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Abstract: High-dimensional classification is an important and challenging statisti-

cal problem. We develop a set of quadratic discriminant rules by simplifying the

structure of the covariance matrices instead of imposing sparsity assumptions —

either on the covariance matrices themselves (or their inverses), or on the stan-

dardized between-class distance. Under moderate conditions on the population

covariance matrices, our quadratic discriminant rules enjoy good asymptotic prop-

erties. Computationally, they are easy to implement and do not require large-scale

mathematical programming. Numerically, they perform well in finite dimensions

and with finite sample sizes. We present analyses of several classic micro-array data

sets.
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1. Introduction

In this paper, we study discriminant analysis in high dimensions. Suppose

a random vector x ∈ Rp, where p is very large, comes from either class 1 (C1)
or class 2 (C2). On the training data, the class memberships of these vectors are

labelled. The goal is to classify an unlabelled observation using a discriminant

rule that is learned from the training data. To focus on the main issues, we shall

assume that the unconditional prior probabilities of both classes are equal to 1/2;

discriminant rules mentioned in this paper can be modified simply by adding a

constant to correct for class imbalance.

For i = 1, 2, let µi and Σi be the class mean and class covariance matrix,

respectively. To determine the class label of x, Fisher’s linear discriminant rule

(see, e.g., Anderson (1958)) that assumes Σ1 = Σ2 = Σ, classifies x to class 1 if

(x− µ)′Σ−1(µ1 − µ2) ≥ 0, (1.1)

where µ = (µ1 + µ1)/2, and to class 2 otherwise. If the two covariance matrices

cannot be taken to be identical, then the quadratic discriminant rule can be used,

which classifies x to class 1 if
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ln

(
|Σ1|
|Σ2|

)
+ (x− µ1)

′Σ−11 (x− µ1)− (x− µ2)
′Σ−12 (x− µ2) ≤ 0, (1.2)

and to class 2 otherwise. Equation (1.2) is also the Bayes rule under the assump-

tion that x ∼ N(µi,Σi) if x ∈ Ci, and so is equation (1.1) when Σ1 = Σ2.

In practice, the parameters µi and Σi are unknown and need to be estimated

from training data. Let µ̂i and Σ̂i be the sample mean and sample covariance

matrix of class i. They are conventionally used as estimators of µi and Σi. The

common covariance matrix in (1.1) is estimated by the pooled sample covariance

matrix, Σ̂ = (n1 + n2 − 2)−1{(n1 − 1)Σ̂1 + (n2 − 1)Σ̂2}. When the dimension

is high and the number of covariates p is close to or larger than the number of

observations n, the sample covariance matrix is well-known to be a poor estimate

of its population counterpart; it is often singular and cannot be directly plugged

into the discriminant rules.

1.1. Linear discriminant analysis (LDA)

In recent years, many methods have been proposed in the literature for per-

forming linear discriminant analysis (LDA) in high dimensions. For example, one

can ignore the covariance terms and use just a diagonal matrix in (1.1) — these

are referred to as “independence rules”. Bickel and Levina (2004) showed that, if

one simply uses the Moore-Penrose inverse of Σ̂, then the misclassification error

of (1.1) converges to 1/2 as p/n→∞, whereas the independence rule is at least as

good. These independence rules can, and often should, be applied in conjunction

with feature selection. For instance, Fan and Fan (2008) pointed out that they

can perform poorly by themselves due to noise accumulation in estimating the

population centroids, µ1 and µ2, in high-dimensional spaces. They proposed to

select a subset of important features by performing two-sample t-tests before ap-

plying the independence rule. Based on similar considerations, Tibshirani et al.

(2002) shrunk class centroids toward the overall center of the data in order to

reduce noise, and also estimated Σ with a diagonal matrix.

Another popular approach in the literature is to impose sparsity assump-

tions. For example, Shao et al. (2011) assumed both Σ and the mean difference

vector, µ1 − µ2, to be sparse, and estimated them by thresholding. Fan, Jin

and Yao (2013) performed variable selection by “innovated thresholding” and

“higher criticism thresholding” before carrying out LDA with the selected set of

features. Hao, Dong and Fan (2015) rotated the data to create sparsity prior

to applying existent classifiers. Witten and Tibshirani (2011) applied a sparsity
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penalty in seeking out a projection direction that maximized the between-class

variance. For LDA, the (pooled) covariance matrix Σ affects classification only

through the discriminant direction, Σ−1(µ1 − µ2). Thus, various methods have

been proposed to avoid the estimation of Σ itself — e.g., Fan, Feng and Tong

(2012) solved for the discriminant direction directly by minimizing the misclas-

sification rate under a sparsity constraint; Mai, Zou and Yuan (2012) found the

direction by solving a penalized linear regression problem; see also Cai and Liu

(2011).

1.2. Quadratic discriminant analysis (QDA)

The LDA rule (1.1) assumes that two classes share the same covariance

matrix, which is challenging to test in high dimensions (see, e.g.,Li and Chen

(2012), Cai, Liu and Xia (2013), and many others). If the null hypothesis,

H0 : Σ1 = Σ2, cannot be accepted for sound reasons, it may become necessary

to consider quadratic discriminant analysis (QDA). However, because there are

many more unknown parameters to estimate, QDA is much more challenging

than LDA, especially in high dimensions, and much less work has been done

about it.

As in the case of LDA, it is also natural to use just diagonal covariance ma-

trices or to impose some sparsity conditions in order to regularize QDA. For ex-

ample, diagonal quadratic discriminant analysis (DQDA) was studied by Dudoit,

Fridlyand and Speed (2002), whereas Li and Shao (2015) suggested a sparse QDA

(SQDA) procedure by thresholding not only the mean difference vector µ̂1− µ̂2,

but also the covariance matrices Σ̂i and their difference Σ̂1 − Σ̂2. A more re-

cent work on sparse QDA rule is based on the dimension reduction method,

QUADRO, proposed by Fan et al. (2015). QUADRO constructs a quadratic

projection f(x) = x′Ωx − 2δ′x by maximizing the Rayleigh quotient of f , the

ratio of the variance explained by the class label to the remaining variance. The

parameters, Ω and δ, are encouraged to be sparse by `1 penalties. The estimated

projection can then be used for classification. For example, the class label can

be decided by the sign of x′Ω̂x− 2δ̂′x− c for some thresholding constant c.

Friedman (1989) proposed regularized discriminant analysis (RDA) as a way

to compromise between LDA and QDA. In particular, his proposal shrinks the

sample class covariance matrix Σ̂i twice — once toward the pooled sample covari-

ance matrix, Σ̂, and once again toward the diagonal matrix, p−1tr
(
Σ̂i

)
Ip, where

tr(·) denotes the trace of a matrix and Ip is p× p identity matrix.

We refer to the quantity, p−1tr
(
Σ̂i

)
Ip, simply as the trace estimator. It has
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been used in the literature for high-dimensional hypothesis testing and classifica-

tion problems, and is closely related to our methods. One reason why the trace

estimator is useful is that, under some mild conditions, p−1tr
(
Σ̂i

)
can be shown

to be a consistent estimator of p−1tr(Σi) even as p→∞.

For classification, Friedman’s RDA clearly uses the trace estimator, as it

shrinks the sample covariance matrix Σ̂i toward both the pooled covariance es-

timator Σ̂ and the trace estimator. Shrinking toward the trace estimator is one

way to overcome the well-known bias in the sample covariance matrix that in-

flates large eigenvalues and deflates smaller ones. The two directions of shrinkage

are controlled by separate tuning parameters, λ and γ, with

Σ̂i(λ) =
(1− λ)(ni − 1)Σ̂i + λ(n1 + n2 − 2)Σ̂

(1− λ)(ni − 1) + λ(n1 + n2 − 2)
,

Σ̂i(λ, γ) = (1− γ)Σ̂i(λ) + γ
{
p−1tr(Σ̂i(λ))Ip

}
.

There are four extreme cases. When λ = 0 and γ = 0, RDA reduces to vanilla

QDA. When λ = 1 and γ = 0, RDA amounts to LDA. When λ = 1 and γ = 1,

RDA is equivalent to replacing Σ̂ in LDA with just the identity matrix — in this

case, classification is based on comparing Euclidean distances ‖x− µ̂i‖2 instead

of Mahalanobis distances (x − µ̂i)
′Σ̂−1(x − µ̂i), for i = 1, 2. When λ = 0 and

γ = 1, RDA is equivalent to replacing Σ̂i in the QDA rule (1.2) with the trace

estimator, p−1tr
(
Σ̂i

)
Ip.

For hypothesis testing, Bai and Saranadasa (1996) proposed a test statistic

that replaces the pooled sample covariance matrix Σ̂ in Hotelling’s two-sample

T 2-statistic with the identity matrix Ip and uses just the squared Euclidean

distance (rather than Mahalanobis distance) between the sample means for high-

dimensional problems. However, to do so, a bias-correction term must be added

that depends on tr
(
Σ̂
)
. Chen and Qin (2010) generalized this to the case where

Σ1 6= Σ2 so using the pooled estimate Σ̂ is no longer appropriate.

Aoshima and Yata (2014) used these ideas for classification. In particular,

they substituted the identity matrix Ip for the sample covariance matrix Σ̂ in the

LDA rule (1.1), and used the trace estimator in place of each Σ̂i in the QDA rule

(1.2). These rules are similar to two of the four extreme cases in Friedman’s RDA,

corresponding to (λ, γ) = (1, 1) and (λ, γ) = (0, 1), except for the bias-correction

terms involving tr
(
Σ̂
)

and tr
(
Σ̂i

)
. They also investigated a few variants of their

quadratic rule.
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1.3. Handling nonnormal data

Compared with LDA, QDA is more sensitive to deviations from normality

(Friedman (1989)). A common approach for relaxing the normality assumption

is to assume that there exists a strictly monotone transformation for each dimen-

sion such that the transformed vector x follows a multivariate normal distribution

given its class label (Lin and Jeon (2003); Liu, Lafferty and Wasserman (2009);

Mai and Zou (2015)). After first estimating and then applying these transfor-

mations, Lin and Jeon (2003) performed classic LDA and QDA; Liu, Lafferty

and Wasserman (2009) estimated undirected graphical models; and Mai and Zou

(2015) applied their direct method for sparse discriminant analysis (DSDA). In

this paper, we also rely on this idea to generalize our methods.

1.4. Outline and summary of this paper

One can view the trace estimator as the result of two operations: pooling the

diagonal elements of each sample covariance matrix, and ignoring its off-diagonal

elements. Here we take the idea of the trace estimator one step further, and

introduce an estimator that also pools the off-diagonal elements. We refer to the

resulting QDA rule as ppQDA (for having performed two pooling operations),

and the QDA rule with the trace estimator as pQDA — a special case of our

more general method. We study their asymptotic performances (Section 2), and

generalize them to handle nonnormal data (Section 3). Our generalization is

based on first estimating a set of nonparametric data transformations and then

applying our methods to the transformed data. As such, we refer to these gen-

eralized QDA rules as semiparametric ppQDA (Se-pQDA) and semiparametric

pQDA (Se-pQDA), respectively. We will prove a result for Se-pQDA, but only

demonstrate the performance of Se-ppQDA empirically; the proof of a similar

result for Se-ppQDA is more complicated, and is left for future research.

Here is a summary of our main contributions. First, while most existing

high-dimensional discriminant analysis methods focus on LDA, we fill this gap

by focusing on QDA. Second, the sample covariance matrix is inconsistent when

the dimension is high but, instead of making sparsity assumptions, we reduce the

number of unknown parameters by simplifying the matrix structure differently.

Third, using more than just the trace estimator in the QDA rule, our ppQDA

rule allows us to make use of information about the correlations among different

dimensions. Fourth, we relax the normality assumption for both ppQDA and

pQDA, and establish theoretical results for all of them except Se-ppQDA, the

semiparametric extension of ppQDA. As our methods are based on using a simple
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matrix structure, our methods are computationally feasible and easy to apply in

practice.

We proceed as follows. In Section 2, we introduce our notation, and describe

our main methods, ppQDA and pQDA. In Section 3, we propose semiparametric

generalizations of our main methods for nonnormal data. Section 4 contains

extensive numerical experiments. In Section 5 we provide some discussion of the

relative performance of our ppQDA rule to that of the Bayes decision rule. There

are concluding remarks in Section 6.

2. QDA by Pooling Elements of Covariance Matrices

Let {y1k : 1 ≤ k ≤ n1} and {y2k : 1 ≤ k ≤ n2} be training samples from

the p-dimensional normal distributions N(µ1,Σ1) and N(µ2,Σ2), respectively.

In addition, all yiks are assumed to be independent. Let yijk to denote the jth

dimension of yik, for j = 1, . . . , p. In what follows, x ∈ Rp is used to denote

a generic feature vector observation without a class label, and our target is to

classify x based on a rule learned from the training samples. The sample version

of the QDA rule (1.2) is to classify x to class 1 if

ln

(∣∣Σ̂1

∣∣∣∣Σ̂2

∣∣
)

+ (x− µ̂1)
′Σ̂−11 (x− µ̂1)− (x− µ̂2)

′Σ̂−12 (x− µ̂2) ≤ 0, (2.1)

and to class 2 otherwise, but this does not work when p is larger than or close to

n. We propose to replace the sample covariance matrices in (2.1) with simpler

alternatives. Our main idea is to simplify the matrix structure in order to reduce

the number of unknown parameters. When there are fewer parameters, we can

expect to estimate them consistently.

2.1. Some basic conditions

We first describe some common conditions on the covariance matrices and

sample sizes.

Let Σj1j2 be the element of Σ in the j1th row and j2th column. Let 1p =

(1, 1, . . . , 1)′ ∈ Rp and Su(Σ) = 1′pΣ1p be the summation of all elements in Σ.

(C.1) For a constant c > 0, |Σj1j2 | < c for j1 = 1, . . . , p and j2 = 1, . . . , p.

(C.1’) For both i = 1, 2, tr(Σi) = O(p), tr
(
Σ2
i

)
= O

(
p2
)

and Su(Σi) = O
(
p2
)
.

(C.2) There exist n > 0 and constants 0 < c1 < c2 < +∞ such that c1 < ni/n <

c2 as n→∞ for both i = 1, 2.

Condition (C.1) places a bound on all the elements of Σ. Throughout the
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paper, we shall assume that both Σ1 and Σ2 satisfy condition (C.1). Condition

(C.1) implies (C.1′) .

Condition (C.2) is equivalent to saying that n1 � n2. The value n has the

same order as n1 and n2; this is used later when we refer to the sample size in

general, without specifying the classes.

2.2. Main method: ppQDA

We now describe our main idea. Given Σi, let

ai = p−1tr(Σi) and ri = {p(p− 1)}−1 {Su(Σi)− tr(Σi)} ,

be the average of its diagonal elements and the average of its off-diagonal ele-

ments, respectively. We use the structured matrix

Ai =


ai ri · · · ri
ri ai · · · ri
...

...
. . .

...

ri ri · · · ai

 = (ai − ri)Ip + ri1p1
′
p

that has uniform diagonal elements and uniform off-diagonal elements, in place

of Σi, for i = 1, 2, in the quadratic discriminant rule (1.2).

Estimators of ai and ri, and hence of Ai as well, are based on the sample

covariance matrix,

âi = p−1tr
(
Σ̂i

)
, r̂i = {p(p− 1)}−1

{
Su
(
Σ̂i

)
− tr

(
Σ̂i

)}
,

Âi = (âi − r̂i)Ip + r̂i1p1
′
p.

As both ai and ri are scalar parameters, their estimators âi and r̂i are consistent

even when p is large.

Using Âi to replace Σ̂i, for i = 1, 2, in (2.1), we call the resulting decision rule

the “ppQDA rule”, where each “p” is short for “pooling” as constructing Âi in-

volves pooling both the diagonal and the off-diagonal elements of Σ̂i. Specifically,

the ppQDA rule classifies x to class 1 if

Q̂ = ln

(∣∣Â1

∣∣∣∣Â2

∣∣
)

+ (x− µ̂1)
′Â−11 (x− µ̂1)− (x− µ̂2)

′Â−12 (x− µ̂2) ≤ 0, (2.2)

and to class 2 otherwise. Due to its special structure, the inverse of Ai can be

directly calculated:

Â−1i = (âi − r̂i)−1Ip − r̂i(âi − r̂i)−1{âi + (p− 1)r̂i}−11p1′p. (2.3)

Hence, we see that no matrix inversion is required, a highly desirable property,



946 WU, QIN AND ZHU

especially for large p.

We are able to establish that our simplified ppQDA rule has good classi-

fication performance under (C.1)-(C.2) and some additional conditions on the

matrices, Ai for i = 1, 2.

(A.1) ai − ri > δi > 0, p{ai + (p− 1)ri} > δ
′

i > 0;

(A.2) |(a1 − r1)− (a2 − r2)| > δ0 > 0;

(A.3) tr
(
(Ai − Σi)

2
)

= o
(
p2
)
;

(A.4)
∑p

j=1(vij − v̄i)2 = o
(
p2
)
, where (vi1, vi2, . . . , vip) = 1′pΣi – i.e., vij is jth

column-sum of Σi – and v̄i = p−1
∑p

j=1 vij .

Theorem 1. Let R̂n,p = P
(
Q̂ > 0|x ∈ C1

)
+ P

(
Q̂ ≤ 0|x ∈ C2

)
be the misclassifi-

cation probability of the ppQDA rule (2.2). If conditions (C.1), (C.2) and (A.1)

– (A.4) hold, then

lim
p→∞,n→∞

R̂n,p = 0.

In Theorem 1, we do not need to restrict the rate with which p approaches

infinity relative to how fast the sample size n increases, a common requirement

for high-dimensional problems. The ppQDA rule, in effect, reduces each covari-

ance matrix to just two scalar parameters, ai and ri, which can be consistently

estimated regardless of the dimension p. We do require a restriction of this kind

later in Section 3 as we extend our ideas to a semiparametric setting (see Remark

6 below).

While Theorem 1 establishes conditions under which the ppQDA rule can be

nearly perfect asymptotically, we discuss in more detail, in Section 5, the factors

that control how closely the ppQDA rule can approach the Bayes decision rule

when nearly perfect classification is not achievable.

Remark 1. As long as Σi is a positive definite matrix, the inequalities, ai−ri > 0

and ai + (p− 1)ri > 0, in (A.1) hold (see Lemma 1, Supplement). The condition

(A.1) requires that both ai − ri and p{ai + (p− 1)ri} be bounded away from 0,

a degeneracy, even as the dimension gets high.

Remark 2. Condition (A.2) essentially requires that there is some difference

between the two class covariance matrices, Σ1 and Σ2, so that the two classes

can be separated. Generally for multivariate normal distributions, there are two

sources of information that make classification possible: differences between the

mean vectors (locations), and differences between the covariance matrices. Con-

dition (A.2) is sufficient but not necessary, since it only requires some difference
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between the covariance matrices. If there is adequate signal in the mean vectors,

e.g., if µ1 − µ2 is fairly large, then (A.2) can be relaxed. This is discussed in

more detail in the Supplement, after the proof of Lemma 2. We choose to use a

condition that is solely focused on the covariance matrices for two reasons. First,

there are already many papers in the literature (see Section 1) about discrim-

inant analysis and classification based on signals from the mean vectors alone.

Second, replacing Σi with Ai deals with large covariance matrices (by introducing

a structural simplification). As a result, (A.2) makes classification possible even

if there is no location separation at all (µ1 − µ2 = 0).

Remark 3. Both (A.3) and (A.4) place a bound on the difference between the

true covariance matrix Σi and its structural simplification Ai. If the true covari-

ance matrix Σi really does have the simplified structure Ai, then our ppQDA rule

is trivially optimal. What makes our proposal useful is that it can perform well

even when the true covariance matrix does not have exactly the special structure.

Conditions (A.3)-(A.4) make precise how much Σi can deviate from the struc-

ture that would be “ideal” for our proposal. In particular, (A.3) means that the

average of squared elementwise difference between Σi and Ai is o(1). Condition

(A.4) is similar to (A.3) except it is about the column sums of Σi, vi1, . . . , vip,

instead of about its individual elements. Notice that the average column sum, v̄i,

can be expressed as Su(Σi)/p = ai + (p− 1)ri, which is also equal to the uniform

column sum of Ai for every column. Thus, (A.4) also means that the average

squared difference between the column sums of Σi and those of Ai is o(p). Some

commonly used covariance structures do, in fact, satisfy these two conditions, a

certified copy of the original documen autoregressive and block diagonal matrices

provided that the block size q is o(p). If Σi deviates a lot from the structural

simplification, then both of these conditions can be violated. For example, if half

of the off-diagonal entries in Σi are zero and the other half are 0.2, then it easily

can be derived that tr
(
(Ai−Σi)

2
)
≥ 0.01p(p− 1), so tr

(
(Ai−Σi)

2
)
6= o
(
p2
)

and

(A.3) no longer holds.

2.3. Special case: pQDA

We also consider a special case that uses just the trace estimator, âiIp, to

replace Σ̂i, i = 1, 2. We call this rule “pQDA” because only the diagonal elements

of Σ̂i are pooled and the off-diagonal elements are simply “ignored”. This rule

classifies x to class 1 if

Q̂0 = p ln

(
â1
â2

)
+ â−11 (x− µ̂1)

′(x− µ̂1)− â−12 (x− µ̂2)
′(x− µ̂2) ≤ 0, (2.4)
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and to class 2 otherwise.

The trace estimator, âiIp is a special case of Âi, but we can take advantage

of the added structure and derive a stronger and more interpretable result under

a different set of assumptions.

(B.1) there exist positive constants c3 and c4 such that c3 < λij < c4 for i = 1, 2

and j = 1, . . . , p, where λij is the jth eigenvalue of Σi;

(B.2) there exists some positive constant c5 such that (ai1/ai2 − ln (ai1/ai2) −
1) + p−1a−1i2 (µ1 − µ2)

′(µ1 − µ2) > c5 for (i1, i2) = (1, 2) and (2, 1).

Theorem 2. Let R̂0,n,p = P
(
Q̂0 > 0|x ∈ C1

)
+ P

(
Q̂0 ≤ 0|x ∈ C2

)
be the

misclassification probability of the pQDA rule (2.4). If conditions (C.1), (C.2),

and (B.1) – (B.2) hold, then

lim
p→∞,n→∞

R̂0,n,p = 0.

The proof of Theorem 2 is, by and large, similar to that of Theorem 1 and the

details are omitted.

Remark 4. Condition (B.1) requires that the Σi’s have bounded eigenvalues.

The ppQDA does not require bounded eigenvalues since, although both Ai and

aiIp have a similar structure (uniform diagonal elements and uniform off-diagonal

elements), Ai has a spiked eigenvalue spectrum (provided that ri does not de-

generate to 0, the case of pQDA), whereas aiIp has uniform eigenvalues. Bound-

edness can be thought of as a way of stating closeness. As aiIp has uniform

eigenvalues, it is intuitive that our pQDA rule performs better if the true covari-

ance matrix Σi has eigenvalues that are closer to each other.

Remark 5. In quadratic discriminant analysis, there are two sources of informa-

tion that are useful for class separation: the difference in the mean vectors, and

the difference in the covariance matrices. In our pQDA rule, these two sources of

information are parameterized by µ1−µ2 and a1/a2 or a2/a1, respectively. Con-

dition (B.2) simply requires that there is sufficient combined information for class

separation from both sources. The expression ai1/ai2 − ln
(
ai1/ai2

)
− 1 achieves

its minimum value of 0 when ai1 = ai2 . Hence, classification becomes easier

the larger the difference is between a1 and a2, regardless of whether a1 > a2 or

a2 > a1.

3. Generalization to Deal with Nonnormal Data

The QDA often is more sensitive to violations of the normality assumption
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than is LDA. In this section, we investigate a semiparametric method to relax

the normality assumption for the pQDA rule. The ppQDA rule can be general-

ized similarly, but its justification is much more tedious, although it requires no

additional techniques (more on this in Remark 9, Supplement). Thus, we state

generalized versions of both the ppQDA rule and the pQDA rule, and include

both of them in our empirical studies (Sections 4), but we only develop the theory

for generalized pQDA.

For non-normal data, we follow a common approach in the literature (Lin

and Jeon (2003); Liu, Lafferty and Wasserman (2009); Mai and Zou (2015)) and

adopt another condition.

(D.1) there exist a set of strictly monotonic transformations

h(y) ≡ (h1(y1), h2(y2), . . . , hp(yp))
′

such that h(yik) ∼ N(µi,Σi) for k = 1, . . . , ni and i = 1, 2.

This assumption is equivalent to using a Gaussian copula model to describe the

dependence structure of multivariate observation yik (Lin and Jeon (2003)).

To test the validity of (D.1), any high-dimensional normality test can be

applied to the transformed data. However, testing normality in high dimensions

is complex research problem in itself. According to Lin and Jeon (2003), an

alternative may be to check the classification results directly, as it is possible

for a classification rule to work reasonably well even if the underlying normality

assumption is violated.

Under (D.1), the generalization of ppQDA and pQDA is straight-forward.

First, we obtain a nonparametric estimate of the transformations, say

ĥ(·) ≡
(
ĥ1(·1), ĥ2(·2), . . . , ĥp(·p)

)′
,

from the training sample. Then, we apply ppQDA and pQDA to the transformed

data, {ĥ(yik) : k = 1, . . . , ni; i = 1, 2} and ĥ(x). We refer to these procedures as

Se-ppQDA and Se-pQDA, respectively, where “Se” is short for “semiparametric”.

In what follows, we use the same notations as before to denote various distri-

butional parameters and their estimates for the transformed data. For example,

µi and Σi now denote the mean vector and covariance matrix of the transformed

sample {h(yik) : k = 1, . . . , ni}, while

µ̂i = n−1i

ni∑
k=1

ĥ(yik) and Σ̂i = (ni − 1)−1
ni∑
k=1

{
ĥ(yik)− µ̂i

}{
ĥ(yik)− µ̂i

}′
denote the corresponding sample quantities based on the estimated transforma-

tion, ĥ. Similarly, ai, ri (likewise âi, r̂i) continue to denote, respectively, the
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average of the diagonal and off-diagonal elements of Σi

(
likewise Σ̂i

)
, except that

Σi and Σ̂i are now covariance and sample covariance matrices of the transformed

data.

3.1. Estimation of h

Let Fij be the class-i marginal cumulative distribution function (CDF) for

the j-th dimension. Let σ2ij be the variance of hj(yij), the j-th diagonal element

of Σi. Each of the assumed transformations hj(·) in (D.1) must satisfy that, if

u ∼ F1j and v ∼ F2j , then after transformation, the marginal distributions of

hj(u) and hj(v) can differ only up to a location-and-scale transform. Thus, we

can set µ1j = 0 and σ21j = 1 for all j = 1, . . . , p, without loss of generality. This,

in turn, means that each hj can be equivalently expressed as

hj = Φ−1 ◦ F1j or hj = σ2j
(
Φ−1 ◦ F2j

)
+ µ2j , (3.1)

where Φ denotes the CDF of the standard normal.

Thus the transformation hj can be estimated using training samples from

either class. Here we estimate it using data from class 1,

ĥj = Φ−1 ◦ F̂1j ,

where F̂1j is an “edge-smoothed” version of the empirical CDF (Mai and Zou

(2015)),

F̂1j(t) =



1− 1

n21
, if F̃1j(t) > 1− 1

n21
,

F̃1j(t), if
1

n21
≤ F̃1j(t) ≤ 1− 1

n21
,

1

n21
, if F̃1j(t) <

1

n21
,

and F̃1j is the actual empirical CDF, F̃1j(t) = n−11

∑n1

k=1 1{y1jk ≤ t}. Our choice

of using data from class 1 is entirely arbitrary. In practice, we recommend using

data from the larger class to maximize estimation accuracy.

It is also possible to estimate the transformation hj by making use of data

from both classes. For example, Mai and Zou (2015) proposed such a pooled

estimator for the special case in which the class covariance matrices are identical.

A closer look at (3.1) suggests that a potential generalization of their pooled,

two-sample estimator would be to take a weighted average of the one-sample

estimators of hj , e.g.,

ĥj =
n1
n

(
Φ−1 ◦ F̂1j

)
+
n2
n

{
σ̂2j
(
Φ−1 ◦ F̂2j

)
+ µ̂2j

}
,
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where F̂2j is defined similarly as F̂1j above. To take full advantage of pooled

estimation, one could obtain σ̂2j and µ̂2j with a pooled method as well, as there is

information about them not only in the transformed sample
{

Φ−1
(
F̂1j(y2jk)

)}n2

k=1

but also in
{

Φ−1
(
F̂2j(y1jk)

)}n1

k=1
. As this is not the main focus of our study, we

do not pursue this more complicated strategy here.

3.2. Se-ppQDA and se-pQDA

Since our estimated transformations ĥ1, . . . , ĥp automatically make µ̂1 = 0,

the Se-ppQDA rule classifies x to class 1 if

Q̂ĥ = ln

(∣∣Â1

∣∣∣∣Â2

∣∣
)

+ ĥ(x)′Â−11 ĥ(x)−
{
ĥ(x)− µ̂2

}′
Â−12

{
ĥ(x)− µ̂2

}
≤ 0, (3.2)

and to class 2 otherwise. Similarly, that σ̂21j = 1 for all j = 1, . . . , p implies

â1 = p−1tr
(
Σ̂1

)
= 1, so the Se-pQDA rule classifies x to class 1 if

Q̂ĥ,0 = p ln

(
1

â2

)
+ ĥ(x)′ĥ(x)− â−12

{
ĥ(x)− µ̂2

}′{
ĥ(x)− µ̂2

}
≤ 0, (3.3)

and to class 2 otherwise.

We are now ready to establish some results about the asymptotic perfor-

mance of the Se-pQDA rule. While first estimating the transformations and

then applying pQDA to transformed data is straight-forward, its performance

is more intricate to analyze than that of pQDA, being affected by not only the

structural simplifications of the pQDA rule itself, but also the estimation quality

of the p univariate transformations and that of the key model parameters for the

transformed data.

Theorem 3. Let R̂ĥ,0,n,p = P
(
Q̂ĥ,0 > 0|x ∈ C1

)
+ P

(
Q̂ĥ,0 ≤ 0|x ∈ C2

)
be the

misclassification probability of the Se-pQDA rule (3.3). Under (D.1), if (C.1),

(C.2), and (B.1) – (B.2) hold for the transformed data, then

lim
p→∞,n→∞

R̂ĥ,0,n,p = 0,

provided p exp
(
−Cn1/3−θ

)
→ 0 for some C > 0 and 0 < θ < 1/3, and that there

exists some constant c6 > 0 such that |µ2j | < c6 for all j = 1, . . . , p.

Remark 6. For ppQDA and pQDA, we did not need to control the rate with

which p goes to infinity relative to that of n, but we need to for Se-pQDA.

As we must now estimate p univariate transformations. To ensure that we can

estimate these transformations reasonably well, the dimension p cannot grow too

fast relative to the overall sample size n. Thus we require p exp
(
−Cn1/3−θ

)
→ 0

for some C > 0 and 0 < θ < 1/3 as both p and n tend to infinity.
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Remark 7. That every |µ2j | be bounded is introduced to avoid unnecessary

difficulties in our proof. This does not really weaken our result; if |µ2j | is very

large, it only makes classification easier, and the more challenging problem occurs

when the marginal signals are relatively weak. This is especially relevant as we

have not made any sparsity assumptions about µ1 − µ2. Situations in which

signals from the mean vectors are relatively dense (Fan, Jin and Yao (2013)) are

only interesting when those signals are marginally faint.

4. Numerical Studies

In this section, we report on the performance of pQDA, ppQDA, Se-pQDA

and Se-ppQDA in simulations. Two data examples are provided in a supplemen-

tary section.

Three other methods, DSDA (Mai, Zou and Yuan (2012)), SSDA (Mai and

Zou (2015)) and random forest (Breiman (2001)), are included for comparison.

DSDA and SSDA are penalized linear discriminant rules, and the latter deals with

nonnormal data; for these methods we used the R package dsda, provided by the

authors of the methods. For random forest, we used the R package randomForest

with a forest size of 1,000; for all other parameters, we simply used their default

values as further adjustments did not noticeably affect the performance.

We also include a benchmark classifier, in which the true covariance matrices

(Σ1,Σ2) and the sample means (µ̂1, µ̂2) are plugged into the QDA rule. We used

only the true covariance matrices but not the true mean vectors in the bench-

mark classifier, because we wish to focus on the effect of using our structured

covariance matrices for classification, and to avoid letting the estimation of the

mean vectors µ1,µ2 (an intricate problem in high dimensions) unduly confound

our performance evaluation.

For each of our QDA procedures, we standardized the variance in each dimen-

sion j by the larger of the two within-class standard deviations, max{σ̂1j , σ̂2j}.
In the case of Se-pQDA and Se-ppQDA, such standardization was performed

after first estimating and then applying the transformation hj .

4.1. Simulated examples

We considered nine types of covariance matrix structures, the details of which

are described in a supplementary section. Based on these nine structures, we cre-

ated ten simulated examples, setting either p = 400 or p = 800. In all of them, the

means of the two classes were taken to be µ1 = 0p and µ2 = (3.5p−1/21′0.6p,0
′
0.4p)

′.

Thus the signal was spread out evenly among the first 0.6p dimensions. The mag-
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nitude of the signal in each dimension was controlled so that the between-class

Euclidean distance did not change with p. The ten examples differed mostly by

the covariance matrices of the two classes. In all cases, we controlled the differ-

ence between the two within-class covariance matrices by a parameter s ≡ 3p−1/2

(see below).

Example 1: Σ1 = M1, partly autoregressive, and Σ2 = Σ1 + sIp.

Example 2: Σ1 = M3, block diagonal, and Σ2 = Σ1 + sIp.

Example 3: Σ1 = M4, modified version of M1, and Σ2 = Σ1 + sIp. These

covariance matrices have eigenvalues close to each other.

Example 4: Σ1 = M1, partly autoregressive, and Σ2 = M2 + sIp, also partly

autoregressive, but with some elements (both diagonal and off-

diagonal ones) being different from those in Σ1.

Example 5: Σ1 = Σ2 = M1, partly autoregressive, and identical between the

two classes.

Example 6: Σ1 = M5, compound symmetry, and Σ2 = Σ1 + sIp.

Example 7: Σ1 = M6, also compound symmetry, and Σ2 = Σ1 + sIp.

Example 8: Σ1 = M7, compound symmetry with off-diagonal perturbations,

and Σ2 = Σ1 + sIp.

Example 9: Σ1 = M8, compound symmetry with diagonal perturbations, and

Σ2 = Σ1 + sIp.

Example 10: Σ1 = M9, unstructured, and Σ2 = Σ1 + sIp.

4.2. Results

In all simulations, we used ni = 100 training samples, and 1,000 indepen-

dent testing samples, from N(µi,Σi), i = 1, 2. Simulations were repeated for

100 times, and the average misclassification rates on the testing samples were

recorded, together with their standard errors.

Table 1 shows how the methods compared on the ten examples. Our suite of

methods were generally better than DSDA, SSDA and random forest. This is not

surprising as both DSDA and SSDA assume sparsity and identical within-class

covariance matrices, and the random forest does not make (or take advantage of)
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any specific distribution assumption. In each example, the best method statisti-

cally matched the benchmark classifier. There we used only the true covariance

matrices but, using the sample rather than the population mean vectors, it was

possible for other methods to outperform it.

In Examples 1-4, the covariance matrices are better approximated by diago-

nal ones, so pQDA is expected to perform well, but we see that ppQDA performed

reasonably well, too. This indicates that, whenever pQDA works, ppQDA is only

slightly worse than, if not as good as, pQDA.

In Example 5, the two within-class covariance matrices are the same, so LDA

is actually optimal, but we see that both pQDA and ppQDA still continued to

perform well.

In Examples 6-7, the covariance matrices have exactly the compound symme-

try structure, so ppQDA performed considerably better than all other methods.

In Examples 8-9, the covariance matrices no longer have exactly the com-

pound symmetry structure, due to perturbations to the various off-diagonal (M7,

Example 8) and diagonal (M8, Example 9) elements. In Example 10, the co-

variance matrices are largely unstructured, except that a few randomly selected

entries are much larger than others. These examples were designed to test the

robustness and sensitivity of ppQDA. In all cases, ppQDA maintained good per-

formance, sometimes with a considerable advantage over all other methods.

In Table 1, we see that both Se-pQDA and Se-ppQDA performed slightly

worse than their counterparts without any nonlinear transformations. Clearly,

estimating these extra transformations when they were unnecessary introduced

additional errors. We also transformed data from these ten examples to be non-

normally distributed and repeated our experiments. The details of these exper-

iments and their results are described in a supplementary section. When the

data were non-normal, the advantages of Se-pQDA and Se-ppQDA over other

methods became clear.

5. Discussion

Our results have focused on establishing conditions under which our proposed

methods (e.g., ppQDA, pQDA, Se-pQDA) can have nearly perfect performance

asymptotically. In reality, perfect classification is not always possible, in which

case we would like to know how well our methods can perform relative to the

Bayes decision rule. In this section, we provide some answers to this question for

ppQDA.
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To do so, we further simplify the situation by focusing on a special case

where there is no signal for classification in the class means, µ1 = µ2 = 0. There

are many papers in the literature about classification based on signals from the

mean vectors alone, and since our main idea of replacing Σi with Ai is “only”

about dealing with large covariance matrices, we think it makes things clearer if

we concentrate on just the covariance matrices and ignore the mean vectors.

We focus on the population version of the ppQDA rule, as in our proof

of Theorem 1 (see Supplementary Materials, Section S4), we establish that the

quantity Q̂ − Q is dominated by the population quantity Q as p, n → ∞. Our

proof assumes (A.1)-(A.4), but this section is primarily concerned with situations

in which asymptotically perfect classification is not achievable, so it would be

desirable if this dominance could be established without (A.2). This is possible,

provided that some mild modifications are made to (A.3) and (A.4): instead of

the difference between Ai and Σi being o
(
p2
)
, now its order must also depend on

how much signal there is for classification, as measured by (ai1 − ri1)/(ai2 − ri2)
for (i1, i2) = (1, 2) and (2, 1). A detailed proof is omitted, as the technique is

similar to that used in the proof of Theorem 1.

Let A1, A2, Σ1 and Σ2 be defined as in Section 2. If µ1 = µ2 = 0, the quan-

tity that drives (population) ppQDA, using the true (as opposed to estimated)

parameters, is

Q = ln

(
|A1|
|A2|

)
+ x′A−11 x− x′A−12 x,

whereas the Bayes decision rule is driven by

QB = ln

(
|Σ1|
|Σ2|

)
+ x′Σ−11 x− x′Σ−12 x.

Clearly, the performance of ppQDA is close to that of the Bayes rule if Σi ≈ Ai
for both i = 1, 2, but we argue below that this need not necessarily be the case.

To see this, suppose first that x ∈ C1. Then, for any matrix B, we have

E
(
x′Bx|x ∈ C1

)
= E

{
tr
(
x′Bx

)
|x ∈ C1

}
= E

{
tr
(
Bxx′

)
|x ∈ C1

}
= tr

{
BE
(
xx′|x ∈ C1

)}
= tr(BΣ1),

which immediately implies

E(QB|x ∈ C1) = ln
∣∣Σ−12 Σ1

∣∣+ p− tr
(
Σ−12 Σ1

)
, (5.1)

E(Q|x ∈ C1) = ln
∣∣A−12 A1

∣∣+ tr
(
A−11 Σ1

)
− tr

(
A−12 Σ1

)
. (5.2)

But the inverse formula for Âi, given in (2.3), applies to Ai as well, so

tr
(
A−1i Σ1

)
=
{

(ai − ri)−1
}
tr(Σ1)−

[
ri(ai − ri)−1{ai + (p− 1)ri}−1

]
tr(1p1

′
pΣ1).
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However, the definition of A1 implies tr(Σ1) = tr(A1) and

tr
(
1p1

′
pΣ1

)
= tr

(
1′pΣ11p

)
= Su(Σ1) = Su(A1) = tr

(
1′pA11p

)
= tr

(
1p1

′
pA1

)
.

This means tr
(
A−1i Σ1

)
= tr

(
A−1i A1

)
so that (5.2) can be further reduced to

E(Q|x ∈ C1) = ln
∣∣A−12 A1

∣∣+ p− tr
(
A−12 A1

)
. (5.3)

Together, (5.3) and (5.1) are highly suggestive of the possibility that, given x ∈
C1, the performance of ppQDA can be close to that of the Bayes rule as long as

A−12 A1 is close to Σ−12 Σ1 in the sense that

tr
(
A−12 A1

)
≈ tr

(
Σ−12 Σ1

)
and

∣∣A−12 A1

∣∣ ≈ ∣∣Σ−12 Σ1

∣∣,
whereas each Ai need not be close to Σi in itself.

Moreover, for p×p, symmetric, positive-definite matrices U, V , we can define

the function,

φ(U, V ) =
∣∣ ln ∣∣V −1U ∣∣+ p− tr

(
V −1U

)∣∣,
as one way to measure their difference, with φ(U, V ) = 0 if U = V ; the absolute

value is needed because, for any p×p, symmetric, positive-definite matrix M with

eigenvalues λ1, . . . , λp, the function ln |M |+ p− tr(M) =
∑

(lnλj + 1− λj) ≤ 0

with equality only when λj = 1 for all j; see Remark 5. For x ∈ C1, our analysis

shows that, on average, the Bayes rule and the ppQDA rule are simply using

the same φ(·, ·) function to measure the differences between a different set of

matrices: (Σ1,Σ2) for the Bayes rule and (A1, A2) for ppQDA.

Combined with arguments similar to those used to prove Theorem 1 (see Sec-

tion S4, Supplement), our analysis also suggests that, for x ∈ C1, the performance

of ppQDA can be asymptotically close to that of the Bayes rule if

φ(Σ1,Σ2)− φ(A1, A2)

φ(Σ1,Σ2)
∼ o(1) as p→∞.

This argument applies to the case of x ∈ C2, except that, in this case, the

differences are measured by φ(A2, A1) and φ(Σ2,Σ1) instead of by φ(A1, A2) and

φ(Σ1,Σ2). We define the symmetric difference measure,

ϕ(U, V ) = φ(U, V ) + φ(V,U),

and conjecture that the relative performance of our ppQDA rule to that of the

Bayes rule depends on the quantity

∆ ≡ ϕ(Σ1,Σ2)− ϕ(A1, A2)

ϕ(Σ1,Σ2)
, (5.4)

and whether ∆ → 0 as p → ∞. In a supplementary section, we present some
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empirical evidence to support this observation.

6. Conclusion

Unlike many existing high-dimensional discriminant analysis methods that

focus on LDA, our methods aim at performing QDA, which allows us to exploit

the difference between covariance matrices from separate classes and use it for

classification. The sample covariance matrix is inconsistent when the dimension

is high. Whereas most methods address this difficulty by imposing sparsity con-

ditions, we do so by simplifying the structure of covariance matrices while still

trying to capture some subtle information from across all dimensions. The spe-

cial matrix structure that we use can be viewed as a generalization of the trace

estimator that has been used in high-dimensional hypothesis-testing as well as

classification problems: we pool not only the diagonal elements but also the off-

diagonal ones in each covariance matrix, so as to obtain some information about

the correlations among different dimensions. As a result, our easy-to-apply dis-

criminant rules enjoy low computational costs. The sparsity approach can be

quite unstable for weak signals, while our approach is more attractive for cases

with many weak signals.

Because of the complexity of the problem, at this point it is difficult to

imagine that there could be a universally optimal discriminant analysis method

for high-dimensional data. Due to noise accumulation, the performance of our

methods could certainly deteriorate when there are a large number of useless

covariates, as would most methods. Due to the special matrix structure that we

use, one may also expect that our discriminant rules may not perform well if

the marginal variances across different dimensions are vastly different, or if some

dimensions are very highly correlated while others have little correlation. These

problems can be alleviated by pre-screening and properly preprocessing the data

(see the data examples in the Supplement). Our current interest lies in the ques-

tion of what other special matrix structures we can exploit for high-dimensional

QDA. Prominent candidates must allow us to capture more information in each

covariance matrix than what can be captured by just two scalars ai, ri, but still

have a relatively small number of “easily estimable” parameters.

Supplementary Materials

Supplementary materials are provided in five separate sections. Section S1

provides more details and results for our numerical studies in Section 4. Section



HIGH-DIMENSIONAL QDA 959

S2 contains two data examples. Section S3 provides empirical evidence to support

observations made in Section 5. Section S4 is a brief outline of the main proofs,

while the detailed proofs are given in Section S5.
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