21(= x) mice out of 23(= n1) mice; in the control

group (y, n2) = (19, 32). Here, X and Y are two independent binomials with two

tumor rates p1 and p2, respectively. The difference, d = p1−p2, is used to evaluate

the smoking effect. As shown in Table 4, d is estimated by the 95% Wald-type

interval, maximum likelihood estimator, exact score-test interval (Agresti and

Min (2001)), or exact two-one-sided interval (Wang (2010)). Both approximate

intervals have a zero confidence coefficient. Is there a way of improving them to

have a confidence coefficient of at least 0.95? For the two exact intervals, how

do we make them shorter, while maintaining the confidence coefficient of at least

0.95?
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The remainder of this paper is organized as follows. In Section 2, we formally

introduce the h-function method for constructing 1−α exact optimal confidence

intervals. In Section 3, we discuss three applications of the proposed method.

Section 4 modifies any one-sided interval to the smallest interval. Section 5

concludes the paper. All proofs are relegated to the Appendix.

2. A Theory for Deriving Optimal Two-Sided Intervals

Suppose X is observed from a distribution with a joint cumulative distri-

bution function F(θ,η)(x), specified by a parameter vector (θ, η) in a parameter

space H. Here, θ is the parameter of interest, and η is the nuisance parameter

vector. The null hypothesis H0 is θ = θ0, θ ≤ θ0, or θ ≥ θ0, for a fixed value

θ0, corresponding to two-sided, lower one-sided, and upper one-sided intervals,

respectively. Next, we introduce the h-function method and use it to construct

optimal exact intervals.

2.1. The h-function method

A p-value p(X) is valid for H0 if, for every 0 ≤ α ≤ 1, supθ∈H0
P(θ,η)(p(X) ≤

α) ≤ α (Casella and Berger (2002)). For simplicity, we drop the subscript (θ, η).

The p-value at x can be defined by a given test statistic T (X) using p(x) =

supθ∈H0
P (T (X) ≤ T (x)) if a small value of T (X) supports HA. An example of

T (X) is the likelihood ratio test statistic. The p-value p(X) depends on both X

and θ0, and so is rewritten as

h(X, θ0) = p(X). (2.1)

The left-hand side is called the h-function, and is a function of both X and

θ0; in contrast, p(X) is a function of X only. Using h(X, θ0), the exact level-α

acceptance region for H0 and the 1− α exact confidence set for θ are given by

A(θ0) = {x : h(x, θ0) > α} and C(x) = {θ0 : h(x, θ0) > α}, (2.2)

respectively. Both are obtained by solving the same inequality, h(x, θ0) > α, but

in terms of two different arguments, x and θ0. Hence, the constructions of the

test and the confidence set are unified. They are simpler than the approaches in

(1.1) or (1.2) because of the intermediary h-function in (2.1). We call this the

h-function method. Blaker (2000) used a special h-function to derive confidence

intervals in some discrete distributions of one parameter. This method is now

applied to improve any given interval in a general case with nuisance parameters.



ON CONSTRUCTION OF EXACT INTERVALS 2743

The set C(x) may not be an interval. Let A denote the smallest simply

connected set containing the set A. Thus, C(x) is always an interval, and its

infimum coverage probability over H is not smaller than 1 − α. Casella and

Berger (2002, p.431) provide an example that shows the difference between C(x)

and C(x). Throughout this paper, we use C(X) to denote C(X) and ICP (C) to

denote the confidence coefficient of C(X).

In general, a test statistic may also depend on θ0, and thus have the form

T (X, θ0). Let K(x, θ0) = {y : T (y, θ0) ≤ T (x, θ0)}. Then,

h(x, θ0) = sup
(θ,η)∈H0

P (K(x, θ0)) =


sup

(θ,η)∈H0

∑
y∈K(x,θ0)

f(θ,η)(y)

sup
(θ,η)∈H0

∫
K(x,θ0)

f(θ,η)(y)dy,

(2.3)

where f(θ,η) is either the joint probability mass function or the probability density

function of X, and the probability P (K(x, θ0)) is a function of the nuisance

parameter vector η.

2.2. Modifying a given two-sided confidence interval

For convenience, consider the closed interval C0(X) = [L0(X), U0(X)] for

θ, which we improve using the h-function method. Consider the hypotheses

H0 : θ = θ0 vs. HA : θ 6= θ0 for a given θ0. We introduce a test statistic

T2(X, θ0) = T (L0(X), U0(X), θ0), (2.4)

for some function T (l, u, θ0), where the subscript 2 means “two-sided”. They may

satisfy some or all of the following three conditions:

(a) a small value of T2(X, θ0) is in favor of HA;

(b) T (l, u, θ0) ≥ 0 if and only if θ0 ∈ [l, u];

(c) for fixed l1 ≤ l2 ≤ u2 ≤ u1, T (l2, u2, θ0) ≤ T (l1, u1, θ0), for any θ0.

Here are three choices of T2 that satisfy the three conditions. The first TD2 (X, θ0)

uses T (l, u, θ0) = min{θ0 − l, u− θ0}. When the range of θ is nonnegative, define

0/0 = 1. The second TR2 (X, θ0) has T (l, u, θ0) = min{θ0/l, u/θ0} − 1. The

third T I2 (X, θ0) has T (l, u, θ0) = I[l,u](θ0)−1, using the indicator function for the

interval [l, u].
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The h-function based on T2(x, θ0) is

h2(x, θ0) = sup
H0

P (T2(X, θ0) ≤ T2(x, θ0)). (2.5)

Following (2.2), the level-α acceptance region and 1−α exact confidence interval

are

A2(θ0) = {x : h2(x, θ0) > α} and CM0 (x) = {θ0 : h2(x, θ0) > α}, (2.6)

respectively. In the rest of the paper, let A denote the smallest closed simply

connected set that contains the set A. The superscript “M” refers to a modifi-

cation. For a nonnegative integer k, CMk
0 (x) is the resultant interval when the

modification process of (2.4), (2.5), and (2.6) is applied to C0(X) k consecutive

times. For example, C
M(k+1)
0 (x) = (CMk

0 )M (x), for any k ≥ 0. The following

theorems discuss the properties of CM0 (X) and its variant. First, what is the

confidence coefficient of CM0 (X)?

Theorem 1. Suppose T2 in (2.4) satisfies Condition (a). For a given interval

C0(X),

(i) the h-function h2(X, θ0) in (2.5) is a valid p-value for the test statistic

T2(X, θ0);

(ii) the interval CM0 (X) given in (2.6) is a 1−α exact interval, that is, ICP (CM0 )

≥ 1− α.

The theorem modifies the interval C0(X) of any level, including a point

estimator, to be an exact interval CM0 (X). Furthermore, unlike rejecting or

accepting H0 by checking whether CM0 (X) includes θ0, a p-value can be calculated

using h2(x, θ0), which is a new usage of a confidence interval.

2.3. Refining a 1 − α exact two-sided confidence interval

When C0(X) is exact, the modified interval CM0 (X) is also exact, from The-

orem 1. However, what is the relationship between C0(X) and CM0 (X)?

Theorem 2. Suppose T2 in (2.4) satisfies Conditions (a) and (b).

(i) If C0(X) is a 1 − α exact interval, then CM0 (x) is a subset of C0(X). In

particular, if T2 = T I2 , then CM0 (X) = C0(X); that is, one should not use

T I2 to improve an exact interval.

(ii) For any interval C0(X), CM2
0 (X) is a subset of CM0 (X).
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For a fixed θ0, the p-value h(X, θ0) identifies two sample points x1 and x2
related to H0 : θ = θ0. If h(x1, θ0) > h(x2, θ0) > α, then both sample points

fail to reject H0, but x1 is more supportive of H0 because it has a larger p-value.

However, when using an acceptance region of level α, both points belong to the

region, and we cannot tell which point supports H0 more. The h-function in (2.5)

plays a similar role of identifying two parameter values θ1 and θ2 using the test

statistic T2 in (2.4). For an observed x, traditionally, one tests H0 : θ = θ1 (or

θ2) by checking whether θ1 (or θ2) belongs to C0(x). If both belong to C0(x), we

fail to reject θ = θ1 and θ = θ2, but cannot tell which statement is more likely

to be true. We now quantify this by introducing T2(x, θ0) as a function of θ0.

That is, θ = θ1 is more likely if T2(x, θ1) > T2(x, θ2). Thus, we should use TD2 or

TR2 but not T I2 (which is a constant over C0(x)) to shrink an exact interval, as in

Theorem 2.

The modification process can be applied to an exact interval multiple times,

generating a subset interval each time. What is the smallest interval from this

process?

Theorem 3. Suppose T2 in (2.4) satisfies Conditions (a) and (b). For an exact

interval C0(X) and a sample point x, let CM∞0 (x) = ∩+∞k=0C
Mk
0 (x). Then,

(i) the interval CMk
0 (x), as a set of θ, is nonincreasing in k, for k ≥ 0;

(ii) CM∞0 (X), contained in CMk
0 (X), for any k, is a 1− α exact interval;

(iii) if CMk
0 (X) = C

M(k+1)
0 (X), for some k ≥ 0, then CM∞0 (X) = CMk

0 (X).

One concern when deriving CM∞0 (X) = CMk
0 (X) is a possibly large k. In

Theorem 3, the constant k = kX is independent of the sample points. Next,

we state that this k depends on the sample point x, that is, k = k(x) and

kX = sup{all x} k(x). This makes the computation of CM∞0 (X) at X = x simpler,

because k(x) ≤ kX .

Theorem 4. Suppose T2 in (2.4) satisfies Conditions (a), (b), and (c). For an

exact interval C0(X) and a fixed sample point x, if CMk
0 (x) = C

M(k+1)
0 (x), for

some k = k(x) ≥ 0, then C
M(k+2)
0 (x) = C

M(k+1)
0 (x). Therefore, CM∞0 (x) =

CMk
0 (x).

Can CM∞0 (X) be shortened further? A sufficient condition for an admissible

CM∞0 (X) is stated below. A 1−α exact interval C(X) is admissible if any interval

C ′(X), which is a subset of, but not equal to C(X), has a confidence coefficient

strictly less than 1− α.
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Theorem 5. Let X be a random observation on a finite sample space S, and

let T2 in (2.4) be TD2 or TR2 . For an interval C0(X), if the confidence limits

LM∞0 (X) and UM∞0 (X) of the interval CM∞0 (X) are both one-to-one functions,

then CM∞0 (X) is admissible.

When LM∞0 and UM∞0 are not one-to-one functions, Theorem 5 indicates

that an improvement upon CM∞0 may occur only at those x at which LM∞0 or

UM∞0 are tied. The modification process is still helpful for deriving admissible

intervals, as shown in Section 3.2.

3. Applications of Improving a Given Two-Sided Interval

In this section, we focus on the choice of T2 = TD2 . We estimate three

parameters: (i) a proportion p, based on a binomial X ∼ Bino(n, p); (ii) the

difference of two proportions d = p1−p2, based on two independent binomials; and

(iii) the difference of two proportions dm, based on a match-paired multinomial

observation. These parameters are widely used in practice, including clinical

trials, but there is no consensus on which intervals are best.

3.1. Estimating a proportion

Consider an interval Cp(x) = [Lp(x), Up(x)] that satisfies

Up(x) = 1− Lp(n− x), ∀x ∈ [0, n]. (3.1)

We apply the modification process in (2.4), (2.5), and (2.6) repeatedly to each of

six intervals Cpi to generate the modified intervals CMpi and CM∞pi , for i = 1, . . . , 6:

(1) the Wald interval Cp1 (approximate, given in (1.3)); (2) the Wilson interval

(Wilson (1927)) Cp2 (approximate, Agresti (2013, p.14); (3) the maximum likeli-

hood estimator Cp3(X) = X/n (approximate); (4) the Clopper–Pearson interval

(Clopper and Pearson (1934)) Cp4 (exact, Agresti (2013, p.603)); (5) the Blaker

interval (Blaker (2000)) Cp5 (exact, Agresti (2013, p.605))); and (6) the Wang

interval (Wang (2014)) Cp6 (exact).

Intervals Cp1 and Cp2 are derived using the asymptotic normality, and Cp3 is

just a point estimator. Their confidence coefficients are much lower than 1 − α.

Intervals Cp4 and Cp5 are generated using the h-function method (2.2) using

h-function hp4(x, p0) = min{2 min{Pp0(X ≤ x), Pp0(X ≥ x)}, 1} and the test

statistic Tp5(x, p0) = min{Pp0(X ≤ x), Pp0(X ≥ x)}, respectively. Interval Cp6 is

derived from a refining algorithm over Cp4, and is admissible. In fact, Cp5 and

Cp6 are subsets of Cp4.

Table 1 contains these intervals over all sample points, their confidence coef-
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Table 1. The lower confidence limits of (1) the 95% Wald interval Cp1, the modification
CM

p1 , and the 22nd modification CM22
p1 (= CM∞

p1 ); (2) the 95% Wilson interval Cp2, CM
p2 (=

CM∞
p2 ); (3) the sample-proportion estimator Cp3, CM

p3 (= CM∞
p3 ); (4) the Clopper–Pearson

interval Cp4, CM
p4 (= CM∞

p4 ); (5) the Blaker interval Cp5, CM
p5 (= CM∞

p5 ); (6) the Wang

interval Cp6(= CM∞
p6 ); and the infimum coverage probability (ICP) and total interval

length (TIL) for n = 16. The upper limits are given by (3.1).

X 0 1 2 3 4 5 6 7 8 ICP

Cp1 0.0000 -0.0562 -0.0371 -0.0038 0.0378 0.0853 0.1377 0.1944 0.2550 0

CM
p1 0.0000 0.0000 0.0000 0.0000 0.0189 0.0426 0.0688 0.0972 0.1275 0.9500

CM22
p1 0.0000 0.0000 0.0000 0.0000 0.0902 0.1321 0.1708 0.1708 0.1708 0.9500

Cp2 0.0000 0.0111 0.0349 0.0659 0.1018 0.1416 0.1848 0.2309 0.2799 0.8362

CM
p2 0.0000 0.0032 0.0226 0.0531 0.0902 0.1321 0.1777 0.2122 0.2719 0.9500

Cp3 0.0000 0.0625 0.1250 0.1875 0.2500 0.3125 0.3750 0.4375 0.5000 0

CM
p3 0.0000 0.0032 0.0226 0.0531 0.0902 0.1321 0.1777 0.2187 0.2719 0.9500

Cp4 0.0000 0.0015 0.0155 0.0404 0.0726 0.1101 0.1519 0.1975 0.2465 0.9578

CM
p4 0.0000 0.0032 0.0226 0.0531 0.0902 0.1321 0.1777 0.2017 0.2719 0.9500

Cp5 0.0000 0.0032 0.0226 0.0531 0.0902 0.1321 0.1746 0.2011 0.2717 0.9500

CM
p5 0.0000 0.0032 0.0226 0.0531 0.0902 0.1321 0.1777 0.2011 0.2719 0.9500

Cp6 0.0000 0.0032 0.0226 0.0531 0.0902 0.1321 0.1777 0.2059 0.2719 0.9500

X 9 10 11 12 13 14 15 16 TIL

Cp1 0.3194 0.3877 0.4603 0.5378 0.6212 0.7129 0.8188 1.0000 6.0559

CM
p1 0.1597 0.3374 0.4195 0.5000 0.5705 0.6478 0.7326 0.8291 7.8957

CM22
p1 0.1708 0.3521 0.4294 0.5000 0.5705 0.6478 0.7326 0.8291 7.0650

Cp2 0.3317 0.3864 0.4440 0.5050 0.5699 0.6397 0.7167 0.8063 6.0974

CM
p2 0.3075 0.3733 0.4370 0.5000 0.5629 0.6266 0.6924 0.7877 6.4978

Cp3 0.5625 0.6250 0.6875 0.7500 0.8125 0.8750 0.9375 1.0000 0

CM
p3 0.3125 0.3750 0.4375 0.5000 0.5625 0.6250 0.6875 0.7812 6.4978

Cp4 0.2987 0.3543 0.4133 0.4762 0.5435 0.6165 0.6976 0.7940 6.9380

CM
p4 0.3005 0.3689 0.4349 0.5000 0.5650 0.6310 0.6994 0.7982 6.4978

Cp5 0.3004 0.3682 0.4344 0.5000 0.5655 0.6317 0.6995 0.7988 6.5043

CM
p5 0.3004 0.3682 0.4344 0.5000 0.5655 0.6317 0.6995 0.7988 6.4978

Cp6 0.3023 0.3834 0.4415 0.5000 0.5584 0.6165 0.6976 0.7940 6.4978

ficients, and the total interval lengths for n = 16. The confidence coefficients of

the three approximate intervals are equal to 0, 0.8362, and 0, respectively, where

the second value is given by Huwang (1995).

Following Theorem 1, the modified intervals CMpi and CM∞pi are all exact.

For i = 4, 5, 6, CMpi is a subset of Cpi, from Theorem 2. The reduction in the

interval length of CMp4 over that of Cp4 is noticeable, and CMp5 (x) shrinks Cp5(x)
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at x = 6, 8, 10. Lastly, there is no improvement over Cp6, because it is proved to

be admissible for any n and α in Wang (2014). In this sense, Cp6 is the best of

these exact intervals.

We also report CMS
pi , the simulated version of CMpi , for i = 1, . . . , 6, in the

Supplementary Material to confirm our theoretical results, including Theorems 1

and 2. As expected, CMS
pi ≈ CMpi , for all i.

The final refined intervals CM∞pi , except CM∞p1 , are all admissible, following

Theorem 5, because their confidence limits have no ties, and CM∞pi = CMk
pi for a

small k (=1 or 0). For a given k ≥ 1, the ratio of the total interval lengths of

CMk+1
pi and CMk

pi is not larger than one. If it is equal to one, then CM∞pi = CMk
pi ,

by Theorem 3. The ratio is accurate up to the seventh decimal place. The

five admissible intervals are different, but have the same total interval length

of 6.4978. Four of them are generated using the proposed modification process.

These results suggest that the best interval for p may not exist. Note that a

point estimator for p can be modified to be an admissible interval without using

its standard error.

Table 2 reports the confidence coefficients and total interval lengths for the

intervals in Table 1 for two other values of n. The two quantities measure the

reliability and the precision of the interval, respectively. Among a group of 1−α
exact intervals, the one with the smallest total interval length is preferred. This

criterion is also applied in Tables 3 and 5. Here, the confidence coefficients of the

exact intervals should not be smaller than 0.95. To confirm these numerically,

the confidence coefficient of an interval C(X) for p with a nondecreasing lower

confidence limit L(X) is achieved at one of the values L(x)−, for x = 1, . . . , n,

where a− denotes the left limit of y when y approaches a; see Wang (2007). The

confirmation is necessary to prevent potential errors in the numerical calculation.

The modification process generates admissible intervals CM∞pi , for i = 2, . . . , 6,

following Theorem 5. Intervals CM∞p4 , CM∞p5 , and Cp6 have the smallest total

interval length for each n, and the last one, already admissible, does not need to

be modified. Thus, we recommend Cp6 for practice.

3.2. Intervals for the difference between two independent proportions

The difference d = p1 − p2 is often used to compare of two proportions

based on two independent binomials, X ∼ Bino(n1, p1) and Y ∼ Bino(n2, p2).

Consider H0 : d = d0 vs. HA : d 6= d0, for a fixed d0 ∈ [−1, 1]. Under H0,

p1 = d0 + p2, for p2 ∈ D(d0), where D(d0) = [0, 1 − d0] if d0 ∈ [0, 1], and
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Table 2. The infimum coverage probability (ICP) and total interval length (TIL) for
confidence intervals for p: Cpi, C

M
pi , and CM∞

pi (= CMk
pi ), for i = 1 (Wald), 2 (Wilson), 3

(the sample proportion), 4 (Clopper–Pearson), 5 (Blaker), and 6 (Wang), when 1− α =
0.95 and n varies. The smallest TIL for each n is marked by * and an admissible interval
is marked by †.

n Cp ICP TIL CM
p ICP TIL CM∞

p ICP TIL

30 Cp1 0 8.3772 CM
p1 0.9500 10.0999 CM21

p1 0.9500 9.4420

Cp2 0.8371 8.3933 CM
p2 0.9500 8.7975 †CM13

p2 0.9500 8.7960

Cp3 0 0 CM
p3 0.9500 8.8279 †CM8

p3 0.9500 8.8278

Cp4 0.9505 9.2705 CM
p1 0.9500 8.7784 †CM16

p4 0.9500 8.7726*

Cp5 0.9500 8.7814 CM
p5 0.9500 8.7770 †CM16

p5 0.9500 8.7726*
†Cp6 0.9500 8.7726* CM

p6 = Cp6 CM∞
p6 = Cp6

100 Cp1 0 15.3772 CM
p1 0.9500 16.7763 CM20

p1 0.9500 16.4196

Cp2 0.8379 15.3803 CM
p2 0.9500 15.8488 †CM13

p2 0.9500 15.8465

Cp3 0 0 CM
p3 0.9500 15.8648 †CM12

p3 0.9500 15.8637

Cp4 0.9503 16.3057 CM
p1 0.9500 15.8214 †CM15

p4 0.9500 15.8146*

Cp5 0.9500 15.8243 CM
p2 0.9500 15.8176 †CM14

p5 0.9500 15.8146*
†Cp6 0.9500 15.8146* CM

p6 = Cp6 CM∞
p6 = Cp6

D(d0) = [−d0, 1] if d0 ∈ [−1, 0). Suppose Td(x, y, d0) is a test statistic satisfying

Td(x, y, d0) = Td(n1 − x, n2 − y,−d0), ∀ (x, y) ∈ Sd = [0, n1]× [0, n2], (3.2)

and a small value of Td(x, y, d0) supports HA. Its h-function is

hd(x, y, d0) = sup
p2∈D(d0)

∑
{(u,v)∈Sd:Td(u,v,d0)≤Td(x,y,d0)}

pB(u, n1, p2 + d0)pB(v, n2, p2),

(3.3)

where pB(x, n, p) is the probability mass function of Bino(n, p). The acceptance

region of level-α for H0 and the 1− α exact confidence interval for d are

Ad(d0) = {(x, y) : hd(x, y, d0) > α} and Cd(x, y) = {d0 : hd(x, y, d0) > α},
(3.4)

respectively. The following proposition simplifies the interval calculation by half.

Proposition 1. For a test statistic Td satisfying (3.2), we have

Ud(x, y) = −Ld(n1 − x, n2 − y), ∀ (x, y) ∈ Sd. (3.5)

Four exact and approximate intervals Cdi satisfying (3.5) are described below

for i = 1, . . . , 4. For each Cdi(x, y) = [Ldi(x, y), Udi(x, y)], introduce Tdi(x, y, d0) =
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TD2 (Ldi(x, y), Udi(x, y), d0). We apply the modification process of (3.2), (3.3) and

(3.4) to Tdi to produce CMdi and CM∞di . Theorems 1 and 3 ensure that the mod-

ified intervals are exact, and that CM∞di is a subset of CMdi . All intervals satisfy

(3.5).

First, consider the score test statistic

T ∗d1(x, y, d0)=
−|p̂1 − p̂2 − d0|√

p̂1d(x, y, d0)(1− p̂1d(x, y, d0))/n1 + p̂2d(d0)(1− p̂2d(x, y, d0))/n2
,

where p̂1 = x/n1, p̂2 = x/n2, p̂2d(x, y, d0) = argmaxp2∈D(d0) pB(x, n1, p2 +

d0)pB(y, n2, p2), and p̂1d(x, y, d0) = p̂2d(x, y, d0)+d0. When (x, y, d0) = (n1, 0, 1)

or (0, n2,−1), the above ratio is 0/0, and so is defined to be zero. Its h-function

h∗d1 follows (3.3) and generates an exact interval Cd1, which is recommended by

Agresti and Min (2001) and Fay (2010).

Second, following a series of works, originated by Buehler (1957), the smallest

exact one-sided interval is derived under a given order on the sample space. A

1−α exact two-sided interval Cd2 for d is easily obtained by taking the intersection

of the two smallest lower and upper one-sided 1− α/2 intervals in Wang (2010).

However, such intervals may be conservative (Agresti (2013)). When a nuisance

parameter exists, including the current case, it is challenging to improve an exact,

but conservative interval. The main difficulty is that the method of finding a

confidence coefficient in Wang (2007) fails. However, the proposed modification

process provides a promising effort to shrink Cd2.

The following approximate intervals are also considered: the Wald-type in-

terval, and the maximum likelihood estimator p̂1 − p̂2 (used as an interval),

Cd3(X,Y ) =

p̂1 − p̂2 ∓ zα/2
√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2

 ,
Cd4(X,Y ) = [p̂1 − p̂2 ∓ 0],

respectively, where zα/2 is the upper α/2th percentile of the standard normal

distribution. They both have a zero confidence coefficient for any n1, n2, and α,

and Cd4 has a zero total interval length.

Table 3 reports the confidence coefficients and total interval lengths for these

95% intervals for different (n1, n2). Each confidence coefficient is obtained from a

large number of calculations: select 2012 pairs of (p1, p2), where p1 and p2 are both

the multiples of 0.005, and 50,000 pairs of (p1, p2) following a uniform distribution;

compute the coverage probabilities; use the minimum as the confidence coefficient.
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Table 3. The infimum coverage probability (ICP) and total interval length (TIL) for 12
95% intervals Cdi, C

M
di , and CM∞

di (= CMk
di ), for i = 1 (Score, exact), 2 (Wang, exact),

3 (Wald, approximate), 4 (maximum likelihood estimator, approximate), when (n1, n2)
varies. The smallest TIL for the exact intervals is marked by * for each (n1, n2).

(n1, n2) Cdi ICP TIL CM
di ICP TIL CM∞

di ICP TIL

(5,6) Cd1 0.9500 38.7295 CM
d1 0.9500 38.5384 CM17

d1 0.9500 38.4253

Cd2 0.9511 41.7394 CM
d2 0.9500 38.6381 CM19

d2 0.9500 38.3833*

Cd3 0 34.2758 CM
d3 0.9500 52.2953 CM22

d3 0.9500 45.4999

Cd4 0 0 CM
d4 0.9500 39.5540 CM18

d4 0.9500 39.1202

(10,15) Cd1 0.9500 113.3737 CM
d1 0.9500 112.1987 CM18

d1 0.9500 111.5613*

Cd2 0.9515 116.8048 CM
d2 0.9500 112.6569 CM18

d2 0.9500 111.7894

Cd3 0 106.2471 CM
d3 0.9500 148.7108 CM30

d3 0.9500 131.8738

Cd4 0 0 CM
d4 0.9500 120.7789 CM2

d4 0.9500 120.7007

(23,32) Cd1 0.9500 346.4825 CM
d1 0.9500 344.3728 CM20

d1 0.9500 342.6230

Cd2 0.9503 347.4601 CM
d2 0.9500 342.6516 CM17

d2 0.9500 341.4697*

Cd3 0 332.3962 CM
d3 0.9500 399.0738 CM47

d3 0.9500 375.2666

Cd4 0 0 CM
d4 0.9500 372.2596 CM17

d4 0.9500 370.0785

The final refined intervals, CM∞d1 and CM∞d2 , for exact intervals are shorter

than those, CM∞d3 and CM∞d4 , for approximate intervals. Originally from a point

estimator, CM∞d4 is ‘surprisingly’ shorter than CM∞d3 . Although Cd2 is wider than

Cd1, C
M∞
d2 performs better than, or as well as CM∞d1 . These results indicate

that the modification process is effective in generating both accurate and precise

intervals.

To determine whether CMk
di for an integer k is equal to CM∞di , we use the

ratio of the total interval lengths of two consecutive intervals C
M(k+1)
di and CMk

di ,

as in Section 3.1. If it is equal to one, then, by Theorem 3, CM∞di = CMk
di .

However, on a sample point (x, y), k(x, y) in Theorem 4 may be much smaller

than k. For example, when (n1, n2) = (5, 6), CM∞d2 = CM19
d2 for k = 19; however,

CMd2 (0, 5) = CM2
d2 (0, 5) = [−0.9915,−0.2587]. Thus, CM∞d2 (0, 5) = CMd2 (0, 5) for

k(0, 5) = 1, which is much smaller than 19.

Being a conservative interval, Cd2 has a larger confidence coefficient and

total interval length than those of Cd1. However, the modification process makes

CM∞d2 have the smallest total interval length, in general. If an interval has a small

number of ties, then its modified interval tends to be short. This happens on Cd2.

In contrast, Cd4 = p̂1 − p̂2 has many ties. For instance, when (n1, n2) = (10, 15),

Cd4(2i, 3i) = 0, for i = 0, . . . , 5. Then, CM∞d4 (2i, 3i) = [−0.3834, 0.3834]. As a

result, CM∞d4 is much longer than CM∞d2 .
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Table 4. Four 95% confidence intervals and their modifications at (x, y) = (21, 19): (Cdi,
CM

di , CM∞
di ), for i = 1, . . . , 4, and their lengths when (n1, n2) = (23, 32). The smallest

length of the exact intervals is marked by *.

Cdi lower upper length CM
di lower upper length CM∞

di lower upper length

Cd1 0.0794 0.5228 0.4434 CM
d1 0.0794 0.5223 0.4429 CM∞

d1 0.0794 0.5218 0.4424

Cd2 0.0946 0.5126 0.4180 CM
d2 0.0968 0.5081 0.4113 CM∞

d2 0.0968 0.5038 0.4070*

Cd3 0.1138 0.5248 0.4110 CM
d3 0.0569 0.5486 0.4917 CM∞

d3 0.1185 0.5468 0.4283

Cd4 0.3193 0.3193 0 CM
d4 0.0523 0.5442 0.4919 CM∞

d4 0.0529 0.5438 0.4909

The intervals CM∞di in Table 3 are not admissible because of ties in their

confidence limits. However, they can be modified to be admissible by breaking

the ties. When (n1, n2) = (5, 6), the lower limits of CM∞d1 are equal to -0.1942 at

points (3,1) and (5,4). i) Break the ties by lifting the lower limit at one of the two

points, say (3,1), to -0.19419, just a little larger than -0.1942, that is, introduce

an interval Cnew that has the same lower limits as CM∞d1 , except the lower limit

at (3, 1). ii) Compute the confidence coefficient of Cnew. iii) If this confidence

coefficient is less than 0.95, then CM∞d1 cannot be shortened at (3, 1); otherwise,

apply the modification process to Cnew and obtain CM∞new , a subset of CM∞d1 .

Repeat i), ii), and iii) for all other tied points and obtain an admissible interval.

The total interval lengths for the admissible intervals obtained by improving

CM∞d1 and CM∞d2 are 38.4077 and 38.3728, respectively.

Example 2. (Example 1 (continued)). The 12 intervals in Table 3 at (x, y) =

(21, 19) are reported in Table 4. Interval CM∞d2 (x, y) is equal to [0.0968, 0.5038],

and has the shortest length, 0.4070, a confidence coefficient of 0.95, and the

shortest total interval length, 341.4697.

3.3. Intervals for the difference between two dependent proportions

Consider a 2×2 contingency table with two binary variables, A (row) and

B (column), where one is a success and zero is a failure. The random obser-

vation (N11, N10, N01, N00) follows a multinomial distribution with n trials and

probabilities (p11, p10, p01, p00). The parameter of interest here is dm = P (A =

1)−P (B = 1) = p10−p01. Let T = N11+N00 and pt = p11+p00. The conditional

distribution of Nij for a given (N10, T ) does not involve p10 and p01, so inferences

about dm should be based on (N10, T ) if following similar reasoning to that of

the sufficiency principle. The reduced sample and parameter spaces are SM =

{(n10, t) : n10 + t ∈ [0, n]} and HM = {(dm, pt) : dm ∈ [−1, 1], pt ∈ [0, 1− |dm|]},
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respectively. The probability mass function for (N10, T ), in terms of (dm, pt), is

pM (n10, t, dm, pt) =
n!

n10!t!n01!

(
1 + dm − pt

2

)n10

ptt

(
1− dm − pt

2

)t−n10

.

Wang (2012) proposed the smallest 1−α/2 lower and upper one-sided inter-

vals for dm. Then, their intersection, denoted by Cdm1(N10, T ) = [Ldm1(N10, T ),

Udm1(N10, T )], is of level 1− α, and can be computed using the R-package “Ex-

actCIdiff” (Shan and Wang (2013)). To derive CMdm1(n10, t), let Tm1(n10, t, dm) =

TD2 (Ldm1(n10, t), Udm1(n10, t), dm) and

hm1(n10, t, dm)

= sup
pt∈[0,1−|dm|]

∑
{(n′10,t′)∈SM :Tm1(n′10,t

′,dm)≤Tm1(n10,t,dm)}

pM (n10, t, dm, pt). (3.6)

Following Theorem 2, the interval CMdm1(n10, t) = {dm : hm1(n10, t, dm) > α} is

exact and is a subset of Cdm1(n10, t). The upper limit can be computed from the

lower limit using UMdm1(n10, t) = −LMdm1(n01, t). Repeat the modification process

k times so that CM∞dm1 = CMk
dm1.

Fagerland, Lydersenb and Laakec (2013) provide a good summary of the

approximate and exact intervals for dm, and recommend the Tango approximate

score interval Cdm2 (Tango (1998)) and the Wald interval with a Bonett–Price

Laplace adjustment Cdm3 (Bonett and Price (2012)). The modification process

generates improved intervals for Cdm2 and Cdm3. Next, we present a numerical

comparative study for Cdm1, Cdm2, Cdm3, and their modifications.

Example 3. Bentur et al. (2009) measured airway hyper-responsiveness status

(Yes = 1, No = 0) in n(= 21) children before (A) and after (B) stem cell transplan-

tation, and observed (n11, n10, n01, n00) = (1, 1, 7, 12). Thus, (n10, t) = (1, 13).

Then, the maximum likelihood estimate for dm is −0.2857. Table 5 reports nine

95% confidence intervals at (1, 13) for individual performance, and their confi-

dence coefficient and total interval length for overall performance.

As expected, Cdm1 has the largest length and total interval length. However,

the small total interval lengths for Cdm2 and Cdm3 are due to their incorrect

confidence coefficients, 0.8367 and 0.9145, respectively. The modified intervals

all have confidence coefficients no less than 0.95; CM∞dm1 is the shortest at (1,13)

and has a slightly larger total interval length than CM∞dm2 . One reason for the

large total interval length of CM∞dm3 is that Cdm3 has many ties in its confidence

limits, especially when n10 is close to n or zero.

Table 5 also reports the p-values for testing H0 : dm = 0 that are associated
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Table 5. Nine 95% confidence intervals (Cdmi, C
M
dmi, C

M∞
dmi ), for i = 1 (Wang, exact),

2 (Tango, approximate), and 3 (Wald with Bonett–Price Laplace adjustment, approx-
imate), the interval length at (n10, t) = (1, 13), and the infimum coverage probability
(ICP) and total interval length (TIL) when n = 21. The smallest length and TIL of
exact intervals are marked by *.

Part I: The nine intervals at (n10, t) = (1, 13)

lower upper length lower upper length lower upper length

the p-value the p-value

Cdm1 -0.5214 -0.0126 0.5088 CM
dm1 -0.5065 -0.0155 0.4910 CM∞

dm1 -0.4923 -0.0155 0.4768*

0.04125 0.04393

Cdm2 -0.5173 -0.0260 0.4913 CM
dm2 -0.5320 -0.0182 0.5138 CM∞

dm2 -0.5287 -0.0182 0.5105

0.04125 0.04215

Cdm3 -0.5084 -0.0133 0.4951 CM
dm3 -0.5000 0.0122 0.5122 CM∞

dm3 -0.4997 0.0122 0.5119

0.07835 0.07835

Part II: The nine interval’s ICPs and TILs

ICP TIL ICP TIL ICP TIL

Cdm1 0.9500 152.4780 CM
dm1 0.9500 147.8739 CM∞

dm1 0.9500 146.8296

Cdm2 0.8376 144.1614 CM
dm2 0.9500 147.7267 CM∞

dm2 0.9500 146.2317*

Cdm3 0.9146 147.7201 CM
dm3 0.9501 152.3374 CM∞

dm3 0.9500 149.2308

with the modified intervals CMdmi and CM∞dmi
at (1, 13). The p-value corresponding

to CMdm1 is equal to hm1(1, 13, 0) = 0.04125, where hm1 is given in (3.6). This

is consistent with the fact that CMdm1(1, 13) excludes zero. However, CMdm3(1, 13)

and Cdm3(1, 13) provide two different conclusions on including zero.

4. Modifying One-Sided Confidence Intervals

Assume that the range of the parameter θ is [A,B] for two known constants

A and B. Consider H0 : θ ≤ θ0 vs. HA : θ > θ0. For a lower one-sided interval for

θ, Cl(X) = [Ll(X), B] with Ll(X) ≥ A, let T1l(x, θ0) = θ0−Ll(x). A small value

of T1l supports HA and T1l(x, θ0) ≥ 0 if and only if θ0 ≥ Ll(x). The h-function is

h1l(x, θ0) = sup
H0

P (T1l(X, θ0) ≤ T1l(x, θ0)) = sup
θ≤θ0

P (Ll(x) ≤ Ll(X)). (4.1)

Following (2.2), the level-α acceptance region for H0 and the 1 − α exact lower

one-sided interval for θ are

A1l(θ0) = {x : h1l(x, θ0) > α} and CMl (X) = {θ0 : h1l(x, θ0) > α}, (4.2)

respectively. As mentioned in Section 3.2, the smallest 1 − α exact one-sided

confidence interval under a given order can be constructed automatically. In the

current case, the order is given by the function Ll(X). More precisely, consider
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the class of 1− α exact intervals

Cl = {C(X) = [L(X), B] : L(x′) ≤ (=)L(x) if Ll(x
′) ≤ (=)Ll(x), ∀ x′ and x}.

The smallest interval contained in any interval in Cl is of interest. In contrast

to Section 2, only one modification yields the smallest interval, which is a much

stronger result than Theorems 1 through 4. This also establishes a connection

between the h-function method and the construction of the smallest one-sided

interval under an order.

Theorem 6. For a lower one-sided confidence interval Cl(X) = [Ll(X), B] of

any level,

(i) the interval CMl (X) given in (4.2) is a 1− α exact interval;

(ii) CM∞l (X) = CMk
l (X), for k = 1;

(iii) CMl (X) = [LMl (X), B] is the smallest in Cl, that is, LMl (X) ≥ L(X), for

[L(X), B] ∈ Cl.

Example 4. (Estimating vaccine efficacy). Under the setting of Section 3.2,

vaccine efficacy (V E) is defined as V E = 1 − r = 1 − p1/p2, where r is the

relative risk, and p1 and p2 are the rates of developing the disease for vaccinated

people and unvaccinated people, respectively. We want a lower one-sided interval

Cve(X,Y ) = [Lve(X,Y ), 1] for V E because we need a large V E. Let Ur(X,Y )

be the upper limit of the 1− 2α two-sided Koopman interval (Koopman (1984))

for r, which is recommended by Fagerland, Lydersenb and Laakec (2015). Then,

Cve(X,Y ) with the lower limit Lve(X,Y ) = 1−Ur(X,Y ) is a 1−α approximate

interval for V E. Following Theorem 6, CMve (x, y) is derived by solving

h(x, y, V E0) = sup
{1−p1/p2≤V E0}

∑
{(u,v):Lve(x,y)≤Lve(u,v)}

pB(u, n1, p1)pB(v, n2, p2) > α.

Janssen Biotech, Inc. (2021) reported that Johnson & Johnson’s Janssen

vaccine for Covid-19 has a point estimate of 81.7142% for the V E for the se-

vere/critical group in South Africa, based on the data (x, n1, y, n2) = (4, 2449, 22,

2463). Solve h(4, 22, V E0) > 0.05 and obtain the smallest 95% exact lower one-

sided interval CMve (4, 22) = [0.56564, 1]. In contrast, Cve(4, 22) = [0.56566, 1].

However, Cve only has a confidence coefficient of 0.8000. Therefore, CMve (4, 22)

is as precise, but much more reliable than Cve(4, 22). For the moderate to

severe/critical group, (x, n1, y, n2) = (23, 2449, 64, 2463), V̂ E = 63.8571%,
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CMve (23, 64) = [0.46386, 1], and Cve(23, 64) = [0.46388, 1]. Again, CMve (23, 64)

dominates Cve(23, 64).

Example 5. (The stochastically nondecreasing distribution family). Sup-

pose X has a cumulative distribution function F (x, θ) that satisfies F (x, θ1) ≥
F (x, θ2), for any x and θ1 ≤ θ2. This family includes all important single-

parameter distributions. The modified interval CMl (X) for the one-sided inter-

val Cl(X) = [X,B] is of interest. The interval Cl(X) itself may be meaning-

less for estimating θ. For example, one would not use [X, 1] to estimate p when

X ∼ Bino(n, p). Following (4.1), h1l(x, θ0) = maxθ≤θ0 P (x ≤ X) = 1−F (x−, θ0),

where x− denotes the largest value of X less than x. The lower limit of CMl (x)

is LMl (x) = inf{θ0 : 1 − F (x−, θ0) > α}. Theorem 6 ensures that CMl (X) is the

smallest interval among all 1 − α exact intervals of the form [L(X), B] with a

nondecreasing L(X). In particular, if X ∼ Bino(n, p), then CMl (X) is the lower

one-sided Clopper–Pearson interval of level 1− α.

This example shows the importance of selecting a good order when construct-

ing an interval. In particular, Cl is not a meaningful interval, but the good order

of X still generates the smallest interval.

For an upper one-sided interval Cu(X) = [A,Uu(X)], let T1u(x, θ0) = Uu(x)−
θ0 and

h1u(x, θ0) = sup
H0

P (T1u(X, θ0) ≤ T1u(x, θ0)) = sup
θ≥θ0

P (Uu(X) ≤ Uu(x)). (4.3)

The level-α acceptance region for H0 : θ ≥ θ0 and the 1−α exact upper one-sided

interval for θ are

A1u(θ0) = {x : h1u(x, θ0) > α} and CMu (x) = {θ0 : h1u(x, θ0) > α}, (4.4)

respectively. The following is a parallel result to Theorem 6; the proof is omitted.

Theorem 7. For an upper one-sided interval Cu(X) = [A,Uu(X)] of any level

we have the following:

(i) The interval CMu (X) given in (4.4) is a 1− α exact interval.

(ii) CM∞u (X) = CMu (X).

(iii) Define a class of 1 − α exact upper one-sided intervals Cu = {C(X) =

[A,U(X)] : U(x′) ≤ U(x) if Uu(x′) ≤ Uu(x), ∀ x′ and x}. Then,

CMu (X) = [A,UMu (X)] is the smallest interval in Cu.
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5. Discussion

A confidence interval can be obtained by converting a family of tests, and

vice versa. However, we formally introduce a middle function, the h-function,

that yields both a confidence interval and a test, which is a simpler, but more

general approach. Although this idea was used by Blaker (2000) and Agresti and

Min (2001), the process was not defined for the general setting , as it is here.

More importantly, the proposed h-function method is now used for the first time

to improve any confidence interval.

The effectiveness of the method is demonstrated in Sections 3 and 4. In par-

ticular, the method identifies the parameter values in a given confidence interval,

and can be used in many applications, especially when the underlying distribu-

tion is discrete and contains nuisance parameters. Theorem 1 is easy to follow

and powerful in its ability to modify any interval, including asymptotic intervals,

point estimators, and credible intervals, to become exact intervals. This is a solu-

tion to the important problem that approximate intervals are easy to obtain, but

not reliable. The modification process greatly enhances the reliability of these

intervals, because an invalid inferential procedure is converted to be valid. When

nuisance parameters exist, it is also important to improve an existing conserva-

tive interval. Theorem 2 is a successful effort to resolve this problem, because it

delivers uniformly shorter exact intervals. Theorem 3 provides the smallest in-

terval that can be generated by the modification process. When the final interval

CM∞0 is not admissible, owning to ties, one can break the ties and then apply the

modification process to obtain an admissible interval. Furthermore, Theorems 6

and 7 establish a connection between the h-function method and the construction

of the smallest one-sided interval based on an order. These results build a solid

foundation for deriving optimal exact confidence intervals.

From a theoretical point of view, the interval construction in (2.4), (2.5), and

(2.6) is an automatic process. However, it is computationally complex, particu-

larly when trying to find the precise global maximum of P{K(x, θ0)} in (2.3) as

a function of η, and when solving the smallest and largest roots of the equation

h(x, θ0) > α as a function of θ0. To the best of our knowledge, no software can

accomplish the two tasks both quickly and accurately. Note that h(x, θ0) is not

continuous in θ0, in general. Our best effort for global optimization is based on a

combination of a grid search and local optimization. This reduces to questioning

whether the resultant interval (e.g., CM∞0 ) is truly of level 1−α, owing to a grid

search that may not be fine enough. We intend selecting a large number of points

for the search, which inevitably takes more time to compute. For example, this
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number is between 200 and 4,000 for a range of [−1, 1] when deriving intervals for

d. Additionally, each table reports the confidence coefficient required to ensure

that an exact interval has a correct confidence coefficient.

There are several possible avenues for future research. First, we would like

to establish the best choice of T2 in (2.4) so that CMk
0 converges to CM∞0 fast.

Second, we would like to construct an optimal confidence interval for a function of

several parameters using existing intervals of those parameters. Third, we would

like to combine several confidence intervals for the same parameter θ, where each

interval uses only a part of the data set, to form an optimal interval that uses

the whole data set.

Supplementary Material

We provide some simulation results to confirm the exact calculation of the

confidence intervals in Table 1.
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Appendix: Proofs

Proof of Theorem 1. Following (2.5), h2(x, θ0) is a valid p-value (Casella and

Berger (2002, p.397)). Thus, A2(θ0) in (2.6) is the acceptance region of a level-α

test, implying that interval CM0 (x) is of level 1− α.

Proof of Theorem 2. We only need to prove the first claim because the second

claim follows Theorem 1 and the first claim. To prove the first claim, it suffices

to show h2(x, θ0) ≤ α for any θ0 6∈ C0(x). Let CoverC0
(θ, η) be the coverage

probability function of C0(X). So, infH CoverC0
(θ, η) ≥ 1− α.

First, consider the case of θ0 < L0(x). For H0 : θ = θ0,

h2(x, θ0)
θ0<L0(x)

≤ sup
H0

P{T2(X, θ0) < 0} (b)
= sup

H0

[1− P{θ0 ∈ C0(X)}]

≤ 1− inf
H
CoverC0

(θ, η) ≤ α.

Second, h2(x, θ0) ≤ α similarly when θ0 > U0(x). Hence, CM0 (x) ⊂ C0(x).
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When T2 = T I2 , h2(x, θ0) = 1 for any θ0 ∈ C0(x). Thus, CM0 (x) = {θ0 :

h2(x, θ0) > α} ⊃ C0(x).

Proof of Theorem 3. We only prove part ii) as the other claims are straight-

forward. Let CoverC(θ, η) be the coverage probability function for an interval

C(X). Note that the indicator functions satisfy

ICM∞
0 (x)(θ) = lim

k→+∞
ICMk

0 (x)(θ), ∀x

because CMk
0 (x) is nonincreasing and note that CoverCMk

0
(θ, η) ≥ 1 − α for

any (θ, η) because each interval CMk
0 (X) is of level 1 − α. Then, following the

Dominated Convergence Theorem

CoverCM∞
0

(θ, η) = lim
k→+∞

E(θ,η)[ICMk
0 (x)(θ)] = lim

k→+∞
CoverCMk

0
(θ, η) ≥ 1− α.

Proof of Theorem 4. It suffices to prove the case of k = 0. i.e., if C0(x) =

CM0 (x), then CM0 (x) = CM2
0 (x). Denote C0(x) = [L0(x), U0(x)] and CM0 (x) =

[LM0 (x), UM0 (x)]. By definition, TM2 (x, θ0) = T2(x, θ0). Also, TM2 (y, θ0) ≤ T2(y, θ0)
for any y due to CM0 (X) ⊂ C0(X) and Condition (c). Then,

hM2 (x, θ0) = sup
H0

P{y : TM2 (y, θ0) ≤ TM2 (x, θ0)}

≥ sup
H0

P{y : T2(y, θ0) ≤ TM2 (x, θ0)} = h2(x, θ0).

So, CM0 (x) = {θ0 : h2(x, θ0) > α} ⊂ {θ0 : hM2 (x, θ0) > α} = CM2
0 (x) and CM0 (x) =

CM2
0 (x).

Proof of Theorem 5. We only prove the case of T2 = TD2 . The proof for T2 =

TR2 is similar. Suppose the claim of theorem is not true. There exists a 1 − α
exact interval C1(X) = [L1(X), U1(X)] and a sample point x0 so that C1(x0) $
CM∞0 (x0) and C1(x) = CM∞0 (x) if x 6= x0. Without loss of generality, assume

LM∞0 (x0) < L1(x0) and UM∞0 (x0) = U1(x0).

Since LM∞0 (X) is a one-to-one function and assumes finite many values,

we choose L1(x0) close to LM∞0 (x0) so that none of the LM∞0 (x)’s belongs to

interval (LM∞0 (x0), L1(x0)). Denote ε = L1(x0) − LM∞0 (x0), which can be any

small positive number. Pick θ∗0 = L1(x0)− ε/m ∈ (LM∞0 (x0), L1(x0)) for a large

positive integer m. Define T0(x, θ0) = TD2 (LM∞0 (x), UM∞0 (x), θ0) and T1(x, θ0) =
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TD2 (L1(x), U1(x), θ0). Then,

T0(x, θ0) = T1(x, θ0) ∀x 6= x0; T1(x0, θ
∗
0) < 0 < T0(x0, θ

∗
0). (A.2)

Let Kj(x0, θ
∗
0) = {y : Tj(y, θ

∗
0) ≤ Tj(x0, θ∗0)} for j = 0, 1. Claim

K0(x0, θ
∗
0) = K1(x0, θ

∗
0). (A.3)

Suppose the claim (A.3) is true. Let h0 and h1 be the h-functions for T0 and T1,

respectively. Then,

h0(x0, θ
∗
0) = sup

(θ∗0 ,η)
P{K0(x0, θ

∗
0)} (A.3)

= sup
(θ∗0 ,η)

P{K1(x0, θ
∗
0)} = h1(x0, θ

∗
0).

Since θ∗0 ∈ CM∞0 (x0) = (CM∞0 )M (x0), h0(x0, θ
∗
0) > α. On the other hand, since

θ∗0 6∈ C1(x0) and CM1 (x0) ⊂ C1(x0), θ
∗
0 6∈ CM1 (x0), which implies h1(x0, θ

∗
0) ≤ α.

Therefore, h0(x0, θ
∗
0) 6= h1(x0, θ

∗
0), a contradiction. Therefore, the claim of the

theorem is true.

Now we prove the claim (A.3).

Case i). Suppose UM∞0 (x) 6= LM∞0 (x0) for any x. Thus,

K0(x0, θ
∗
0)

(A.2)
= {y : y 6= x0, T1(y, θ

∗
0) ≤ T0(x0, θ∗0)} ∪ {y : y = x0}

= {y : y 6= x0, T1(y, θ
∗
0) ≤ θ∗0 − LM∞0 (x0)} ∪ {y : y = x0}

= {y : y 6= x0, T1(y, θ
∗
0) ≤ θ∗0 − L1(x0)}

∪ {y : y 6= x0, θ
∗
0 − L1(x0) < T1(y, θ

∗
0) ≤ θ∗0 − LM∞0 (x0)} ∪ {y : y = x0}

= {y : y 6= x0, T1(y, θ
∗
0) ≤ T1(x0, θ∗0)} ∪ ∅ ∪ {y : y = x0} = K1(x0, θ

∗
0).

Case ii). Suppose UM∞0 (x∗) = LM∞0 (x0) for some x∗( 6= x0). Such x∗ must

be unique.

K0(x0, θ
∗
0) = {y : T0(y, θ

∗
0) ≤ T0(x0, θ∗0)}

= {y : y 6= x∗, T1(y, θ
∗
0) ≤ T1(x0, θ∗0)} ∪ {y : y = x∗, T0(y, θ

∗
0) ≤ T0(x0, θ∗0)}

= {y : y 6= x∗, T1(y, θ
∗
0) ≤ T1(x0, θ∗0)} ∪ {y : y = x∗, T1(y, θ

∗
0) ≤ θ∗0 − LM∞0 (x0)}

= {y : y 6= x∗, T1(y, θ
∗
0) ≤ T1(x0, θ∗0)} ∪ {y : y = x∗, T1(y, θ

∗
0) ≤ θ∗0 − LM∞1 (x0)}

= {y : y 6= x∗, T1(y, θ
∗
0) ≤ T1(x0, θ∗0)} ∪ {y : y = x∗, T1(y, θ

∗
0) ≤ T1(x0, θ∗0)}

= K1(x0, θ
∗
0).

The proof is complete.
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Proof of Proposition 1. Note (3.2), D(−d0) = 1 − D(d0) and pB(x, n, p) =

pB(n− x, n, 1− p). Then,

hd(n1 − x, n2 − y,−d0)
= sup

p2∈D(−d0)

∑
{(u,v)∈Sd:Td(u,v,−d0)≤Td(x,y,d0)}

pB(n1 − u, n1, 1− p2 + d0)

× pB(n2 − v, n2, 1− p2)
= sup

p′2∈D(d0)

∑
{(u′,v′)∈Sd:Td(u′,v′,d0)≤Td(x,y,d0)}

pB(u′, n1, p
′
2 + d0)pB(v′, n2, p

′
2)

= h(x, y, d0).

Therefore, hd(x, y, U(x, y)) = hd(n1 − x, n2 − y,−U(x, y)), establishing (3.5).

Proof of Theorem 6. Part i) is similar to the proof of Theorem 1. Part iii) is

similar to the proof of Theorem 4 in Wang (2010) and is skipped. Part ii) follows

part iii).
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