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Abstract: Multiple testing procedures have become an integral element of analysis

in many practical problems. The development of sound procedures has become

an important statistical issue. Many procedures have been suggested and many

criteria of goodness have been used. Most recent procedures are stepwise in nature.

Perhaps the most fundamental (and typically overlooked) issue is the behavior of

the multiple testing procedure as it relates to each individual testing problem.

In this paper we study two of the most popular stepwise procedures. We demon-

strate that the individual tests they induce are inadmissible in some important

two-sided testing models when correlation is present. That is, for each individual

hypothesis testing problem, a test exists whose size is less than or equal that of

the stepwise procedure test and whose power is greater than or equal that of the

stepwise procedure test with some strict inequality. This means that the overall

multiple testing procedure is inadmissible whenever a loss based on the number of

Type I and Type II errors is used.

Key words and phrases: Closure principle, general linear model, inadmissibility,

stepwise procedures, treatments vs control, vector risk.

1. Introduction

Triggered by new applications involving large numbers of hypothesis tests,
there has been renewed interest in multiple testing procedures (MTP). Although
new procedures have been proposed, the ability to evaluate procedures has lagged
behind. Many recent procedures are stepwise in nature; eleven of eighteen pro-
cedures studied by Dudoit, Shaffer and Boldrick (2003)(DSB) are step-up or
step-down, for example. At each stage we are told which, if any, hypotheses
should be accepted or rejected and whether or not we should continue. This
process does induce a test, based on all the data, for each individual hypothesis
testing problem. However, the stepwise construction often makes it difficult to
examine the individual tests. Yet perhaps the most fundamental (and typically
overlooked) issue is the behavior of the MTP as it relates to individual testing
problems.

In particular, suppose an individual test induced by a MTP is inadmissible
for the standard hypothesis testing loss. That is, for that individual hypothesis
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testing problem, a test exists whose size is less than or equal that of the stepwise
procedure test, and whose power is greater than or equal that of the stepwise
procedure test, with some strict inequality. It would then follow that the overall
procedure is inadmissible whenever the risk function is a monotone function of
the expected number of Type I errors and the expected number of Type II errors.
This is the main thought of this paragraph, and is what the reader needs to carry
away as the main idea.

Now let Z be k×1 multivariate normal, with mean µ and known covariance
Σ = (σij). Test k hypotheses Hi : µi = 0 vs Ki : µi 6= 0, i = 1, . . . , k. Popular
MTPs for this problem are the step-up and step-down procedures based on p-
values determined by test statistics Wi = |Zi|/σ

1/2
ii . The FDR controlling step-

wise procedure of Benjamini and Hochberg (1995) and its offsprings (see for
example Benjamini and Yekutieli (2001), Sarkar (2002), and several others listed
in DSB (2003)) are covered by the results in Sections 3-5 of this paper. We
emphasize that in this paper we focus only on the case where the alternative
hypothesis is two-sided, i.e., Ki : µi 6= 0, and where Σ is not diagonal.

Previous decision theory results were obtained, for a variety of models and
loss functions, for one-sided alternatives or two-sided alternatives when Σ is diag-
onal. Such results, including some on inadmissibility, appear in Cohen and Sack-
rowitz (2005a,b, 2007), Cohen, Kolassa and Sackrowitz (2007), and in Muller,
Parmigiani, Robert and Rousseau (2004).

Returning to the model of this paper in which we consider two-sided alter-
natives only, we assume at least one off-diagonal element of Σ is non-zero. We
show that step-up and step-down procedures are inadmissible for a k-dimensional
vector loss where each component of the vector loss is a 0-1 loss function for each
individual hypothesis testing problem. The interpretation of the result is thus
the following: if ψSD

i (z) is the ith test for hypothesis Hi, for step-down, then
there exists a test ψ∗

i (z) whose size is less than or equal to the size of ψSD
i (z) and

whose power is greater than or equal to the power of ψSD
i (z), with some strict

inequality. Such a finding is somewhat surprising for it is not true if Σ is diago-
nal. The k-dimensional vector loss is the most liberal in the sense that the class
of admissible MTPs is largest for this loss when compared to the 2-dimensional
vector of CS (2005b) and when compared to the typical linear combination loss
functions used by Lehmann (1957), Ishwaran and Rao (2003) and Genovese and
Wasserman (2002).

Next consider the general linear model

y = Xβ + ε, (1.1)

where ε is n × 1 multivariate normal, with mean 0 and covariance σ2I, σ2 un-
known, β is a k × 1 vector of unknown parameters, and X is an n × k fixed
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matrix of rank k < n. Then β̂ ∼ N(β, σ2S−1), S = X ′X, where β̂ = S−1X ′y.
Test Hi : βi = 0 vs Ki : βi 6= 0, i = 1, . . . , k. A condition, often satisfied, is
found under which the usual step-wise procedures are inadmissible. This result
is relevant for the selection of variables problem in multiple regression.

Another model for which a similar result holds is that for testing (k − 1)
treatments against a control. That is, assume Xij , i = 1, . . . , k, j = 1, . . . , n
are independent normal variables with means µi and unknown variance σ2. Test
Hi : νi = µi − µk = 0 vs Ki : νi 6= 0, i = 1, . . . , k − 1.

In Section 2 we give preliminaries and describe the stepwise procedures.
Inadmissibility for the normal dependent model is given in Section 3. Results for
the general linear model are presented in Section 4. Results for the problem of
testing treatments against a control are given in Section 5.

2. Preliminaries and Stepwise Procedures

Assume Z is k × 1 multivariate normal, with unknown mean µ and known
covariance Σ. Assume also that Σ = (σij) has at least one non-zero off diagonal
element. Without loss of generality we take σ21 6= 0. We consider k testing
problems, namely

Hi : µi = 0 vs Ki : µi 6= 0, i = 1, . . . , k. (2.1)

The alternatives in (2.1) are two-sided.
We regard the problem of testing the k hypotheses as a 2k finite action

problem, see Lehmann (1957). An action is designated by a = (a1, . . . , ak)′,
where ai = 0 or 1 for i = 1, . . . , k. An action ai = 1 means Hi is rejected,
whereas if ai = 0, Hi is accepted. Let vi(µi) = 1 if µi 6= 0, and vi(µi) = 0 if
µi = 0.

Test functions for the ith testing problem are denoted by ψi(z), where ψi(z)
is the probability of rejecting Hi given z is observed. Let ψ(z) =

(
ψ1(z), . . . , ψk(z)

)
.

A loss function is a function of (a,µ). For an individual testing problem a 0-1
loss function is

ai

(
1 − vi(µi)

)
+ (1 − ai)vi(µi) (2.2)

or simply
ai(1 − vi) + (1 − ai)vi. (2.3)

The corresponding risk function for a procedure ψ(z) for the ith problem is

Ri

(
ψi(z),µ

)
= (1 − vi)Eµψi(z) + viEµ

(
1 − ψi(z)

)
. (2.4)

A vector risk function for the multiple testing problem, called VRI, is

R(ψ, µ) =
(
R1(ψ1,µ), . . . , Rk(ψk, µ)

)
. (2.5)
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We conclude this section with a description of the step-up and step-down pro-
cedures for testing the two-sided alternatives in (2.1), see Hochberg and Tamhane
(1987). Write Wi = |Zi|/σ

1/2
ii .

For step-up, let 0 < C1 < · · · < Ck be a sequence of increasing critical values,
and let W(1) ≤ W(2) ≤ · · · ≤ W(k) be the order statistics of W1, . . . ,Wk.

(i) If W(1) ≤ C1, accept H(1) where H(1) is the (2.6)
hypothesis corresponding to W(1). Otherwise reject all H(i).

(ii) If H(1) is accepted, accept H(2) if W(2) ≤ C2. Otherwise reject H(2). . . . ,H(k).

(iii) In general, at stage j, if W(j)≤Cj accept H(j). Otherwise reject H(j), . . . ,H(k).

For step-down procedures, we use the same notation.

(i) If W(k) > Ck, reject H(k). Otherwise accept all H(i). (2.7)

(ii) If H(k) is rejected, reject H(k−1) if W(k−1) > Ck−1. Otherwise accept H(1), . . .,
H(k−1).

(iii) In general, at stage j, if W(k−j+1) > Ck−j+1, reject H(k−j+1). Otherwise
accept H(1), . . . ,H(k−j+1).

3. Normal Dependent Model

Let Z ∼ N(µ, Σ), Σ = (σij), σij 6= 0 for some i 6= j. Test Hi : µi = 0 vs
Ki : µi 6= 0. The risk function is VRI given in (2.6). It will be helpful to let

D =

σ11 0
. . .

0 σkk

, and let U = D−1/2Z so that U ∼ N(ν = D−1/2µ, G =

D−1/2ΣD−1/2). Write G = (gij) so that gii = 1 and let Wi = |Ui| for i = 1, . . . , k.
The density of U is

fU (u; ν) =
( 1

(2π)
k
2 |G|

k
2

)
exp−1

2
{
u′G−1u + ν ′G−1ν − 2ν ′G−1u

}
. (3.1)

Equivalent hypotheses to those based on µi are Hi : νi = 0 vs Ki : νi 6= 0, for
i = 1, . . . , k. Let ψSD(u) be the step-down procedure described in Section 2.

Theorem 3.1. Consider the normal model of this section and the testing problem
(2.1). For the risk function (2.5), the step-down procedure ψSD(u) given at (2.7)
is inadmissible.

Proof. We show that the test ψSD
i (u) is inadmissible for the equivalent testing

problem Hi : νi = 0 vs Ki : νi 6= 0, i = 1, . . . , k. Without loss of generality we
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take σ12 = σ21 6= 0 and focus on H1 vs K1, with ψSD
1 (u) = ψSD

1 (Gy) = φSD
1 (y).

We first make the transformation Y = G−1U so (3.1) yields the density of Y as

fY (y; ν) = α(ν)h(y) exp{ν ′y} = α(ν)h(y) exp{y1ν1 + ν(2)′y(2)}, (3.2)

where y(2) = (y2, . . . , yk)′, ν(2) = (ν2, . . . , νk)′, α is a function of ν, and h is a
function of y. A result of Matthes and Truax (1967) is that a necessary condition
for φSD

1 (y) to be admissible is, conditional on y(2), that the acceptance region in
y1 be an interval for almost all y(2). To show φSD

1 (y) is inadmissible we find three
points y∗, y∗∗, y∗∗∗ with y∗1 > y∗∗1 > y∗∗∗1 for fixed y(2), such that φSD

1 (y∗) = 0,
φSD

1 (y∗∗) = 1 and φSD
1 (y∗∗∗) = 0. This same pattern will hold for points in the

neighborhoods of y∗, y∗∗, y∗∗∗, and this will prove the theorem.
For now, let σ21 > 0 so that g21 > 0. Note that |gi1| < 1 for i = 2, . . . , k. To

identify y∗, y∗∗,y∗∗∗, recall Y = G−1U . Now let 0 < ε < (C2 − C1)/4 and let

A =
{
u :

C1 + C2

2
− ε < u1 <

(C1 + C2)
2

+ ε,

−C2 ≤ u2 < −C2 +
εg21

2
, Ck + ε < ui < Ck + 2ε, i = 3, . . . , k

}
. (3.3)

Let
u∗ =

(C2 + C1

2
,−C2, Ck + 1.5ε, . . . , Ck + 1.5ε)′. (3.4)

Note that u∗ ∈ A and, from (2.7), ψSD
2 (u∗) = 0 and ψSD

1 (u∗) = 0. Furthermore
ψSD

1 (u) = 0 for all u ∈ A. Now let

u∗∗ = u∗ − ε(1, g21, . . . , gk1)′ = u∗ − εg. (3.5)

Note again from (2.7) that ψSD
1 (u∗∗) = 1. If u ∈ A is transformed the same way,

u → u − εg, then ψSD
1 (u − εg) = 1. Next let

u∗∗∗ = u∗ − u∗
1g (3.6)

so that from (2.7), ψSD
1 (u∗∗∗) = 0. Finally note that y∗ = G−1u∗, y∗∗ =

y∗− (ε, 0, . . . , 0)′, y∗∗∗ = y∗−
(
(C2 +C1)/2

)
(1, 0, . . . , 0)′, so that y∗1 > y∗∗1 > y∗∗∗1

and y(2)∗ = y(2)∗∗ = y(2)∗∗∗ with φSD
1 (y∗) = 0, φSD

1 (y∗∗) = 1, φSD
1 (y∗∗∗) = 0.

This completes the proof of the theorem for σ21 > 0.
For σ21 < 0, choose

u∗ =
(
− C2 + C1

2
,−C2, Ck + 1.5ε, . . . , Ck + 1.5ε

)′
, (3.7)

u∗∗ = u∗ + ε(1, g21, . . . , gk1)′, (3.8)

u∗∗∗ = u∗ +
(C2 + C1

2
)
g. (3.9)
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Argue as in the case of σ21 > 0.
Theorem 3.2. Under the assumptions of Theorem 3.1, the step-up procedure
ψSU (u) given at (2.6) is inadmissible.
Proof. The proof is similar to the proof of Theorem 3.1.

4. General Linear Model

The general linear model we study is given at (1.1). Our starting point here
is β̂ ∼ N(β, σ2S−1), where at least one off diagonal element of S−1 = A = (aij)
is non-zero. Without loss of generality we take a21 6= 0. Let V = y′y − β̂

′
Sβ̂,

let T = y′y, and note that V/(n − k) is an unbiased estimator of σ2 such that
V/σ2 is chi-square with (n − k) degrees of freedom. The joint density of (β̂, T ),
in exponential family form, is

α(β, σ2)h(β̂, T ) exp
{
β1S(1)

β̂

σ2
+ β(2)S(2) β̂

σ2
− (

1
2
σ2)T}, (4.1)

where β̂
′
Sβ̂ ≤ T , S(1) is the first row of S and S(2) is the (k − 1) × k matrix

determined by the last (k − 1) rows of S, and β̂
(2)

is the (k − 1)× 1 subvector of
β̂ that excludes β̂1.

To test Hi : βi = 0 vs Ki : βi 6= 0, stepwise procedures use the statistics

Wi =
β̂2

i (n − k)

aii(T − β̂
′
Sβ̂)

. (4.2)

The Wi have F1,n−k distributions under Hi. We seek a sufficient condition under
which ψSD

1 (β̂, T ) is an inadmissible test for H1 : β1 = 0 vs K1 : β1 6= 0 for the
0-1 loss function.

If we let U = Sβ̂ then, in light of (4.1), we seek a sufficient condition
such that the step-down test for H1 has acceptance sections in u1, for fixed
u2, . . . , uk, T that are not intervals. That is, if φSD

1 (u, T ) ≡ ψSD
1 (β̂, T ), we

seek three values of u1, say u∗
1, u

∗∗
1 , u∗∗∗

1 , u∗
1 < u∗∗

1 < u∗∗∗
1 or u∗

1 > u∗∗
1 > u∗∗∗

1 ,
such that φSD

1 (u∗
1, u

(2)) = 0, φSD
1 (u∗∗

1 ,u(2)) = 1, and φSD
1 (u∗∗∗

1 , u(2)) = 0, for
some u(2) fixed. Note that we can show u1 = β̂1s11.2 + (s12, . . . , s1k)S−1

22 u(2),
where s11.2 = s11 − (s12, . . . , s1k)S−1

22 (s12, . . . , s1k)′. This means we can look for
β̂∗

1 , β̂∗∗
1 , β̂∗∗∗

1 so that ψSD
1 (β̂, T ) has the same behavior as φSD

1 (u, T ) for fixed
U (2), T .

Recall that the test statistics are given in (4.2). Choose β̂
∗

so that

(n − k)β̂∗2
i

aii(T − β̂
∗′

Sβ̂
∗
)

=


Ck + ∆1, i = 3, . . . , k

C1 + ∆2, i = 1
C2, i = 2,

(4.3)
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where ∆1 > 0, 0 < ∆2 < C2 − C1. Thus ψ1(β̂
∗
, T ) = ψ2(β̂

∗
, T ) = 0 and

ψi(β̂
∗
, T ) = 1 for i = 3, . . . , k. Let g′ = (a11, . . . , a2k) be the first column of

A = S−1. Now consider
β̂
∗ − εg, ε > 0. (4.4)

Note that
S(β̂

∗ − εg) = Sβ̂
∗ − ε(1, 0, . . . , 0)′. (4.5)

Thus for the points β̂
∗ − εg we have that u(2) = (u2, . . . , uk)′ is fixed and u1 is

monotone in ε.
For ε sufficiently small we have, by continuity,

(n − k)(β̂∗
i − εg∗i )

2

aii

(
T − (β̂

∗ − εg)′S(β̂
∗ − εg)

) >

{
Ck, i = 3, . . . , k

C1, i = 1
. (4.6)

We want to show that, in addition,

(n − k)(β̂∗
2 − εg2)2

a22

(
T − (β̂

∗ − εg)′S(β̂
∗ − εg)

) > C2 (4.7)

for ε sufficiently small. To do this we look at the derivative with respect to ε of
the left-hand side of (4.7) at ε = 0. First note that by (4.5),

(β̂
∗ − εg)′S(β̂

∗ − εg) = β̂
∗′

Sβ̂
∗ − 2εβ̂∗

1 + ε2g11.

Thus the derivative at ε = 0 will be positive if and only if

−g2β̂
∗
2(T − β̂

∗′
Sβ̂

∗
) − β̂∗2

2 β̂∗
1 > 0. (4.8)

Dividing through (4.8) by (T − β̂
∗′

Sβ̂
∗
), recalling g2 = a21, and using (4.3), we

rewrite (4.8) as

β̂∗
2a21 +

√
a11(C1 + ∆2)a22C2

(n − k)2
|β̂∗

2 | < 0. (4.9)

Since we may choose β̂∗
2 to be positive or negative we choose it to have the sign

opposite to a21. Thus, we can find an ε∗ say, so that β̂
∗∗

= β∗ − ε∗g is such that
ψ1(β̂

∗∗
, T ) = 1 provided

|a21|√
a11a22

>

√
(C1 + ∆2)C2

n − k
. (4.10)

Since ∆2 can be arbitrarily small and positive we can replace (4.10) with

|a21|√
a11a22

>

√
C1C2

n − k
. (4.11)



1600 ARTHUR COHEN AND HAROLD B. SACKROWITZ

Finally choose β̂
∗∗∗

= β̂
∗ − (β̂∗

1/a11)g so that, from (4.2), ψ1(β̂
∗∗∗

, T ) = 0
provided β̂

∗∗∗
lies in the sample space. However, note that this is true since

T −
(
β̂
∗ − (

β̂∗
1

a11
)g

)′
S

(
β̂
∗ − (

β̂∗
1

a11
)g

)
= T − β̂

∗′
Sβ̂

∗
+

2β̂∗2
1

a11
− β̂2

1

a11

≥ T − β̂
∗′

Sβ̂
∗

> 0.

We summarize the discussion in the following theorem.

Theorem 4.1. Consider the general linear model of full rank y = Xβ+ε, where
y is n × 1, X is n × k, n > k, β is k × 1, ε ∼ N(0, σ2I). Test Hi : βi = 0 vs
Ki : βi 6= 0, i = 1, . . . , k. Suppose S = X ′X and S−1 = A where A has some
non-zero off diagonal element. Then ψSD is inadmissible for the risk function
VRI provided (4.11) holds.

Remark 4.2. A similar result holds for ψSU .

Remark 4.3. Condition (4.11) will likely hold for cases when n is somewhat
larger than k.

Remark 4.4. As a numerical example we offer the data set used in Stapleton
(1995), page 127. A multiple regression model in which n = 31, k = 7 is displayed.
From the table in Stapleton (1995) of estimates of correlations, we record the left-
hand side of (4.11) for the variables age and max pulse as 0.2629. For α = 0.05
the right-hand side of (4.11) is

√
2.05(2.4)/24 = 0.0924 so that (4.11) is satisfied.

5. Testing Treatments Against Control

Let Xij be independent normal variables with unknown means µi, i =
1, . . . , k, j = 1, . . . , n, and unknown variance σ2. Test Hi : νi = µi − µk = 0
vs Ki : νi 6= 0, i = 1, . . . , k − 1. Two-sided squared t-statistics are

Wi =
(n − 1)k

(√
n(X̄i − X̄k)

)2

2(V − nX̄
′
X̄)

, (5.1)

where X̄i =
∑n

j=1 Xij

/
n, X̄ = (X̄1, . . . , X̄k)′, V =

∑k
i=1

∑n
j=1 X2

ij . The density
of X̄, V is

f ¯X ,V
(x̄, V ) = α(µ, σ2)h(x̄, V ) exp−V/2σ2 exp nx̄′µ/σ2, nx̄′x̄ ≤ V. (5.2)

Let

A =


1 0 · · · 0 − 1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1
1 1 · · · 1 1

 ,
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so that

A−1 = (
1
k
)


(k − 1) −1 · · · −1 1
−1 (k − 1) · · · −1 1
...

...
. . .

...
−1 −1 · · · (k − 1) 1
−1 −1 · · · −1 1

 .

Note if we let ν = Aµ and u = (A−1)′x̄, then expnx̄′µ = exp nu′ν. Thus we
seek a condition under which the step-down procedure for H1 has acceptance
sections in u1 for fixed u2, . . . , uk, that are not intervals. As done in the previous
section we identify three points x̄∗, x̄∗∗ = x̄∗−εg, x̄∗∗∗ = x̄∗−[(x̄∗

1−x̄∗
k)/2]g, with

g = (1, 0, . . . , 0,−1)′, the first column of A′, such that ψSD
1 (x̄∗) = 0, ψSD

1 (x̄∗∗) =
1, ψSD

1 (x̄∗∗∗) = 0. Again, as done in the previous sections, choose x̄∗ so that
Wi = Ck + ∆1, i = 3, . . . , k, W1 = C1 + ∆2, W2 = C2. Such a choice of x̄∗,
with x̄∗

2 − x̄∗
k < 0, ensures that x̄∗, x̄∗∗, x̄∗∗∗ is in the sample space. Furthermore,

arguing as in the previous section, this choice along with the condition

n(n − 1)k > [C1C2]
1
2 (5.3)

suffices to demonstrate that ψSD is inadmissible.

Remark 5.1. Condition (5.3) is easily satisfied in most cases.

Remark 5.2. A similar result holds for step-up.
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