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Abstract: We develop adaptive estimation and inference methods for high-dimen-

sional Gaussian copula regression that achieve the same optimality without the

knowledge of the marginal transformations as that for high-dimensional linear re-

gression. Using a Kendall’s tau based covariance matrix estimator, an `1 regularized

estimator is proposed and a corresponding de-biased estimator is developed for the

construction of the confidence intervals and hypothesis tests. Theoretical properties

of the procedures are studied and the proposed estimation and inference methods

are shown to be adaptive to the unknown monotone marginal transformations. Pre-

diction of the response for a given value of the covariates is also considered. The

procedures are easy to implement and perform well numerically. The methods are

also applied to analyze the Communities and Crime Unnormalized Data from the

UCI Machine Learning Repository.
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1. Introduction

Finding the relationship between a response and a set of covariates is a ubiq-

uitous problem in scientific studies. Linear regression analysis, which occupies

a central position in statistics, is arguably the most commonly used method. It

has been well studied in both the conventional low-dimensional and contempo-

rary high-dimensional settings. However, the assumption of a linear relationship

between the predictors and the response is often too restrictive and unrealistic.

Data transformations, such as the Box-Cox transformation, Fisher’s z transfor-

mation, and variance stabilization transformation, have been frequently used to

improve the linear fit and to correct violations of model assumptions such as

constant error variance. These transformations are often required to be prespec-

ified before applying the linear regression analysis. See, for example, Carroll and

Ruppert (1988) for detailed discussions on transformations.
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For a response Y and predictors X1, . . . , Xp, the following functional form

of the relationship has been widely used in a range of applications,

fλ0
(Y ) = β0 +

p∑
j=1

βjfλj
(Xj) + ε, (1.1)

where fλj
(·) are univariate functions and λj is the parameter associated with

fλj
. Examples of this model include the additive regression model, single index

model, copula regression model, and semiparametric proportional hazards mod-

els, see Ravikumar et al. (2009); Meier, Van de Geer and Buhlmann (2009); Yuan

and Zhou (2015); Ni, Cook and Tsai (2005); Yu et al. (2013); Yi et al. (2015);

Foster, Taylor and Nan (2013); Masarotto and Varin (2012); Pitt, Chan and

Kohn (2006); Luo and Ghosal (2016). For applications in econometrics, compu-

tational biology, criminology, and natural language processing, see for example

Johnston and DiNardo (1997); McDonald (2009); Osgood (2000); Wang and Hua

(2014); Lu et al. (2013). In particular, Yuan and Zhou (2015) and Yi et al. (2015)

established the convergence rates for the minimax estimation risk under the high-

dimensional additive regression model and the single index model, respectively.

For data transformations, it is natural to consider the transformations that are

continuous and one to one on an interval. Indeed, the functions satisfying these

two conditions must be strictly monotonic, see Stein and Shakarchi (2009).

In the present paper, we consider adaptive estimation and statistical infer-

ence for high-dimensional sparse Gaussian copula regression. The model can

be formulated as follows. Suppose we have an independent and identically dis-

tributed random sample Z1 = (Y1,X1), . . . , Zn = (Yn,Xn) ∈ Rp+1, where

Yi ∈ R are the responses and Xi ∈ Rp are the covariates. Set d = p + 1.

We say (Yi,Xi) satisfies a Gaussian copula regression model, if there exists a

set of strictly increasing functions f = {f0, f1, . . . , fp} such that the marginally

transformed random vectors Z̃i = (Ỹi, X̃i) := (f0(Yi), f1(Xi1), . . . , fp(Xip)) sat-

isfy Z̃i
i.i.d∼ Nd(0,Σ) for some positive-definite covariance matrix Σ ∈ Rd×d with

diag(Σ) = 1. The condition diag(Σ) = 1 is for identifiability because the scaling

and shifting are absorbed in the marginal transformations.

Under the Gaussian copula regression model, one has the following linear

relationship for the transformed data:

Ỹi = X̃i
>
β + εi, i = 1, 2, . . . , n, (1.2)

where β ∈ Rp and εi are i.i.d zero-mean Gaussian variables. Writing in terms
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of the covariances, one has β = Σ−1

X̃X̃
ΣX̃Ỹ and εi

i.i.d∼ N(0, 1 − ΣỸ X̃Σ−1

X̃X̃
ΣX̃Ỹ ),

where ΣX̃X̃ = Cov(X̃1, X̃1) and ΣX̃Ỹ = Cov(X̃1, Ỹ1). We focus on the high-

dimensional setting where p is comparable to or much larger than n, and β is

sparse. The fundamental difference between this model and the model at (1.1)

is that one observes {Y1,X1), . . . , (Yn,Xn)}, not {(Ỹ1, X̃1), . . . , (Ỹn, X̃n)} as the

transformations fi are unknown.

The Gaussian copula regression model has been widely used and well stud-

ied in the classical low-dimensional setting, see Sungur (2005); Crane and Hoek

(2008); Masarotto and Varin (2012); Noh, Ghouch and Bouezmarni (2013). For

example, Masarotto and Varin (2012) developed a systematic framework to make

inference and implement model validation for the Gaussian copula regression

model. Noh, Ghouch and Bouezmarni (2013) proposed a plug-in approach for

estimating a regression function based on copulas, and presented the asymptotic

normality of the estimator. However, their model and analysis are restricted to

the low-dimensional setting and not well adapted to the high-dimensional case.

In the high-dimensional setting, Wang and Hua (2014) applied the Gaussian cop-

ula regression model to predict financial risks, but the theoretical guarantees are

still unclear.

The goal of the present paper is to develop adaptive estimation and infer-

ence methods that achieve the optimal performance in terms of the convergence

rates without the knowledge of the marginal transformations. The rank-based

Kendall’s tau is used to extract the covariance information on the transformed

data that does not require estimation of the transformations. Based on the co-

variance matrix estimator, an `1 regularized estimator is proposed to estimate β

and a corresponding de-biased estimator is developed for the construction of the

confidence intervals and hypothesis tests. In addition, prediction of the response

for a given value of the covariates is also considered. One of the main technical

challenges is that in the high-dimensional Gaussian copula model, the procedure

in Javanmard and Montanari (2014) does not apply and a new method and tech-

nical analysis is needed. To achieve the same inferential results as the de-biased

Lasso estimator for high-dimensional linear regression, the de-biasing procedure

needs to be modified carefully.

Theoretical properties of the procedures for estimation, prediction, and sta-

tistical inference are studied. The proposed estimator is shown to be rate-optimal

under regularity conditions. The proposed estimation and inference methods

share similar properties as those optimal procedures for the high-dimensional
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linear regression. They are more flexible in the sense that they are adaptive

to unknown monotone marginal transformations. For example, it is of practi-

cal interest to test whether a given covariate Xi is related to the response Y .

The proposed testing procedure enables one to test this hypothesis without the

need of knowing or estimating the marginal transformations. In addition, the

procedures are easy to implement and perform well numerically. The methods

are applied to analyze the Communities and Crime Unnormalized Data from the

UCI Machine Learning Repository.

Compared with other methods such as those for the additive regression

model and the single index model, a significant advantage for our proposed es-

timation and inference procedures is that they do not require estimation of the

marginal transformations. For example, one can select the important variables

xi without any knowledge of the transformations fi. This makes the methods

more flexible and adaptive. The estimator achieves the same optimal rate as

that for high-dimensional linear regression. We compare our methods and re-

sults to the existing literature on the Gaussian copula graphical model, such

as Gu et al. (2015) where estimation and inference methods for individual en-

tries of the precision matrix Ω = Σ−1 were proposed, based on the observed

data {(Xi1, . . . , Xip)}ni=1. The inferential result in Gu et al. (2015) requires

(f1(Xi1), . . . , fp(Xip)) ∼ N(0,Σ) and Ω to be sparse. Such a matrix sparsity

condition is not needed here. In addition, we use a different method to construct

the confidence interval. In the present paper, we use the de-biased estimator,

while the confidence interval in Gu et al. (2015) was based on the Wald test.

The rest of the paper is organized as follows. After basic notation and defini-

tions are introduced, Section 2 presents the `1 penalized minimization procedure

for estimating β that uses a rank-based correlation matrix estimator. Prediction

is also considered. Section 3 constructs a de-biased estimator and establishes

an asymptotic normality result. Confidence intervals and hypothesis tests are

developed based on the limiting distribution. Numerical performance of the pro-

posed estimator and inference procedures are investigated in Section 4. A brief

discussion is given in Section 5, and the main results are proved in Section 6.

The proofs of some technical lemmas and some additional simulation results are

given in the Supplement Cai and Zhang (2017).

2. Adaptive Estimation and Prediction

We consider adaptive estimation and prediction in this section. We first in-
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troduce the rank-based correlation matrix estimator to extract covariance infor-

mation on the transformed data that does not require estimation of the marginal

transformations, and then present the estimation and prediction procedures and

their theoretical properties.

We begin with the basic notation and definitions. Throughout the paper,

we use bold-faced letters for vectors. For a vector u ∈ Rp and 1 ≤ q ≤ ∞, the

`q norm is defined as ‖u‖q = (
∑p

i=1 |ui|q)1/q. In particular, ‖u‖∞ = maxi |ui|.
In addition, u[i : j] denotes the entries of u from i-th to j-th coordinates and

supp(u) is the support of u. For a matrix A ∈ Rp×p and 1 ≤ q ≤ ∞, the matrix

`q operator norm is is defined as ‖A‖q = sup‖u‖q=1 ‖Au‖q. The spectral norm

of A is the `2 operator norm and the `1 norm is the maximum absolute column

sum. For an integer 1 ≤ s ≤ p, the s-restricted spectral norm of A is defined as

‖A‖2,s = supu∈Sp−1,|u|0≤s ‖Au‖2, where Sp−1 is the unit ball in Rp. The vector

`∞ norm on matrix A is |A|∞ = maxi,j |Aij |. For a symmetric matrix A, we use

λmax(A) and λmin(A) to denote, respectively, the largest and smallest eigenvalue

of A, and κ(A) = λmax(A)/λmin(A) is the condition number. Further, we denote

the restricted condition number by κs(Σ) := sup{λmax(ΣS,S)/λmin(ΣS,S) : S ∈
[n], |S| = s}. We write A � 0 if A is semidefinite positive. In addition, ◦
denotes the matrix element-wise multiplication, and ⊗ is the Kronecker product.

Moreover, vec(·) maps an m × n matrix A to a Rmn vector by laying out the

columns ofA one by one. For a set of indices I,J , we letAI,J denote the submatrix

formed by the rows in I and columns in J . Ip×p is the p by p identity matrix.

e
(n)
i is the i-th unit vector in Rn with entries e

(n)
ij = I{j=i}, for j = 1, . . . , n. Φ(·)

denotes the cumulative distribution function of a standard normal distribution.

Br(x) denotes the Eucilidean ball centered at x with radius r. For two sequences

of nonnegative real numbers, an . bn implies that there exists a constant C

not depending on n, such that an ≤ Cbn. Finally, we use [d] to denote the set

{1, 2, . . . , d}.

2.1. Rank-based estimator of correlation matrix

At (1.2), we use (Y , X) to denote the observed data, with Y ∈ Rn and

X ∈ Rn×p the design matrix with rows X>1 , . . . ,X
>
n , and (Ỹ , X̃) to be the orig-

inal data that possesses the linear relationship. In addition, Z>i := (Yi,X
>
i )

and Z̃>i := (Ỹi, X̃
>
i ). An essential quantity in estimation of β and inference for

the Gaussian copula regression model (1.2) is the covariance matrix (or correla-

tion matrix as the diagonal is 1) Σ. Since the marginal transformations fi’s are

unknown and thus (Ỹ , X̃) is not directly accessible, the conventional sample co-
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variance matrix is not available as an estimate of Σ. We thus need an alternative

method to estimate the covariance/correlation matrix Σ.

Our approach is to use the rank-based Kendall’s tau, which can be well

estimated from the observed data (Y1,X
>
1 ), . . . , (Yn,X

>
n ). This estimator is

based on the following fact (see Section 3 of Kruskal (1958)).

Set d = p+ 1. If Z̃i
i.i.d.∼ Nd(0,Σ) with Σ = (σjk)1≤j,k≤d, then

σjk = sin
(π

2
τjk

)
, (2.1)

where τjk is Kendall’s tau defined as

τjk = E[sgn(z̃1j − z̃2j)sgn(z̃1k − z̃2k)], (2.2)

with Z̃i = (z̃i1, z̃i2, . . . , z̃id)
>, i = 1, 2, being two independent copies of Nd(0,Σ).

Note that τjk given in (2.2) is invariant under strictly increasing marginal

transformations. This leads to an estimate of τij based on the observed data Z1,

. . . , Zn under the Gaussian copula regression model,

τ̂jk =
2

n(n− 1)

∑
1≤i1<i2≤n

sgn(Z̃i1j − Z̃i2j)sgn(Z̃i1k − Z̃i2k)

=
2

n(n− 1)

∑
1≤i1<i2≤n

sgn(Zi1j − Zi2j)sgn(Zi1k − Zi2k), 1 ≤ j, k ≤ d.
(2.3)

Denote by T̂ = (τ̂jk)d×d the Kendall’s tau sample correlation matrix, and its

population version T = (τjk)d×d. If Si,i′ = (sgn(Zi1−Zi′1), . . . , sgn(Zid−Zi′d))>,

then

T̂ = (τ̂jk)d×d =
1

n(n− 1)

n∑
i 6=i′

Si,i′S
>
i,i′ . (2.4)

Based on Kendall’s tau, (2.1) leads to an estimator for the correlation matrix Σ,

Σ̂ = (σ̂jk)d×d with σ̂jk = sin
(π

2
τ̂jk

)
. (2.5)

We divide Σ into four sub-matrices, denoted by ΣXX ,ΣXY , ΣY X ,ΣY Y , and

their corresponding Kendall’s tau based estimators are Σ̂Y Y , Σ̂Y X , Σ̂XY , Σ̂XX ,

with Σ̂Y X = Σ̂>XY and ΣY X = Σ>XY .

2.2. Estimation of β

We introduce the procedure for estimating the sparse coefficient vector β in

(1.2). If the marginal transformations fi, i = 0, 1, . . . , p are given, then (Ỹi, X̃
>
i )

are available and in this case a natural approach to estimating β is to use the

Lasso estimator
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β̂Lasso = arg min
β∈Rp

{ 1

2n
‖Ỹ − X̃β‖22 + λ‖β‖1}.

Rewriting the objective function yields

β̂Lasso = arg min
β∈Rp

{ 1

2n
(β>X̃>X̃β − 2Ỹ >X̃) + λ‖β‖1}. (2.6)

Since (Ỹi, X̃i) are not directly accessible as the transformations fi’s are unknown,

the estimator given in (2.6) cannot be used. The quantities X̃>X̃/n and Ỹ >X̃/n

in (2.6) can be viewed as estimators of the covariances ΣXX and ΣY X , respec-

tively. From this perspective, it is natural to replace X̃>X̃/n and Ỹ >X̃/n in (2.6)

with the alternative covariance estimators Σ̂XX and Σ̂Y X based on Kendall’s τ ,

as discussed in Section 2.1. We propose an `1 penalized minimization procedure

for estimating β.

Algorithm 1 Adaptive estimator of β

Input: Observed pairs (Y1,X
>
1 ), . . . , (Yn,X

>
n ), parameter λ > 0.

Output: Regularized estimator β̂(λ).

1: Construct Kendall’s tau based covariance estimators Σ̂XX and Σ̂XY .
2: Set

β̂(λ) = arg min
β∈Rp

{1

2
(β>Σ̂XXβ − 2Σ̂Y Xβ) + λ‖β‖1}. (2.7)

Remark 1. As Σ̂XX may not be positive semidefinite (PSD), the optimization

(2.7) may not be convex. Theorem 1 in Loh and Wainwright (2013) developed

theory for this nonconvex optimization problem, and showed that the solution

obtained by the standard projected gradient descent method lies within statistical

error of the true β. Alternatively, one can project Σ̂XX onto the cone of the PSD

matrices, Σ̂+
XX = arg minΣ�0 ‖Σ̂XX−Σ‖2,s. Here we use the ‖ ·‖2,s norm instead

of the spectral norm due to theoretical considerations for the results given in

Theorem 1. This projection increases the loss by a factor at most two, so in

practice Σ̂+
XX can be used in place of Σ̂XX .

To consider the properties of the estimator β̂(λ) given in Algorithm 1, first

define the Restricted Strong Convexity (RSC) condition introduced in Negahban

et al. (2009).

Definition 1 (RSC). For a given sparsity level s ≤ p and constant α ≥ 1,

let C(s, α) := {θ ∈ Rp : ‖θSc‖1 ≤ α‖θS‖1, S ⊂ {1, . . . , p}, |S| ≤ s}. A matrix

Σ ∈ Rp×p satisfies the restricted strong convexity (RSC) condition, with constants

(γ1, s, α), if
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θ>Σθ ≥ γ1‖θ‖22 for all θ ∈ C(s;α).

The RSC condition is related to the restricted eigenvalue condition that

Bickel, Ritov and Tsybakov (2009) used in the analysis of high-dimensional linear

regression. See Negahban et al. (2009) for more detailed discussion on the RSC.

Theorem 1. Assume that β is s-sparse. Suppose that κs(Σ) ≤ M for some

M > 0, and that ΣXX satisfies the RSC with constants (γ1, s, 3). Write β̂(λ)

defined at (2.7), if s = o(n/log p), and the tuning parameter λ = C1
√

log p/n is

chosen with C1 > 2M , then with probability at least 1− 2p−1,

‖β̂(λ)− β‖2 .

√
s log p

n
and ‖β̂(λ)− β‖1 . s

√
log p

n
. (2.8)

Furthermore, if |ΣXS ,XSc |∞ ≤ 1 − α for some constant α > 0, where S =

supp(β) and XS is its corresponding index set in Σ, mini∈S |βi| ≥ 8M/γ1(1 +

4(2− α)/α)
√
s log p/n, then for λ = 8M(2− α)/α

√
s log p/n, with probability

at least 1− 2p−1,

sgn(β) = sgn(β̂(λ)). (2.9)

The convergence rates of β̂(λ) under the `1 and `2 norm losses given in

(2.8) match the minimax lower bounds for high-dimensional linear regression,

Raskutti, Wainwright and Yu (2011). This implies that β̂(λ) is minimax rate

optimal under the Gaussian copula regression model and achieves the same opti-

mal rate attained by the regular Lasso for linear regression. Thus the proposed

procedure is adaptive to the unknown marginal transformations and gains this

added flexibility for free in terms of convergence rate. The result given in (2.9)

shows that, under regularity conditions, β̂(λ) is sign consistent.

2.3. Prediction

In addition to estimation of β, a problem of signficant practical interest

is that of predicting the response Y ∗ for a given value of the covariates x∗ =

(x∗1, . . . , x
∗
p) based on the Gaussian copula regression model (1.2). In the ora-

cle setting where the transformations f0, . . . , fp and the coefficient vector β are

known, the optimal prediction of the response is

µ∗ = f−1
0 (

p∑
i=1

fi(x
∗
i )βi).

Our goal is to construct a predictor µ̂∗, based only on the observed data (Y1,X1),

. . . , (Yn,Xn), that is close to the oracle predictor µ∗.

Let F0 be the cumulative distribution function of Y and let Fi be the cumu-
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lative distribution function of Xi for i = 1, . . . , p. As for the sample version, let

F̂0 be the empirical cumulative distribution function of {Y1, . . . , Yn} and let F̂i be

the empirical cumulative distribution function of {Xi1, . . . , Xin} for i = 1, . . . , p.

Set

f̂0(t) = Φ−1(F̃0(t)), i = 1, 2, . . . , n; (2.10)

f̂i(t) = Φ−1(F̂i(t)), i = 1, 2, . . . , n, (2.11)

where F̃0(t) = 1/n2I(F̂0(t) < 1/n2)+ F̂0(t)I(F̂0(t) ∈ [1/n2, 1−1/n2])+(n2 − 1)/

n2I(F̂0(t) > 1− 1/n2).

For a given value of the covariates x∗ = (x∗1, . . . , x
∗
p), we define the predictor

µ̂∗ = f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i), (2.12)

where β̂(λ) is the estimator given in (2.7) and f̂−1
0 is the generalized inverse of

f̂0:

f̂−1
0 (t) = inf{x ∈ R : f̂0(x) ≥ t}.

Write Br(x) as the Eucilidean ball centered at x with radius r, we have the

following for the predictor µ̂∗.

Theorem 2. Suppose for some constant c > 0, |f0(v1) − f0(v2)| ≥ c|v1 − v2|
for all v1, v2 ∈ f−1

0 (Br(f0(µ∗))) with r ≥ Cs
√

log d/n for a sufficiently large

constant C, f0(µ∗) < M , and maxi=1,...,p Fi(x
∗
i ) ∈ (δ∗, 1− δ∗) for some constant

M > 0, δ∗ ∈ (0, 1). If s = o(
√
n/log p), then under the conditions of Theorem 1

the predictor µ̂∗ given in (2.12) satisfies, with probability at least 1− p−1 − n−1,

|µ̂∗ − µ∗| . s

√
log p

n
.

This error bound is tight. f−1
0 (µ∗) =

∑p
i=1 fi(x

∗
i )βi can be viewed as a linear

functional of β with unknown weights fi(x
∗
i ) (as the marginal transformations

fi’s are unknown). For high-dimensional linear regression, inference on the linear

functionals of β with known weights has been considered in Cai and Guo (2015),

where a lower bound of order s
√

log p/n was established for estimation error and

for the expected length of confidence intervals for linear functionals with “dense”

weight vectors.

3. Statistical Inference

We turn to statistical inference for the Gaussian copula regression model.

The Lasso estimator is inherently biased as it is essential to trade variance and
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bias in order to achieve the optimal estimation performance. For statistical

inference such as confidence intervals and hypothesis tests, it is desirable to use

(nearly) unbiased pivotal estimators. Such an approach has been used in the

construction of confidence intervals for high-dimensional linear regression in the

recent literature. See, for example, Javanmard and Montanari (2014); Van de

Geer et al. (2014); Zhang and Zhang (2014); Cai and Guo (2015). We follow the

same principle to de-bias the estimator β̂(λ) given in Algorithm 1.

We begin by noting that β̂(λ) satisfies the Karush-Kuhn-Tucker (KKT) con-

dition

Σ̂XX β̂(λ)− Σ̂XY + λ∂‖β̂(λ)‖1 = 0, (3.1)

where ∂‖β̂(λ)‖1 is the subgradient of the `1 norm ‖ · ‖1. Equation (3.1) can be

rewritten as

Σ̂XX(β̂(λ)− β) + λ∂‖β̂(λ)‖1 = Σ̂XY − Σ̂XXβ.

Suppose one has a good approximation of the “inverse” of Σ̂XX , say M , and

multiplies M on the left:

M Σ̂XX(β̂(λ)− β) + λM∂‖β̂(λ)‖1 = M(Σ̂XY − Σ̂XXβ).

Then it follows that

(β̂(λ)+λM∂‖β̂(λ)‖1)−β = M(Σ̂XY − Σ̂XXβ)+(I−M Σ̂XX)(β̂(λ)−β). (3.2)

Let β̂u = β̂(λ) + λM∂‖β̂(λ)‖1. By inspection, this leads to
√
n(β̂u − β(λ)) =

√
n(M Σ̂XY −M Σ̂XXβ) +

√
n(I −M Σ̂XX)(β − β̂(λ)) (3.3)

=
√
n(M Σ̂XY −M Σ̂XXβ) + o(1), (3.4)

where the second equality use the assumption that M approximates the “in-

verse” of Σ̂XX well and thus that (I −M Σ̂XX)(β̂(λ) − β) is negligible. Then√
n(M Σ̂XY −M Σ̂XXβ) plays a major role in the limiting distribution of

√
nβ̂u

and later we will show its asymptotic normality (Theorem 3).

This analysis suggests the de-biasing procedure

β̂u =β̂(λ) + λM∂‖β̂(λ)‖1 = β̂(λ) +M(Σ̂XY − Σ̂XX β̂(λ)),

where the second equality is from (3.1).

We then need to construct the matrix M that is a good approximation

of the “inverse” of Σ̂XX . We proceed with two objectives in mind: to control

|M Σ̂XX−Ip×p|∞ and to control the variance of β̂ui . The latter is for the precision

of the statistical inference procedures. For example, the length of the confidence

intervals for βi is proportional to the standard deviation of β̂ui .
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In the following, we are going to estimate the variance of β̂ui , and solve for M

that minimizes this variance. Assuming that (I−M Σ̂XX)(β̂(λ)−β) is negligible,

by (3.3), the variance of β̂ui is determined by that of m>i (Σ̂XY − Σ̂XXβ), where

mi is the i-th column of M . If ui = (0,m>i )> and v0 = (1,−β>)> ∈ Rd, then

one has

m>i (Σ̂XY − Σ̂XXβ) = uiΣ̂v
>
0 .

It is shown in Lemma 1 in Section 6 that the asymptotic variance of
√
nuiΣ̂v

>
0

is

π2σ2
g1(ui)

:= π2Var(g1(Z;ui)), (3.5)

where g1(Z;ui) = E[g(Z,Z ′;ui)|Z], and g(Z,Z ′;ui) is defined as

g(Z,Z ′;ui) = sgn(Z −Z ′)>(uiv
>
0 ◦ cos(

π

2
T ))sgn(Z −Z ′)

for Z,Z ′
i.i.d∼ Nd(0,Σ) and ui ∈ Rd.

Therefore, to estimate the variance of β̂ui , we need a good estimate of σ2
g1(ui)

.

Note that (3.5) can be further expressed as

σ2
g1(ui)

= Var(g1(Z;ui)) = vec(uiv
>
0 ◦ cos(

π

2
T ))> · ΣhZ

· vec(uiv
>
0 ◦ cos(

π

2
T )),

(3.6)

where ΣhZ
= Var(hZ(Z)) ∈ Rd2×d2 is the covariance matrix of hZ(Z) = E[sgn(Z−

Z ′)⊗ sgn(Z −Z ′)|Z] ∈ Rd2 . Then we estimate ΣhZ
by

Σ̂hZ
=

1

n

n∑
i=1

(ĥZ(Zi)−
1

n

n∑
i′=1

ĥZ(Zi′))(ĥZ(Zi)−
1

n

n∑
i′=1

ĥZ(Zi′))
>, (3.7)

where ĥZ(Zi) = 1/(n− 1)
∑n

i′ 6=i sgn(Zi −Zi′)⊗ sgn(Zi −Zi′).
Consequently, a good estimate of σ2

g1(ui)
is given by

σ̂2
g1(ui)

= vec(uiv̂
> ◦ cos(

π

2
T̂ ))>Σ̂hZ

vec(uiv̂
> ◦ cos(

π

2
T̂ )), (3.8)

with v̂ = (1, β̂(λ)>)>, and this determines the estimate of the variance of β̂ui .

We are ready to present the de-biasing procedure, which controls |M Σ̂XX −
Ip×p|∞ and minimizes the variance of β̂ui , where the latter is equivalent to mini-

mizing σ̂2
g1(ui)

. To simplify the notation, we define x(u) : Rd → Rd2 with x(u) =

vec(uv>0 ◦ cos(π/2T )), and x̂(u) : Rd → Rd2 with x̂(u) = vec(uv̂> ◦ cos(π/2T̂ )).

Then (3.5) and (3.8) can be simplified to

σ2
g1(u) = x(u)>ΣhZ

x(u) and σ̂2
g1(u) = x̂(u)>Σ̂hZ

x̂(u). (3.9)

Let K = cos(π/2T̂ ) = (K1, . . . ,Kd) and ǔ = (u>, . . . ,u>)> ∈ Rd2 . Take L =

(Id×d, Id×d, . . . , Id×d) ∈ Rd×d2 and rewrite ǔ = L>u. Define Ď = diag(v1diag(K1),
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. . . , vd diag(Kd)) and set

MΣ = LĎΣ̂hZ
ĎL>. (3.10)

Then σ̂2
g1(u) can be rewritten as a convex function of u

σ̂2
g1(u) = x̂(u)>Σ̂hZ

x̂(u) = ǔ>ĎΣ̂hZ
Ďǔ = u>LĎΣ̂hZ

ĎL>u = u>MΣu. (3.11)

Algorithm 2 De-biased estimator of β

Input: Observed pairs (Y1,X
>
1 ), . . . , (Yn,X

>
n ), parameters a ∈ (0, 1/12), b > 0, µ >

0, λ > 0.
Output: De-biased estimator β̂u.

1: Construct Kendall’s tau based covariance estimators Σ̂XY and Σ̂XX , and calculate
MΣ by (3.10).

2: Let

β̂(λ) = min
β∈Rp

{1

2
(β>Σ̂XXβ − 2Σ̂Y Xβ) + λ‖β‖1}. (3.12)

3: for i = 1, 2, . . . , p do
4: Let ui be a solution of

minimize
u∈Rp

u>MΣu

subject to ‖Σ̂XXu[2 : d]− e(p)
i ‖∞ ≤ µ

e
(d)>
1 u = 0

b−1n−a ≤ ‖u‖2 ≤ ‖u‖1 ≤ bna/2

(3.13)

5: Set M = (u1[2 : d], . . . ,up[2 : d]). If any of the above problems is not feasible, then
set M = Ip×p.

6: Define β̂u as
β̂u = β̂(λ) +M(Σ̂XY − Σ̂XX β̂(λ)). (3.14)

Note that (3.13) is a convex program and can be solved efficiently. That

σ̂2
g1(u) is convex with respect to u and the constraints of (3.13) construct a convex

set of u, implies that (3.13) is a convex program. The first constraint in (3.13) is

to make sure that M is a good approximation of Σ̂−1
XX , and the third constraint is

for the convenience of theoretical analysis, in practice b can be chosen sufficiently

large so that it does not affect the numerical performance of the algorithm.

The following theorem serves as the basis for the construction of statistical

inference procedures.

Theorem 3. Suppose for some constants Mi > 0, i = 1, 2, 3, that 1/M1 ≤
λmin(Σ) ≤ λmax(Σ) ≤ M1, ‖Σ−1‖1 < M2, and λmin(ΣhZ

) > M3. Suppose s =

o(
√
n/log p), µ = a

√
log p/n, and λ = c

√
log p/n in Algorithm 2 are chosen with
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a > 4M2 and c > 2M2
1 . Then for any fixed 1 ≤ i ≤ p and for all x ∈ R,

lim
n→∞

sup
β∈Rp−1,‖β‖0≤s

∣∣∣∣∣∣P
 √

n(β̂ui − βi)

π

√
x̂(ui)>Σ̂hZ

x̂(ui)
≤ x

− Φ(x)

∣∣∣∣∣∣ = 0. (3.15)

Theorem 3 shows that the estimator β̂u possesses the distributional property

similar to that of the de-biased Lasso estimator in Javanmard and Montanari

(2014), although the observed data here have a linear relationship only after

unknown transformations.

The asymptotic normality result given in (3.15) can be used to construct

confidence intervals and hypothesis tests for any given coordinate βi. Let zα/2 =

Φ−1(1− α/2).

Corollary 1. Suppose the conditions of Theorem 3 hold. Then for any given

1 ≤ i ≤ p,

CIi =

βui − zα/2π
√
x̂(ui)>Σ̂hZ

x̂(ui)

n
, βui + zα/2π

√
x̂(ui)>Σ̂hZ

x̂(ui)

n


(3.16)

is an asymptotically (1− α) level confidence interval for βi.

It is of practical interest to test whether a given covariate Xi is related to

the response Y . In the context of the Gaussian copula regression model, this can

be formulated as testing an individual null hypothesis H0,i : βi = 0 versus the

alternative H1,i : βi 6= 0. To test H0,i against H1,i at the nominal level α for

some 0 < α < 1, based on Theorem 3, we introduce the test

Ψ̂i = I

 √
n|β̂ui |

π

√
x̂(ui)>Σ̂hZ

x̂(ui)
> zα/2

 . (3.17)

Let Ψi be any test for testing H0,i : βi = 0 versus H1,i : βi 6= 0. Define

αn(Ψi) be the size of the test over the collection of s-sparse vectors,

αn(Ψi) = sup{Pβ(Ψi = 1) : β ∈ Rp, ‖β‖0 ≤ s,βi = 0}.

For the power of the test, we consider the collection of s-sparse vectors with

|βi| ≥ γ for some given γ > 0 and define the power as

ζn(Ψi; γ) = inf{Pβ(Ψi = 1) : β ∈ Rp, ‖β‖0 ≤ s, |βi| ≥ γ}.

Corollary 2. Suppose the conditions of Theorem 3 hold. The test Ψ̂i defined at

(3.17) satisfies
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lim
n→∞

αn(Ψ̂i) ≤ α and lim inf
n→∞

ζn(Ψ̂i; γ)

ζ∗n(γ)
≥ 1, (3.18)

where ζ∗n(γ) := G(α, (
√
nγ)/πσg1(u)) and

G(α, u) = 2− Φ(zα/2 + u)− Φ(zα/2 − u),

for 0 < α < 1 and u ∈ R+.

Consider the problem of testing an individual null hypothesis H0,i : βi = 0

versus the alternative H1,i : βi 6= 0 under the linear model

Ỹi = X̃i
>
β + εi, i = 1, 2, . . . , n, (3.19)

with X̃i
i.i.d∼ N(0,ΣXX) and εi ∼ N(0, σ2). As shown in Javanmard and Monta-

nari (2014), for any test Ψi, if αn(Ψi) ≤ α, then

lim sup
n→∞

ζn(Ψi; γ) ≤ G(α,

√
nγ

σd
),

where

σd =
σ√

σii − Σi,SΣ−1
S,SΣS,i

.

Hence, our test Ψ̂i has nearly optimal power in the following sense: it has power

at least as large as the power of any other test Ψi based on a sample of size n/Cd,

where the factor Cd = πσg1(ui)/σd.

The results show that the proposed confidence intervals and hypothesis tests

share the similar properties as those optimal procedures for the high-dimensional

linear regression. They are more flexible in the sense that they are adaptive to

unknown monotone marginal transformations.

4. Numerical Performance

The proposed estimation and inference procedures are easy to implement.

We investigate in this section the numerical performance of the adaptive esti-

mator (2.7), denoted by β̂Copula(Y , X) in this section, as well as the confidence

procedure through simulations. The procedures are also applied to the analy-

sis of the Communities and Crime Unnormalized Data from the UCI Machine

Learning Repository.

4.1. Simulation results for estimation accuracy

We first considered the performance of the the proposed estimator β̂Copula(Y ,

X) by comparing its estimation `2 loss and model selection error with those of the
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oracle Lasso estimator β̂Lasso(Ỹ , X̃) that is performed on the transformed data

(Ỹ , X̃), in which case we assumed the marginal transformations fi are known

and Ỹ is linear in X̃. Then we compare β̂Copula(Y , X) with the regular Lasso

estimator β̂Lasso(Y , X) and the elastic-net estimator β̂enet(Y , X), proposed in

Zou and Hastie (2005), that are performed on (Y , X) directly.

The detailed simulation settings were as follows. Eight different combinations

of the sample size, dimension, and sparsity with (n, p, s) = (100, 500, 10), (100,

500, 20), (100, 1,000, 10), (100, 1,000, 20), (200, 500, 10), (200, 500, 20), (200,

1,000, 10) and (200, 1,000, 20), were analyzed. In each case, we considered three

different models for the covariance matrix Σ:

Model 1. Random Gaussian matrix: We begin with a random Gaussian

matrix A = (ai,j)1≤i,j≤d where d = p + 1 and ai,j
i.i.d.∼ N(0, 1), and then

make the last p − s columns of A orthogonal to the first column of A via

the Gram-Schmidt process, to obtain matrix B. The covariance matrix is

Σ = D−1/2(B>B + I)−1D−1/2, where D = diag((B>B + I)−1).

Model 2. AR(1) matrix: We first generate a random orthogonal matrix A =

(ai,j)1≤i,j≤d where d = p + 1. We then create a new d × d matrix B with

the k-th column Bk =
√

1− ρ2Ak + ρAk−1, for k = 2, 3, . . . , d. The first

column of B is the projection of A1 onto the orthogonal complement of

the span of the last p− s columns of B. Define the covariance matrix Σ =

D−1/2(B>B)−1D−1/2, where D = diag((B>B)−1). From this procedure the

resulting covariance matrix ΣXX is the first-order autoregressive (AR(1))

matrix with autocorrelation ρ. In the simulation we set ρ = 0.5.

Model 3. Compound symmetric matrix: In this case we start with a ran-

dom orthogonal matrix A = (ai,j)1≤i,j≤d where d = p + 1, and create

a new d × d matrix B with k-th column Bk =
√

1− ρ2Ak + ρA1 for

k = 2, 3, . . . , d. We then generate a new random vector Ã1 ∼ Nd(0, Id)

where the first column of B is the projection of Ã1 onto the orthogonal

complement of the span of the last p− s columns of B. Let the covariance

matrix Σ = D−1/2(B>B)−1D−1/2, where D = diag((B>B)−1). From this

procedure the resulting covariance matrix ΣXX is the compound symmetric

matrix with correlation ρ. In the simulation we set ρ = 0.5.

After generating Σ from these models, we obtained n samples (Ỹi, X̃
>
i )

i.i.d.∼
Nd(0,Σ). For each choice of (n, p, s), we considered two settings. In the first, we

set Yi = exp(Ỹi), X1j = Φ(X̃ij)
5, Xij = 2X̃5

ij+1 for j = 2, .., 10, Xij = − exp(X̃ij)
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Table 1. Simulation results for the synthetic data described under Model 1 in Section 4.
The results corresponds to model selection error eselection and estimation error eest for
β̂Copula(Y , X), β̂Lasso(Ỹ , X̃), β̂Lasso(Y , X) and β̂enet(Y , X). The subscript i (i = 1, 2)
in (n, p, s)i denotes the i-th setting of transformations.

Model 1

SNR β̂Copula(Y , X) β̂Lasso(Ỹ , X̃) β̂Lasso(Y , X) β̂enet(Y , X)
(n, p, s) eselection eest eselection eest eselection eest eselection eest

(100, 500, 10)1 129.1 0.0033 0.0526 0.0115 0.0351 0.0174 0.8835 0.0157 0.7954
(100, 500, 10)2 129.1 0.0033 0.0526 0.0115 0.0351 0.0152 2.0468 0.0155 0.9489
(100, 500, 20)1 81.6 0.0096 0.0840 0.0138 0.0562 0.0149 0.5452 0.0197 0.6647
(100, 500, 20)2 81.6 0.0096 0.0840 0.0138 0.0562 0.0184 0.4282 0.0142 0.5168
(100, 1,000, 10)1 246.7 0.0018 0.0406 0.0090 0.0276 0.0147 1.1532 0.0129 1.0428
(100, 1,000, 10)2 246.7 0.0018 0.0406 0.0090 0.0276 0.0126 0.6369 0.0125 0.4932
(100, 1,000, 20)1 148.0 0.0052 0.0740 0.0081 0.0379 0.0276 0.8315 0.0142 0.8147
(100, 1,000, 20)2 148.0 0.0052 0.0740 0.0081 0.0379 0.0270 2.8695 0.0820 1.6456
(200, 500, 10)1 125.3 0.0030 0.0484 0.0111 0.0251 0.0292 5.1155 0.0162 2.0187
(200, 500, 10)2 125.3 0.0030 0.0484 0.0111 0.0251 0.0308 0.4595 0.0740 0.6657
(200, 500, 20)1 88.8 0.0092 0.0706 0.0132 0.0485 0.0274 3.4115 0.0184 2.7923
(200, 500, 20)2 88.8 0.0092 0.0706 0.0132 0.0485 0.0234 0.4748 0.0842 0.6532
(200, 1,000, 10)1 234.5 0.0017 0.0605 0.0092 0.0326 0.0267 4.0319 0.0128 5.6237
(200, 1,000, 10)2 234.5 0.0017 0.0605 0.0092 0.0326 0.0260 0.5675 0.0159 0.5145
(200, 1,000, 20)1 156.8 0.0044 0.0648 0.0085 0.0258 0.0438 0.6622 0.0141 0.8360
(200, 1,000, 20)2 156.8 0.0044 0.0648 0.0085 0.0258 0.0610 0.5130 0.0224 0.4036

for j = 11, 12, .., 30, except for Xi,21 = Φ(X̃i,21), bounded by 0 and 1, while in

the second setting we constrained Yi ∈ [0, 1] and set Yi = Φ(Ỹi) with Xij ’s

transformed the same way as in the first setting.

In each setting, the simulation was repeated Nsim = 500 times and the

tuning parameter λ was selected via 5-fold cross validation. The accuracy of the

estimators was measured by the average `2 loss

eest =
1

Nsim

Nsim∑
i=1

‖β̂ − β‖2,

and the model selection error

eselection =
1

Nsim

Nsim∑
i=1

1

p

p∑
j=1

I
(
I(β̂j = 0) 6= I(βj = 0)

) .

The simulation results under the first model for the three different estimates

β̂Copula(Y , X), β̂Lasso(Ỹ , X̃) and β̂Lasso(Y , X) are summarized in Table 1. Re-

sults under the second and third models are given in the Supplement Cai and

Zhang (2017).
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Table 1 shows that the performance of the proposed estimator β̂Copula(Y , X),

which does not require the knowledge of the marginal transformations fi, is as

good as the oracle estimator β̂Lasso(Ỹ , X̃), which assumes the full knowledge of

the transformations fi. As expected, applying the Lasso and elastic-net estimator

directly to the observed data leads to severely problematic model selection and

parameter estimation.

4.2. Simulation results for statistical inference

We considered the performance of the proposed confidence interval CIi for

the i-th coordinate βi given in (3.16) based on the observed data (Yi,X
>
i ) in

terms of the coverage probability and expected length. In this section we de-

note the de-biased estimator in (3.14) as β̂uCopula(Y , X). The confidence interval

was compared with the confidence interval proposed in Javanmard and Monta-

nari (2014) based on the transformed data (Yi,X
>
i ) with de-biased estimator

β̂uLasso(Y , X), and that of β̂uLasso(Ỹ , X̃) on the original data (Ỹi, X̃
>
i ) while as-

suming the marginal transformations fi are known.

In all simulations we set the significance level α = 0.05, and considered eight

cases: (n, p, s) = ((100, 500, 10), (100, 500, 20), (100, 1,000, 10), (100, 1,000,

20), (200, 500, 10), (200, 500, 20), (200, 1,000, 10) and (200, 1,000, 20).

In each setting, the simulation was repeated 500 times. The tuning param-

eter λ was selected via 5-fold cross validation, and µ, a, b in Algorithm 2 were

manually set to 1/2
√

log p/n, 1/13, and 10 respectively. We discovered that the

result is robust with respect to the choice of µ, a and b. Recalling that the β

is constructed with first s elements nonzero, we constructed the 95% confidence

intervals for the nonzero (active) coefficient β1. The simulation results under

Model 1 are summarized in Table 2, and the results under Model 2 and 3 are

given in Supplement Cai and Zhang (2017).

Table 2 summarizes the empirical coverage probability of the nominal 95%

confidence intervals and the corresponding average lengths of β1. The results

show that the empirical coverage probability of β̂uCopula(Y , X) is very close to the

desired confidence level, while it is problematic to construct confidence intervals

based on β̂uLasso(Y , X). The desired confidence level for the confidence intervals

of an active coefficient is always small when we apply the de-biased Lasso estima-

tor directly to the data. The confidence interval constructed by β̂uCopula(Y , X)

performs as well as that constructed by β̂uLasso(Ỹ , X̃), which needs additional in-

formation of the transformations. In particular, our method tends to have stable

confidence interval lengths, while the length of confidence intervals constructed
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Table 2. Simulation results for the synthetic data under Model 1 described in Section
4. The results corresponds to 95% confidence intervals. C(β1) and l(β1) respectively
stand for coverage probability and average lengths of the confidence interval for β1. The
subscript i (i = 1, 2) in (n, p, s)i denotes the i-th setting of transformations.

Model 1

CI(β̂u
Copula(Y , X)) CI(β̂u

Lasso(Ỹ , X̃)) CI(β̂u
Lasso(Y , X))

(n, p, s) l(β1) C(β1) l(β1) C(β1) l(β1) C(β1)
(100, 500, 10)1 0.0223 0.956 0.0380 0.958 0.9398 0.332
(100, 500, 10)2 0.0223 0.956 0.0380 0.958 0.1700 0.428
(100, 500, 20)1 0.0241 0.948 0.0562 0.962 1.1152 0.462
(100, 500, 20)2 0.0241 0.948 0.0562 0.962 0.1331 0.574
(100, 1,000, 10)1 0.0203 0.958 0.0275 0.956 0.8968 0.296
(100, 1,000, 10)2 0.0203 0.958 0.0275 0.956 0.1227 0.092
(100, 1,000, 20)1 0.0224 0.962 0.0378 0.962 0.9434 0.782
(100, 1,000, 20)2 0.0224 0.962 0.0378 0.962 0.1297 0.294
(200, 500, 10)1 0.0138 0.946 0.0251 0.946 0.7472 0.230
(200, 500, 10)2 0.0138 0.946 0.0251 0.946 0.1301 0.442
(200, 500, 20)1 0.0154 0.952 0.0395 0.958 0.9163 0.068
(200, 500, 20)2 0.0154 0.952 0.0395 0.958 0.1081 0.294
(200, 1,000, 10)1 0.0121 0.958 0.0326 0.956 0.7993 0.188
(200, 1,000, 10)2 0.0121 0.958 0.0326 0.956 0.1164 0.098
(200, 1,000, 20)1 0.0140 0.962 0.0257 0.952 0.8500 0.292
(200, 1,000, 20)2 0.0140 0.962 0.0257 0.952 0.1071 0.104

by β̂uLasso(Y , X) varies a lot according to the scale of data.

4.3. Analysis of communities and crime unnormalized data

We applied our estimation and inference procedures to a data example. The

Communities and Crime Unnormalized Data from the UCI Machine Learning

Repository combines socio-economic data from the 1990 Census, law enforcement

data from the 1990 Law Enforcement Management and Administration Stats sur-

vey, and crime data from the 1995 FBI UCR. This dataset has been analyzed

in Radchenko (2015); Buczak and Gifford (2010). In this example, we focused

on explaining the response variable, percentage of women who are divorced, us-

ing various community characteristics, such as percentage of population that is

African American and percent of people in owner occupied households, as well

as law enforcement and crime information, such as percent of officers assigned to

drug units. In order to further explore the high-dimensional setting, we used the

state-level data of Pennsylvania, whose number of predictors is at least as large

as the number of observations.

After removing the variables with NA’s and two variables directly related to
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Table 3. Simulation results for the divorce percentage of women in the Pennsylvania
Communities and Crime Data.

RMSE Number of variable selected
Copula 1.66 (0.66) 4.61 (0.72)
Lasso 2.46 (0.43) 8.01 (0.70)

the response (total and male divorce percentages), the data has 101 observations

and 114 predictors. To evaluate the performance of the proposed methods, we

randomly split the data into a training set with 90 observations, and a test

set with 11 observations. We performed such splits 100 times. Each time the

proposed method and the regular Lasso were applied to the training set and the

Root Mean Square Errors (RMSE) of the prediction (2.12) were calculated on

the test set. The tuning parameters for both methods were selected via 5-fold

cross validation over a grid λ ∈ {k ·
√

log p/n}k=1,2,...,20. The average number of

variables selected and RMSE are summarized in Table 3.

In addition, we used the proposed method for model selection. Applying

the procedure to the whole Communities and Crime Unnormalized Data leads

to four selected variables to explain the percentage of women who are divorced:

PctFam2Par (percentage of families that are headed by two parents); PctKids-

BornNeverMar (percentage of kids born to never married); PctPersOwnOccup

(percent of people in owner occupied households); and PctSameHouse85 (per-

cent of people living in the same house as in 1985). This selection procedure

correctly excluded all the law enforcement and crime information and irrelevant

features in community characteristics, such as the percentage of population that

is African American and percentage of people 16 and over who are employed in

manufacturing. In addition, the variables selected were all about family/house,

which are directly related to divorce percentage.

5. Discussion

The Gaussian copula regression model is more flexible than the conventional

linear model as it allows for unknown marginal monotonic transformations. The

present paper proposes procedures for estimation and statistical inference that

are adaptive to the unknown transformations. This is a significant advantage

over other methods such as those for the additive regression model and single

index model. An important observation is that the objective function for the

penalized least squares in classical high-dimensional regression only requires the

sample covariances among X and Y , which can be replaced by a Kendall’s tau
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based estimator under the Gaussian copula regression model.

This idea can also be generalized to high-dimensional sparse multivariate

regression. For example, under the linear model, the regularized estimator pro-

posed in Rothman, Levina and Zhu (2010) and the block-structured regularized

estimator introduced in Obozinski, Wainwright and Jordan (2011) only require

the knowledge of X>X and X>Y . These can be replaced by the Kendall’s tau

based estimator Σ̂XX and Σ̂XY under the Gaussian copula model. Analogous

analysis can be carried out to establish estimation consistency and inference re-

sults.

Similar ideas can be applied to other related models, such as the additive

models in a Reproducing Kernel Hilbert Space (RKHS). In RKHS, the fitting

procedure only requires the inner products among data points, and the proposed

Algorithm 2 can be modified, via dual representation, for the construction of

confidence intervals for additive models in RKHS. In addition, it is also possible

to extend the model to discrete data and mixed data, by using the similar idea

in Fan et al. (2017). These are interesting topics for future work.

Rank-based correlation matrix estimation has been studied in a number of

settings, including the nonparanormal graphical model Liu et al. (2012); Xue

and Zou (2012); Barber and Kolar (2015), high dimensional structured covari-

ance/precision matrix estimation Xue and Zou (2012); Liu, Lafferty and Wasser-

man (2009); Liu et al. (2012), and sparse PCA model Han and Liu (2012); Mitra

and Zhang (2014).

In the present paper, we only consider Kendall’s tau-based estimator. Al-

ternatively, one could use Spearman’s rho. The results are similar and the same

technique can be applied.

6. Proofs

We prove the main results in this section. We begin by collecting a few

technical lemmas that will be used in the proofs of the main results. These

lemmas are proved in the Supplement Cai and Zhang (2017).

6.1. Technical tools

The first lemma captures the asymptotics of certain U -statistics.

Lemma 1. For i = 1, 2, . . . , p, let Hi = ui[2 : d]>(Σ̂XY − Σ̂XXβ) = u>i Σ̂v0,

where v0 = (1,−β>)>, then the asymptotic variance of
√
nHi is π2σ2

g1(ui)
, and

moreover,
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lim
n→∞

sup
x∈R
|P (

√
n(Hi − E[Hi])

πσg1(ui)
≤ x)− Φ(x)| = 0,

where σg1(ui) is defined in (3.6).

Lemmas 2, 3, 4, and 5 control the vanishing terms in the construction of

confidence intervals for each coordinate βi; these lemmas are stated under the

conditions of Theorem 3. We use u to denote ui the solution to (3.13) for any

fixed i.

Lemma 2. If we take µ = C
√

log p/n and a, b > 0 in Algorithm 2 for large C,

then with probability at least 1−2p−2, the optimization problem (3.13) is feasible

when n is large,

|Σ−1
XXΣ̂XX − I|∞ ≤ µ, and b−1n−a ≤ ‖u‖2 ≤ ‖u‖1 ≤ bna/2.

Lemma 3. Let ΣhZ
= Var(hZ(Z)) ∈ Rd2×d2 be the covariance matrix of hZ(Z) =

E[sgn(Z − Z ′) ⊗ sgn(Z − Z ′)|Z], with ⊗ being the Kronecker product, and

its corresponding estimator Σ̂hZ
= 1/n

∑
i(ĥZ(Zi) − 1/n

∑
i′ ĥZ(Zi′))(ĥZ(Zi) −

1/n
∑

i′ ĥZ(Zi′))
>, with ĥZ(Zi) = 1/(n− 1)

∑
i′ 6=i sgn(Zi−Zi′)⊗ sgn(Zi−Zi′).

Then with probability at least 1− 5p−2,

|x(u)>(Σ̂hZ
− ΣhZ

)x(u)| .
√
s log p

n1−2a
.

Lemma 4. If x(u) = vec(uv>0 ◦ cos(π/2T )) and x̂(u) = vec(uv̂> ◦ cos(π/2T̂ )),

then with probability at least 1− p−2,

‖x(u)− x̂(u)‖1 . na
√
s log p

n
.

Lemma 5. If σg1(u) is defined as at (3.6) with u the solution to (3.13) with any

fixed i, then

σ2
g1(u) & n−2a.

In addition, we need a few technical results adapted from Barber and Kolar

(2015); Han and Liu (2013); Wegkamp and Zhao (2016); Zhao and Wegkamp

(2014).

Lemma 6 (An adapted version from Barber and Kolar (2015)). If Z ∼ Nd(0,Σ),

then sgn(Z) = (sgn(Z1), . . . , sgn(Zd))
> is a random vector with subgaussian con-

stant less than π · κ(Σ): for any w ∈ Sd−1,

E[et·w
>sgn(Z)] ≤ et2π·κ(Σ).

The next lemma characterizes the convergence rates of the Kendall’s tau

based correlation matrix estimator Σ̂ under different norms.
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Lemma 7 (An adapted version from Han and Liu (2013) and Wegkamp and

Zhao (2016)). If Σ̂ is an estimator of Σ based on Kendall’s tau, then

1. P (|Σ̂− Σ|∞ .

√
log p

n
) ≥ 1− 2p−2;

2. If κ(Σ) ≤M for some M > 0, then

P (‖Σ̂− Σ‖2 . max{
√
p+ t

n
,
p+ t

n
}) ≥ 1− e−t.

3. If κs(Σ) := sup{λmax(ΣS,S)/λmin(ΣS,S) : S ⊂ [n], |S| = s} ≤ Ms for some

Ms > 0, then

P (‖Σ̂− Σ‖2,s .
√
s log p

n
) ≥ 1− p−s.

The following lemma provides a tight, pointwise deviation inequality of em-

pirical cumulative distribution function.

Lemma 8 (Adapted from Zhao and Wegkamp (2014)). If f̂i is defined as at

(2.11) for i ∈ {1, , . . . , p}, then for any ε ∈ (0,
√

2π], and γ ∈ (0, 2), and t ∈ R
such that |fi(t)| ≤

√
γ log n, we have

P (|f̂i(t)− fi(t)| ≥ ε) ≤ 2 exp(− n1−γ/2

12π
√

2π
√
γ log n

ε2)

− 3 log(8πnγ log n) exp(− 1

64
√

2π

n1−γ/2
√

log n
),

where Fi(t) = Φ(fi(t)).

Lemma 9 (Adapted from Mai and Zou (2013)). If f̂0 is defined as at (2.10),

and for any γ ∈ (0, 1),

In := [f−1
0 (−

√
2γ log n), f−1

0 (
√

2γ log n)],

then we have

P (sup
t∈In
|f̂i(t)− fi(t)| ≥ ε) ≤ 2 exp(− n1−γ

32π2γ log n
ε2) + exp(− 1

16πγ

n1−γ

log n
).

6.2. Proof of Theorem 1

This proof relies on Corollary 1 in Negahban et al. (2009) and Theorem 3.4

in Lee, Sun and Taylor (2013):

Lemma 10 (An adapted version of Corollary 1 in Negahban et al. (2009)). If

the loss function

L(β) = β>Σ̂XXβ − 2Σ̂Y Xβ + 1
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satisfies restricted strong convexity (RSC),

δL(∆,β) := L(β + ∆)− L(β)− 〈∇L(β),∆〉 ≥ κL‖∆‖22, (6.1)

for some κL > 0 and ∆ ∈ C(s) := {θ ∈ Rp : ‖θSc‖1 ≤ 3‖θS‖1, |S| ≤ s}, then for

λ ≥ 2‖∇L(β)‖∞, any optimal solution β̂(λ) to the convex program (2.7) satisfies

the bound

‖β̂(λ)− β‖2 .
√
sλ, ‖β̂(λ)− β‖1 . sλ.

Lemma 11 (An adapted version of Theorem 3.4 in Lee, Sun and Taylor (2013)).

If we assume |ΣXSXSc |∞ ≤ 1 − α for some α > 0 and S = supp(β), and

mini∈S |βi| ≥ 8/γ1(1 + 4(2− α)/α)M
√
s log p/n, then for λ = 8(2− α)/αM√

s log p/n, with probability at least 1− 2p−1,

sgn(β) = sgn(β̂(λ)).

To prove Theorem 1, it is sufficient to verify (6.1) and calculate ‖∇L(β)‖∞.

We divide this into two steps.

Step 1

By the definition of δL(∆,β),

δL(∆,β) = L(β + ∆)− L(β)− 〈∇L(β),∆〉

=
1

2
(β + ∆)>Σ̂XX(β + ∆)− Σ̂Y X(β + ∆)− 1

2
β>Σ̂XXβ

+ Σ̂Y Xβ −∆>(Σ̂XXβ − Σ̂XY )

=
1

2
∆>Σ̂XX∆.

Before proving (6.1), we state the adapted version of the reduction principle

from Rudelson and Zhou (2013).

Lemma 12 (The adapted version of Theorem 10 in Rudelson and Zhou (2013)).

If δ ∈ (0, 1/5) and k0 = 3. Then there exists a constant C0 that is not dependent

on n, p, s, such that s̃ = C0s. If E(s̃) = {w ∈ Rp : ‖w‖0 = s̃} for s̃ < p and

E = Rp otherwise, and Σ̂XX satisfies

∀w ∈ E(s̃) (1− δ)‖w‖22 ≤ w>Σ̂XXw ≤ (1 + δ)‖w‖22, (6.2)

then for any w ∈ C(s),

(1− 5δ)‖w‖22 ≤ w>Σ̂XXw ≤ (1 + 3δ)‖w‖22. (6.3)

This claim implies that it is sufficient to show, for ∆ ∈ E(s̃) = {w ∈ Rp :

‖w‖0 = s̃} and some δ ∈ (0, 1/5),

|∆>Σ̂XX∆| ≥ (1− δ)‖∆‖2.



986 T. TONY CAI AND LINJUN ZHANG

Then Lemma 7 with the condition κs(Σ) ≤ M , together with the fact that

the spectral norm of a submatrix is bounded by the spectral norm of the whole

matrix, implies that for ∆ ∈ {w ∈ Rp : ‖w‖0 = s̃}, with probability at least

1− p−2, we have

|∆>Σ̂XX∆| = |∆>ΣXX∆ + ∆>(Σ̂XX − ΣXX)∆|

≥ |∆>ΣXX∆| − |∆>(Σ̂XX − ΣXX)∆|

≥ |∆>ΣXX∆| − ‖Σ̂XX − ΣXX‖2,s̃ · ‖∆‖22

≥ |∆>ΣXX∆| −
√
C0s log p

n
‖∆‖22

≥ γ1‖∆‖22 −
√
C0s log p

n
‖∆‖22.

Therefore (6.1) holds when s log p/n→ 0.

Step 2:

‖∇L(β)‖∞ = ‖Σ̂XXβ − Σ̂XY ‖∞ = ‖Σ̂XXΣ−1
XXΣXY − Σ̂XY ‖∞

= ‖(Σ̂XX − ΣXX)Σ−1
XXΣXY + ΣXY − Σ̂XY ‖∞

= ‖(Σ̂XX − ΣXX)β + ΣXY − Σ̂XY ‖∞
≤ ‖(Σ̂− Σ)(1,−β>)>‖∞ ≤ |Σ̂− Σ|∞‖(1,−β>)>‖1

≤
√

log p

n
· (1 + ‖β‖1) ≤

√
log p

n
· (1 +

√
s‖β‖2)

=

√
log p

n
· (1 +

√
s‖Σ−1

XXΣXY ‖2) ≤
√

log p

n
· (1+

√
s‖Σ−1

XX‖2‖ΣXY ‖2)

≤
√
s log p

n
M.

Therefore if we choose λ such that λ > 2M
√
s log p/n, then we have λn ≥

2‖∇L(β)‖∞. Then it follows from Theorem 10 that, when s log p/n → 0 with

probability at least 1− 2p−2,

‖β̂(λ)− β‖2 .
√
sλ .

√
s log p

n
;

‖β̂(λ)− β‖1 . sλ . s

√
log p

n
;

sgn(β) = sgn(β̂(λ)).

6.3. Proof of Theorem 2

According to Lemma 8 and by the union bound



HIGH-DIMENSIONAL GAUSSIAN COPULA REGRESSION 987

P ( max
i∈{1,2,...,p}

|f̂i(t)− fi(t)| ≥ ε) ≤ 2 exp(log d− n1−γ/2

12π
√

2π
√
γ log n

ε2)

− 3 log(8πnγ log n) exp(log d− 1

64
√

2π

n√
nγ log n

).

Therefore by taking ε =
√

(24π
√

2π
√
γ log n log d)/n1−γ/2, then for t ∈ R

such that |fi(t)| ≤
√
γ log n, with probability at least 1− d−1 − n−1,

max
i∈[0,1,2,...,p]

|f̂i(t)− fi(t)| .
(γ log n)1/4

√
log d

n1/2−γ/4 . (6.4)

Since maxi=1,...,p Fi(x
∗
i ) ∈ (δ∗, 1 − δ∗), there exists some constant M∗ > 0, such

that

max
i=1,...,p

fi(x
∗
i ) = max

i=1,...,p
Φ−1(Fi(x

∗
i )) < M∗.

Therefore, if we let γ = M2
∗ /log n, we have maxi=1,...,p fi(x

∗
i ) ≤

√
γ log n. Then

by (6.4), with probability at least 1− d−1 − n−1,

max
i∈{1,2,...,p}

|f̂i(x∗i )− fi(x∗i )| .
√

log d

n
. (6.5)

In addition, use the fact in Theorem 1, with probability at least 1−d−1−n−1,

|
p∑
i=1

f̂i(x
∗
i )β̂(λ)i − µ∗| = |

p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

≤ |
p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β̂(λ)i|+ |

p∑
i=1

fi(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

. (‖β‖1 + s

√
log p

n
) · max

i∈{1,2,...,p}
|f̂i(t)− fi(t)|+ ‖β̂(λ)− β‖1

≤ ‖β̂(λ)− β‖1 + (s‖β‖2 + s

√
log p

n
) · max

i∈{1,2,...,p}
|f̂i(t)− fi(t)|

. s

√
log d

n
,

where the last inequality results from the fact β = Σ−1
XXΣXY , and then

‖β‖2 = ‖Σ−1
XXΣXY ‖2 ≤

λmax(Σ)

λmin(Σ)
≤M.

This implies with probability at least 1− d−1 − n−1,
p∑
i=1

f̂i(x
∗
i )β̂(λ)i ∈ f−1

0 (Br(f0(µ∗))). (6.6)
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Further, use Lemma 9 and applying the similar derivation as before, we

obtain that, with probability at least 1− d−1,

|f̂0(f−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i))− f0(f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i))| .

√
log d

n
. (6.7)

Combining (6.5),(6.6) and (6.7), with probability at least 1 − 2/n − 2/d −
1/ log n,

|µ∗ − µ̂∗| = |f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

fi(x
∗
i )β(λ)i)|

≤ |f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)|

+ |f−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

fi(x
∗
i )β(λ)i)|

≤ |f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)|

+
1

c2
|
p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

(i)

≤ |f̂0(f−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i))− f0(f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i))

+
1

c2
|
p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

.

√
log d

n
+ s

√
log d

n

. s

√
log d

n
,

where the inequality (i) is due to the following.

Claim: For two increasing functions f1, f2, if |f1(f−1
1 (t)) − f2(f−1

1 (t))| < c1 for

some t ∈ R and c1 > 0, and if |f2(v1)−f2(v2)| ≥ c2|v1−v2| for some c2 > 0, then

|f−1
1 (t)− f−1

2 (t)| ≤ c1

c2
.

In effect, if |f−1
1 (t)− f−1

2 (t)| > c1/c2, then

|f1(f−1
1 (t))− f2(f−1

1 (t))| = |f1(f−1
1 (t))− f2(f−1

2 (t)) + f2(f−1
2 (t))− f2(f−1

1 (t))|
≥ |f2(f−1

2 (t))− f2(f−1
1 (t))| − |f1(f−1

1 (t))− f2(f−1
2 (t))|
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> c2 ·
c1

c2
− 0 = c1.

This leads to a contradiction.

6.4. Proof of Theorem 3

Before proceeding, we should determine µ to make the optimization problem

(3.13) feasible. By Lemma 2, it is sufficient to set µ = C
√

log p/n for some

sufficient large constant C. According to (3.14) in Algorithm 2,

β̂u = β̂(λ) +M(Σ̂XY − Σ̂XX β̂(λ))

= β − β + β̂(λ) +M Σ̂XY −M Σ̂XX β̂(λ)

= β + (M Σ̂XY −M Σ̂XXβ) + (M Σ̂XX − I)(β − β̂(λ)).

This implies
√
n(β̂u − β(λ)) =

√
n(M Σ̂XY −M Σ̂XXβ) +

√
n(I −M Σ̂XX)(β − β̂(λ)). (6.8)

We control the two terms on the right hand side separately.

Step 1: ‖
√
n(I −M Σ̂XX)(β − β̂(λ))‖∞ → 0 with high probability.

By Theorem 1 and Lemma 2, with probability at least 1− 3p−2,

‖
√
n(I −M Σ̂XX)(β − β̂(λ))‖∞ ≤

√
n‖I −M Σ̂XX‖∞‖β − β̂(λ)‖1

≤
√
nµ · s

√
log p

n
.
√
n

√
log p

n
· s
√

log p

n
.

Therefore, when s log p/
√
n→ 0, with probability at least 1− 3p−2,

‖
√
n(I −M Σ̂XX)(β − β̂(λ))‖∞ → 0.

Step 2: Asymptotics of
√
n(u′iΣ̂XY − u′iΣ̂XXβ).

With Lemma 3, Lemma 4, and by |ΣhZ
|∞ ≤ 1, when s log p/

√
n → 0, we

have with probability at least 1− p−2,

|σ2
g1(ui)

− σ̂2
g1(ui)

| = |x(ui)
>ΣhZ

x(ui)− x̂(ui)
>Σ̂hZ

x̂(ui)|

≤ |(x(ui)− x̂(ui))
>ΣhZ

(x(ui)− x̂(ui))|

+ |x(ui)
>(Σ̂hZ

− ΣhZ
)x(ui)|

≤ ‖x(ui)− x̂(ui)‖21 + |x(ui)
>(Σ̂hZ

− ΣhZ
)x(ui)|

. n2a s log p

n
+

√
s log p

n1−2a
.

√
s log p

n1−2a
.

Lemma 5 shows that σ2
g1(ui)

& n−2a. It follows that |σ̂2
g1(ui)

/σ2
g1(ui)

− 1| .√
s log p/n1−6a. In addition, due to the positiveness of σg1 and σ̂g1 , when s log p/√
n → 0 and a < 1/12, σ̂g1(ui)/σg1(ui) → 1 in probability. Then according to
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Lemma 1, for any ε > 0,

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) = P (

σg1(ui)

σ̂g1(ui)

√
n(Hi − E[Hi])

πσg1(ui)
≤ x)

≤ P (

√
n(Hi − E[Hi])

πσg1(ui)
≤ x

1− ε
) + P (

σ̂g1(ui)

σg1(ui)
≥ 1

1− ε
)

→ Φ(
x

1− ε
) as n→∞,

where the last limit results from Lemma 1.

As ε→ 0, we have

lim sup
n→∞

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) ≤ Φ(x).

Similarly, we have

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) ≥ P (

√
n(Hi − E[Hi])

πσg1(ui)
≤ x(1− ε))− P (

σ̂g1(ui)

σg1(ui)
≤ 1− ε).

This leads to

lim inf
n→∞

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) ≥ Φ(x).

In conclusion, when s log p/
√
n→ 0, we have

lim
n→∞

sup
x∈R
|P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x)− Φ(x)| = 0.

Supplementary Materials

In the supplemental materials, we provide the proofs of auxiliary lemmas.

Some additional simulation results are given in the supplement.
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