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Abstract: In general, selecting hyperparameters for unsupervised learning problems

is challenging, owing to the lack of ground truth for validation. Despite the

prevalence of this problem in statistics and machine learning, especially in clustering

problems, there are not many methods for tuning these hyperparameters with

theoretical guarantees. In this paper, we provide a framework that relies on

maximizing a trace criterion connecting a similarity matrix with clustering solutions.

This framework has provable guarantees for selecting hyperparameters in a number

of distinct models. We consider both the sub-Gaussian mixture model and network

models as examples of independently and identically distributed (i.i.d.) data and

non-i.i.d. data, respectively. We demonstrate that the same framework can be used

to choose the Lagrange multipliers of the penalty terms in semidefinite programming

relaxations for community detection and the bandwidth parameter for constructing

kernel similarity matrices for spectral clustering. By incorporating a cross-validation

procedure, we show that the framework also provides consistent model selection for

network models. Using a variety of simulated and real data examples, we show that

our framework outperforms other widely used tuning procedures in a broad range

of parameter settings.

Key words and phrases: Clustering, hyperparameter tuning, model selection,

network models, sub-Gaussian mixtures.

1. Introduction

A standard statistical model has parameters, which characterize the un-

derlying data distribution; an inference algorithm to learn these parameters

typically involve hyperparameters (or tuning parameters). Popular examples

include the penalty parameter in regularized regression models, the number

of clusters in clustering analysis, the bandwidth parameter in kernel-based

clustering, nonparameteric density estimation or regression methods (Wasserman

(2006); Tibshirani, Wainwright and Hastie (2015)). It is well known that selecting

these hyperparameters may require repeated training in order to search through

combinations of plausible hyperparameter values and often has to rely on good

heuristics and the user’s domain knowledge.

Cross-validation (CV) is a nonparametric procedure often used to perform
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automated hyperparameter tuning (Stone (1974); Zhang (1993)), and has been

used extensively in machine learning and statistics (Hastie, Tibshirani and

Friedman (2001); Feng and Simon (2020)). CV has been studied extensively

in supervised learning settings, particularly for low-dimensional linear models

(Shao (1993); Yang (2007)) and for penalized regression in high dimension

(Wasserman and Roeder (2009)). Other notable stability-based methods for

model selection in similar supervised settings include those of Breiman (1996),

Bach (2008), Meinshausen and Bühlmann (2010) and Lim and Yu (2016). Finally,

numerous empirical methods exist in the machine learning literature for tuning

hyperparameters in various training algorithms (Bergstra and Bengio (2012);

Bengio (2000); Snoek, Larochelle and Adams (2012); Bergstra et al. (2011)).

However, few of these methods provide theoretical guarantees.

In contrast to the supervised setting with i.i.d. data used in many of the

aforementioned methods, we consider unsupervised clustering problems with a

possible dependence structure in the data points. We propose an overarching

framework for hyperparameter tuning and model selection for a variety of

probabilistic clustering models. Here, the challenge is two-fold. First, because

labels are not available, choosing a criterion for evaluation and a method for

selecting hyperparameters is not easy. One may consider splitting the data into

folds and selecting the model or hyperparameter with the most stable solution.

However, for multiple splits of the data, the inference algorithm may get stuck

at the same local optima; thus, stability alone can lead to a suboptimal solution

(von Luxburg (2010)). Wang (2010) and Fang and Wang (2012) overcome this

problem by redefining the number of clusters as that which gives the most stable

clustering for a given algorithm. In Meila (2018), a semi-definite program (SDP)

maximizing an inner product criterion is performed for each clustering solution,

and the value of the objective function is used to evaluate the stability of the

clustering. Their analysis is done without model assumptions, and when many

clustering solutions need to be evaluated, perfoming SDP for each solution can

become computationally expensive. The second difficulty in the unsupervised

clustering setting arises if there is a dependence structure in the data points,

which necessitates careful splitting procedures in a CV-based procedure.

To illustrate the generality of our framework, we focus on sub-Gaussian

mixtures and statistical network models as two examples for i.i.d. data and non

i.i.d. data, respectively, where clustering is a natural problem. We diversify the

models considered in Fan et al. (2020) in two ways. First, we use a different

formulation for sub-Gaussian mixtures with a more realistic noise structure.

Second, in addition to the stochastic block model (SBM), we consider the more

general mixed membership stochastic block model (MMSB). By observing the

fact that clustering algorithms typically operate on a similarity matrix arising

from these models, which can be decomposed as signal plus noise, we propose

a unified framework that measures the quality of a clustering solution using a
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trace criterion involving the similarity matrix. The framework provides provable

guarantees for hyperparameter tuning and model selection in these models. Our

study contributes to the literature as follows:

1. Our framework can provably tune the following hyperparameters in a

computationally efficient way, without needing CV:

(a) the Lagrange multiplier of the penalty term in a type of semidefinite

relaxation for community detection problems in SBM; and

(b) the bandwidth parameter used in kernel spectral clustering for sub-

Gaussian mixture models.

2. We show that the same framework incorporating a CV procedure performs

consistent model selection (i.e., determining number of clusters):

(a) when the model selection problem is embedded in the choice of the

Lagrange multiplier in another type of SDP relaxation for community

detection in SBM; and

(b) for general model selection for the MMSB, which includes the SBM as

a sub-model.

We choose to focus on model selection for network-structured data, because

there already is an extensive repertoire of empirical and provable methods for

i.i.d. mixture models, including the gap statistic (Tibshirani, Walther and Hastie

(2001)), silhouette index (Rousseeuw (1987)), slope criterion (Birgé and Massart

(2001)), eigen-gap (von Luxburg (2007)), penalized maximum likelihood (Leroux

(1992)), information theoretic approaches (AIC (Bozdogan (1987)), BIC (Keribin

(2000); Drton and Plummer (2017)), minimum message length (Figueiredo and

Jain (2002))), spectral clustering, and diffusion-based methods (Maggioni and

Murphy (2018); Little, Maggioni and Murphy (2017)). Next, we discuss related

work on models considered in this paper.

1.1. Related work

Hyperparameters and model selection in network models: In network

analysis, many methods exist for selecting the true number of communities

(denoted by r) with consistency guarantees, including those of Lei (2016), Wang

and Bickel (2017), Le and Levina (2015), and Bickel and Sarkar (2016) for

SBM, and that of Fan et al. (2022) for more general models such as the degree-

corrected mixed membership block model. However, these methods have not

been generalized to other hyperparameter selection problems. For CV-based

methods, existing strategies involve node splitting (Chen and Lei (2018)) or edge

splitting (Li, Levina and Zhu (2020)). In the former, it is established that CV

prevents underfitting for model selection in SBM. In the latter, a similar one-

sided consistency result for random dot product models (which includes SBM as
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a special case, see Young and Scheinerman (2007) and a comprehensive survey in

Athreya et al. (2017)) is shown. This method has also been applied empirically

to tune other hyperparameters, although no provable guarantee was provided.

In terms of algorithms for community detection or clustering, SDP methods

have gained a lot of attention (Abbe, Bandeira and Hall (2015); Amini and Levina

(2018); Guédon and Vershynin (2016); Cai and Li (2015); Hajek, Wu and Xu

(2016)) due to their strong theoretical guarantees. Typically, SDP-based methods

can be divided into two broad categories. The first class maximizes a penalized

trace of the product of the adjacency matrix and an unnormalized clustering

matrix (see definition in Section 2.2). Here, the hyperparameter is the Lagrange

multiplier of the penalty term (Amini and Levina (2018); Cai and Li (2015);

Chen and Lei (2018); Guédon and Vershynin (2016)). In this formulation, the

optimization problem does not need to know the number of clusters. However, it

is implicitly required in the final step, which obtains the memberships from the

clustering matrix.

The second class of SDP methods uses a trace criterion with a normalized

clustering matrix (definition in Section 2.2) (Peng andWei (2007); Yan and Sarkar

(2021); Mixon, Villar and Ward (2017)). Here, the constraints directly use the

number of clusters. Yan, Sarkar and Cheng (2017) use a penalized alternative

of this SDP to perform provable model selection for SBMs. However, most of

these methods require appropriate tuning of the Lagrange multipliers, which are

themselves hyperparameters. Usually, the theoretical upper and lower bounds on

these hyperparameters involve unknown model parameters, which are nontrivial

to estimate. The proposed method in Abbe and Sandon (2015) is agnostic of

model parameters, but involves a highly tuned and hard to implement spectral

clustering step (also noted by Perry and Wein (2017)).

In this paper, we use an SDP from the first class (SDP-1) to demonstrate

our provable tuning procedure, and another SDP from the second class (SDP-2)

to establish the consistency guarantee for our model selection method.

Spectral clustering with mixture models: In the statistical machine learning

literature, spectral clustering analyses typically use a Laplacian matrix built

from an appropriately constructed similarity matrix of the data points. There

has been much work (Hein, Audibert and von Luxburg (2005); Hein (2006);

Belkin and Niyogi (2003); Giné and Koltchinskii (2006)) on establishing different

forms of asymptotic convergence of the Laplacian. Recently, Löffler, Zhang and

Zhou (2019) establish error bounds for spectral clustering that uses the gram

matrix as the similarity matrix. Srivastava, Sarkar and Hanasusanto (2023)

obtain error bounds for a variant of spectral clustering for the Gaussian kernel

in the presence of outliers. However, most existing tuning procedures for the

bandwidth parameter of the Gaussian kernel are heuristic and do not have

provable guarantees. Notable methods include that of von Luxburg (2007), which
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chooses an analogous parameter, namely, the radius ϵ in an ϵ-neighborhood graph,

“as the length of the longest edge in a minimal spanning tree of the fully connected

graph on the data points”. Other discussions on selecting the bandwidth can

be found in Hein, Audibert and von Luxburg (2005), Coifman et al. (2008)

and Schiebinger, Wainwright and Yu (2015). Shi, Belkin and Yu (2008) propose a

data-dependent way of setting the bandwidth parameter by suitably normalizing

the 95% quantile of a vector containing 5% quantiles of the distances from each

point.

We present our problem setup, which applies to both mixture and network

models, in Section 2. Section 3 proposes and analyzes our hyperparameter

tuning method, named MATR, for networks and sub-Gaussian mixtures. Next,

in Section 4, we present MATR with a CV-based extension (MATR-CV) and the

related consistency guarantees for model selection for SBM and MMSB models.

Section 5 presents detailed simulated and real data experiments. Section 6

concludes the paper with a discussion.

2. Preliminaries and Notation

2.1. Notation

Let (C1, . . . , Cr) denote a partition of n data points (or nodes in a network)

into r clusters; mi = |Ci| denotes the size of Ci. Denote πmin = mini mi/n. The

cluster membership of each data point is represented by an n×r matrix Z, where

Zij = 1 if data point i belongs to cluster j, and 0 otherwise. Since r is the true

number of clusters, ZTZ has full rank. Given Z, the corresponding unnormalized

clustering matrix is ZZT , and the normalized clustering matrix is Z(ZTZ)−1ZT .

For ease of notation, X can be either a normalized or an unnormalized clustering

matrix, and will be made clear in the context. We use X̃ to denote the matrix

returned by SDP algorithms, which may not be a clustering matrix. Denote Xr

as the set of all possible normalized clustering matrices with cluster number r.

Let Z0 and X0 be the membership and the corresponding normalized clustering

matrix, respectively, from the ground truth. λ is a general hyperparameter;

although with a slight abuse of notation, we also use λ to denote the Lagrange

multiplier in SDP methods. For any matrix X ∈ Rn×n, let XCk,Cℓ
be a matrix

such that XCk,Cℓ
(i, j) = X(i, j) if i ∈ Ck, j ∈ Cℓ, and 0 otherwise. En is the

n × n matrix of all ones. We write ⟨A,B⟩ = trace(ATB). Standard notations of

o,O, oP , OP ,Θ and Ω will be used. Note that “with high probability” (w.h.p.)

means with probability tending to one.

2.2. Problem setup and the trace criterion

We consider a general clustering setting, where the data D gives rise to

an n × n observed similarity matrix Ŝ, where Ŝ is symmetric. Denote A as a

clustering algorithm that operates on the data D with a hyperparameter λ and
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outputs a clustering result in the form of Ẑ or X̂. Here, note that A , Ẑ and

X̂ could all depend on λ. We assume that Ŝ has the form Ŝ = S + R, where

R is a matrix of arbitrary noise, and S is the “population similarity matrix”.

As we consider different clustering models for network-structured data and i.i.d.

mixture data, it will be made clear what Ŝ and S are in each context.

Assortativity (weak and strong): In some cases, we require weak assorta-

tivity on the similarity matrix S, defined as follows. Suppose for data points

i, j ∈ Ck, Sij = akk. Define the minimal difference between the diagonal term

and the off-diagonal terms in the same row cluster as

pgap = min
k

akk − max
i∈Ck,j∈Cℓ,

ℓ ̸=k

Sij

 . (2.1)

Weak assortativity requires pgap > 0. This condition is similar to the weak assor-

tativity defined for block models (e.g. Amini and Levina (2018)). It is mild com-

pared with strong assortativity, which requires mink akk−maxi∈Ck,j∈Cℓ,ℓ̸=k Sij > 0.

SBM: The SBM is a generative model of networks with a community structure

on n nodes. By first partitioning the nodes into r classes which leads to a

membership matrix Z, the n × n binary adjacency matrix A is sampled from

the probability matrix Pij = ZiBZT
j 1(i ̸= j), where Zi and Zj are the i-th and

j-th row, respectively, of the matrix Z, and B is the r × r block probability

matrix. The aim is to estimate the node memberships given A. We assume the

elements of B have order Θ(ρ) with ρ→ 0 at some rate.

MMSB: The SBM can be restrictive when modeling real world networks. As a

result, various extensions have been proposed. The MMSB (Airoldi et al. (2008))

relaxes the requirement on the membership vector Zi being binary and allows the

entries to be in [0, 1]r, such that they sum to one for each i. We denote this soft

membership matrix by Θ.

Under the MMSB, the n × n adjacency matrix A is sampled from the

probability matrix P with Pij = ΘiBΘT
j 1(i ̸= j). We use an analogous definition

for the normalized clustering matrix: X = Θ(ΘTΘ)−1Θ. Note that this reduces

to the usual normalized clustering matrix when Θ is a binary cluster membership

matrix.

Mixture of sub-Gaussian random variables: Let Y = [Y1, . . . , Yn]
T be an

n×d data matrix. We consider a setting in which Yi are generated from a mixture

model with r clusters:

Yi = µa +Wi, E(Wi) = 0, Cov(Wi) = σ2
aI, a = 1, . . . , r, (2.2)

where Wi are independent sub-Gaussian vectors.
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Figure 1. Tuning hyperparameters in spectral clustering and SDP; accuracy measured
by normalized mutual information (NMI). (a) NMI vs. θ, where θ is the bandwidth
parameter in kernel spectral clustering; (b) NMI vs. λ, where λ is the Lagrange multiplier
in 3.1.

Trace criterion: Our framework is centered around the trace ⟨Ŝ,Xλ⟩, where Xλ

is the normalized clustering matrix associated with the hyperparameter λ. This

criterion is used in relaxations of the k-means objective (Mixon, Villar and Ward

(2017); Peng and Wei (2007); Yan, Sarkar and Cheng (2017)) for SDP methods,

and in evaluating stability of a clustering solution (Meila (2018)).

The idea is that the trace criterion is large when data points within the

same cluster are more similar. As a result, this makes the implicit assumption

that the similarity matrix Ŝ (and S) is assortative, that is, data points within

the same cluster have higher similarity based on Ŝ. While this is reasonable for

i.i.d. mixture models, the SBM or MMSB may have a mixture of assortative

and disassortative structures. In what follows, we assume weak assortativity

for the SBM since our algorithms of interest, SDP methods, operate on weakly

assortative networks. For the MMSB, which includes the SBM as a sub-model,

we show that the same criterion still works without assortativity, if we choose Ŝ

to be A2 with the diagonal removed.

3. Hyperparameter Tuning with Known r

In this section, we consider tuning hyperparameters when the true number

of clusters r is known. First, we provide two simulation studies to motivate this

section. The detailed parameter settings for generating the data can be found in

the Supplementary Material, Section S3.1.

First, we consider a four-component Gaussian mixture model. We perform

spectral clustering (k-means on the top r eigenvectors) on the widely used

Gaussian kernel matrix (denoted as K, where K(i, j) = exp (−∥Yi − Yj∥22/(2θ2))
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for data points Yi and Yj), with the bandwidth parameter θ. Figure 1(a) shows

the clustering performance against the ground truth as θ varies using normalized

mutual information (NMI), a common metric used to compare two partitions of

points. The flat region of suboptimal θ shows when the two adjacent clusters

cannot be separated well.

As mentioned in Section 1.1, SDP is an important class of methods for

community detection in the SBM, but its performance can depend on the choice

of the Lagrange multiplier parameter. We consider the following SDP formulation

(Li, Chen and Xu (2018)), which has been widely used, with slight variations,

in the literature (Amini and Levina (2018); Perry and Wein (2017); Guédon and

Vershynin (2016); Cai and Li (2015); Chen and Lei (2018)),

(SDP− 1)
max trace(AX)− λtrace(XEn)

s.t. X ⪰ 0, X ≥ 0, Xii = 1 for 1 ≤ i ≤ n,
(3.1)

where λ is a hyperparameter. Typically, one then performs spectral clustering

(i.e., k-means on the top r eigenvectors) on the output of the SDP to get the

clustering result. In Figure 1(b), we generate an adjacency matrix from the

probability matrix described in the Supplementary Material, Section S3.1 and

use (3.1) with tuning parameter λ from 0 to 1. The accuracy of the clustering

result is measured by the NMI and shown in Figure 1(b). We can see that different

values of λ lead to widely varying clustering performance.

In the general case, we show that when the true cluster number r is known,

an ideal hyperparameter λ can be chosen by simply maximizing the trace

criterion introduced in Section 2.2. The tuning algorithm (MATR) is presented in

Algorithm 1. It takes a general clustering algorithm A , data D, and a similarity

matrix Ŝ as input, and outputs a clustering result Ẑ depending on λ∗, chosen by

maximizing the trace criterion.

Algorithm 1: MAx-TRace (MATR) based tuning algorithm for known
number of clusters.

Input: clustering algorithm A , data D, similarity matrix Ŝ, a set of
candidates {λ1, . . . , λT }, number of clusters r;
Procedure:
for t = 1 : T do

run clustering on D: Ẑt = A (D, λt, r);

compute normalized clustering matrix: X̂t = Ẑt(Ẑ
T
t Ẑt)

−1ẐT
t ;

compute inner product: lt = ⟨Ŝ, X̂t⟩;
end for
t∗ = argmax(l1, . . . , lT );

Output: Ẑt∗

We have the following theoretical guarantee for Algorithm 1.
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Theorem 1. Consider a clustering algorithm A with inputs D, λ, r, and output

Ẑλ. The similarity matrix Ŝ used for Algorithm 1 (MATR) can be written as Ŝ =

S +R. We further assume S is weakly assortative, with pgap defined in Eq (2.1),

and X0 is the normalized clustering matrix for the true binary membership matrix

Z0. Let πmin be the smallest cluster proportion, and τ := nπminpgap. As long as

there exists λ0 ∈ {λ1, . . . , λT}, such that ⟨X̂λ0
, Ŝ⟩ ≥ ⟨X0, S⟩ − ϵ, Algorithm 1 will

output Ẑλ∗, such that∥∥∥X̂λ∗ −X0

∥∥∥2

F
≤ 2

τ

(
ϵ+ sup

X∈Xr

|⟨X,R⟩|
)
,

where X̂λ∗ is the normalized clustering matrix associated with Ẑλ∗ .

In other words, as long as the range of λ we consider covers some optimal

λ value that leads to a sufficiently large trace criterion (compared with the

true underlying X0 and the population similarity matrix S), then the theorem

guarantees that Algorithm 1 will lead to a normalized clustering matrix with

a small error. The deviation ϵ depends on both the noise matrix R and how

close the estimated X̂λ0
is to the ground truth X0, that is, the performance

of the algorithm. To better interpret this trace lower bound, if we take

ϵ = ⟨X̂λ0
− X0, S⟩ + supX∈Xr

|⟨X,R⟩|, then the lower bound on the trace is

automatically satisfied. The solution found by Algorithm 1 is then bounded by∥∥∥X̂λ∗ −X0

∥∥∥2

F
≤ 2

τ

(
⟨X̂λ0

−X0, S⟩+ 2 sup
X∈Xr

|⟨X,R⟩|
)
. (3.2)

In the bound, the second term is noise, whereas the first term measures the

quality of the clustering solution at an ideal λ0. If both terms are small, then the

output from MATR will be close to X0. Later for specific models, we will give

more details on how to interpret the first term. The proof of the theorem is in

the Supplementary Material, Section S1.1.

In what follows, we apply MATR to more specific settings, namely, to select

the bandwidth parameter in spectral clustering for sub-Gaussian mixtures and

the Lagrange multiplier parameter in (3.1) for the SBM.

3.1. Hyperparameter tuning for mixtures of sub-Gaussians

In this case, the data D is Y defined in Eq (2.2), and the clustering algorithm

A is spectral clustering (see the motivating example in Section 3) on the Gaussian

kernel K(i, j) = exp (−∥Yi − Yj∥22/(2θ2)). Note that one could use the similarity

matrix as the kernel itself. However, this makes the trace criterion a function

of the hyperparameter we are trying to tune, which compounds the difficulty of

the problem. For simplicity, we use the negative squared distance matrix as Ŝ,

that is, Ŝij = −∥Yi − Yj∥22. A natural choice for S would be the conditional

expectation of Ŝ given the cluster memberships, which is blockwise constant.
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However, this choice would lead to a suboptimal error rate. Therefore, we use

a slightly corrected variant of the matrix as S (also see Mixon, Villar and Ward

(2017)), called the reference matrix:

Sij = −
d2ab
2
−max

{
0,

d2ab
2

+ 2(Wi −Wj)
T (µa − µb)

}
1(i ∈ Ca, j ∈ Cb), (3.3)

where dab := ∥µa − µb∥, and Wi is defined in Eq (2.2). Note that for i, j in the

same cluster, Sij = 0. Interestingly, this reference matrix is random itself, which

is a deviation from the S used for the network models discussed below. Applying

MATR to select θ, we have the following theoretical guarantee, the proof of which

can be found in the Supplementary Material, Section S1.2.

Corollary 1. Let Ŝ be the negative squared distance matrix, and let S be defined

as in Eq (3.3). Let δsep denote the minimum distance between cluster centers,

that is, mink ̸=ℓ ∥µk − µℓ∥. Denote α = πmax/πmin. As long as there exists θ0 ∈
{θ1, . . . , θT}, such that ⟨X̂θ0 , Ŝ⟩ ≥ ⟨X0, S⟩ − nπminϵ , Algorithm 1 (MATR) will

output a Ẑθ∗, such that w.h.p.

∥X̂θ∗ −X0∥2F ≤ C
ϵ+ rασ2

max(α+min{r, d})
δ2sep

,

where σmax is the largest operator norm of the covariance matrices of the mixture

components, X̂θ∗ is the normalized clustering matrix for Ẑθ∗, and C is a universal

constant.

In this setting, ϵ has to be much smaller than δ2sep in order to guarantee a

small error. As mentioned after Theorem 1, to interpret this trace lower bound

involving ϵ, we can set nπminϵ = ⟨X̂λ0
− X0, S⟩ + supX∈Xr

|⟨X,R⟩|, where the

second term is absorbed into the noise term in the final bound as usual, and the

first term boils down to requiring Xλ0
to be close to a computable SDP solution,

which is close to X0 itself. More details and the proof of Corollary 1 can be found

in the Supplementary Material, Section S1.2.

3.2. Hyperparameter tuning for SBM

We consider choosing λ in (3.1) for community detection in SBM. Here, the

input to MATR, the data D and the similarity matrix Ŝ, are both the adjacency

matrix A. A natural choice of a weakly assortative S is the conditional expecta-

tion of A (denoted P ) up to diagonal entries, which is blockwise constant. The

assortativity condition on S translates naturally to the usual assortativity condi-

tion on B, as required by SDP programs. With suitable conditions on the block

connectivity separation and estimation error, applying Algorithm 1 (MATR) to

tune λ in (3.1) yields a consistent normalized clustering matrix. For brevity, we

defer the detailed statement and proofs to the Supplementary Material, Sec-

tion S1.3.
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4. Hyperparameter Tuning with Unknown r

In this section, we adapt MATR to situations where the number of clusters

is unknown to perform model selection. Similarly to Section 3, we first explain

the general tuning algorithm and state a general theorem that guarantees its

performance. Then, applications to specific models will be discussed in the

following subsection. Since the applications we focus on are network models,

we present our algorithm with the data D being A for clarity. We present our

algorithm using soft membership matrices Θ, which include binary membership

matrices as a special case.

We show that MATR can be extended to model selection if we incorporate

a CV procedure. In Algorithm 2, we present the general MATR-CV algorithm

which takes a clustering algorithm A , adjacency matrix A, and similarity matrix

Ŝ as inputs. Compared with MATR, MATR-CV has two additional parts.

The first part (Algorithm 3) splits the nodes into two subsets for training

and testing. This in turn partitions the adjacency matrix A into four submatrices

A11, A22, A21, and its transpose, and similarly for Ŝ. MATR-CV makes use of

all the submatrices: A11 for training, A22 for testing, A11 and A21 for estimating

the clustering result for the nodes in A22 as shown in Algorithm 4, which is

the second additional part. Algorithm 4 clusters testing nodes based on the

cluster membership of the training nodes estimated from A11 and the connections

between the training nodes and the testing nodes A21, the details of which will

be explained as we discuss specific models (see Section 4.1 for MMSB and the

Supplementary Material, Section S2.3 for SBM).

Like other CV procedures, we note that MATR-CV requires specifying a

training ratio γtrain and the number of repetitions J . Choosing any γtrain =

Θ(1) does not affect our asymptotic results. Repetitions of the splits are used

empirically to enhance stability; theoretically, we show asymptotic consistency

for any random split. The general theoretical guarantee and the role of the trace

gap ∆ are given in the next theorem.

Theorem 2. Given a candidate set of cluster numbers {r1, . . . , rT} containing

the true number of clusters r, let X̂22
rt

be the normalized clustering matrix obtained

from rt clusters, as described in MATR-CV. Assume the following are true:

(i) with probability at least 1− δunder, maxrt<r⟨Ŝ22, X̂22
rt
⟩ ≤ ⟨Ŝ22, X22

0 ⟩ − ϵunder;

(ii) with probability at least 1− δover, maxr<rt≤rT ⟨Ŝ22, X̂22
rt
⟩ ≤ ⟨Ŝ22, X22

0 ⟩+ ϵover;

(iii) for the true r, with probability at least 1−δest, ⟨Ŝ22, X̂22
r ⟩ ≥ ⟨Ŝ22, X22

0 ⟩−ϵest;

(iv) there exists ∆ > 0, such that ϵest + ϵover ≤ ∆ < ϵunder − ϵest.

Here, ϵunder, ϵest, ϵover > 0. Then, with probability at least 1− δunder − δover − δest,

MATR-CV will recover the true r with trace gap ∆.
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Algorithm 2: MATR-CV.

Input: clustering algorithm A , adjacency matrix A, similarity matrix Ŝ,
candidates {r1, . . . , rT }, number of repetitions J , training ratio γtrain, trace
gap ∆;
for j = 1 : J do

for t = 1 : T do

Ŝ11, Ŝ21, Ŝ22 ← NodeSplitting(Ŝ, n, γtrain);
A11, A21, A22 ← NodeSplitting(A, n, γtrain);

Θ̂11 = A (A11, rt);

Θ̂22 = ClusterTest(A21, Θ̂11);

X̂22 = Θ̂22(Θ̂22T Θ̂22)−1Θ̂22T ;

lrt,j = ⟨Ŝ22, X̂22⟩;
end for
r∗j = min{rt : lrt,j ≥ maxt lrt,j −∆};

end for
r̂ = median{r∗j }
Output: r̂

Algorithm 3: NodeSplitting

Input: A, n, γtrain;
Randomly split [n] into Q1, Q2 of size nγtrain and n(1− γtrain)
A11 ← AQ1,Q1

, A21 ← AQ2,Q1
, A22 ← AQ2,Q2

Output: A11, A21, A22

Algorithm 4: ClusterTest

Input: A21, Θ̂11;

Estimate testing node memberships using Θ̂11 and A21.
Output: Θ̂22

The proof is deferred to the Supplementary Material, Section S2.

Remark 1.

1. MATR-CV is also compatible with tuning multiple hyperparameters. For

example, for (3.1), if the number of clusters is unknown, then for each r̂, we

can run MATR to find the best λ for the given r̂, followed by running a second

level MATR-CV to find the best r̂. As long as the conditions in Theorems 1

and 2 are met, r̂ and the clustering matrix returned will be consistent.

2. As shown in the applications below, the derivations of ϵunder and ϵover are

general and only depend on the properties of Ŝ. On the other hand, ϵest
measures the estimation error associated with the algorithm of interest and

depends on its performance.
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In what follows, we demonstrate MATR-CV can be applied to do model

selection for MMSB, which includes SBM as a sub-model.

4.1. Model selection for MMSB

In this section, we consider model selection for the MMSB as introduced in

Section 2.2, with a soft membership matrix Θ. As an example of estimation

algorithms, we consider the SPACL algorithm proposed by Mao, Sarkar and

Chakrabarti (2017), which gives consistent parameter estimation when given the

correct r. As mentioned in Section 2.2, a normalized clustering matrix in this case

is defined analogously as X = Θ(ΘTΘ)−1ΘT for any Θ. X is still a projection

matrix, and X1n = Θ(ΘTΘ)−1ΘT1n = Θ(ΘTΘ)−1ΘTΘ1r = 1n, since Θ1r = 1n.

Following Mao, Sarkar and Chakrabarti (2017), we consider a Bayesian setting

for Θ: each row of Θ, Θi ∼ Dirichlet(α),α ∈ Rr
+. We assume r, α are all fixed

constants. Note that the Bayesian setting here is only for convenience, and can

be replaced with equivalent assumptions bounding the eigenvalues of ΘTΘ. We

also assume there is at least one pure node for each of the r communities for

consistent estimation at the correct r.

MATR-CV can be applied to the MMSB model by noting the following two

points. First, take Ŝ = A2 − diag(A2) and S = P 2 − diag(P 2). This allows

us to remove the assortativity requirement on P and replace it with a full rank

condition on B, which is commonly assumed in the MMSB literature. The fact

that P 2 is always positive semi-definite is used in the proof. The removal of

diag(A2) and diag(P 2) leads to better concentration, because diag(A2) is centered

around a different mean. Second, noting that P 12 = Θ11B(Θ22)T , we can view the

estimation of Θ22 as a regression problem with plug-in estimators of Θ11 and B.

In Algorithm 4, we use an estimate of the form Θ̂22 = A21Θ̂11((Θ̂11)T Θ̂11)−1B̂−1,

where B̂ and Θ̂11 are estimated from A11.

We have the following guarantee for r̂ returned by MATR-CV.

Theorem 3. Let A be generated from an MMSB (see Section 2.2) satisfying

λ∗(B) = Ω(ρ), where λ∗(B) is the smallest singular value of B. We assume√
nρ/(log n)1+ξ → ∞, for some arbitrarily small ξ > 0. Given a candidate set

of {r1, . . . , rT} containing r and rT = Θ(1), with high probability for large n,

MATR-CV returns the true cluster number r if ∆ = O((nρ)3/2(log n)1.01).

Proof sketch. We first show w.h.p., the underfitting and overfitting errors in

Theorem 2 are ϵunder = Ω(n2ρ2) and ϵover = O(nρ
√
log n), respectively. To

obtain ϵest, we show that given the true cluster number, the convergence rate

of the parameter estimates for the testing nodes obtained from the regression

algorithm is the same as the convergence rate for the training nodes. This leads

to ϵest = O((nρ)3/2(log n)1+ξ). For convenience, we pick ξ = 0.01. For details, see

Section S2.2 of the Supplementary Material.
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Remark 2.

1. The new choice of S and Ŝ allows our framework to work for more general

B, which can have negative eigenvalues in Theorem 3. If B is positive semi-

definite with full rank, a common assumption in many MMSB papers, we can

still use A and P as Ŝ and S, respectively. A similar analysis applies, and the

same type of consistency result holds.

2. Compared with Fan et al. (2022), who consider the more general degree-

corrected MMSB model, our result holds for ρ→ 0 at a faster rate.

3. On a practical note: due to the constant in the estimation error being tedious

to determine, in this case we only know the asymptotic order of the gap ∆. As

has been observed in many other methods based on asymptotic properties

(e.g., Bickel and Sarkar (2016); Lei (2016); Wang and Bickel (2017); Hu

et al. (2017)), performing an adjustment for finite samples often improves the

empirical performance. In practice, we find that if the constant factor in ∆ is

too large, we tend to underfit. To guard against this, note that at the correct

r, the trace difference δr,r−1 := ⟨Ŝ, X̂r⟩−⟨Ŝ, X̂r−1⟩ should be much larger than

∆. We start with ∆ = (nρ)3/2(log n)1.01 and find r̂ by Algorithm 2; if δr̂,r̂−1

is smaller than ∆, we reduce ∆ by half and repeat the step of finding r∗j in

Algorithm 2 until δr̂,r̂−1 > ∆. This adjustment is much faster than bootstrap

corrections and works well empirically.

4. As an example of applying Algorithm 2 to the SBM, we consider a different

type of SDP algorithm introduced in Peng and Wei (2007) and Yan, Sarkar

and Cheng (2017), where the model selection problem is embedded in the

algorithm as a hyperparameter tuning problem. In this case, Ŝ is simply A

itself, and the estimation error ϵest can achieve zero. The detailed statement

and proofs can be found in Section S2.3 of the Supplementary Material.

5. Numerical Experiments

In this section, we present extensive numerical results on simulated and real

data by applying MATR and MATR-CV to the settings considered in Sections 3

and 4.

5.1. MATR with known number of clusters

Spectral clustering for mixture models. We use MATR-CV to select the

bandwidth parameter θ in spectral clustering applied to mixture data, when

given the correct number of clusters. In all the examples, our candidate set of θ

is {tα/20}, for t = 1, . . . , 20 and α = maxi,j ∥Yi − Yj∥2. We compare MATR

with three other well-known heuristic methods. The first one was proposed

by Shi, Belkin and Yu (2008) (DS), where, for each data point Yi, the 5%
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Figure 2. Comparison of NMI for tuning the bandwidth in spectral clustering for mixture
models with (a) equal and (b) unequal mixing coefficients.

quantile of {∥Yi − Yj∥2 , j = 1, . . . , n} is denoted qi, and then θ is set to be

95% quantile of {q1, . . . , qn}/
√
95% quantile of χ2

d. The other two methods are

presented in von Luxburg (2007): a method based on k-nearest neighbor (KNN)

and a method based on minimal spanned tree (MST). For KNN, θ is chosen in

the order of the mean distance of a point to its k-th nearest neighbor, where

k ∼ log(n) + 1. For MST, θ is set as the length of the longest edge in a minimal

spanning tree of the fully connected graph on the data points.

Simulated data. We first conduct experiments on simulated data generated

from a three-component Gaussian mixture with d = 20. The means are multiplied

by a separation constant that controls the clustering difficulty (a larger constant

implies less difficulty). Detailed descriptions of the parameter settings can be

found in Section S3.2 of the Supplementary Material. n = 500 data points are

generated for each mixture model, and random runs are used to calculate the

standard deviations for each parameter setting. Figures 2(a) and (b) show the

NMI of different methods against the separation constant for equal and unequal

mixing proportions, respectively. For all these settings, MATR performs the best

or comparably to DS, KNN and MST.

To illustrate the robustness of our method on non-Gaussian data, we also

apply MATR to tune the bandwidth θ for the two rings data set (Figure 3(a)) by

setting the similarity matrix Ŝ to be an RBF kernel to account for nonlinearity.

To alleviate the problem that the trace objective is now also dependent on θ via

Ŝ, we use a rough guess, for example, 10th percentile of the pairwise distances in

Ŝ. A rough guess here is enough to pick up the right trend. We then apply MATR

to select θ in spectral clustering. As seen in Figure 3(b), MATR outperforms the

other methods by a large margin.
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Figure 3. Results on the ring data set.

Real data. We also test MATR for tuning θ on a real data set, namely, the

Olivetti faces data set, provided by scikit-learn (Pedregosa et al. (2011)). The

data consist of 40 classes with 10 examples in each class. We standardize the

dataset before clustering. MATR achieves the highest NMI value of 0.83. Both

KNN and MST obtain NMI values around 0.82, while DS yields a θ much smaller

than those of the other methods, leading to similarity matrices that are highly

unstable when spectral clustering is applied.

Additional results for SBM. We apply MATR to tune λ in (3.1) for known r

and compare with two existing data driven methods (Cai and Li (2015) and Li,

Levina and Zhu (2020)) using simulated and real networks. The details can be

found in Section S3.3 of the Supplementary Material.

5.2. Model selection with MATR-CV

MMSB. We compare MATR-CV with universal singular value thresholding

(USVT) (Chatterjee (2015)), ECV (Li, Levina and Zhu (2020)) and SIMPLE (Fan

et al. (2022)) in terms of model selection with MMSB. For ECV and MATR-CV,

we consider the candidate set r ∈ {1, 2, . . . , ⌊ρ̂n⌋}, where ρ̂ =
∑

i<j Aij/
(
n
2

)
.

Simulated data. We first apply all methods to simulated data. We consider

B = ρ× {(p− q)Ir + qEr}. Following (Mao, Sarkar and Chakrabarti (2018)), we

sample Θi ∼ Dirichlet(α) and α = 1r/r. We generate networks with n = 2000

nodes with r = 4 and r = 8. We set p = 1, q = 0.1 for r = 4 and p = 1, q = 0.01

for r = 8 for a range of ρ. In Tables 1a and 1b, we report the fractions of

exactly recovering the true cluster number r over 40 runs for each method across

different average degrees. We observe that for both r = 4 and r = 8, MATR-CV

outperforms the other three methods by a large margin on sparse graphs. We

find that SIMPLE tends to underfit in our sparsity regime, since their theoretical

guarantees hold for a regime with a denser degree in order to generalize to a

broader model than the MMSB. An example generated from a non-assortative B
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ρ 0.01 0.02 0.06 0.08 0.11 0.13

MATR-CV 0.35 0.83 0.93 1 1 1

(a) USVT 0 0 1 1 1 1

ECV 0 0 1 0.95 1 1

ρ 0.02 0.05 0.09 0.12 0.16 0.21

MATR-CV 0.10 0.43 0.95 0.93 0.95 1

(b) USVT 0 0 0.58 1 1 1

ECV 0 0 0 0.93 1 1

Table 1. Model selection on simulated MMSB. Exact recovery fractions for (a) 4 clusters;
(b) 8 clusters.

can be found in the Supplementary Material, Section S3.4.

Real data. We also test MATR-CV with the MMSB on a real network, the

political books network, which contains 105 nodes in three clusters. Here,

fitting a MMSB model is reasonable since each book can have mixed political

inclinations, for example, a “conservative” book may actually be a mix of neutral

and conservative views. Using MATR-CV, we found three clusters, agreeing with

the ground truth. USVT, ECV and SIMPLE found fewer than three clusters.

Additional results for SBM. We apply MATR-CV to tune the SDP in Yan,

Sarkar and Cheng (2017) for model selection. Comparisons with existing methods

on simulated and real networks can be found in the Supplementary Material,

Section S3.5.

6. Discussion

Clustering data, both in i.i.d. and network structured settings, have received

a lot of attention both from applied and theoretical communities. However,

methods for tuning hyperparameters involved in clustering problems are mostly

heuristic. In this paper, we present MATR, a provable MAx-TRace based

hyperparameter tuning framework for general clustering problems. We prove

the effectiveness of this framework for tuning SDP relaxations for community

detection under the block model, and for learning the bandwidth parameter

of the Gaussian kernel in spectral clustering over a mixture of sub-Gaussians.

Our framework can also be used to perform model selection using a CV-based

extension (MATR-CV) to consistently estimate the number of clusters in the

SBM and the MMSB. Using a variety of simulation and real experiments, we

have shown the advantage of our method over existing heuristics.

The framework presented in this paper is general, and can be applied to model

selection or tuning for broader model classes such as the degree-corrected block

models (Karrer and Newman (2011)), since there are many exact recovery-based

algorithms for estimation in these settings (Chen, Li and Xu (2018)). We believe
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that our framework can be extended to the broader class of degree-corrected

mixed membership block models (Jin, Ke and Luo (2017)), which includes the

topic model (Mao, Sarkar and Chakrabarti (2018)). However, the derivation of

the estimation error ϵest involves tedious derivations of the parameter estimation

error, which has not been done by existing works. Furthermore, even though our

work uses node sampling, we believe we can extend the MATR-CV framework

to obtain consistent model selection for other sampling procedures, such as edge

sampling (Li, Levina and Zhu (2020)).

Supplementary Material

The online Supplementary Material contains detailed proofs of the main

results, together with additional theoretical and numerical results.
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