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Abstract: High-dimensional longitudinal data arise frequently in biomedical and

genomic research. It is important to select relevant covariates when the dimension

of the parameters diverges as the sample size increases.We propose the penalized

quadratic inference function to perform model selection and estimation simultane-

ously in the framework of a diverging number of regression parameters. The penal-

ized quadratic inference function can easily take correlation information from clus-

tered data into account, yet it does not require specifying the likelihood function.

This is advantageous compared to existing model selection methods for discrete

data with large cluster size. In addition, the proposed approach enjoys the oracle

property; it is able to identify non-zero components consistently with probability

tending to 1, and any finite linear combination of the estimated non-zero compo-

nents has an asymptotic normal distribution. We propose an efficient algorithm by

selecting an effective tuning parameter to solve the penalized quadratic inference

function. Monte Carlo simulation studies have the proposed method selecting the

correct model with a high frequency and estimating covariate effects accurately even

when the dimension of parameters is high. We illustrate the proposed approach by

analyzing periodontal disease data.

Key words and phrases: Diverging number of parameters, longitudinal data, model

selection, oracle property, quadratic inference function, SCAD.

1. Introduction

Longitudinal data arise frequently in biomedical and health studies in which

repeated measurements from the same subject are correlated. The correlated na-

ture of longitudinal data makes it difficult to specify the full likelihood function

when responses are non-normal. Liang and Zeger (1986) developed the general-

ized estimating equation (GEE) for correlated data; it only requires the first two

moments and a working correlation matrix involving a small number of nuisance

parameters. Although the GEE yields a consistent estimator even if the work-

ing correlation structure is misspecified, the estimator can be inefficient under

the misspecified correlation structure. Qu, Lindsay, and Li (2000) proposed the

quadratic inference function (QIF) to improve the efficiency of the GEE when the

working correlation is misspecified, in addition to providing an inference function

for model diagnostic tests and goodness-of-fit tests.
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Variable selection is fundamental in extracting important predictors from

large data sets when the covariates are high-dimensional, as inclusion of high-

dimensional redundant variables can hinder efficient estimation and inference for

the non-zero coefficients. In the longitudinal data framework, several variable se-

lection methods for marginal models have been developed. Pan (2001) proposed

an extension of the Akaike information criterion (Akaike (1973)) by applying the

quasilikelihood to the GEE, assuming independent working correlation. Can-

toni, Flemming, and Ronchetti (2005) proposed a generalized version of Mallows’

Cp (Mallows (1973)) by minimizing the prediction error. However, the asymp-

totic properties of these model selection procedures have not been well studied.

Wang and Qu (2009) developed a Bayesian information type of criterion (Schwarz

(1978)) based on the quadratic inference function to incorporate correlation in-

formation. These approaches are the best sub-set selection approaches and have

been shown to be consistent for model selection. However, the L0-based penalty

can be computationally intensive and unstable when the dimension of covariates

is high. Fu (2003) applied the bridge penalty model to the GEE and Xu et al.

(2010) introduced the adaptive LASSO (Zou (2006)) for the GEE setting. Dziak

(2006) and Dziak, Li, and Qu (2009) discussed the SCAD penalty for GEE and

QIF model selection for longitudinal data. These methods are able to perform

model selection and parameter estimation simultaneously. However, most of the

theory and implementation is restricted to a fixed dimension of parameters.

Despite the importance of model selection in high-dimensional settings (Fan

and Li (2006); Fan and Lv (2010)), model selection for longitudinal discrete data

is not well studied when the dimension of parameters diverges. This is probably

due to the challenge of specifying the likelihood function for correlated discrete

data. Wang, Zhou, and Qu (2012) developed the penalized generalized estimating

equation (PGEE) for model selection when the number of parameters diverges,

and this is based on the penalized estimating equation approach by Johnson,

Lin, and Zeng (2008) in the framework of a diverging number of parameters by

Wang (2011). However, in our simulation studies, we show that the penalized

GEE tends to overfit the model regardless of whether the working correlation is

correctly specified or not.

In this paper, we propose the penalized quadratic inference function (PQIF)

approach for model selection in the longitudinal data setting. We show that,

even when the number of parameters diverges as the sample size increases, the

penalized QIF utilizing the smoothly clipped absolute deviation (SCAD) penalty

function (Fan and Li (2001); Fan and Peng (2004)) possesses such desirable

features of the SCAD as sparsity, unbiasedness, and continuity. The penalized

QIF also enjoys the oracle property. That is, the proposed model selection is

able to identify non-zero components correctly with probability tending to 1,
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and any valid linear combination of the estimated non-zero components is the

asymptotically normal.

One of the unique advantages of the penalized QIF approach for correlated

data is that the correlation within subjects can be easily taken into account, as

the working correlation can be approximated by a linear combination of known

basis matrices. In addition, the nuisance parameters associated with the working

correlation are not required to be estimated, as the minimization of the penal-

ized QIF does not involve the nuisance parameters. This is especially advanta-

geous when the dimension of estimated parameters is high, as reducing nuisance

parameter estimation improves estimation efficiency and model selection perfor-

mance significantly. Consequently, the penalized QIF outperforms the penalized

GEE approach under any working correlation structure in our simulation studies.

Furthermore, the penalized QIF only requires specifying the first two moments

instead of the full likelihood function, and this is especially advantageous for

discrete correlated data.

Another important advantage of our approach is in tuning parameter selec-

tion. The selection of the tuning parameter plays an important role in achieving

desirable performance in model selection. We provide a more effective tuning

parameter selection procedure based on the Bayesian information quadratic in-

ference function criterion (BIQIF), and show that the proposed tuning parameter

selector leads to consistent model selection and estimation for regression param-

eters. This is in contrast to the penalized GEE, which relies on cross-validation

for tuning parameter selection. Our simulation studies for binary longitudinal

data indicate that the penalized QIF is able to select the correct model with a

higher frequency and provide a more efficient estimator, compared to the penal-

ized GEE approach, when the dimensions of covariates and non-zero parameters

increase as the sample size increases.

The paper is organized as follows. Section 2 briefly describes the quadratic

inference function for longitudinal data. Section 3 introduces the penalized

quadratic inference function and provides the asymptotic properties for vari-

able selection when the number of parameters diverges. Section 4 presents two

algorithms to implement the penalized QIF approach and a tuning parameter

selector. Section 5 reports on simulation studies for binary responses and pro-

vides a data example from a periodontal disease study. The final section provides

concluding remarks and discussion. All necessary lemmas and theoretical proofs

are in the Appendix.

2. Quadratic Inference Function for Longitudinal Data

Suppose the response variable for the ith subject is measured mi times, yi =

(yi1, . . . , yimi)
T , where yi’s are independent identically distributed, i = 1, . . . , n,
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n is the sample size and mi is the cluster size. The corresponding covariate

Xi = (Xi1, . . . , Ximi)
T is mi × pn-dimensional matrix for the ith subject. In

the generalized linear model framework, the marginal mean of yij is specified as

µij = E(yij |Xij) = µ(XT
ijβn), where µ(·) is the inverse link function and βn is a

pn-dimensional parameter vector in the parameter space Ωpn ∈ Rpn , pn diverging

as the sample size increases. Since the full likelihood function for correlated non-

Gaussian data is rather difficult to specify when the cluster size is large, Liang

and Zeger (1986) developed the generalized estimating equation (GEE) to obtain

the βn estimator by solving the equations

Wn(βn) =
n∑

i=1

µ̇T
i (βn)V

−1
i (βn)(yi − µi(βn)) = 0, (2.1)

where µ̇i = (∂µi/∂βn) is a mi × pn matrix, and Vi = A
1/2
i RA

1/2
i , with Ai the

diagonal marginal variance matrix of yi andR the working correlation matrix that

involves a small number of correlation parameters. Although the GEE estimator

is consistent and asymptotically normal even if the working correlation matrix is

misspecified, the GEE estimator is not efficient under the misspecification of the

working correlation.

To improve efficiency, Qu, Lindsay, and Li (2000) proposed the quadratic

inference function for longitudinal data. They assume that the inverse of the

working correlation can be approximated by a linear combination of several basis

matrices, that is,

R−1 ≈
k∑

j=0

ajMj , (2.2)

where M0 is the identity matrix, M1, . . . ,Mk are basis matrices with 0 and 1

components and a0, . . . , ak are unknown coefficients. For example, if R corre-

sponds to an exchangeable structure, then R−1 = a0M0 + a1M1, where a0 and

a1 are constants associated with the exchangeable correlation parameter and the

cluster size, and M1 is a symmetric matrix with 0 on the diagonal and 1 else-

where. If R has AR-1 structure, then R−1 = a0M0 + a1M1 + a2M2, where a0,

a1, and a2 are constants associated with the AR-1 correlation parameter, M1 is

a symmetric matrix with 1 on the sub-diagonal entries and 0 elsewhere, and M2

is a symmetric matrix with 1 on entries (1, 1) and (mi,mi). If there is no prior

knowledge on the correlation structure, then a set of basis matrices containing 1

for (i, j) and (j, i) entries and 0 elsewhere can be used as a linear representation

for R−1.

Selecting the correct correlation matrix is fundamental to the QIF ap-

proach since it can improve the efficiency of the regression parameter estimators.
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Zhou and Qu (2012) provide a model selection approach for selecting informa-

tive basis matrices that approximate the inverse of the true correlation structure.

Their key idea is to approximate the empirical estimator of the correlation ma-

trix by a linear combination of candidate basis matrices representing common

correlation structures as well as mixtures of several correlation structures. They

minimize the Euclidean distance between the estimating functions based on the

empirical correlation matrix and candidate basis matrices, and penalize models

involving too many matrices.

By replacing the inverse of the working correlation matrix with (2.2), the

GEE in (2.1) can be approximated as a linear combination of the elements in the

following extended score vector:

ḡn(βn) =
1

n

n∑
i=1

gi(βn) ≈
1

n


∑n

i=1(µ̇i)
TA−1

i (yi − µi)∑n
i=1(µ̇i)

TA
−1/2
i M1A

−1/2
i (yi − µi)

...∑n
i=1(µ̇i)

TA
−1/2
i MkA

−1/2
i (yi − µi)

 . (2.3)

Since it is impossible to set each equation in (2.3) to zero simultaneously in solv-

ing for βn, as the dimension of the estimating equations exceeds the dimension of

parameters, Qu, Lindsay, and Li (2000) applied the generalized method of mo-

ments (Hansen (1982)) to obtain an estimator of βn by minimizing the quadratic

inference function (QIF)

Qn(βn) = nḡn(βn)
T C̄−1

n (βn)ḡn(βn),

where C̄n(βn) = (1/n)
∑n

i=1 gi(βn)g
T
i (βn) is the sample covariance matrix of gi.

Note that this minimization does not involve estimating the nuisance parameters

a0, . . . , ak associated with the linear weights in (2.2). The quadratic inference

function plays an inferential role similar to minus twice the log-likelihood func-

tion, and it possesses the same chi-squared asymptotic properties as in the like-

lihood ratio test. The QIF estimator is optimal in the sense that the asymptotic

variance matrix of the estimator of βn reaches the minimum among estimators

solved by the same linear class of the estimating equations given in (2.3) (Qu,

Lindsay, and Li (2000)).

3. A New Estimation Method and Theory

For correlated discrete data, existing approaches for model selection are

rather limited due to the difficulty of specifying the full likelihood function. We

propose a new variable selection approach based on the penalized quadratic in-

ference function that can incorporate correlation information from clusters. The
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proposed procedure can estimate parameters and select important variables si-

multaneously in the framework of a diverging number of covariates. Even when

the dimension of parameters diverges as the sample size increases, the proposed

model selection contains the sparsity property and shrinks the estimators of the

non-signal components to zero. In addition, the non-zero components are se-

lected correctly with probability tending to 1. We also show that the estimators

of the non-zero components are consistent at the convergence rate of
√

n/pn, and

follow the normal distribution asymptotically.

Without loss of generality, the cluster sizes are taken to be equal, mi = m,

although the cluster size is unbalanced in our data example. Since the response

variables are not necessarily continuous, we replace the typical least square func-

tion by the quadratic inference function since it is analogous to minus twice the

log-likelihood. We define it as

Sn(βn) = Qn(βn) + n

pn∑
j=1

Pλn(|βnj |). (3.1)

Among several penalty functions Pλn(·), we choose the non-convex SCAD penalty

function corresponding to

Pλn(|βnj |) = λn|βnj |I(0 ≤ |βnj | < λn)

+

{
aλn(|βnj | − λn)− (|βnj |2 − λ2

n)/2

(a− 1)
+ λ2

n

}
I(λn ≤ |βnj | < aλn)

+

{
(a− 1)λ2

n

2
+ λ2

n

}
I(|βnj | ≥ aλn),

where I(·) is an indicator function, λn > 0 is a tuning parameter, and a constant

a chosen to be 3.7 (Fan and Li (2001)). The SCAD penalty function has such

desirable features as sparsity, unbiasedness, and continuity, while such penalty

functions as bridge regression, LASSO, and hard thresholding fail to possess

these three features simultaneously. For example, the bridge regression penalty

(Frank and Friedman (1993)) does not satisfy the sparsity property, the LASSO

penalty (Tibshirani (1996)) does not satisfy the unbiasedness property, and the

hard thresholding penalty (Antoniadis (1997)) does not satisfy the continuity

property. On the other hand, the adaptive LASSO (Zou (2006)); Zou and Zhang

(2009)) does have all three features, and we apply the adaptive LASSO penalty

for the proposed method in our simulation studies. The performance of the

SCAD and the adaptive LASSO are quite comparable, as indicated in Section

5.1.

We obtain the estimator β̂n by minimizing Sn(βn) in (3.1). Minimizing (3.1)

ensures that the estimation and model selection procedures are efficient, since
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correlations within the same cluster are taken into account for the first part of

the objective function in (3.1). Model selection is more important, yet more

challenging, when the dimension of the parameters increases as the sample size

increases. Fan and Peng (2004) provide the asymptotic properties of model selec-

tion using the penalized likelihood function under the framework of a diverging

number of parameters. We provide the asymptotic properties of model selection

for longitudinal data without requiring the likelihood function when the number

of parameters increases with the sample size.

We assume that there is a true model with the first qn (0 ≤ qn ≤ pn)

predictors non-zero and the rest are zeros. The vector β∗
n = (β∗T

s , β∗T
sc )

T is taken

as the true parameter, where β∗
s = (β∗

n1, . . . , β
∗
nqn)

T is a non-zero coefficient vector

and β∗
sc = (β∗

n(qn+1), . . . , β
∗
npn)

T is a zero vector. Let β̂n = (β̂T
s , β̂

T
sc)

T be an

estimator of βn that minimizes the penalized QIF in (3.1). Regularity conditions

on the quadratic inference functions are imposed to establish the asymptotic

properties of this estimator:

(A) The first derivative of the QIF satisfies

E

{
∂Qn(βn)

∂βnj

}
= 0 for j = 1, . . . , pn,

and the second derivative of the QIF satisfies

E

{
∂2Qn(βn)

∂βnj∂βnk

}2

< K1 < ∞ for j, k = 1, . . . , pn, and a constant K1.

With Dn(βn) = E{n−1∇2Qn(βn)}, the eigenvalues of Dn(βn) are uniformly

bounded by positive constants K2 and K3 for all n.

(B) The true parameter βn is contained in a sufficiently large open subset ωpn of

Ωpn ∈ Rpn , and there exist constants M and K4 such that∣∣∣∣ ∂3Qn(βn)

∂βnj∂βnl∂βnk

∣∣∣∣ ≤ M

for all βn, and Eβn(M
2) < K4 < ∞ for all pn and n.

(C) The parameter values βn1, . . . , βnqn are such that min1≤j≤qn |βnj |/λn goes to

∞ as n → ∞.

Conditions (A) and (B) require that the second and fourth moments of the

quadratic inference function be bounded, and that the expectation of the second

derivative of the QIF be positive definite with uniformly bounded eigenvalues;

they are quite standard for estimating equation approaches, and can be verified
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through the eigenvalues of the specified matrices. Condition (C) is easily sat-

isfied as long as the tuning parameter is sufficiently small relative to non-zero

coefficients. This type of assumption is standard in much of the model selection

literature, e.g., Wang, Li, and Tsai (2007), Wang, Li, and Leng (2009), Zhang,

Li, and Tsai (2010) and Gao et al. (2012). Fan and Peng (2004) also provided

similar conditions for the penalized likelihood approach.

Further, condition (C) ensures that the penalized QIF possesses the oracle

property, max{P ′
λn
(|βnj |) : βnj ̸= 0} = 0 and max{P ′′

λn
(|βnj |) : βnj ̸= 0} = 0

when n is sufficiently large; consequently, the following regularity conditions for

the SCAD penalty are satisfied

(D) liminfn→∞ infθ→0+ P ′
λn
(θ)/λn > 0;

(E) max{P ′
λn
(|βnj |) : βnj ̸= 0} = op(1/

√
npn);

(F) max{P ′′
λn
(|βnj |) : βnj ̸= 0} = op(1/

√
pn).

These conditions ensure that the penalty functions possess desirable features

such as sparsity, unbiasedness, and continuity for model selection. Specifically,

(D) ensures that the penalized QIF estimator has the sparsity property since

the penalty function is singular at the origin; (E) guarantees that the estimators

for parameters with large magnitude are unbiased and retain asymptotic
√
n-

consistency; (F) ensures that the first QIF term is dominant in the objective

function (3.1).

Theorem 1. If (A)−(F) hold and pn = o(n1/4), then there exists a local min-

imizer β̂n of S(βn) such that ∥β̂n − β∗
n∥ = Op{

√
pn(n

−1/2 + an)}, where an =

max{P ′
λn
(|βnj |) : βnj ̸= 0}.

This result establishes a
√

n/pn-consistency for the penalized quadratic in-

ference function estimator; it holds as long as (C) is satisfied, since it ensures

an = 0 when n is large.

In the following, we write

bn = {P ′
λn
(|βn1|)sign(βn1), . . . , P ′

λn
(|βnpn |)sign(βnqn)}T

and

Σλn = diag{P ′′
λn
(βn1), . . . , P

′′
λn
(βnqn)},

where sign(α) = I(α > 0)− I(α < 0).

Theorem 2. Under (A)−(F), if pn = o(n1/4), λn → 0, and
√
n/pnλn → ∞ as

n → ∞, then the estimator β̂n = (β̂T
s , β̂

T
sc)

T satisfies the following, with probabil-

ity tending to 1.

(1) (Sparsity) β̂sc = 0.
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(2) (Asymptotic normality) For any given d×qn matrix Bn such that BnB
T
n

→ F , where F is a fixed dimensional constant matrix and Dn(β
∗
s ) =

E{n−1∇2Qn(β
∗
s )},

√
nBnD

−1/2
n (β∗

s ){Dn(β
∗
s )+Σλn}

[
(β̂s−β∗

s )+{Dn(β
∗
s )+Σλn}−1bn

] d→ N(0, F ).

In addition, if Σλn → 0 and bn → 0 as n → ∞,
√
nBnD

1/2
n (β∗

s )(β̂s − β∗
s )

d→
N(0, F ). Theorem 2 has the estimator of the penalized QIF as efficient as the

oracle estimator that assumes the true model is known. The proofs of the two

theorems and the necessary lemmas are in the Appendix.

4. Implementation

4.1. Local quadratic approximation

Since the SCAD penalty function is non-convex, we use the local quadratic

approximation (Fan and Li (2001); Xue, Qu, and Zhou (2010)) to minimize

the penalized quadratic inference function in (3.1) with the unpenalized QIF

estimator as the initial value β(0). If β(k) =
(
β
(k)
1 , . . . , β

(k)
pn

)T
is the estimator

at the kth iteration and β
(k)
j is close to 0, say

∣∣β(k)
j

∣∣ < 10−4, then we set β
(k+1)
j

to 0. If β
(k+1)
j ̸= 0 for j = 1, . . . , qk and β

(k+1)
j = 0 for j = qk+1, . . . , pn, write

β(k+1) =
((

β
(k+1)
s

)T
,
(
β
(k+1)
sc

)T)T
where βk+1

s is a vector containing the non-zero

components and βk+1
sc is a zero vector.

The local quadratic approximation is outlined as follows. For β
(k)
j ̸= 0,

Pλn

(
|βj |

)
≈ Pλn

(
|β(k)

j |
)
+

1

2

{P ′
λn

(
|β(k)

j |
)

|β(k)
j |

}(
β
(k)2
j − β2

j

)
,

where βj ≈ β
(k)
j and P ′

λn
(|βn|) is the first derivative of the SCAD penalty

Pλn(|βn|),

P ′
λn
(|βn|) = λn

{
I(|βn| ≤ λn) +

(aλn − |βn|)+
(a− 1)λn

I(|βn| > λn)
}
.

Consequently, the penalized QIF in (3.1) can be approximated by

Qn(β
(k))+∇Qn(β

(k))T (βs − β(k)
s ) +

1

2
(βs − β(k)

s )T∇2Qn(β
(k))(βs − β(k)

s )

+
1

2
nβT

s Π(β
(k))βs, (4.1)

where βs is a vector with non-zero components which has the same dimen-

sion of β
(k)
s , ∇Qn(β

(k)) = ∂Qn(β(k))
∂βs

, ∇2Qn(β
(k)) = ∂2Qn(β(k))

∂βs∂βT
s

, and Π(β(k)) =
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diag
{
P ′
λn
(|β(k)

1 |)/|β(k)
1 | , . . . , P ′

λn
(|β(k)

qk |)/|β(k)
qk |

}
. The non-zero component β

(k+1)
s

at the k + 1 step can be obtained by minimizing the quadratic function in (4.1)

using the Newton-Raphson algorithm, which is equivalent to solving

β(k+1)
s = β(k)

s −
{
∇2Qn(β

(k)) + nΠ(β(k))
}−1{

∇Qn(β
(k)) + nΠ(β(k))β(k)

}
.

We iterate the above process to convergence, for example, when ∥β(k+1)
s −β

(k)
s ∥ <

10−7.

4.2. Linear approximation method

We also consider an alternative algorithm based on the linear approximation

for the first part of the PQIF in (3.1). This is analogous to Xu et al.’s (2010)

linear approximation for the penalized GEE approach; however, their objective

function and LASSO penalty function differ from ours. The key step here is to

approximate the response y through linear approximation: y ≈ µ+ µ̇(β̂Q)(β̂Q −
βn), where β̂Q is the QIF estimator. One of the advantages of using the linear

approximation approach is that the minimization of the penalized QIF can be

solved using the plus package (Zhang (2007)) in R directly, since the first part of

the objective function in (3.1) transforms to least squares.

For the extended score vector in (2.3), we replace (yi−µi) with µ̇i(β̂Q)(β̂Q−
βn), and therefore the extended score vector gi(βn) can be expressed as

gi(βn) ≈


µ̇T
i A

−1
i µ̇i(β̂Q − βn)

µ̇T
i A

−1/2
i M1A

−1/2
i µ̇i(β̂Q−βn)
...

µ̇T
i A

−1/2
i MkA

−1/2
i µ̇i(β̂Q−βn)

 =


µ̇T
i A

−1
i µ̇i

µ̇T
i A

−1/2
i M1A

−1/2
i µ̇i

...

µ̇T
i A

−1/2
i MkA

−1/2
i µ̇i

 (β̂Q−βn)

= Gi(β̂Q − βn).

To simplify the notation, let G = (GT
1 , G

T
2 , . . . , G

T
n )

T be a (k + 1)np × p

matrix and C̃−1
n be the (k + 1)np × (k + 1)np block diagonal matrix with each

block matrix as C̄−1
n . The penalized QIF in (3.1) can be approximated by

Sn(βn)≈
{
G(β̂Q)β̂Q −G(β̂Q)βn

}T
C̃−1
n

{
G(β̂Q)β̂Q −G(β̂Q)βn

}
+ n

pn∑
j=1

Pλ(|βnj |)

=
{
C̃−1/2
n G(β̂Q)β̂Q−C̃−1/2

n G(β̂Q)βn

}T{
C̃−1/2
n G(β̂Q)β̂Q−C̃−1/2

n G(β̂Q)βn

}
+n

pn∑
j=1

Pλ(|βnj |).
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Let U = C̃
−1/2
N G(β̂Q)β̂Q and T = C̃

−1/2
N G(β̂Q). Then the penalized QIF can be

formulated as

Sn(βn) ≈
(
U − Tβn

)T (
U − Tβn

)
+ n

pn∑
j=1

Pλ(|βnj |).

Here the plus package (Zhang (2007)) can be applied in R using the SCAD

penalty.

In this way we approximate two parts of the objection function in (3.1). The

local quadratic approximation method approximates the SCAD penalty function,

while the linear approximation method approximates the first term of the QIF

in (3.1). Based on our simulations, the local quadratic approximation approach

performs better than the linear approximation method in terms of selecting the

true model with a higher frequency, and with a smaller MSE for the estimators.

4.3. Tuning parameter selector

The performance of our method relies on the choice of a tuning parame-

ter that is essential for model selection consistency and sparsity. Fan and Li

(2001) proposed generalized cross-validation (GCV) to choose the regularization

parameter. However, Wang, Li, and Tsai (2007) showed that the GCV approach

sometimes tends to overfit the model and select null variables as non-zero com-

ponents. In contrast, the Bayesian information criterion (BIC) is able to identify

the true model consistently, and we adopt it based on the QIF as an objective

function (BIQIF) (Wang and Qu (2009)). The BIQIF is defined as

BIQIFλn
= Qn(β̂λn) + dfλn

log(n), (4.2)

where β̂λn is the marginal regression parameter estimated by minimizing the pe-

nalized QIF in (3.1) for a given λn, and dfλn
is the number of non-zero coefficients

in β̂λn . We choose the optimal tuning parameter λn by minimizing the BIQIF in

(4.2).

To investigate consistency, let Υ = {j1, . . . , jq} be an arbitrary candidate

model that contains predictors j1, . . . , jq (1 ≤ q ≤ pn) and Υλn = {j : β̂nj ̸= 0},
where β̂n is the estimator of the penalized QIF corresponding to the tuning

parameter λn. Let ΥF = {1, . . . , pn} and ΥT = {1, . . . , qn} denote the full model

and the true model respectively. An arbitrary candidate model Υ is overfitted if

Υ ⊃ ΥT and Υ ̸= ΥT , underfitted if Υ + ΥT . We take Λ− = {λn ∈ Λ : Υ + ΥT },
Λ0 = {λn ∈ Λ : Υ = ΥT }, and Λ+ = {λn ∈ Λ : Υ ⊃ ΥT and Υ ̸= ΥT }
accordingly. We use similar arguments to those in Wang, Li, and Tsai (2007) to

obtain the following.
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Lemma 1. If (A)−(F) hold, P (BIQIFλo = BIQIFΥT
) −→ 1.

Lemma 2. If (A)−(F) hold, P (infλn∈Λ−∪Λ+ BIQIFλn > BIQIFλo) −→ 1.

Lemmas 1 and 2 imply that, with probability tending to 1, the BIQIF pro-

cedure selects the tuning parameter λo that identifies the true model. Proofs are

provided in the Appendix.

4.4. Unbalanced data implementation

In longitudinal studies, the data can be unbalanced as cluster size can vary for

different subjects because of missing data. In the following, we provide a strategy

to implement the proposed method for unbalanced data using a transformation

matrix for each subject. Let Hi be a m × mi transformation matrix of the ith

subject, where m is the cluster size of the fully observed subject without missing

data. The matrix Hi’s are generated by deleting the columns of the m × m

identity matrix corresponding to the missing measurements for the ith subject.

Through the transformation, gi in (2.3) is replaced by g∗i =
{
(µ̇∗

i )
T (A∗

i )
−1(y∗i −

µ∗
i ), (µ̇

∗
i )

T (A∗
i )

−1/2M1(A
∗
i )

−1/2(y∗i −µ∗
i ), . . . , (µ̇

∗
i )

T (A∗
i )

−1/2Mk(A
∗
i )

−1/2(y∗i −µ∗
i )
}
,

where µ̇∗
i = Hiµ̇i, µ

∗
i = Hiµi, y

∗
i = Hiyi, and A∗

i = HiAiH
T
i . The QIF estimator

with unbalanced data is obtained based on the transformed extended score vector

ḡ∗n(βn) = (1/n)
∑n

i=1 g
∗
i (βn). Note that the values of µ̇∗

i and y∗i − µ∗
i are 0

corresponding to the missing observations, and thus the missing observations do

not affect the estimation of βn.

5. Numerical Studies

In this section, we examine the performance of the penalized QIF proce-

dure with the three different penalty functions SCAD, LASSO, and Adaptive

LASSO, and compare them with the penalized GEE with the SCAD penalty

through simulation studies for correlated binary responses. We also compare

these approaches using a data from a periodontal disease study.

5.1. Binary response

We generated the correlated binary response variable from a marginal logit

model

logit(µij) = XT
ijβ, i = 1, . . . , 400 and j = 1, . . . , 10,

where Xij =
(
x
(1)
ij , . . . , x

(pn)
ij

)T
and β = (β1, . . . , βpn)

T . Each covariate x
(k)
ij was

generated independently from a Uniform (0, 0.8) distribution for k = 1, . . . , qn
and a Uniform (0, 1) distribution for k = qn + 1, . . . , pn. We chose the di-

mension of total covariates to be pn = 20 and 50, the dimension of relevant

covariates to be qn = 3 and 6, and applied three types of working correlation
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structure (independent, AR-1 and exchangeable) in the simulations. In the first

simulation setting, the true β = (0.8,−0.7,−0.6, 0, . . . , 0)T with qn = 3. In the

second, β = (0.8,−0.8, 0.7,−0.7, 0.6,−0.6, 0, . . . , 0)T with qn = 6. The R pack-

age mvtBinaryEP was applied to generate the correlated binary responses with

an exchangeable correlation structure as the true structure, with correlation co-

efficients ρ1 = 0.4 and ρ2 = 0.3 for the first and second simulation settings,

respectively.

To compare our approach to the penalized GEE approach, we first pro-

vide a brief description of the PGEE (Wang, Zhou, and Qu (2012)). It is de-

fined as Fn(βn) = Wn(βn) − nPλn(|βn|)sign(βn), where Wn(βn) is the GEE de-

fined in (2.1), Pλn(|βn|) = (Pλn(|βn1|), . . . ,Pλn(|βnpn |))T with Pλn(·) a SCAD

penalty, and sign(βn) = (sign(βn1) , . . . , sign(βnpn))
T ; here we have employed the

component-wise product of Pλn(|βn|) and sign(βn). The penalized GEE esti-

mator was obtained by solving the estimating equation Fn(βn) = 0 through the

combination of the minorization-maximization (MM) algorithm (Hunter and Li

(2005)) and the Newton-Raphson algorithm. In addition, the estimator of the

component βk (k = 1, . . . , pn) was set to zero if |β̂k| < 10−3. To choose a proper

tuning parameter λn, a 5-fold cross-validation method was implemented on the

grid set {0.01, 0.02, . . . , 0.10}.
The simulation results from the model selection and the mean square errors

(MSE) of estimation are provided in Table 1. Table 1 illustrates the performance

of the penalized QIF approach with the penalty functions of LASSO, adaptive

LASSO (ALASSO), and SCAD. The SCAD penalty for the penalized QIF was

carried out as SCAD1 through a local quadratic approximation, and SCAD2

through a linear approximation. We compare the penalized QIF to the penalized

GEE using the SCAD penalty from 100 simulation runs. In addition, we also pro-

vide the standard QIF without penalization (QIF) and the QIF approach based

on the oracle model (Oracle) that assumes the true model is known. Table 1

provides the proportions of times selecting only the relevant variables (EXACT),

the relevant variables plus others (OVER), and only some relevant variables (UN-

DER). To illustrate estimation efficiency, we took MSE =
∑100

i=1 ∥β̂(i)−β∥2/100q,
where β̂(i) is the estimator from the ith simulation run, β is the true parameter,

q is the dimension of β, and ∥ · ∥ denotes the Euclidean-norm.

Table 1 indicates that the penalized QIF methods based on SCAD1, SCAD2,

and ALASSO select the correct model with higher frequencies and smaller MSEs

under any working correlation structure. Specifically, SCAD1 performs better

than SCAD2 in terms of EXACT and MSE under the true correlation structure,

and SCAD1 and SCAD2 perform similarly under the misspecified correlation

structures (except when pn = 50 and qn = 3). The performance of SCAD1

and the adaptive LASSO are quite comparable under any working correlation
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Table 1. Performance of penalized QIF with LASSO, adaptive LASSO
(ALASSO), SCAD1, SCAD2, and penalized GEE (PGEE) using SCAD
penalty, with three working correlation structures: IN (independent), AR
(AR-1) and EX (exchangeable).

pn = 20 pn = 50

Method MSE EXACT OVER UNDER MSE EXACT OVER UNDER

qn = 3

Oracle 0.0018 - - - 0.0008 - - -

QIF 0.0130 0.00 1.00 0.00 0.0130 0.00 1.00 0.00

SCAD1 0.0037 0.70 0.29 0.01 0.0018 0.61 0.39 0.00

IN SCAD2 0.0035 0.73 0.26 0.01 0.0017 0.71 0.28 0.01

ALASSO 0.0036 0.70 0.29 0.01 0.0017 0.62 0.37 0.01

LASSO 0.0098 0.34 0.66 0.00 0.0056 0.29 0.71 0.00

PGEE 0.0046 0.52 0.46 0.02 0.0018 0.57 0.41 0.02

Oracle 0.0014 - - - 0.0006 - - -

QIF 0.0108 0.00 1.00 0.00 0.0124 0.00 1.00 0.00

SCAD1 0.0021 0.83 0.17 0.00 0.0010 0.77 0.23 0.00

AR SCAD2 0.0021 0.84 0.16 0.00 0.0012 0.85 0.15 0.00

ALASSO 0.0021 0.82 0.18 0.00 0.0010 0.76 0.24 0.00

LASSO 0.0077 0.29 0.71 0.00 0.0047 0.39 0.60 0.01

PGEE 0.0029 0.65 0.35 0.00 0.0011 0.62 0.38 0.00

Oracle 0.0012 - - - 0.0006 - - -

QIF 0.0091 0.00 1.00 0.00 0.0108 0.00 1.00 0.00

SCAD1 0.0017 0.85 0.15 0.00 0.0008 0.89 0.11 0.00

EX SCAD2 0.0021 0.79 0.21 0.00 0.0016 0.72 0.28 0.00

ALASSO 0.0016 0.84 0.16 0.00 0.0009 0.76 0.24 0.00

LASSO 0.0065 0.36 0.64 0.00 0.0032 0.37 0.63 0.00

PGEE 0.0019 0.71 0.29 0.00 0.0010 0.67 0.33 0.00

qn = 6

Oracle 0.0060 - - - 0.0022 - - -

QIF 0.0149 0.00 1.00 0.00 0.0138 0.00 1.00 0.00

SCAD1 0.0086 0.74 0.17 0.09 0.0040 0.52 0.40 0.08

IN SCAD2 0.0093 0.69 0.20 0.11 0.0047 0.53 0.33 0.14

ALASSO 0.0090 0.74 0.18 0.08 0.0042 0.50 0.40 0.10

LASSO 0.0202 0.14 0.83 0.03 0.0147 0.22 0.68 0.10

PGEE 0.0117 0.19 0.72 0.09 0.0079 0.06 0.75 0.19

Oracle 0.0058 - - - 0.0019 - - -

QIF 0.0143 0.00 1.00 0.00 0.0142 0.00 1.00 0.00

SCAD1 0.0075 0.75 0.20 0.05 0.0031 0.69 0.25 0.06

AR SCAD2 0.0088 0.76 0.15 0.09 0.0041 0.62 0.28 0.10

ALASSO 0.0077 0.74 0.22 0.04 0.0030 0.69 0.27 0.03

LASSO 0.0179 0.21 0.75 0.04 0.0127 0.26 0.69 0.05

PGEE 0.0101 0.32 0.60 0.08 0.0059 0.17 0.70 0.13

Oracle 0.0045 - - - 0.0016 - - -

QIF 0.0119 0.00 1.00 0.00 0.0131 0.00 1.00 0.00

SCAD1 0.0055 0.83 0.14 0.03 0.0024 0.72 0.25 0.03

EX SCAD2 0.0075 0.75 0.10 0.15 0.0044 0.64 0.26 0.10

ALASSO 0.0056 0.83 0.16 0.01 0.0024 0.69 0.29 0.02

LASSO 0.0144 0.25 0.75 0.00 0.0102 0.30 0.67 0.03

PGEE 0.0070 0.50 0.45 0.05 0.0032 0.23 0.73 0.04
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structure. In contrast, the PQIF using the LASSO penalty tends to overfit the

model, and its MSEs are much larger compared to the others under any setting.

In addition, the MSEs of the PGEE estimators are all greater than those of

SCAD1 and ALASSO, and the EXACT frequencies of selecting the true models

using PGEE with the SCAD penalty are lower than those of the PQIF based on

the SCAD and ALASSO penalties.

When the number of relevant variables doubles, the EXACT of the PQIF

based on SCAD and ALASSO decreases about 18% in the worst case; however,

the EXACT of the PGEE decreases much more significantly. In the worst case

when qn = 6 and pn = 50, the PGEE selects the correct model less than 25%

of the time under any working correlation structure. In addition, the proposed

model selection performance is always better under the true correlation structure.

For instance, the EXACT is around 70% under the true correlation structure,

while it is around 50% under the independent structure when qn = 6 and pn =

50. This simulation also indicates that the proposed model selection method

starts to break down when both qn and pn increase under misspecified correlation

structures such as the independent structure.

In summary, our simulation results show that the penalized QIF approaches

with the SCAD and ALASSO penalties outperform the penalized GEE with the

SCAD under any given correlation structure for various dimension settings of

parameters in general. The LASSO penalty is not competitive for model selection

with diverging number of parameters. In general, SCAD1 performs better than

SCAD2, because the linear approximation of SCAD2 is for the first (dominant)

term of the PQIF, while the quadratic approximation of SCAD1 is for the second.

5.2. Periodontal disease data example

We illustrate the proposed penalized QIF method through performing model

selection for an observational study of periodontal disease data (Stoner (2000)).

The data contain patients with chronic periodontal disease who have participated

in a dental insurance plan. Each patient had an initial periodontal exam between

1988 and 1992, and was followed annually for ten years. The data set consists of

791 patients with unequal cluster sizes varying from 1 to 10.

The binary response variable yij = 1 if the patient i at jth year has at least

one surgical tooth extraction, and yij = 0 otherwise. There are 12 covariates

of interest: patient gender (gender), patient age at time of initial exam (age),

last date of enrollment in the insurance plan in fractional years since 1900 (exit),

number of teeth present at time of initial exam (teeth), number of diseased sites

(sites), mean pocket depth in diseased sites (pddis), mean pocket depth in all

sites (pdall), year since initial exam (year), number of non-surgical periodontal

procedures in a year (nonsurg), number of surgical periodontal procedures in
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a year (surg), number of non-periodontal dental treatments in a year (dent),

and number of non-periodontal dental preventive and diagnostic procedures in a

year (prev). Although the variable exit is not related to the model selection, we

included it as a null variable to examine whether it is selected by the proposed

model selection procedures or not. The logit link function was imposed here for

the binary responses.

We minimized the penalized QIF with the SCAD penalty applying the local

quadratic approximation and the adaptive LASSO penalty to compare with the

penalized GEE. Here the AR-1 working correlation structure was assumed for

estimation and model selection; as each patient was followed up annually, the

measurements are less likely to be correlated if they are further away in time.

Although other types of working correlation structure can be applied to these

data, the results are not reported here as the outcomes are quite similar. Based

on the penalized QIF, we selected relevant covariates as age, sites, pddis, pdall,

and dent. The rest of the covariates were not selected and exit was not selected,

as expected.

We compare the penalized QIF with the penalized GEE approach (Wang,

Zhou, and Qu (2012)) based on the AR-1 working correlation structure. The

estimated coefficients of both methods are reported in Table 2 indicating that

the coefficients of age, pddis, pdall, and dent are positive and the coefficient of

the variable sites is negative. The penalized GEE selects the covariate teeth,

while the penalized QIF does not. Overall, the results of the two methods for

the periodontal disease data are quite comparable.

In order to evaluate the model selection performance when the dimension

of covariates increases, we generated an additional 15 independent null variables

from a Uniform (0,1) distribution. We applied the penalized QIF and the pe-

nalized GEE based on the AR-1 working correlation structure. Out of 100 runs,

the penalized QIF selected at least one of fifteen null variables 11 times for the

SCAD penalty and 13 times for the adaptive LASSO penalty, while the penalized

GEE selected one of the null variables 36 times. Furthermore, the penalized QIF

always selected the relevant covariates age, sites, pddis, pdall, and dent, while the

penalized GEE selected three other covariates year, nonsurg, and prev twice, in

addition to the 6 relevant variables, in 100 runs. In this example, the penalized

GEE tended to overfit the model.

6. Discussion

In this paper, we propose a penalized quadratic inference function approach

that enables one to perform model selection and parameter estimation simultane-

ously for correlated data in the framework of a diverging number of parameters.

Our procedure is able to take into account correlation from clusters without
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Table 2. For the periodontal disease study, the coefficients estimated by
the unpenalized QIF (QIF), the penalized QIF with SCAD through a lo-
cal quadratic approximation (SCAD), the adaptive LASSO (ALASSO), the
unpenalized GEE (GEE), and the penalized GEE (PGEE).

QIF SCAD ALASSO GEE PGEE
intercept -8.284 -11.144 -10.824 -8.287 -9.125
gender -0.002 0.000 0.000 0.034 0.000
age 0.016 0.009 0.006 0.012 0.009
exit -0.032 0.000 0.000 -0.002 0.000
teeth 0.000 0.000 0.000 -0.027 -0.014
sites -0.006 -0.006 -0.005 0.000 -0.003
pddis 0.704 0.715 0.605 0.567 0.545
pdall 0.833 0.871 0.826 0.551 0.668
year 0.018 0.000 0.000 -0.021 0.000
nonsurg 0.004 0.000 0.000 -0.039 0.000
surg 0.018 0.000 0.000 0.015 0.000
dent 0.124 0.115 0.128 0.110 0.106
prev -0.152 0.000 0.000 -0.147 0.000

specifying the full likelihood function or estimating the correlation parameters.

The method can easily be applied to correlated discrete responses as well as to

continuous responses. Furthermore, our theoretical derivations indicate that the

penalized QIF approach is consistent in model selection and possesses the ora-

cle property. Our Monte Carlo simulation studies show that the penalized QIF

outperforms the penalized GEE, selecting the true model more frequently.

It is important to point out that the first part of the objective function in the

penalized GEE is the generalized estimating equation that is exactly 0 if there is

no penalization. This imposes limited choices for selecting a tuning parameter as

there is no likelihood function available. Consequently, the PGEE can only rely

on the GCV as a tuning parameter selection criterion, which tends to overfit the

model. By contrast, the first part of the PQIF is analog to minus twice the log-

likelihood function, and therefore can be utilized for tuning parameter selection.

We develop a BIC-type criterion for selecting a proper tuning parameter which

leads to consistent model selection and estimation for regression parameters. It

is also known that the BIC-type of criterion performs better than the GCV when

the dimension of parameters is high (Wang, Li, and Leng (2009)). Therefore

it is not surprising that the proposed model selection based on the BIC-type of

criterion performs well in our numerical studies.

The proposed method is generally applicable for correlated data as long

as the correlated measurements have the same correlation structure between

clusters. This assumption is quite standard for marginal approaches, where the

diagonal marginal variance matrix could be different for different clusters, but the
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working correlation matrix is common for different clusters. When each subject
is followed at irregular time points, we can apply semiparametric modeling and
nonparametric functional data approaches, but this typically requires more data
collection from each subject.

Recent work on handling irregularly observed longitudinal data includes Fan,
Huang, and Li (2007) and Fan and Wu (2008) based on semiparametric modeling,
and functional data such as James and Hastie (2001); James and Sugar (2003);
Yao, Müller, and Wang (2005); Hall, Müller, and Wang (2006) and Jiang and
Wang (2010). However, most of these are not suitable for discrete longitudinal
responses. In addition, semiparametric modeling requires parametric modeling
for the correlation function. A disadvantage of the parametric approach for the
correlation function is that the estimation of the correlation might be nonexistent
or inconsistent if the correlated structure is misspecified. To model the covariance
function completely nonparametrically, Li (2011) develops the kernel covariance
model in the framework of a generalized partially linear model and transforms
the kernel covariance estimator into a positive semidefinite covariance estimator
through spectral decomposition. Li’s (2011) approach could be applicable for
our method on dealing with irregularly observed longitudinal data, but further
research on this topic is needed.
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Appendix: Proofs of Theorems and Lemmas

Lemma 3. If (D) holds, An(βn) = E{n−1∇Qn(βn)} = 0 and∥∥∥∥ 1n∇Qn(βn)

∥∥∥∥ = op(1).

Proof. By Chebyshev’s inequality it follows that, for any ϵ,

P

(∥∥∥∥ 1n∇Qn(βn)−An(βn)

∥∥∥∥ ≥ ϵ

)
≤ 1

n2ϵ
E

( pn∑
i=1

[
∂Qn(βn)

∂βni
− E

{
∂Qn(βn)

∂βni

}]2)
=

pn
n

= op(1).

Lemma 4. Under (D), we have∥∥∥∥ 1n∇2Qn(βn)−Dn(βn)

∥∥∥∥ = op(p
−1
n ).
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Proof. By Chebyshev’s inequality it follows that, for any ϵ,

P

(∥∥∥∥ 1n∇2Qn(βn)−Dn(βn)

∥∥∥∥ ≥ ϵ

pn

)
≤ p2n

n2ϵ
E

( pn∑
i,j=1

[
∂2Qn(βn)

∂βni∂βnj
− E

{
∂2Qn(βn)

∂βni∂βnj

}]2)

=
p4n
n

= op(1).

Lemma 5. Suppose the penalty function Pλn(|βn|) satisfies (A), the QIF Qn(βn)

satisfies (D)−(F), and there is an open subset ωqn of Ωqn ∈ Rqn that contains the

true non-zero parameter point β∗
s . When λn → 0,

√
n/pnλn → ∞ and p4n/n → 0

as n → ∞, for all the βs ∈ ωqn that satisfy ∥βs − β∗
s∥ = Op(

√
pn/n) and any

constant K,

S{(βsT , 0)T } = min
∥βsc∥≤K(

√
pn/n)

S{(βsT , βT
sc)

T }, with probability tending to 1.

Proof. We take ϵn = K
√

pn/n. It is sufficient to prove that, with probability

tending to 1 as n → ∞, for all the βs that satisfy βs−β∗
s = Op(

√
pn/n), we have

for j = qn + 1, . . . , pn,

∂Sn(βn)

∂βnj
> 0 for 0 < βnj < ϵn,

∂Sn(βn)

∂βnj
< 0 for − ϵn < βnj < 0.

By the Taylor expansion,

∂Sn(βn)

∂βnj
=

∂Qn(βn)

∂βnj
+ nP ′

λn
(|βnj |)sign(βnj)

=
∂Qn(β

∗
n)

∂βnj
+

pn∑
l=1

∂2Qn(β
∗
n)

∂βnj∂βnl
(βnl − β∗

nl)

+

pn∑
l,k=1

∂3Qn(β̇n)

∂βnj∂βnl∂βnk
(βnl − β∗

nl)(βnk − β∗
nk) + nP ′

λn
(|βnj |)sign(βnj)

= I1 + I2 + I3 + I4,

where β̇n lies between βn and β∗
n, and a standard argument gives

I1 = Op(
√
n) = Op(

√
npn). (A.1)
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The second term I2 is

I2 =

pn∑
l=1

[
∂2Qn(β

∗
n)

∂βnj∂βnl
− E

{
∂2Qn(β

∗
n)

∂βnj∂βnl

}]
(βnl − β∗

nl)

+

pn∑
l=1

1

n
E

{
∂2Qn(β

∗
n)

∂βnj∂βnl

}
n(βnl − β∗

nl)

=H1 +H2.

Under (D), we obtain( pn∑
l=1

[
∂2Qn(β

∗
n)

∂βnj∂βnl
− E

{
∂2Qn(β

∗
n)

∂βnj∂βnl

}]2)1/2

= Op(
√
npn),

and by ∥βn − β∗
n∥ = Op(

√
pn/n), it follows that H1 = Op(

√
npn). Moreover,

|H2| =
∣∣∣∣ pn∑
l=1

1

n
E

{
∂2Qn(β

∗
n)

∂βnj∂βnl

}
n(βnl − β∗

nl)

∣∣∣∣ ≤ nOp(1)Op(

√
pn
n
) = Op(

√
npn).

This yields

I2 = Op(
√
npn). (A.2)

We can write

I3 =

pn∑
l,k=1

[
∂3Qn(β̇n)

∂βnj∂βnl∂βnk
− E

{
∂3Qn(β̇n)

∂βnj∂βnl∂βnk

}]
(βnl − β∗

nl)(βnk − β∗
nk)

+

pn∑
l,k=1

E

{
∂3Qn(β̇n)

∂βnj∂βnl∂βnk

}
(βnl − β∗

nl)(βnk − β∗
nk)

=H3 +H4.

By the Cauchy-Schwarz inequality, we have

H2
3 ≤

pn∑
l,k=1

[
∂3Qn(β̇n)

∂βnj∂βnl∂βnk
− E

{
∂3Qn(β̇n)

∂βnj∂βnl∂βnk

}]2
∥βn − β∗

n∥4.

Under (E) and (F),

H3 = Op

{(
np2n

p2n
n2

)1/2}
= Op

{(p4n
n

)1/2}
= op(

√
npn). (A.3)

On the other hand, under (E),

|H4| ≤ K
1/2
1 p2n∥βn − β∗

n∥2 ≤ K
1/2
1 npn∥βn − β∗

n∥2 = Op(p
2
n) = op(

√
npn). (A.4)
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From (A.1)-(A.4) we have

∂Sn(βn)

∂βnj
=Op(

√
npn) +Op(

√
npn) + op(

√
npn) + nP ′

λn
(|βnj |)sign(βnj)

=nλn

{
P ′
λn
(|βnj |)
λn

sign(βnj) +Op

( √
pn√
nλn

)}
.

By (A) and
√
pn/

√
nλn → 0, the sign of ∂Sn(βn)/∂βnj is entirely determined by

the sign of βnj .

Proof of Theorem 1. Suppose αn =
√
pn(n

−1/2+an). We want to show that for
any given ϵ > 0, there exists a constant K such that P

{
inf∥u∥=K Sn(β

∗
n+αnu) >

Sn(β
∗
n)
}
≥ 1−ϵ. This implies with probability at least 1−ϵ that there exists a local

minimum β̂n in the ball {β∗
n + αnu : ∥u∥ ≤ K} such that ∥β̂n − β∗

n∥ = Op(αn).
We write

Gn(u) =Sn(β
∗
n)− Sn(β

∗
n + αnu)

=Qn(β
∗
n)−Qn(β

∗
n + αnu) + n

pn∑
j=1

{Pλn(|β∗
nj |)− Pλn(|β∗

nj + αnuj |)}

≤Qn(β
∗
n)−Qn(β

∗
n + αnu) + n

qn∑
j=1

{Pλn(|β∗
nj |)− Pλn(|β∗

nj + αnuj |)}

=(I) + (II).

By the Taylor expansion,

(I) = −
[
αn∇TQn(β

∗
n)u+

1

2
uT∇2Qn(β

∗
n)uα

2
n +

1

6
∇T {uT∇2Qn(β̇n)u}uα3

n

]
= −I1 − I2 − I3,

where the vector β̇n lies between β∗
n and β∗

n + αnu, and

(II) = −
qn∑
j=1

[
nαnP

′
λn
(|β∗

nj |)sign(β∗
nj)uj + nα2

nP
′′
λn
(|β∗

nj |)u2j{1 + o(1)}
]

= −I4 − I5.

By Lemma 1 and the Cauchy-Schwarz inequality, I1 is bounded, as

αn∇TQn(β
∗
n)u ≤ αn∥∇TQn(β

∗
n)∥∥u∥ = Op(

√
npnαn)∥u∥ = Op(nα

2
n)∥u∥.

Under (D) and by Lemma 2,

I2 =
1

2
uT

[
1

n
∇2Qn(β

∗
n)−

1

n
E
{
∇2Qn(β

∗
n)
}]

unα2
n +

1

2
uTE

{
∇2Qn(β

∗
n)
}
uα2

n

= op(nα
2
n)∥u∥2 +

nα2
n

2
uTDn(β

∗
n)u.
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Under (C) and p2nan → 0 as n → ∞, we have

|I3| =
∣∣∣∣16

pn∑
i,j,k=1

∂Qn(β̇n)

∂βni∂βnj∂βnk
uiujukα

3
n

∣∣∣∣ ≤ 1

6
n

{ pn∑
i,j,k=1

M2

}1/2

∥u∥3α3
n

= Op(p
3/2
n αn)nα

2
n∥u∥3 = op(nα

2
n)∥u∥3.

The terms I4 and I5 can be bounded as

|I4| ≤
qn∑
j=1

|nαnP
′
λn
(|β∗

nj |)sign(β∗
nj)uj | ≤ nαnan

qn∑
j=1

|uj |

≤ nαnan
√
qn∥u∥ ≤ nα2

n∥u∥
and

I5 =

qn∑
j=1

nα2
nP

′′
λn
(β∗

nj)u
2
j{1 + o(1)} ≤ 2max1≤j≤qnP

′′
λn
(|β∗

nj |)nα2
n∥u∥2.

For a sufficiently large ∥u∥, all terms in (I) and (II) are dominated by I2. Thus

Gn is negative because −I2 < 0.

Proof of Theorem 2. Theorem 1 shows that there is a local minimizer β̂n of

Sn(β) and Lemma 3 proves the sparsity property. Next we prove the asymptotic

normality. By the Taylor expansion on ∇Sn(β̂s) at point β
∗
s , we have

∇Sn(β̂s) =∇Qn(β
∗
s ) +∇2Qn(β

∗
s )(β̂s − β∗

s ) +
1

2
(β̂s − β∗

s )
T∇2

{
∇Qn(β̇n)

}
(β̂s − β∗

s )

+∇Pλn(β
∗
s ) +∇2Pλn(β̈n)(β̂s − β∗

s ),

where β̇n and β̈n lie between β̂s and β∗
s . Because β̂s is a local minimizer,

∇Sn(β̂s) = 0, we obtain

1

n

[
∇Qn(β

∗
s ) +

1

2
(β̂s − β∗

s )
T∇2

{
∇Qn(β̇n)

}
(β̂s − β∗

s )

]
= − 1

n

[
{∇2Qn(β

∗
s ) +∇2Pλn(β̈n)}(β̂s − β∗

s ) +∇Pλn(β
∗
s )
]
.

Let Z ∼= (1/2)(β̂s−β∗
s )

T∇2
{
∇Qn(β̇n)

}
(β̂s−β∗

s ) andW ∼= ∇2Qn(β
∗
s )+∇2Pλn(β̈n).

By the Cauchy-Schwarz inequality and under (E) and (F), we have∥∥∥ 1
n
Z
∥∥∥2 ≤ 1

n2

n∑
i=1

n∥β̂s − β∗
s∥4

qn∑
j,l,k=1

M2 = Op

(p2n
n2

)
Op(p

3
n) = op(n

−1). (A.5)

By Lemma 2 and under (C) and (F), we obtain

λi

{ 1

n
W−Dn(β

∗
s )−Σλn

}
= op(p

−1/2
n ), for i = 1, . . . , qn,
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where λi(B) is the ith eigenvalue of a symmetric matrix B. If β̂s − β∗
s =

Op(
√

pn/n), we have{ 1

n
W−Dn(β

∗
s )−Σλn

}
(β̂s − β∗

s ) = op(n
−1/2). (A.6)

From (A.5) and (A.6) we obtain

{Dn(β
∗
s ) +Σλn}(β̂s − β∗

s ) + bn = − 1

n
∇Qn(β

∗
s )− op(n

−1/2), (A.7)

and from (A.7) we have
√
nBnD

−1/2
n (β∗

s ){Dn(β
∗
s ) +Σλn}

[
(β̂s − β∗

s ) + {Dn(β
∗
s ) +Σλn}−1bn

]
=

√
nBnD

−1/2
n (β∗

s )
[
{Dn(β

∗
s ) +Σλn}(β̂s − β∗

s ) + bn

]
= − 1√

n
BnD

−1/2
n (β∗

s )∇Qn(β
∗
s )− op{BnD

−1/2
n (β∗

s )}.

As the last term is op(1), we only consider the first term denoted by

Yni =
1√
n
BnD

−1/2
n (β∗

s )∇Qni(β
∗
s ), for i = 1, . . . , n.

We show that Yni satisfies the conditions of the Lindeberg-Feller Central Limit

Theorem. By Lemma 1, (D), and BnB
T
n → F , we have

E∥Yn1∥4 =
1

n2
E∥BnD

−1/2
n (β∗

s )∇Qni(β
∗
s )∥4

≤ 1

n2
λmax(BnB

T
n )λmax{Dn(β

∗
s )}E∥∇TQn(β

∗
s )∇Qn(β

∗
s )∥2

= O(p2nn
−2), (A.8)

and by Chebyshev’s inequality

P (∥Yn1∥ > ϵ) ≤ E∥Yn1∥2

ϵ
≤ E∥BnD

−1/2
n (β∗

s )∇Qni(β
∗
s )∥2

nϵ
= O(n−1). (A.9)

From (A.8) and (A.9) and p4n/n → 0 as n → ∞, we obtain

n∑
i=1

E∥Yni∥21{∥Yni∥ > ϵ} ≤ n{E∥Yn1∥4}1/2{P (∥Yn1∥ > ϵ)}1/2

≤ nO(pnn
−1)O(n−1/2) = O(pnn

−1/2) = o(1).

On the other hand, as BnB
T
n → F we have

n∑
i=1

cov(Yni) = n · cov(Yn1) = cov{BnD
−1/2
n (β∗

s )∇Qn(β
∗
s )} → F.
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It follows that the Lindeberg condition is satisfied and then the Lindeberg-Feller
central limit theorem gives

√
nBnD

−1/2
n (β∗

s ){Dn(β
∗
s ) + Σλn}

[
(β̂s − β∗

s ) + {Dn(β
∗
s ) +Σλn}−1bn

] d→ N(0, F ).

Proof of Lemma 1. Let β̂nλo = (β̂T
sλo

, β̂T
scλo

)T be an estimator of βn =
(βT

s , β
T
sc)

T . The oracle property of the penalized QIF ensures that, with prob-
ability tending to 1, β̂sλo satisfies

S′
n(β̂sλo) = Q′

n(β̂sλo) + bn(β̂sλo) = 0, (A.10)

where bn = {P ′
λn
(|βn1|)sign(βn1), . . . , P ′

λn
(|βnqn |)sign(βnqn)}T . By (F), P (|β̂sλo | >

aλo) −→ 1, which implies that P (bn(β̂sλo) = 0) −→ 1. Therefore with proba-
bility tending to 1, (A.10) leads to Q′

n(β̂sλo) = 0. This implies that β̂sλo is the
same as β̂∗

s , the oracle estimator for the non-zero coefficients. It immediately
follows that, with probability tending to 1, BIQIFλo = Q′

n(β̂sλo) + qn log(n) =
Q′

n(β̂
∗
s ) + qn log(n) = BIQIFΥT

.

Proof of Lemma 2. The proof of Lemma 2 consists of different cases for
underfitted or overfitted models. We show that Lemma 2 holds for each case.

For underfitted models, it follows by Lemma 1 that

BIQIFλo

n
= ḡn(β̂λo)

T C̄−1
n (β̂λo)ḡn(β̂λo)+qn

log(n)

n
P−→ ḡn(βΥT

)T C̄−1
n (βΥT

)ḡn(βΥT
).

In addition, since Υλ + ΥT , we have

BIQIFλn

n
= ḡn(β̂λn)

T C̄−1
n (β̂λn)ḡn(β̂λn)+dfλn

log(n)

n
≥ ḡn(β̂λn)

T C̄−1
n (β̂λn)ḡn(β̂λn)

≥ min
Υ:Υ+ΥT

ḡn(β̂Υ)
T C̄−1

n (β̂Υ)ḡn(β̂Υ)

P−→ min
Υ:Υ+ΥT

ḡn(βΥ)
T C̄−1

n (βΥ)ḡn(βΥ) > ḡn(βΥT
)T C̄−1

n (βΥT
)ḡn(βΥT

).

Therefore,

P ( inf
λn∈Λ−

BIQIFλn

n
>

BIQIFλo

n
) = P ( inf

λn∈Λ−
BIQIFλn > BIQIFλo) −→ 1.

For overfitted models, we have

inf
λn∈Λ+

(BIQIFλn −BIQIFλo) = inf
λn∈Λ+

(Qn(β̂λn)−Qn(β̂λo) + (dfλn
−qn)) log(n)

≥ inf
λn∈Λ+

(Qn(β̂λn)−Qn(β̂λo)) + log(n)

≥ min
Υ:Υ⊃ΥT

(Qn(β̂Υ)−Qn(β̂ΥT
)) + log(n).
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Since Qn(β̂Υ) − Qn(β̂ΥT
) has an asymptotic χ2

dfΥ−qn
distribution, minΥ:Υ⊃ΥT

(Qn(β̂Υ) − Qn(β̂ΥT
)) = Op(1) and, with log(n) divergent, we have P (infλn∈Λ+

BIQIFλn > BIQIFλo) −→ 1.

Online Supplementary Materials

The R-coding for the binary simulation studies is given in the online sup-

plemental material available at http://www.stat.sinica.edu/statistica. The R-

coding for the model selection of the basis matrices for the correlation matrix,

by Zhou and Qu (2012), is in the website, https://publish.illinois.edu/

anniequ/files/2013/01/Basis_matrices_selection.pdf.
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