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Abstract: With advancements in data collection and storage technology, data

analysis in modern scientific research and practice has shifted from analyzing

single data sets to coupling several data sets. Here, we consider a nonparametric

kernel regression in an internal data set analysis, using constraints for auxiliary

information from an external data set with summary statistics. Under several

conditions, we show that the proposed constrained kernel regression estimator is

asymptotically normal, and outperforms the standard kernel regression without

external information in terms of the asymptotic mean integrated square error.

Furthermore, we consider the situation in which the internal and external data

have different populations. Simulation results confirm our theory and quantify

the improvements from using external data. Lastly, we demonstrate the proposed

method using a real-data example.

Key words and phrases: Asymptotic mean integrated square error, constraints, data

integration, external summary statistics, two-step kernel regression.

1. Introduction

With advancements in data collection and storage technology, many modern

statistical analyses have access to both primary individual-level data and

information from independent external data sets, which typically may be large,

but often contain relatively crude information, such as summary statistics, owing

to practical and ethical reasons. Sources of external data sets include those

from a population-based census, administrative data sets, and databases from

past investigations. In what follows, primary individual-level data are referred

to as internal data. An internal data set addresses specific scientific questions,

and so may contain additional measured covariates from each sampled subject

and, consequently, is much smaller than external data sets, owing to cost

considerations. Thus, there is a growing need for internal data analysis that

also uses summary information from external data sets. This line of research fits

into a more general framework of data integration (Kim, Wang and Kim (2021);

Lohr and Raghunathan (2017); Merkouris (2004); Rao (2021); Yang and Kim

(2020); Zhang, Ouyang and Zhao (2017); Zieschang (1990)), and differs from

traditional meta-analysis, which is based on multiple data sets with summary
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statistics, without an internal individual-level data set possibly containing

additional covariates.

Here, we examine a regression between a univariate response variable Y and

a covariate vector U , based on an internal individual-level data set in which both

Y and U are measured, and an external data set with summary statistics on Y

and X, where X is a part of the vector U , that is, U = (X,Z), with Z being

the part of U not measured in the external data set, owing to the high cost of

measuring Z or the progress of new technology and/or new scientific relevance

related to measuring Z.

Under the same setting and a parametric model between the response Y

and covariate vector U , Chatterjee et al. (2016) propose a constrained maximum

likelihood estimation by using the summary information from an external data set

in the form of constraints added to the observed likelihood for the internal data.

Other parametric or semiparametric approaches using information from external

data sets include those of Breslow and Holubkov (1997); Chen and Chen (2000);

Deville and Särndal (1992); Kim, Wang and Kim (2021); Lawless, Kalbfleisch

and Wild (1999); Qin et al. (2015); Scott and Wild (1997); Wu and Sitter (2001).

We focus on nonparametric kernel regression (Bierens (1987); Wand and

Jones (1994); Wasserman (2006)), a well-established approach that does not

require assumptions on the regression function between Y and U , except for

some smoothness conditions. Because of the well-known curse of dimensionality

for kernel-type methods, we focus on a low-dimensional covariate U . A discussion

on how to handle a large-dimensional U is given in Section 5.

To use summary information from an external data set, we propose a two-

step constrained kernel (CK) regression method. In the first step, we apply a

constrained optimization procedure to obtain a fitted regression value µ̂i at each

observedUi in the internal data set, with sample size n, for i = 1, . . . , n, subject to

constraints constructed using the summary information from the external data

set. As a prediction, µ̂i is usually better than the fitted value at Ui from the

standard kernel regression, because it uses external information. In the second

step, we apply the standard kernel regression, treating µ̂i as the observed Y -

values, to obtain the entire estimated regression function.

To measure the performance of nonparametric regression methods, Fan and

Gijbels (1992) propose the asymptotic mean integrated square error (AMISE).

Using the AMISE, we conduct both theoretical and empirical studies on the

performance of the proposed CK. The results show that when the sample size of

the external data set is at least comparable with that of the internal data set,

under some conditions, the CK improves on the standard kernel method that does

not use external information. Moreover, the improvement can be substantial.

The remainder of the paper is organized as follows. Section 2 describes

the methodology, and establishes the asymptotic normality of the CK estimator

and its superiority over the standard kernel estimator in terms of the AMISE.



KERNEL REGRESSION WITH CONSTRAINTS 1677

We begin with the internal and external data sharing the same population,

and then study the robustness of the proposed method and some extensions to

heterogeneous populations. Section 3 presents our simulation results, and Section

4 discusses an example. Section 5 concludes the paper. All technical details are

provided in the Supplementary Material.

2. Methodology and Theory

2.1. Two-step CK estimation

The internal data set contains individual-level observations (Yi,Ui), for i =

1, . . . , n, independent and identically distributed (i.i.d.) from the population of

(Y,U), where Y is a univariate response of interest, U is a p-dimensional vector

of continuous covariates associated with Y , n is the sample size of internal data

set, and p is a fixed integer smaller than n and does not vary with n. We wish

to estimate the regression function

µ(u) = E(Y | U = u), (2.1)

the conditional expectation of Y given U = u, for any u ∈ U, the range of U .

Let κ(u) be a given kernel function on Rp, where throughout this paper, Rd

denotes the d-dimensional Euclidean space. We assume that U is standardized

so that the same bandwidth b > 0 is used for every component of U in the kernel

regression. The standard kernel regression estimator of µ(u) in (2.1), for any

fixed u ∈ U, based on the internal data set is

µ̂K(u) = argmin
µ

n∑
i=1

κb(u−Ui)(Yi − µ)2

=

∑n
i=1 Yiκb(u−Ui)∑n
i=1 κb(u−Ui)

, (2.2)

where κb(a) = b−pκ(a/b), a ∈ Rp.

The external data set is another i.i.d. sample of size m from the population

of (Y,X), independent of the internal sample, where X is a q-dimensional sub-

vector of U , for q ≤ p. We consider the scenario in which only some summary

statistics are available from the external data set. Specifically, the external data

set provides a vector β̂g of least squares estimates of β based on external data

under a working model E(Y |X) = β⊤g(X) (not necessarily correct), where a⊤

denotes the transpose of the vector a throughout, and g is a function from Rq

to Rk with a fixed k. The form of g is known, and given as part of the external

information. For example, g(X) = (1,X⊤)⊤.

Regardless of whether the working model is correct, the asymptotic limit

of β̂g is βg = Σ−1
g E{g(X)Y }, under some moment conditions, where Σg =

E{g(X)g(X)⊤} is assumed to be finite and positive definite. From E(Y |X) =
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E{E(Y |U)|X} = E{µ(U)|X}, we obtain that

E{β⊤
g g(X)g(X)⊤} = E{Y g(X)⊤}Σ−1

g E{g(X)g(X)⊤}
= E{E(Y |X)g(X)⊤}
= E[E{µ(U)|X}g(X)⊤]

= E{µ(U)g(X)⊤}.

Hence, the summary information from external data can be used through the

constraint

E[{β⊤
g g(X)− µ(U)}g(X)⊤] = 0. (2.3)

In (2.3), the external information β⊤
g g(X) can be viewed as a projection of µ(U)

into the linear space of g(X). Because µ(U) is directly involved in constraint

(2.3), this constraint is particularly useful for kernel regression. It differs from the

constraint in Chatterjee et al. (2016), which is useful for parametric likelihood

analysis with internal data, but not for kernel regression.

We propose a two-step procedure. In the first step, we use (2.3) and the

external information to obtain predicted values µ̂1, . . . , µ̂n of µ(U1), . . . , µ(Un),

respectively, to improve µ̂K(U1), . . . , µ̂K(Un) from the standard kernel regression.

To achieve this, we estimate µ = (µ(U1), . . . , µ(Un))
⊤ using the n-dimensional

vector µ̂ = (µ̂1, . . . , µ̂n)
⊤ that is the solution to the following constrained

minimization:

µ̂ = argmin
(µ1,...,µn)⊤∈Rn

∑n
i=1

∑n
j=1 κl(Ui −Uj)(Yj − µi)

2∑n
k=1 κl(Ui −Uk)

(2.4)

subject to
n∑

i=1

{β̂⊤
g g(Xi)− µi}g(Xi)

⊤ = 0, (2.5)

where the constraint in (2.5) is an empirical analog of (2.3) for the estimation of

µ based on the internal data, and l in (2.4) is a bandwidth that may differ from

b in (2.2). We discuss selecting a bandwidth in Section 2.3.

To motivate the objective function in (2.4) being minimized, note that∑n
j=1 κl(Ui −Uj){Yj − µ(Ui)}2∑n

k=1 κl(Ui −Uk)
≈ E[{Y − µ(U)}2|U = Ui]

for each i and, hence, the objective function in (2.4), divided by n, approximates

1

n

n∑
i=1

E[{Y − µ(U)}2|U = Ui] ≈ E[{Y − µ(U)}2].

To derive an explicit form of µ̂ in (2.4), let G be the n × n matrix with

the ith row equal to g(Xi)
⊤, and let ĥ and µ̂K be n-dimensional vectors with

ith components equal to β̂⊤
g g(Xi) and µ̂K(Ui), respectively, with µ̂K defined by
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(2.2). Then, solving (2.4)−(2.5) is the same as solving

µ̂ = argmin
ν∈Rn

(ν⊤ν − 2ν⊤µ̂K), subject to G⊤(ν − ĥ) = 0.

From the Lagrange multiplier L(ν,λ) = ν⊤ν − 2ν⊤µ̂K + 2λ⊤G⊤(ν − ĥ) and

∇νL(ν,λ) = 2ν − 2µ̂K + 2Gλ, we obtain that µ̂ = µ̂K − Gλ. From the

constraint, G⊤ĥ = G⊤µ̂ = G⊤µ̂K − G⊤Gλ. Solving for λ, we obtain that

λ = (G⊤G)−1G⊤µ̂K − (G⊤G)−1G⊤ĥ. Hence, µ̂ has the explicit form

µ̂ = µ̂K +G(G⊤G)−1G⊤(ĥ− µ̂K). (2.6)

This estimator adds an adjustment term to µ̂K , the estimator in (2.2) from

the standard kernel regression. The adjustment involves the difference ĥ − µ̂K

and the projection matrix G(G⊤G)−1G⊤. Because the additional information

from the external data set is used in constraint (2.5), µ̂ in (2.6) is expected to be

better than µ̂K , which does not use external information, when the sample size

of the external data set is at least comparable with that of the internal data set.

Proposition 1 in Section 2.2 quantifies this improvement.

To obtain an improved estimator of the entire regression function µ(u)

defined by (2.1), not just the function µ(u) at U1, . . . ,Un, we propose a second

step, in which we apply the standard kernel regression, with the responses

Y1, . . . , Yn replaced with µ̂1, . . . , µ̂n, respectively. Specifically, our proposed CK

estimator of µ(u) is

µ̂CK(u) =

∑n
i=1 µ̂iκb(u−Ui)∑n
i=1 κb(u−Ui)

, (2.7)

where b is the same bandwidth as in (2.2).

2.2. Asymptotic theory

We now establish the asymptotic normality of µ̂CK(u) in (2.7) for a fixed u,

as the sample size n of the internal data set increases to infinity. All technical

proofs for this section are given in the Supplementary Material.

Theorem 1. Assume the following conditions:

(A1) The response Y has a finite E|Y |s, with s > 2 + p/2, and Σg = E{g(X)

g(X)⊤} is positive definite. The covariate vector U has a compact support

U ⊂ Rp. The density of U is bounded away from infinity and zero on U,
and has bounded second-order derivatives.

(A2) The functions µ(u) = E(Y |U = u), σ2(u) = E[{Y − µ(U)}2|U = u],

and g(x) are Lipschitz-continuous; µ(u) has bounded third-order derivatives;

and E(|Y |s|U = u) is bounded.

(A3) The kernel κ is a positive, bounded, and Lipschitz-continuous density with
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mean zero and finite sixth moments.

(A4) The bandwidths b in (2.2) and l in (2.4) satisfy b → 0, l → 0, l/b → r ∈
(0,∞), nbp → ∞, and nb4+p → c ∈ [0,∞), as the internal sample size

n → ∞.

(A5) The external sample size m satisfies n = O(m), that is, n/m is bounded by

a fixed constant.

Then, for any fixed u ∈ U,
√
nbp{µ̂CK(u)− µ(u)} d−→ N

(
BCK(u), VCK(u)

)
,

where
d−→ denotes convergence in distribution as n → ∞,

BCK(u) = c1/2[(1 + r2)A(u)− r2g(x)⊤Σ−1
g E{g(X)A(U)}],

A(u) =

∫
κ(v)

{
1

2
v⊤∇2µ(u)v + v⊤∇ log fU(u)∇µ(u)⊤v

}
dv, (2.8)

VCK(u) =
σ2(u)

fU(u)

∫ {∫
κ(v − rw)κ(w)dw

}2

dv,

and fU is the density of U .

(A1) is stronger than the usual condition in the theory of kernel regression,

which requires only that s > 2 and the density fU is positive on U. It is a sufficient

condition in our proof of the efficiency of µ̂ in (2.6) in the first step.

From the theory of standard kernel regression (Opsomer (2000)), under

(A1)−(A4), the kernel estimator µ̂K(u) in (2.2) also satisfies

√
nbp{µ̂K(u)− µ(u)} d−→ N

(
BK(u)VK(u)

)
,

BK(u) = c1/2A(u), VK(u) =
σ2(u)

fU(u)

∫
{κ(v)}2dv. (2.9)

Theorem 1 and (2.9) indicate that using external information does not

improve the convergence rate 1/
√
nbp when estimating µ(u), regardless of the

value of m, for the following reasons: (i) the summary information from the

external data is not in the form of a kernel regression, and (ii) the estimation of

µ(u) involves Z = z, which is not in the external data set.

Using external information does affect the asymptotic bias or variance in a

kernel estimation of µ(u). We now compare the asymptotic performance of the

proposed estimator (2.7) with that of the standard kernel estimator (2.2), which

does not use external information, although they have the same convergence rate.

Our first result relates to predicting µ = (µ(U1), . . . , µ(Un))
⊤. For the

standard kernel (2.2), µ is predicted as µ̂K = (µ̂K(U1), . . . , µ̂K(Un))
⊤; for the

proposed estimator (2.7), µ is predicted as µ̂ in (2.6). The following result shows
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that, with probability tending to one as n → ∞, ∥µ̂K − µ∥2 ≥ ∥µ̂− µ∥2, where
∥a∥2 = a⊤a, for a vector a.

Proposition 1. Under the conditions in Theorem 1 and nb4 → ∞,

∥µ̂K − µ∥2 − ∥µ̂− µ∥2

nb4
p−→ E{A(U)g(X)⊤}Σ−1

g E{A(U)g(X)},

where
p−→ denotes convergence in probability as n → ∞, and A(u) is defined in

(2.8).

This result shows the usefulness of constraint (2.3) from external information.

Even when there is no covariate in the external data set, that is, g ≡ 1 and

βg = E(Y ), constraint (2.3) is still useful, because it becomes E(Y ) = E{µ(U)},
with E(Y ) estimated using the external information β̂g, which is equal to the

sample mean of Y in the external data set, to help with the estimation of µ using

the internal data.

For any kernel estimator µ̂(u) satisfying
√
nbp{µ̂(u)−µ(u)} d−→N

(
B(u), V (u)

)
,

we consider the AMISE, a measure of accuracy often used in the literature (Fan

and Gijbels (1992)):

AMISE(µ̂) = E[{B(U)}2 + V (U)].

We now compare the proposed µ̂CK in (2.7) with the standard µ̂K in (2.2) in

terms of the AMISE. From (2.8) and (2.9),

E{VK(U)− VCK(U)} = {ρ(0)− ρ(r)}E
{
σ2(U)

fU(U)

}
,

where r is given in (A4) and

ρ(r) =

∫ {∫
κ(w − rv)κ(v)dv

}2

dw. (2.10)

Under mild conditions (e.g., Example 1 and Proposition 2), ρ(0) − ρ(r) ≥ 0

and, hence, using external information reduces the variability in the kernel

estimation. On the other hand, if we define Ag(X) = g(X)⊤Σ−1
g E{g(X)A(U)},

then E[{A(U)−Ag(X)}Ag(X)] = 0 and, consequently,

E{BCK(U)}2 = cE[A(U) + r2{A(U)−Ag(X)}]2

= cE{A(U)}2 + c r2(2 + r2)E{A(U)−Ag(X)}2

= E{BK(U)}2 + c r2(2 + r2)E{A(U)−Ag(X)}2,

where c and r are given in (A4). This indicates that the expected squared

asymptotic bias of µ̂CK is larger than that of µ̂K , where the difference is measured

as E{A(U) − Ag(X)}2, that is, how good is Ag(X) as an approximation to
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A(U) using external information. If external information is very useful so that

E{A(U)−Ag(X)}2 is close to zero, then E{BCK(U)}2 is close to E{BK(U)}2.
Combining the results for the expected asymptotic variance and squared

asymptotic bias, we conclude that, in terms of the AMISE, the proposed µ̂CK is

better than the standard µ̂K if and only if (see the proof of Proposition 2 in the

Supplementary Material)

c < τ
ρ(0)− ρ(r)

r2(2 + r2)
, τ =

E{σ2(U)/fU(U)}
E{A(U)−Ag(X)}2

. (2.11)

The value of τ in (2.11) can be viewed as a bias−variance trade-off when

using external information. In practice, the bandwidth b (and thus its limit

c = limn→∞ nb4+p) is often chosen in relation to the variability. For example,

when σ2(u) = σ2 does not depend on u, Theorem 4.2 in Eubank (1999) shows

that the optimal bandwidth is the one with c = c0σ
2, for a constant c0 > 0. Thus,

if external information is useful and τ is large, then a c satisfying the inequality

in (2.11) can be achieved, and µ̂CK is better than µ̂K in terms of the AMISE.

On the other hand, if τ is small, we may not be able to choose a c satisfying the

inequality in (2.11) to achieve a meaningful/reasonable improvement.

Example 1 (Gaussian kernels). The Gaussian kernel κ(u) = (2π)−p/2e−∥u∥2/2

is the density of a p-dimensional normal distribution N(0, Ip), where Ip is the

identity matrix of order p. For this kernel,
∫
κ(w − rv)κ(v)dv is the density of

N(0, (1 + r2)Ip) and, thus, the function in (2.10) is

ρ(r) =

∫ [
{2π(1 + r2)}−p/2e−∥w∥2/2

]2
dw = (2

√
π)−p{(1 + r2)}−p/2.

Hence, ρ(0)− ρ(r) = {1− (1 + r2)−p/2}/(2
√
π)p > 0, for any r > 0 and, in terms

of the AMISE, µ̂CK is better than µ̂K if and only if

c < τ
{1− (1 + r2)−p/2}
(2
√
π)p r2(2 + r2)

.

The result in Example 1 can be extended to non-Gaussian kernels, as

summarized in the following result.

Proposition 2. Assume the conditions in Theorem 1 with r ≤ 1. Assume further

that the function in (2.10) has continuous second-order derivative ρ′′(s) < 0, for

0 < s < 1. Then, AMISE(µ̂CK) < AMISE(µ̂K) if and only if

c < τ
−
∫ 1

0
(1− t)2ρ′′(rt)dt

2(2 + r2)
.
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2.3. Bandwidth selection

(A4) in Theorem 1 provides the rates of the bandwidths l and b for µ̂CK .

In practice, we need to choose l and b with a given sample size n. To do so,

we can apply the following k-fold cross-validation (CV), as described in Györfi

et al. (2002). Let G1, . . . ,Gk be a random partition of the internal data set with

approximately equal size n/k, and let µ̂
(−j)
CK (u) be the estimator in (2.7) with

bandwidths l and b, but without using data {(Yi,Ui), i ∈ Gj}, for j = 1, . . . , k.

Then, over a reasonable range, we select (l, b) that minimizes

CV(l, b) =
k∑

j=1

∑
i∈Gj

{µ̂(−j)
CK (Ui)− Yi}2. (2.12)

When n is not very large, there may not be enough validation terms in (2.12),

in which case, we can apply the following repeated sub-sampling cross-validation

(RSCV) as an alternative. We independently create G1, . . . ,GB, where each Gj is

a subset of the internal data set with size n0, and n − n0 is comparable with n.

Then, we select (l, b) that minimizes CV(l, b) in (2.12), with k replaced with B.

Note that B can be a large number, not like the restricted k in the k-fold CV.

2.4. Confidence intervals

Numerous works have studied confidence intervals for µ(u), at a fixed u,

based on a kernel estimation (Fan and Gijbels (1996); Eubank (1999); Wasserman

(2006)). The main technical difficulty is how to handle the bias in the kernel

estimator of µ(u), regardless whether or not we use external information. Note

that the asymptotic bias BK(u) for the standard kernel estimation and BCK(u)

for the proposed CK estimation are not zero unless c = 0, and c > 0 leads to the

best convergence rate for any kernel estimation.

If we can successfully estimate BK(u) or BCK(u), then we can apply

confidence intervals based on a kernel estimation with bias correction. However,

bias estimation is difficult (Hall (1992); Wasserman (2006)). Here, we suggest

using under-smoothing (Hall (1992); Wasserman (2006)), that is, we choose

bandwidths smaller than those chosen using CV (Section 2.3) for the confidence

intervals. Specifically, if b and l are selected using CV for the CK method,

then we calculate µ̂CK(u) using the under-smoothing bandwidths cll and cbb in

the first and second stages, respectively, where 0 < cl ≤ 1 and 0 < cb ≤ 1

are under-smoothing constants. Then we set a confidence interval [ µ̂CK(u) −
zαV̂

1/2
CK (u), µ̂CK(u) + zαV̂

1/2
CK (u)] for µ(u), where V̂CK is the variance estimator

given by (2.8),

V̂CK(u) =
σ̂2
CK(u)

f̂U(u)

∫ {∫
κ(v − rw)κ(w)dw

}2

dv,
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f̂U is the kernel density estimator of fU , and

σ̂2
CK(u) =

∑n
i=1{Yi − µ̂CK(Ui)}2κb̃(u−Ui)∑n

i=1 κb̃(u−Ui)
,

for some bandwidth b̃. When σ2(u) does not depend on u, a simplified estimator

is

σ̂2
CK =

1

n

n∑
i=1

{Yi − µ̂CK(Ui)}2.

Similarly, if we apply the standard kernel without using external information,

then the under-smoothing bandwidth is cbb for µ̂K , and the confidence interval is

obtained by replacing µ̂CK(u) with µ̂K(u) and V̂CK(u) with

V̂K(u) =
σ̂2
K(u)

f̂U(u)

∫
{κ(v)}2dv.

The performance of this confidence interval is examined using a simulation

in Section 3.2.

2.5. Robustness against heterogeneity in populations and extensions

Here, we consider the situation in which the populations of the internal and

external data are different. Let R be the indicator for internal and external

data. Let (Yi,Ui, Ri), for i = 1, . . . , N , be i.i.d. with total sample size N , where

(Yi,Ui) with Ri = 1 are the observed internal data, and (Yi,Xi) with Ri = 0 are

the external data, but only summary statistics based on the external data are

available. Our interest is to estimate the regression function for the population

of the internal data, that is,

µ1(u) = E(Y | U = u, R = 1), (2.13)

which reduces to µ(u) in (2.1) when the internal and external populations are

the same.

The results obtained thus far hold when the internal and external populations

are homogeneous, that is, (Y,X,Z) ⊥ R, where A ⊥ B denotes that A and B

are independent. To what extent are the results robust against a violation of

(Y,X,Z) ⊥ R?

With R = 1 and R = 0 indicating the internal and external data, respectively,

constraint (2.3) is replaced with

E[{β⊤
g g(X)− µ1(U)}g(X)⊤|R = 1] = 0, (2.14)

where

βg = [E{g(X)g(X)⊤|R = 0}]−1E{g(X)Y |R = 0}, (2.15)
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because constraint (2.14) is used to estimate µ1(u) in (2.13) using the internal

data (conditioning on R = 1), whereas βg in (2.15) is the limit of the estimator

β̂g based on the external data (conditioning on R = 0). That is, if (2.14) holds,

then all derived results hold after we replace (2.3) with (2.14) and constraint (2.5)

with
N∑
i=1

Ri{β̂⊤
g g(Xi)− µi}g(Xi)

⊤ = 0.

We now show that (2.14) holds under the condition

E(Y | X, R = 1) = E(Y | X, R = 0) and X ⊥ R. (2.16)

Under (2.16), βg in (2.15) is equal to [E{g(X)g(X)⊤|R = 1}]−1E{g(X)Y |R = 1}
(see the Supplementary Material) and, consequently,

E{β⊤
g g(X)g(X)⊤|R = 1} = E{Y g(X)⊤|R = 1}

= E[E{Y g(X)⊤|X, R = 1}|R = 1]

= E[E{Y |X, R = 1}g(X)⊤|R = 1]

= E[E{µ1(U)|X, R = 1}g(X)⊤|R = 1]

= E{µ1(U)g(X)⊤|R = 1},

that is, (2.14) holds.

Therefore, the derived results so far are robust, as long as (2.16) holds. Note

that (2.16) is still much weaker than (Y,X,Z) ⊥ R, because the first equality in

(2.16) involves only the moment instead of the distribution, and (2.16) is actually

implied by (Y,X) ⊥ R.

Without (2.16), constraint (2.14) may not be satisfied, and thus the derived

results may not hold. Extensions may be possible if we have individual-level

external data. Suppose that the first equality in (2.16) holds, and estimates of

ĥ(x) of h(x) = E(Y | X = x) are available as external information. Then, we

may extend our method by replacing constraint (2.5) with

N∑
i=1

Ri{µi − ĥ(Xi)}g(Xi)
⊤ = 0. (2.17)

Note that ĥ can be obtained if we have individual-level external data.

Finally, we consider an extension from a different direction. In Section 2.1,

we consider only summary-level external information from a linear regression.

We can generalize this to any generalized estimating equation (GEE), such as

a logistic regression for a discrete response Y . Assume that the summary-level

statistic β̂ is a solution of the following GEE based on external data:
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N∑
i=1

(1−Ri)H(β̂, Yi,Xi) = 0,

where H is a known k-dimensional function. As an analogy of (2.5), the following

constraint for GEE summary-level information can be used:

N∑
i=1

RiH(β̂, µi,Xi) = 0.

3. Simulation Results

In this section, we present simulation results to examine the performance of

our proposed CK estimator (2.7), and to compare it with that of the standard

kernel estimator (2.2) that does not use external information.

We consider univariate covariates X = X and Z = Z (p = 2 and q = 1) in

two cases:

(i) Bounded covariates: X = BW1 + (1 − B)W2 and Z = BW1 + (1 − B)W3,

where W1, W2, and W3 are identically distributed as uniform on [−1, 1], B

is uniform on [0, 1], and W1, W2, W3, and B are independent;

(ii) Normal covariates: (X,Z) is bivariate normal with means zero, variances

one, and correlation 0.5.

Conditioned on (X,Z), the response Y is normal with mean µ(X,Z) and variance

one, where µ(X,Z) follows one of the following four models:

(M1) µ(X,Z) = X/2− Z2/4;

(M2) µ(X,Z) = cos(2X)/2 + sin(Z);

(M3) µ(X,Z) = cos(2XZ)/2 + sin(Z);

(M4) µ(X,Z) = X/2− Z2/4 + cos(XZ)/4.

Note that all four models are nonlinear in (X,Z); (M1)−(M2) are additive

models, and (M3)−(M4) are nonadditive.

The internal and external data are generated according to the following two

settings:

(S1) The internal and external data sets are sampled independently from

the same population of (Y,X,Z) with sizes n = 200 and m = 1000,

respectively.

(S2) A total of N = 1200 data are generated from the population of (Y,X,Z).

The internal and external data are indicated by R = 1 and R = 0,

respectively, and given (Y,X,Z), R is generated according to P(R =

1 | Y,X,Z) = 1/ exp(1 + 2|X|). Under this setting, the unconditional

P(R = 1) is between 10% and 15%.
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Note that (S2) is for the scenario in Section 2.5.

3.1. Mean integrated square error

First, we examine performance of the kernel estimators in terms of the mean

integrated square error (MISE). The following measure is calculated by simulation

with S replications:

MISE =
1

S

S∑
s=1

1

T

T∑
t=1

{µ̂(s)
1 (Us,t)− µ1(Us,t)}2, (3.1)

where {Us,t : t = 1, . . . , T} are test data for each simulation replication s, the

simulation is repeated independently for s = 1, . . . , S, µ1 is defined by (2.13),

and µ̂
(s)
1 is an estimator of µ1, using a method described previously based on

internal and external data, independent of the test data. We consider two ways

of generating test data Us,t. The first is to use T = 121 fixed grid points on

[−1, 1] × [−1, 1] with equal space. The second is to take a random sample of

T = 121, without replacement, from the covariate U of the internal data set,

for each fixed s = 1, . . . , S and independently across s. Hence, the simulated

nbp×MISE approximates the AMISE.

To show the benefit of using external information, we calculate the improve-

ment in efficiency as follows:

IMP = 1− min{MISE(µ̂CK) over all CK methods}
MISE(µ̂K)

. (3.2)

In all cases, we use the Gaussian kernel introduced in Example 1. The

bandwidths b and l in (2.7) affect the performance of the kernel methods. We

consider two types of bandwidths in the simulation. The first is “the best

bandwidth”; for each method, we evaluate the MISE in a pool of bandwidths,

and display the one with the minimal MISE. This shows the best we can achieve

in terms of bandwidth, but it cannot be used in practice. The second is to select

a bandwidth from a pool of bandwidths using 10-fold CV (2.12), which produces

a decent bandwidth that can be applied to real data.

In practice, we cannot choose g in constraint (2.5), because it is given as part

of the external information. In our simulation, we try different g to determine

the effect on the CK method. Under setting (S1), we consider four choices of g:

g(X) = 1, (1, X)⊤, (1, ĥ(X))⊤, and (1, X, ĥ(X))⊤, where ĥ is a kernel estimator

of h(x) = E(Y |X = x).

The simulated MISE defined in (3.1) based on S = 500 replications is

presented in Table 1 for setting (S1). Note that, for the case of g(X) = 1

or (1, X)⊤, the results in Table 1 for the CK estimator apply to both external

summary statistics and external individual-level data. We also calculate the

integrated bias by simulation, which is given by (3.1), with {µ̂(s)
1 (Us,t)−µ1(Us,t)}2
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Table 1. Simulated MISE (3.1) and IMP (3.2) with S = 500 under setting (S1).

µ̂CK (2.7) with constraint (2.5), g =

Covariate Model Test data b, l µ̂K (2.2) 1 (1, X) (1,ĥ) (1, X, ĥ) IMP %

Bounded M1 Sample Best 0.021 0.018 0.006 0.007 0.009 72.27

CV 0.030 0.026 0.014 0.015 0.018 51.41

Grid Best 0.046 0.043 0.018 0.019 0.024 61.12

CV 0.067 0.063 0.040 0.040 0.046 40.59

M2 Sample Best 0.046 0.037 0.036 0.033 0.029 36.30

CV 0.051 0.046 0.044 0.043 0.040 22.27

Grid Best 0.122 0.099 0.097 0.094 0.081 33.67

CV 0.134 0.123 0.122 0.125 0.110 18.16

M3 Sample Best 0.042 0.033 0.030 0.030 0.030 29.69

CV 0.046 0.041 0.039 0.039 0.039 15.95

Grid Best 0.101 0.088 0.086 0.088 0.081 20.20

CV 0.120 0.110 0.110 0.113 0.107 10.51

M4 Sample Best 0.022 0.018 0.007 0.008 0.009 67.20

CV 0.030 0.027 0.016 0.015 0.018 47.53

Grid Best 0.049 0.046 0.022 0.022 0.027 54.87

CV 0.073 0.068 0.045 0.044 0.050 39.36

Normal M1 Sample Best 0.067 0.060 0.050 0.049 0.062 27.57

CV 0.077 0.069 0.061 0.061 0.076 21.10

Grid Best 0.034 0.028 0.019 0.017 0.019 49.38

CV 0.035 0.031 0.025 0.023 0.026 35.66

M2 Sample Best 0.080 0.079 0.078 0.074 0.072 10.08

CV 0.087 0.088 0.086 0.086 0.084 3.96

Grid Best 0.053 0.053 0.052 0.051 0.049 8.10

CV 0.063 0.065 0.063 0.069 0.066 -0.00

M3 Sample Best 0.090 0.090 0.088 0.091 0.092 2.36

CV 0.099 0.098 0.097 0.102 0.102 2.05

Grid Best 0.053 0.051 0.050 0.053 0.051 6.33

CV 0.061 0.061 0.060 0.066 0.063 2.73

M4 Sample Best 0.072 0.068 0.058 0.056 0.063 22.64

CV 0.077 0.072 0.065 0.065 0.074 15.92

Grid Best 0.034 0.030 0.024 0.021 0.021 39.89

CV 0.036 0.034 0.029 0.026 0.028 27.44

replaced with µ̂
(s)
1 (Us,t) − µ1(Us,t). The results are shown in Table A1 of the

Supplementary Material.

From Table 1, the proposed CK estimator may be substantially better (in

terms of the MISE) than the standard kernel estimator that does not use external

information. The improvement in efficiency, IMP, defined in (3.2), is often over

10%, and can be as high as 72%. The bandwidths selected using CV work

well, although they may not achieve the best efficiency gain. The three choices

of g functions in constraint (2.5), that is, g(X) = (1, X)⊤, (1, ĥ(X))⊤, and

(1, X, ĥ(X))⊤, work well and have comparable performance, but none show any

definite superiority. Thus, g(X) = (1, X)⊤ is recommended for its simplicity.
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Under setting (S2), our main interest is to evaluate the performance of

the CK estimator with a fixed choice g(X) = (1, X)⊤ when the internal and

external populations are different, as described in Section 2.5. We study two CK

estimators: µ̂CK , with constraint (2.5), which is incorrect because (2.16) does

not hold, and µ̂CK , with constraint (2.17), which is asymptotically valid (Section

2.5). The simulated MISE based on S = 500 replications is shown in Table 2.

From Table 2, the estimator using constraint (2.17) is correct and more

efficient than estimators that do not use external information. The CK estimator

using constraint (2.5) is biased, because (2.16) does not hold, and its performance

depends on the magnitude of the bias. In some cases, it can be much worse than

the others, and in other cases, it is as good as the CK estimator using constraint

(2.17).

Overall, the simulation results support our asymptotic theory, and show that

the CK estimator outperforms the kernel estimators that do not use external

information.

3.2. Confidence intervals at some covariate values

The second part of the simulation examines the performance of the approxi-

mate 95% confidence intervals described in Section 2.4 by applying the CK and

standard kernel with under-smoothing. We consider setting 1, with simulation

size S = 1000. Table 3 shows the simulated coverage probability (CP) and

length of the confidence intervals and the bias of the kernel estimators at some

values of u. Note that the length is proportional to the simulation average of

the estimation squared error, and thus it indicates the efficiency of the kernel

estimator and the confidence interval. The values of the under-smoothing scales

cb and cl (see Section 2.4) and the true µ(u) are also included in Table 3.

From Table 3, when the covariates are bounded, all confidence intervals

perform well in terms of the CP. The intervals based on the CK method have

much shorter lengths than those based on the standard kernel without external

information. For normally distributed covariates, the intervals do not have a very

good CP in a few cases, indicating that the asymptotic theory does not yet apply,

although, in general, the CK interval is shorter than the interval based on the

standard kernel.

4. Application: An Example

We apply the proposed method to the University of Queensland Vital Signs

Dataset (UQVSD) for intensive care patients (Liu, Görges and Jenkins (2012)),

which we use as the internal data set. The response Y under consideration is

the systolic blood pressure, a critical biomarker for health conditions. We are

interested in how Y is affected by two covariates, collected using a sensor-gas

analysis, namely, the inspired oxygen (inO2) and the end-tidal oxygen (etO2)
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Table 2. Simulated MISE (3.1) and IMP (3.2) with S = 500 under setting (S2).

µ̂CK (2.7) with
constraint

Covariate Model Test data b, l µ̂K (2.2) (2.5) (2.17) IMP %
Bounded M1 Sample Best 0.021 0.014 0.006 72.77

CV 0.028 0.015 0.015 48.49
Grid Best 0.047 0.028 0.018 61.67

CV 0.062 0.040 0.039 36.67
M2 Sample Best 0.046 0.041 0.035 24.33

CV 0.053 0.044 0.044 17.16
Grid Best 0.123 0.103 0.095 23.29

CV 0.136 0.123 0.124 9.23
M3 Sample Best 0.042 0.036 0.030 27.89

CV 0.045 0.039 0.038 15.45
Grid Best 0.099 0.091 0.085 14.38

CV 0.120 0.111 0.112 7.06
M4 Sample Best 0.022 0.015 0.007 67.85

CV 0.030 0.015 0.015 50.65
Grid Best 0.049 0.032 0.022 54.14

CV 0.070 0.044 0.043 38.58
Normal M1 Sample Best 0.069 0.057 0.050 27.07

CV 0.075 0.060 0.059 21.81
Grid Best 0.034 0.024 0.019 44.34

CV 0.035 0.025 0.024 29.56
M2 Sample Best 0.082 0.082 0.079 3.15

CV 0.087 0.086 0.087 0.72
Grid Best 0.056 0.057 0.053 5.73

CV 0.062 0.062 0.063 -0.97
M3 Sample Best 0.092 0.092 0.089 3.26

CV 0.101 0.10 0.100 1.31
Grid Best 0.054 0.054 0.050 7.34

CV 0.061 0.060 0.059 3.00
M4 Sample Best 0.070 0.062 0.057 17.69

CV 0.079 0.068 0.067 14.96
Grid Best 0.033 0.027 0.024 27.32

CV 0.035 0.029 0.029 17.58
For CK estimator under all constraints, g(X) = (1, X).

concentration. In addition, we consider three other covariates, namely, heart

rate, respiratory rate, and blood oxygen saturation. Because the sample size is

only n = 32, it is important that we seek assistance from external data.

We use the Medical Information Mart for Intensive Care III (MIMIC-III)

(Johnson et al. (2016)) as the external data set with a large sample size of 54,060.

This data set is a freely available digital health record database with information

of patients needing critical care. Because both data sets study intensive care

units, they can be considered as samples from the same population, or from
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Table 3. Simulated coverage probability (CP), length of the confidence internals, bias of
the kernel estimator at some values of u (S = 1000 under setting (S1)), and values of
µ(u) and under-smoothing scales cb and cl.

Covariate Model µ̂K (2.2) µ̂CK (2.7) µ̂K (2.2) µ̂CK (2.7) µ̂K (2.2) µ̂CK (2.7)

Bounded M1 CP 0.94 0.95 0.95 0.95 0.94 0.96
length 0.94 0.38 0.81 0.42 0.94 0.37
bias 0.02 -0.01 -0.01 -0.02 -0.02 0.00
cb 0.30 0.50 0.30 0.80 0.30 0.50
cl 1.00 0.30 1.00
µ(u) µ(−0.5,−0.5) = −0.31 µ(0, 0) = 0 µ(0.5, 0.5) = 0.19

M2 CP 0.95 0.95 0.94 0.95 0.93 0.95
length 0.86 0.58 0.75 0.63 0.86 0.52
bias 0.03 0.04 -0.03 -0.04 -0.00 -0.04
cb 0.50 0.80 0.50 0.30 0.50 0.80
cl 0.80 0.80 1.00
µ(u) µ(−0.5,−0.5) = −0.21 µ(0, 0) = 0.5 µ(0.5, 0.5) = 0.75

M3 CP 0.94 0.95 0.94 0.95 0.95 0.95
length 0.82 0.60 0.70 0.52 1.17 0.62
bias 0.02 0.03 -0.01 -0.01 -0.00 -0.02
cb 0.50 1.00 0.50 0.30 0.30 0.10
cl 0.30 1.00 1.00
µ(u) µ(−0.5,−0.5) = −0.04 µ(0, 0) = 0.5 µ(0.5, 0.5) = 0.92

M4 CP 0.95 0.96 0.94 0.95 0.95 0.95
length 0.93 0.38 0.82 0.43 0.93 0.48
bias 0.01 -0.01 -0.01 -0.02 -0.03 -0.04
cb 0.30 0.50 0.30 0.80 0.30 0.80
cl 1.00 0.30 0.30
µ(u) µ(−0.5,−0.5) = −0.07 µ(0, 0) = 0.25 µ(0.5, 0.5) = 0.43

Normal M1 CP 0.91 0.91 0.90 0.92 0.91 0.93
length 1.59 1.06 0.66 0.52 0.62 0.50
bias 0.11 0.15 -0.01 -0.03 -0.04 -0.03
cb 0.50 0.30 0.50 0.80 0.80 0.80
cl 1.00 0.30 1.00
µ(u) µ(−1, 1) = −0.75 µ(0, 0) = 0 µ(1, 1) = 0.25

M2 CP 0.95 0.94 0.87 0.85 0.91 0.93
length 1.03 1.04 0.73 0.67 0.59 0.59
bias 0.01 -0.01 -0.05 -0.06 -0.00 -0.02
cb 1.00 1.00 0.50 0.50 1.00 0.80
cl 0.80 0.50 1.00
µ(u) µ(−1, 1) = 0.63 µ(0, 0) = 0.5 µ(1, 1) = 0.63

M3 CP 0.91 0.91 0.89 0.91 0.89 0.89
length 1.03 0.96 0.72 0.58 0.98 0.68
bias 0.18 0.13 -0.00 -0.01 0.05 0.08
cb 1.00 1.00 1.00 0.80 0.50 0.30
cl 0.50 0.30 1.00
µ(u) µ(−1, 1) = 0.63 µ(0, 0) = 0.5 µ(1, 1) = 0.63

M4 CP 0.91 0.90 0.89 0.91 0.90 0.94
length 1.69 1.32 0.69 0.54 0.66 0.53
bias 0.15 0.20 -0.02 -0.03 -0.02 -0.02
cb 0.50 0.80 0.50 0.80 0.80 1.00
cl 0.30 0.30 0.80
µ(u) µ(−1, 1) = −0.62 µ(0, 0) = 0.25 µ(1, 1) = 0.39
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similar populations. However, the external data set MIMIC-III does not have

covariates inO2 and etO2, although both data sets share the same response Y

and covariates heart rate, respiratory rate, and blood oxygen saturation. Thus,

inO2 and etO2 are considered two components of Z.

As the sample size for the internal data set is only 32, we use a kernel

regression with a lower dimension and, thus, consider a linear combination of

heart rate, respiratory rate, and blood oxygen saturation as a one-dimensional

covariate X. The coefficients of this linear combination are from the first

eigenvector of the well-known sufficient dimension reduction algorithm SAVE

(Cook and Weisberg (1991); Shao, Cook and Weisberg (2007)), from which the

first eigenvector provides more than 94% of the variability. Therefore, the kernel

regression uses a three-dimensional covariate U .

Because we have all external individual-level data, we use them in two ways.

The first uses constraint (2.5), in which g⊤ = (1, X) and β̂g is the least squares

estimator under a linear regression between Y and the covariate X. The second

considers constraint (2.17) to allow the populations from the two data sets to be

different. For comparison, we also include the standard kernel estimator (2.2).

All bandwidths are selected using the RSCV, with B = 100 and n0 = 3 (Section

2.3).

Figures 1−2 show plots of the fitted kernel regression of Y to the three

covariates, X, inO2, and etO2, using the three kernel methods described

previously. Because we cannot produce a four-dimensional figure for Y and the

three covariates, Figure 1 shows the relationship between Y , X, and etO2 when

inO2 is fixed at three quartiles, namely, 61.2, 67.7, and 77.9. Figure 2 shows

the relationship between Y , X, and inO2 when etO2 is fixed at three quartiles,

namely, 56.3, 63.7, and 72.0. Table 4 shows the 95% confidence intervals for

systolic blood pressure under selected covariate values with the under-smoothing

scale cb = 0.8, cl = 1 and simplified variance estimator σ̂2
CK in Section 2.4.

It can be seen that the CK provides a clean pattern for the relationship

between Y and the covariates, whereas the standard kernel regression without

external information provides vague and flat regressions. Furthermore, the CK

provides shorter confidence intervals.

5. Discussion

The curse of dimensionality is a well-known problem for nonparametric

methods. Thus, the proposed CK method in Section 2 is intended for a low-

dimensional covariate U , that is, p is small. If p is not small, then we should

reduce the dimension of U prior to applying the CK, or any kernel methods. For

example, consider a single-index model assumption (Li (1991)), that is, µ(U) in

(2.1) is assumed to be

µ(U) = µ(η⊤U), (5.1)
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Figure 1. Plot of the fitted kernel regression of systolic blood pressure (Y ) to etO2 and
X, given that inO2 is equal to its first, second, and third quartiles.

where η is an unknown p-dimensional vector. The well-known SIR technique (Li

(1991)) can be applied to obtain a consistent and asymptotically normal estimator

η̂ of η in (5.1). Once η is replaced with η̂, the kernel method can be applied,

with U replaced with the one-dimensional “covariate” η̂⊤U . We can also apply

other dimension-reduction techniques developed under assumptions weaker than

(5.1) (Cook and Weisberg (1991); Li and Wang (2007); Shao, Cook and Weisberg

(2007); Xia et al. (2002); Ma and Zhu (2012)). In fact, we reduce the dimension

using the method in Cook and Weisberg (1991) and Shao, Cook and Weisberg

(2007) in the example (Section 4).

We turn to the dimension of X in the external data set. When (2.16) holds,

constraint (2.5) can be used and the least square-type estimator β̂g is not seriously

affected by the dimension of X, unless the dimension of X is ultra-high in the
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Figure 2. Plot of the fitted kernel regression of systolic blood pressure (Y ) to inO2 and
X, given that etO2 is equal to its first, second, and third quartiles.

sense that the dimension of X over the size of the external data set does not

tend to zero. If the dimension of X is ultra-high, then we may consider the

following approach. Instead of using constraint (2.5), we use the component-wise

constraints

n∑
i=1

{µi − ĥ(k)(X
(k)
i )}gk(X

(k)
i )⊤ = 0, k = 1, . . . , q, (5.2)

where X
(k)
i is the kth component of Xi, gk(X

(k)) is a function of X(k), and

ĥ(k)(X
(k)
i ) is equal to β̂⊤

gk
gk(X

(k)) when (2.5) is used. Additional constraints are

involved in (5.2), but the estimation involves only the one-dimensional X(k), for

k = 1, . . . , q.
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Table 4. 95% confidence intervals of systolic blood pressure under selected covariate
points with under-smoothing scale cb = 0.8, cl = 1.

Covariate value 95% confidence interval

X inO2 etO2 Method lower upper length

-99.5 61.2 56.3 µ̂CK (2.7) 121.12 124.40 3.28

µ̂CK (2.17) 121.68 125.00 3.32

µ̂K (2.2) 109.88 113.97 4.08

-99.0 67.7 63.7 µ̂CK (2.7) 116.67 123.68 7.01

µ̂CK (2.17) 117.05 124.13 7.08

µ̂K (2.2) 106.08 114.80 8.72

-99.5 77.9 72.0 µ̂CK (2.7) 118.09 122.26 4.17

µ̂CK (2.17) 118.48 122.70 4.22

µ̂K (2.2) 105.81 111.00 5.19

The kernel κ we adopted in (2.2), (2.4), and (2.7) is called the second-

order kernel, such that the convergence rate of µ̂CK(u) − µ(u) is n−2/(4+p).

A dth-order kernel with d ≥ 2, as defined by Bierens (1987), may be used to

achieve a convergence rate of n−d/(2d+p). Alternatively, we may also apply other

nonparametric smoothing techniques, such as the local polynomial Fan et al.

(1997), to achieve a convergence rate of n−d/(2d+p), for d ≥ 2.

Our results can be extended to scenarios in which several external data

sets are available. Because each external source may provide different covariate

variables, we may need to apply component-wise constraints (5.2) by estimating

ĥ(k) by combining all external sources that collect covariate X(k). If the

populations of the external data sets are different, then we may have to apply a

combination of the methods described in Section 2.5.

Supplementary Material

The online Supplementary Material contains all technical lemmas and proofs,

as well as some additional numerical results.
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