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Abstract: In this paper, we construct adaptive global confidence bands for nonpara-

metric regression functions by empirical likelihood (EL). First, we show that the

size of the classical EL-based confidence region is not adaptive to the submodels

of the function in rate-optimal way, that is, it is not model-adaptive. In contrast,

the existing model-adaptive methods are not data-adaptive, that is, the shapes of

the resulting confidence regions are not determined by data. Thus, we propose

an EL-based method to construct model-data-adaptive global confidence bands for

nonparametric regression models with some constraints. The key remark is that

the size (radius) of the confidence region is not determined by the (asymptotic)

distribution but by a U -statistic that is highly related to the smoothness of the

submodels. The newly proposed confidence region has the model-data-adaptive

property: the size adapts to the submodels in a rate-optimal way and its shape is

determined by the data. Implementation issue is investigated, and simulations are

carried out for illustration.
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1. Introduction

Empirical likelihood (EL) is a powerful tool for statistical inference. This
method does not require a full specification of distribution from which data are
drawn, but only an unbiased estimating function. The fundamental notion stems
from the seminal work of Owen (1988, 1990); since then it has been further de-
veloped for various parametric, semiparametric, and nonparametric statistical
problems. For examples, amongst others, see Owen (1991), Qin and Lawless
(1994), Chen and Qin (1993), Chen and Hall (1993), DiCiccio, Hall, and Ro-
mano (1991) Hall (1990), Shen, Shi, and Wong (1999), Kitamura, Tripathi, and
Ahn (2004), Lin, Zhu, and Yuen (2005), Zhu and Xue (2006), Stute, Xue, and
Zhu (2007), Xue and Zhu (2007), and Hjort, McKeague, and Keilegom (2009).
Some comprehensive treatments can be found in Owen (2001). One of the most
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significant advantages of EL is that the shape of a confidence region is automat-
ically determined by the data, EL is adaptive to data. Consequently, with a
given coverage probability, the size of a confidence region is in general smaller
than that of common confidence regions, such as those constructed in terms of
point estimation. This holds since confidence regions are usually designed as a
standard ball, see Zhu and Xue (2006).

Model-adaptability is another important notion for especially semiparamet-
ric and nonparametric models. Consider constructing confidence region for non-
parametric function, the commonly used Bonferroni region is obviously too con-
servative, see Xue and Zhu (2007). One way around this is first to express
the function as an infinite series of parametric functions, and then to con-
sider an approximation of the region for the nonparametric function by using
part of this series. Obviously, we need way to define a “good” approximation.
And model-adaptability is then raised. Here adaptation means that the in-
ference procedure adjusts automatically to properties of submodels of interest
under an optimality criterion. The common submodels are the regular ellip-
soid, anisotropic class, and Besov body. For example, if we consider the se-
quence space l2 = {θ = (θ1, θ2, . . .)′ :

∑∞
i=1 θ2

i < ∞}, the regular ellipsoid is
S(β, L) = {θ ∈ l2 :

∑∞
i=1 θ2

i i
2β ≤ L2} for parameters β > 0 and given L > 0.

Then model-adaptive inference, say adaptive confidence regions given, should
adapt automatically to the choices of parameters β and L in a rate-optimal way.
Model-adaptability has attracted much attention; see for example Li (1989), Be-
ran and Dümbgen (1998), Birgé (2002), Hoffmann and Lepski (2002), Juditsky
and Lambert-Lacroix (2003), Baraud (2004), Cai and Low (2004, 2005, 2006a,b),
Genovese and Wasserman (2005), and Robins and Vaart (2006). According to
the existing theories, a model-adaptive confidence region satisfies at least the
following conditions: it is honest on the model of interest and, at the same time,
its size adapts to submodels in a rate-optimal way. For details see Robins and
Vaart (2006), Cai and Low (2004, 2005, 2006a,b), and Li (1989), among others.

From the above description, existing data-adaptive and model-adaptive
method have, respectively, their pros and cons. Model-adaptive confidence re-
gions are not data-adaptive because their shapes are usually designed as a stan-
dard ball not determined by data; see for example Robins and Vaart (2006) and
Cai and Low (2006a). For instance, let θj,k, j = 0, . . . , J − 1, k = 1, . . . , 2j , be
wavelet coefficients of a nonparametric regression function r and θj = (θj,1, . . .,
θj,2j )′ be the coefficient at level j in a wavelet expansion of r. For this model,
Cai and Low (2006a) proposed a model-adaptive confidence ball for θj as {θj :
‖θj − δ‖ < dα} with an adaptive choice of radius dα. This is a standard ball
and the shape is not determined by data. In contrast, we verify in Section 2
that the size of EL-based confidence region is large and cannot tend to zero even
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when the submodel is small and the size of sample tends to infinity. Then it
cannot be model-adaptive because its size cannot be adjusted automatically to
the submodels of target functions.

Thus, constructing a confidence region that is adaptive to both data and
model is of great interest. To the best of our knowledge, there is no reference in
the literature. We propose a simple approach to achieve this goal: combining EL
and a model-adaptive method to construct model-data-adaptive confidence re-
gions for nonparametric regression. As we know, the commonly used EL for non-
parametric regression is based mainly on local smoothing; see for example Chen
(1996), Chen and Qin (2000), but for global smoothing and model-adaptation,
it cannot be applied because we want to use the information on the submodels.
We solve this problem in the following sections. In our procedure, the key fact is
that the size (radius) of the confidence region is not determined by the (asymp-
totic) distribution but by a U -statistic that is highly related to the smoothness
of the submodels. Classical methods (including EL) have the size of confidence
regions usually determined by the (asymptotic) distribution and cannot obtain
the adaptive choice of size.

The paper is organized as follows. In Section 2, the model and the required
conditions are presented. The properties of EL are re-examined to show why
it is not model-adaptive. In Section 3, a procedure for constructing adaptive
confidence region is introduced and its model-data-adaptability is obtained. In
Section 4 an implementation procedure is proposed. It contains data-driven
methods to select a trade-off parameter, and some simulations are performed for
illustration. Proofs are presented in Section 5.

2. Model and Property of EL-based Confidence Region

In this section we define the model under study and re-examine EL-based
confidence regions. We see that their size of EL-based confidence region is not
adaptive to the submodels of regression functions.

We consider the following nonparametric regression model with random de-
sign:

Y = r(X) + ε, (2.1)

where r(x) = E(Y |X = x) is an unknown regression function, X ∈ X ⊂ Rp is a
p-dimensional random covariate with known distribution F (x), Y ∈ Y ⊂ R is a
real-valued response variable, and the error term ε satisfies E(ε |X = x) = 0 and
V ar(ε |X = x) = σ2(x). Here we need the known distribution F (X) to construct
the basis functions below. If F (x) is unknown, without loss of the model-adaptive
property, we can use a consistent estimator F̂ (x) in place of F (x) because model-
adaptability is an asymptotic criterion. Although we consider random design
here, the method can be similarly employed to fixed design cases.
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Let L2(X ) denote the set of functions f : X → R such that E(f2(X)) < ∞.
As is well known, when r ∈ L2(X ), it can be expressed as

r(x) =
∞∑

j=0

θjpj(x), (2.2)

where p0(x) = 1 and {1, pj(x) : j = 1, 2, . . .} is a set of basis functions, such as
polynomial bases, Fourier bases or B-splines, satisfying

E(pj(X)) = 0, E(p2
j (X)) = 1 and E(pj(X)pk(X)) = 0 for j 6= k. (2.3)

Because the distribution or an estimated distribution of X is assumed known,
such basis functions can be obtained. With these representations, (2.1) can be
rewritten as

Y =
∞∑

j=0

θjpj(X) + ε. (2.4)

Here we consider the parameter and function spaces: Θ =
{

θ :
∑∞

j=0 θ2
j < ∞

}
and R =

{
r(x) : ‖r‖2

F < ∞
}

, where θ = (θ0, θ1, . . .)′ and ‖r‖2
F = E(r2(X)).

For global smoothing (Huang, Wu, and Zhou (2002)), we first approximate
r(x) by r(x) ≈

∑N
j=0 θjpj(x) and then (2.1) can be approximately expressed as

Y ≈
N∑

j=0

θjpj(X) + ε, (2.5)

where N is a trade-off parameter depending on submodels of Θ or R. The
detailed discussion about selecting N will be presented in Sections 3 and 4.
Let (Xi, Yi), i = 1, . . . , n, be i.i.d. observations of (X,Y ) at (2.1). Based on the
approximate model (2.5), the empirical likelihood ratio (ELR) for part parameter
vector θN is

<(θN )=sup
{ n∏

i=1

nwi : wi ≥ 0,

n∑
i=1

wi =1,

n∑
i=1

wiPN (Xi)(Yi−P ′
N (Xi)θN )=0

}
,

(2.6)
where θN = (θ0, θ1, . . . , θN )′ and PN (Xi) = (1, p1(Xi), . . . , pN (Xi))′. Note that
N depends on n and tends to infinity as n → ∞. As shown by Hjort, McKeague,
and Keilegom (2009), the distribution of −2 log<(θN ) can be approximated by
a normal distribution with mean N and variance 2N . In this situation, an ap-
proximate confidence region for θN can be expressed as{

θN : −Uα/2(2N)1/2 ≤ −2 log<(θN ) − N ≤ Uα/2(2N)1/2
}

, (2.7)
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where Uα/2 is the quantile of standard normal distribution.
As mentioned in the Introduction, the EL-based confidence region given in

(2.7) satisfies data-adaptability for part parameter vector θN . On the other hand,
while we expect to obtain a small radius when the the submodel of functions is
small, the “radius” of (2.7), Uα/2(2N)1/2, is large and cannot tend to zero even
when the submodel is small and n tends to infinity. Then confidence region (2.7)
is too large to derive interesting information about θN (or r) in a large sample,
and the model-adaptive property is not achieved.

We propose a confidence region for the full parameter vector θ of the form

Ĉn =
{

θ : d ≤ −2 log<∗(θ) ≤ D
}

or Ĉn =
{

θ : −2 log<∗(θ) ≤ D
}

, (2.8)

where <∗(θ) is an extended version of ELR for the parameter vector θ. Here
the essential difference from (2.7) is that the radiuses d and D in (2.8) are not
determined by the normal distribution but are determined by an adaptive method
such that they are highly related to the smoothness of the submodels of Θ (or
R).

3. Model-data-adaptive Confidence Region

3.1. Construction of adaptive confidence region

By the adaptability requirement and the version proposed by Robins and
Vaart (2006) and Li (1989), for example, a model-adaptive confidence region Ĉn

of θ should satisfy the following.

(i) Ĉn is honest at the model Θ in the sense that lim infn→∞ infθ∈Θ Pθ{θ ∈
Ĉn} ≥ 1 − α, for given confidence level 1 − α with 0 < α < 1.

(ii) Ĉn is centered at an estimator of θ, for example, an adaptive estimator.

(iii)The radius of Ĉn adapts to submodels of Θ or R in a rate-optimal way.

For more details about the descriptions of adaptive estimation and confidence
regions see, for example, Nishii (1984), Birgé and Massart (2001), Barron, Birgé
and Massart (1999) and Baraud (2000), Li (1989), Cai and Low (2004, 2006b),
and Robins and Vaart (2006). Informally, an adaptive estimation procedure
automatically adjusts to the smoothness properties of the underlying functions
and a common way to evaluate such a procedure is to compute its maximum
risk over a collection of parametric spaces, and to compare these values to the
minimax risk over each of them; this adaptive estimation procedure does not
necessarily influence the construction of an adaptive confidence region. Thus, the
existing papers mainly focus on the construction of the radius for a confidence
region and assume that an adaptive estimator is given. As is shown above, the
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radius of an adaptive confidence region should adjust to submodels of interest in
a rate-optimal way while maintaining a prespecified coverage probability. Here
the optimal rate is in fact the minimax rate of estimation for the given submodel
and the common submodels are chosen as the subsets of a regular ellipsoid, and
anisotropic class and a Besov body; see for example Cai and Low (2006a) Robins
and Vaart (2006), and Hoffmann and Lepski (2002).

Here we use EL to construct adaptive confidence region as determined by
(2.8) and, thus, the estimation for the center is not required. To valuate such a
confidence region, we only need condition (i) and an extended version of condition
(iii):

(iii)’ The “radiuses” d and D in (2.8) adapt to submodels of Θ or R in a rate-
optimal way.

Motivated by Robins and Vaart (2006), to facilitate construction of a confi-
dence region, we split the sample into two subsamples. The first half of the data
is denoted by (X1,Y1) = {(Xi, Yi) : i = 1, . . . , [γn]}. Here 0 < γ < 1 is given
and is usually chosen to be 1/2. Hereafter, the superscript 1 indicates reliance on
the first half. The first half of the data is used to construct EL and the second to
construct radiuses d and D. Based on the first half, the ELR for the parameter
vector θN is

<1(θN )=sup
{ [γn]∏

i=1

[γn]wi : wi ≥ 0,

[γn]∑
i=1

wi =1,

[γn]∑
i=1

wiPN (Xi)(Yi−P ′
N (Xi)θN )=0

}
.

Further, an extended version log-ELR for the full parameter θ is

−2 log<1
∗(θ) , −2 log<1(θN ) + [γn]

∞∑
j=N+1

θ2
j . (3.1)

Then, similar to (2.8), our goal is to construct confidence region as

Ĉn =
{

θ : d ≤ −2 log<1
∗(θ) ≤ D

}
or Ĉn =

{
θ : −2 log<1

∗(θ) ≤ D
}

(3.2)

with d and D being adaptive choices of the radiuses. Then the remaining work
is to estimate d and D so that conditions (i) and (iii)’ hold.

To determine d and D, set N = O(nδ) for δ > 0, and

P1
N (X) = (PN (X1), . . . , PN (X[γn])), Y1 = (Y1, . . . , Y[γn])

′,

M1
N =

(
Φ−1

N

1
[γn]

[γn]∑
i=1

(Yi − P ′
N (Xi)θN )2PN (Xi)P ′

N (Xi)Φ−1
N

)−1
,

θ̂1
N = Φ−1

N

1
[γn]

P1
N (X)Y1,
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where ΦN = (1/[γn])P1
N (X)(P1

N (X))′. Although M1
N depends on θN , hereafter

we suppress θN for convenience.

Lemma 3.1. When 0 < δ < 1/3, if pj(Xi) and Yi are uniformly bounded and
the eigenvalues of M1

N are bounded away from zero and infinity, then

−2 log<1(θN ) = [γn](θ̂1
N − θN )′M1

N (θ̂1
N − θN ) + op(nδ/2),

−2 log<1
∗(θ) = [γn](θ̂1

N − θN )′M1
N (θ̂1

N − θN ) + [γn]
∞∑

j=N+1

θ2
j + op(nδ/2).

The proof of the lemma is in Section 5. The condition on eigenvalues in
Lemma 3.1 is commonly assumed for models with a high-dimensional parameter;
see for example Fan and Peng (2004). The condition on the boundedness of
pj(Xi) holds for the Fourier basis, but not for the polynomial basis, wavelets etc.
However, the condition on the boundedness of pj(Xi) and Yi can replaced by
other conditions; see for example Chen and Peng (2007).

From Lemma 3.1, we can write the leading term of −2 log<1
∗(θ) as

RN (θN ) = [γn](θ̂1
N − θN )′M1

N (θ̂1
N − θN ). (3.3)

From (2.3) and (2.4), E(Y ) = θ0 and E(Y pj(X)) = θj for j ≥ 1, or E(Y PN (X))
= θN . Then, given the first half of the data (X1,Y1), we estimate R(θN ) by

R̂N =
[γn]

2Ln(Ln − 1)

n∑
i=[γn]+1

n∑
k 6=i,k=[γn]+1

(θ̂1
N − YiPN (Xi))′M1

N (θ̂1
N − YkPN (Xk)),

where Ln = n−[γn]. Here R̂N depends on θN because M1
N contains θN . Without

confusion, hereafter we suppress θN for the convenience. Note that, although R̂N

depends on θN , it is similar to a U -statistic of Rn. Using this “U -statistic” to
define the radius, the resulting confidence region was some desirable properties.
Lemma 3.2 is a key step toward our results, the proof is postponed to Section 5.

Lemma 3.2. Given (X1,Y1), V ar(R̂N |(X1,Y1)) ≤ τ2
N,n(θN ), where

τ2
N,n(θN ) =

[γn]
(
(N + 1)‖M1

N‖2(‖r‖2
∞ + ‖σ2‖∞)2 − (θ′

NM1
NθN )2

)
Ln(Ln − 1)

+
2[γn](‖r‖2

∞ + ‖σ2‖∞)
Ln

(θ̂1
N − θN )′(M1

N )2(θ̂1
N − θN )

−2[γn]
Ln

(
(θ̂1

N − θN )′M1
NθN

)2
,

with ‖M1
N‖ the maximum eigenvalue of M1

N , ‖r‖2
∞ = supx∈X |r(x)|2, and ‖σ‖2

∞ =
supx∈X |σ(x)|2.
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Note that E(R̂N |(X1,Y1)) = R(θN ), where R(θN ) is defined at (3.3). Then

the lemma implies that supθ∈Θ E
((

(R̂N − R(θN ))/(τN,n(θN ))
)2∣∣∣(X1,Y1)

)
≤ 1.

From Markov’s inequality, it then follows that

inf
θ∈Θ

Pθ

(∣∣∣R̂N − R(θN )
∣∣∣ ≤ zατN,n(θN )

∣∣∣(X1,Y1)
)
≥ 1 − α, (3.4)

where zα = 1/
√

α. Letting the dimension go to infinity, we set ‖θ̂ − θ‖2
M1

N
=

R(θN ) + [γn]
∑∞

j=N+1 θ2
j , and we get the following.

Lemma 3.3. For Model (2.1), if the conditions of Lemma 3.1 hold and θ̂ ∈ Θ,
then {

θ ∈ Θ :
√

d∗ ≤ ‖θ̂ − θ‖M1
N
≤

√
D∗

}
is an honest (1−α)-confidence region for θ ∈ Θ, where d∗ = (R̂N −zατN,n(θN ))+

, D∗ =
(
(R̂N + zατN,n(θN ))1/2 + 2

√
[γn]BN

)2
, and B2

N = sup
θ∈Θ

∑∞
j=N+1 θ2

j .

The proof of this lemma is in Section 5. Combining Lemma 3.1 and Lemma
3.3, {

θ ∈ Θ :
√

d∗ + an ≤ (−2 log<1
∗(θ))1/2 ≤

√
D∗ + bn

}
is an honest (1 − α)-confidence region for θ ∈ Θ, where an = op(nδ/4) and bn =
op(nδ/4). Moreover as is shown by Li (1989) and Baraud (2004), for n-dimensional
space, if the confidence region is designed as a ball with the center at an estimator
of the parameter vector, the n−1/4 lower bound of average confidence region
cannot be improved upon without losing full honesty. Furthermore, Lemma 3.3
shows that −2 log<1

∗(θ) can be approximately expressed as an ellipse with the
center at an estimator and the shape matrix M1

N independent of the second half of
the data. Then an and bn in the above confidence region can be ignored because,
by averaging, n−1/2an and n−1/2bn are asymptotically smaller than n−1/4. On the
other hand, to guarantee the honesty as defined in (i) when an and bn are omitted
from the confidence region, we need the condition that (X,Y ) is continuous.

Theorem 3.1. For Model (2.1), if the conditions in Lemma 3.3 hold,

Ĉn =
{

θ ∈ Θ : d∗ ≤ −2 log<1
∗(θ) ≤ D∗

}
(3.5)

is an honest (1 − α)-confidence region for θ ∈ Θ, with d∗ and D∗ defined as in
Lemma 3.3.

The proof is postponed to Section 5. By Theorem 3.1,

Ĉn =
{

θ ∈ Θ : −2 log<1
∗(θ) ≤ D∗

}
(3.6)
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is an honest (1 − α)-confidence region for θ ∈ Θ. We usually choose (3.6) as
a practicable confidence region for θ because Lemma 3.1 shows that it can be
approximately an ellipse. Finally, by (3.5) or (3.6), we can construct the adaptive
global confidence band for regression function r as{

(x, y) : y = r(x), r(x) =
∞∑

j=0

θjpj(x), x ∈ X , θ ∈ Ĉn

}
, (3.7)

where Ĉn is determined by (3.5) or (3.6).
While the confidence region obtained above is of a nice form and a clear

mathematical description, the radius still depends on unknown functions r and
σ. A statistical implementation is desired. We delay this issue to Section 4.
Then too, the continuity of (X,Y ) in the theorem can be replaced by some
weaker conditions, but we not discuss this issue further here.

3.2. Adaptability properties

We turn to the adaptability properties of the honest confidence region of (3.5)
or (3.6). Obviously, it inherits the favorable property of EL in that its shape is
automatically adaptive to data. Furthermore, (3.5), (3.6) and the representation
of τN,n show that

1√
n

rad(Ĉj
n) = Op

(( N

n2

)1/4
+ BN +

(RN

n

)1/2)
. (3.8)

This is a standard convergence order in nonparametric estimation; for details,
see Proposition 2.1 of Robins and Vaart (2006). The above formula shows that,
based on the property of submodels, we can choose N to minimize the radius of
the confidence region. The following examples show how the confidence region
(3.5) or (3.6) adapts to the submodels in a rate-optimal way.

Example 3.1. Suppose the regression function r can be expressed by a finite
number of basis functions, say m independent of n, so r(x) =

∑m
j=0 θjpj(x). In

this case the radius of the confidence region is of the order of the maximum of
n−1/2 and the average of estimation error (RN/n)1/2. For this standard paramet-
ric model, the common method can ensure (RN/n)1/2 = Op(n−1/2), so a radius
of order n−1/2. It is known that n−1/2 is the standard rate in finite-dimensional
parameter models, and cannot be improved without losing full honesty.

Example 3.2. Suppose that the regression function r can be expressed as
r(x) =

∑n
j=0 θjpj(x). To avoid bias, N is chosen to be n. In this case, the

radius of the confidence region is of the order of the maximum of n−1/4 and
the average of estimation error (RN/n)1/2. As shown by Li (1989) and Baraud
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(2004), for n-dimensional space, the n−1/4 lower bound cannot be improved upon
without losing full honesty. To achieve this best rate, we have to choose a favorite
estimator θ̂ = (θ̂′

N , 0, . . .)′.

Example 3.3. Assume that the regression function r can be expressed by
r(x) =

∑∞
j=0 θjpj(x), where θ = (θ0, θ1, . . .)′ is in the regular ellipsoid Θ = {θ :∑∞

j=0 θ2
j j

2β ≤ L2} for β, L > 0 given. Then, by the definition, we have B2
N ≤

supθj∞∈Θj

∑∞
j=N+1 θ2

j (j/(N + 1))2β ≤ L2/(N + 1)2β . This leads to the trade-off
N1/4/n1/2 ∼ L/Nβ , implying a cut-off of the order N ∼ L4/(4β+1)n1/(2β+1/2).

With such a choice of N , we obtain a diameter of Ĉn of order equal to the max-
imum of n−β/(2β+1/2)L1/(4β+1) and the average of estimation error (RN/n)1/2.
As shown by Robins and Vaart (2006), this is the optimal rate.

4. Implementation and Simulations

4.1. Implementation

To implement our procedure for constructing confidence regions, we still need
to deal with the following: properly selecting the trade-off parameter N , that is
related to the submodels of interest; determining suitable estimators for ‖r2‖∞,
‖σ2‖∞, and B2

N , because the ideal radiuses depend on them.
For the submodels in Examples 3.1−3.3, we see that the model-adaptive N

can be selected in the scope of large samples. However, for finite samples, we need
to select it so that the resulting confidence region is of model-data-adaptability.
Thus, in addition to honesty, the resulting confidence region should have the
smallest radius among the class of confidence regions related to given submodels.
More precisely, for (3.5) or (3.6), the selected N should satisfy

N(θN ) = argN min(D∗(θN ) − d∗(θN )) or N(θN ) = argN minD∗(θN )

s.t. Pθ{θ ∈ Ĉn} ≥ 1 − α.

However, such a N(θN ) depends on θN . An implementable choice of N(θN ) is as
follows. Let θ

(k)
N = (θ(k)

0 , θ
(k)
1 , . . . , θ

(k)
N , 0, . . .)′ be inner points in Θ, k = 1, . . . , L,

and each component θ
(k)
j be randomly chosen in a working region to be specified.

Then we choose N̂ such that

N̂ = argK min(
1
L

L∑
k=1

(D∗(θ(k)
N ) − d∗(θ(k)

N )))

or N̂ = argK min
1
L

L∑
k=1

D∗(θ(k)
N )

s.t. Pθ{θ ∈ Ĉn} ≥ 1 − α.



ADAPTIVE GLOBAL CONFIDENCE BAND 1781

Such choices for N can guarantee the adaptive property if the working region
for each component is large enough, for reasons as follows. The adaptive choice
for N , by definition, results in a smallest radius of the confidence region in the
sense of large-sample point, and the N̂ given above leads to a smallest radius
of the confidence region. Thus N̂ is an adaptive choice by definition. From the
simulation examples below, we see in Tables 1 and 2 that (1/L)

∑L
k=1 D∗(θ(k)

N )
is decreasing from N = 0 to N = N̂ , and is increasing thereafter, so such an
optimal choice exists. We have ad hoc methods for the selection of N , but
further investigation is needed.

Finally, we replace ‖r2‖∞ and ‖σ2
∞‖ by consistent estimators. That can be

obtained, respectively, by

‖r̂2‖∞ = max{|r̂2(Xi)| : i = 1, . . . , n},

‖σ̂2‖∞ = max{|σ̂2(Xi)| : i = 1, . . . , n},

B̂2
N = max{|Yi − r̂(Xi)|2 : i = 1, . . . , n},

where r̂2 and σ̂2 are adaptive estimators, respectively, of r2 and σ2. These
may be simply constructed as the squares of the estimators of r and σ, but
for adaptability and optimality reasons, we should use a particular method for
estimating quadratic functionals; see Fan (1991), Laurent and Massart (2000),
Low and Efromovich (1996), and Cai and Low (2006b).

Under some regularity conditions, we can obtain consistent estimators r̂2

and σ̂2. For example, kernel estimators r̂2 and σ̂2 are uniformly consistent and
then ‖r̂2‖∞ and ‖σ̂2‖∞ are consistent, see Rao (1983). Thus, when ‖r2‖∞ and
‖σ2

∞‖ are replaced, respectively, by ‖r̂2‖∞ and ‖σ̂2‖∞, the asymptotic order of
radius of the confidence region cannot be reduced (see Lemma 3.1 and (3.7)) and
the honesty defined in (i) still holds if (X,Y ) is continuous.

4.2. Simulations

Examples are used to illustrate the new theory and to compare the adaptive
global confidence band with the classical EL-based global confidence band. In
our examples, the set of basis functions is 1,

√
2 cos(πu),

√
2 cos(2πu), . . . , the size

of the samples is 2,000 and the nominal level is 1−α = 0.95. In the simulations,
the empirical coverage probabilities are based on the average of simulations of
100 samples. In the figures below, the curve “—” is the true regression curve,
“· − ·” indicates the boundaries of the adaptive global confidence bands and
“- -” denotes the boundaries of the classical EL-based global confidence bands.

Example 4.1. Let
Y = cos(2.5πX) + ε, (4.1)
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Table 1. The choice for K for Model (4.1).

N 1 2 3 4 5
average of D∗ 1.8634 1.8923 1.0780 1.0780 1.0782

N 6 7 8 9 10
average of D∗ 1.0840 1.0937 1.1026 1.1111 1.1194

Figure 1. The confidence bands for the regression function in Model (4.1).

where X is uniformly distributed on [−1, 1] and ε ∼ N(0, 0.252). Table 1 reports
the average values of the criterion in 100 time repetitions, and then we see that
the optimal choice for N is 3 or 4, N̂ = 3 was used. The working region for
θ
(k)
j was [−10, 10]. Simulations showed that the two methods can achieve similar

coverage probabilities 0.98, but the width of the adaptive global confidence band
was significantly smaller than that of the classical EL-based global confidence
band. Figure 1 reports one of the simulation results.

Example 4.2. Let
Y = −15x6 + 15x4 − x2 + ε, (4.2)

where X is uniformly distributed on [−1, 1] and ε ∼ N(0, 0.252). Now the regres-
sion curve is not periodic, and is smoother than that in Example 4.1. Table 2
indicates that the optimal choice for N is 7 with the working region for θ

(k)
j of

[−20, 20]. Simulations showed that the width of adaptive global confidence band
was slightly smaller than that of the standard EL-based confidence band, with
similar empirical coverage probabilities at 0.98. Figure 2 shows the result.

Based on the above limited simulation study, we suggest that the new method
can perform better than the classical EL in the sense of that, with the same
empirical coverage probability, the width of adaptive EL global confidence band
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Table 2. The choice for K for Model (4.2).

N 1 2 3 4 5
average of D∗ 1.6976 1.4523 1.4503 1.3277 1.2516

N 6 7 8 9 10
average of D∗ 1.2475 1.2279 1.2307 1.2313 1.2343

Figure 2. The confidence bands for the regression function in Model (4.2).

is smaller than that of the classical EL-based global confidence band. For a rough
regression curve, this improvement can be significant.

5. Proofs

Proof of Lemma 3.1. In Theorem 4.1 of Hjort, McKeague, and Keilegom
(2009), we set

Xn,i = PN (Xi)(Yi − P ′
N (Xi)θN ), Tn = −2 log<1

∗(θ),

T ∗
n = [γn](

1
[γn]

[γn]∑
i=1

X ′
n,i)

( 1
[γn]

[γn]∑
i=1

Xn,iX
′
n,i

)−1 1
[γn]

[γn]∑
i=1

Xn,i.

Then Lemma 3.1 follows.

Proof of Lemma 3.2. Note that the matrix M1
N is symmetric and its eigenval-

ues stay away form zero, so it is of full rank and non-degenerate. Further, R̂N is
a U -statistic of order 2 with kernel

h((Yi, Xi), (Yk, Xk)) = (θ̂1
N − YiPN (Xi))′M1

N (θ̂1
N − YkPK(Xk)).
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Its Hoeffding decomposition is

R̂N = R(θN ) +
1

NLn

n∑
i=Ln

P1h(Yi, Xi)

+
1

NLn(Ln − 1)

n∑
i=Ln

n∑
k 6=i,k=Ln

P1,2h((Yi, Xi), (Yk, Xk)),

where P1h(Y,X) = 2(θ̂1
N − θN )′M1

N (θ̂1
N − Y PN (X)) and

P1,2h((Yi, Xi), (Yk, Xk)) = (θN − YiPN (Xi))′M1
N (θN − YkPK(Xk))

= YiYkP
′
N (Xi)M1

NPN (Xk)

−θ′
NM1

N (YiPN (Xi) + YkPN (Xk)) + θ′
NM1

NθN .

According to condition (2.3), we have

Var (P1h(Y,X)|(X1,Y1))

= 4E
(
E(Y 2|X)((θ̂1

N − θN )′M1
NPN (X))2|(X1,Y1)

)
−4

(
E((θ̂1

N − θN )′M1
NE(Y |X)PN (X)|(X1,Y1))

)2

= 4E
(
(r2(X) + σ2(X))((θ̂1

N − θN )′M1
NPN (X))2|(X1,Y1)

)
−4

(
E((θ̂1

N − θN )′M1
Nr(X)PN (X)|(X1,Y1))

)2

≤ 4(‖r‖2
∞ + ‖σ2‖∞)E

(
((θ̂1

N − θN )′M1
NPN (X))2|(X1,Y1)

)
−4

(
(θ̂1

N − θN )′M1
NθN

)2

= 4(‖r‖2
∞ + ‖σ2‖∞)(θ̂1

N − θN )′(M1
N )2(θ̂1

N − θN ) − 4
(
(θ̂1

N − θN )′M1
NθN

)2
.

Further, (θN −YiPN (Xi))′M1
N (θN −YkPN (Xk)) and θ′

N (YiPN (Xi)+YkPN (Xk))
are uncorrelated and their sum is YiYkP

′
N (Xi)M1

NPN (Xk) + θ′
NM1

NθN . Then

Var (P1,2h((Yi, Xi), (Yk, Xk)))|(X1,Y1))

≤ Var (YiYkP
′
N (Xi)M1

NPN (Xk)|(X1,Y1))

= E
(
E(Y 2

i |Xi)E(Y 2
k |Xk)(P ′

N (Xi)M1
NPN (Xk))2|(X1,Y1)

)
−

(
E(E(Yi|Xi)E(Yk|Xk)P ′

N (Xi)M1
NPN (Xk)|(X1,Y1))

)2

≤ (‖r‖2
∞ + ‖σ2‖2

∞)2E(P ′
N (Xi)M1

NPN (Xk)|(X1,Y1))2 − (θ′
NM1

NθN )2

= (K + 1)‖M1
N‖2(‖r‖2

∞ + ‖σ2‖∞)2 − (θ′
NM1

NθN )2.
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From the above computation about the variance, the lemma follows.

Proof of Lemma 3.3. It can be easily verified from the definition of ‖θ̂−θ‖M1
N

that

R1/2 ≤ ‖θ̂ − θ‖M1
N
≤ R1/2 + 2

√
[γn]BN (5.1)

provided θ̂ ∈ Θ. Note that (3.4) is equivalent to

inf
θ∈Θ

Pθ

{
(R̂N − τN,n)1/2 ≤ R1/2 ≤ (R̂N + zατN,n)1/2 |(X1,Y1)

}
≥ 1 − α. (5.2)

Then (5.1) and (5.2) imply that

inf
θ∈Θ

Pθ

{√
d∗ ≤ ‖θ̂ − θ‖M1

N
≤

√
D∗ |(X1,Y1)

}
= inf

θ∈Θ
Pθ

{√
d∗ ≤ ‖θ̂ − θ‖M1

N
≤

√
D∗,

R1/2 ≤ ‖θ̂ − θ‖M1
N
≤ R1/2 + 2[γn]BN |(X1,Y1)

}
≥ inf

θ∈Θ
Pθ

{
(R̂N − τN,n)1/2 ≤ R1/2,

R1/2 + 2[γn]BN ≤ (R̂N + zατN,n)1/2 + 2[γn]BN |(X1,Y1)
}

= inf
θ∈Θ

Pθ

{
(R̂N − τN,n)1/2 ≤ R1/2 ≤ (R̂N + zατN,n)1/2 |(X1,Y1)

}
≥ 1 − α,

which leads to the theorem.

Proof of Theorem 3.1. Note that here the random variables (X,Y ) are contin-
uous. Then we can use the result of Lemma 3.3 and the continuity of probability
to obtain the result.
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Birgé, L. (2002). Discussion of “Random rates in anisotropic regression,” by M. Hoffman and

O. Lepski. Ann. Statist. 30, 359-363.
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