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Abstract: To evaluate some Value at Risk models, the empirical likelihood approach

to martingales is recommended. It turns out that the usual Wilks’ theorem still

holds in this case under mild conditions, and then it can be performed easily.

Simulations were carried out for examining the performance of the new method.
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1. Introduction

The market crash in October 1987, recent crises in emerging markets, and
disastrous losses resulting from trading activities of institutions such as Orange
County, Long-Term Capital Management Fund, and Metallgesellschaft have in-
creased the regulatory demand for reliable quantitative risk management tools.
See, for example, Gallati (2003, Chap. 6) for a set of detailed case studies. The
value-at-risk (VaR) concept has emerged as the most prominent measure of down-
side market risk. It places an upper bound on losses in the sense that these will
exceed the VaR threshold with only a small target probability, typically chosen
between 1% and 5%. In practice, the objective should be to provide a reason-
able accurate estimate of risk at a reasonable cost. This involves choosing a
method from among the various industry standards that is most appropriate for
the portfolio at hand.

Given the importance of VaR estimates to banks and to their regulators,
evaluating the accuracy of the models underlying them is a necessary exercise.
For this the common approaches are the test of unconditional coverage and the
test of conditional coverage proposed by Kupiec (1995) and Christoffersen (1998).
In addition, the distribution forecast method proposed by Crnkovic and Drach-
man (1996) examined whether observed empirical quantiles derived from a VaR
model’s distribution forecast are independent and uniformly distributed; Lopez
(1997) proposes an alternative evaluation method that is based on the probability
forecasting framework presented; a dynamic quantile test is proposed by Engle
and Manganelli (2004); Fan and Gu (2003) applied mean absolute deviation and
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square root absolute deviation criteria; Chen and Wong (2005) introduced an
kernel smoothed empirical likelihood for a quantile of weekly depedent processes
based on blocks of data. The most related work to our study is Christoffersen,
Hahn and Inoue (2001), who proposed specification testing and nonested test-
ing based on the Kullback-Leibler information criterion; some data analysis was
conducted for illustration, but there were no simulation results to examine the
performance of their tests. Here, roughly speaking, specification testing tests
whether the underlying volatility model is really the hypothetical model, and
nonnested testing compares the performance of two models. In the next section,
we shall have some more details.

In this paper, we investigate how to employ an empirical likelihood method
for evaluation of VaR models. The empirical likelihood method was first intro-
duced by Owen (1988, 1990) for constructing confidence regions. Hall and LaS-
cala (1990) summarized some of its advantages over the traditional approaches:
the empirical likelihood regions are automatically shaped by the sample, they are
Bartlett correctable, range preserving, and transformation respecting, etc. For
these reasons, the empirical likelihood has many applications in smooth func-
tions of means (DiCiccio, Hall and Romono (1991)), in nonparametric density
and regression function estimation (Chen (1996), Chen and Qin (2000), Xue and
Zhu (2007), and Zhu and Xue (2006)), in quantile related estimation (Chen and
Hall (1993)), among others. For a more comprehensive review of the empirical
likelihood method and its applications, the reader is referred to the monograph
by Owen (2001).

For VaR models, we need to deal with the random variables that can form
martingale difference sequence. Thus, we first consider the empirical likelihood
ratio to martingale difference sequence to show the Wilks’ theorem. The result
will then be applied to evaluating VaR models.

The paper is arranged as follows. In Section 2, we apply the empirical like-
lihood method for martingale difference sequence to evaluate some VaR models.
In Section 3, we report on simulation studies and a data analysis conducted to
examine the performance of our method. We do not give the technical details of
the proofs for our theoretical results, they are available from the authors upon
request.

2. Empirical Likelihood for Value at Risk Evaluation

Consider VaR modeling first. Let St be the price of a portfolio at time t.
Let

rt = log St − log St−1 = log
St

St−1
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be the observed log return at time t. VaR measures the extreme loss of a portfolio
over a predetermined holding period τ with a prescribed confidence level 1 − p.
More precisely, V aRt is defined to be the solution to

P (rt ≤ V aRt|Ft−1) = p, (2.1)

where Ft = σ(Ss, s ≤ t) represents the historical information available at time t.
Clearly, to have p free of t, stationarity of the sequence of rt is needed. Such a
conditional expectation equation indicates that financial returns exhibit nonstan-
dard statistical properties with non-IID property: they are not independently and
identically distributed and moreover, and may not be Gaussian. This is reflected
by three widely reported stylized facts: (i) volatility clustering, (ii) substantial
kurtosis or fat-tailed distributions, (iii) mild skewness of the returns, possibly of
a time-varying nature. What we have is often only the above conditional expec-
tation equation (2.1). In order to facilitate these factors, a more general model
is given by

rt = µt + σtεt, (2.2)

where µt and σt are both Ft−1-measurable, and εt are IID random variables with
mean zero and variance one. Here, the distribution of εt can be taken to be other
distributions than Gaussian, e.g., they could be skewed and/or with fat tails such
as the Student’s t, and the generalized asymmetric t, see Bollerslev (1986).

Write the conditional distribution function of rt given Ft−1 as Ft(w) =
P (rt ≤ w|Ft−1). It follows from (2.1) and the location-scale-model that V aRt(β)
= F−1

t (p) := µt + βσt, where β is the pth quantile of εt, i.e., P (εt ≤ β) = p.
Note that in some commonly used VaR models (GARCH, Riskmetrics, GJR and
History simulation), we mainly consider modelling for volatility. Thus the mean
µt is fixed when we consider specification and nonnested testing in the following,
without loss of generality, µt = 0. Then V aRt(β) = βσt and the calculation
of V aR consists of two parts: determination of quantiles, β, and estimation of
volatilities, σt.

Trivially, (2.1) implies that

E
(
I{rt ≤ V aRt(β)} − p|Ft−1

)
= 0. (2.3)

If {zt−1, zt−2, . . .} are Ft−1-measurable, where Ft−1 is the time t− 1 information
set, then (2.3) yields

E

{(
I{rt ≤ V aRt(β)} − p

)
k(zt−1, zt−2, . . .)|Ft−1

}
= 0 (2.4)
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for every measurable vector-valued function k(·) of {zt−1, zt−2, . . .}. The r.v.’s
{zt−1, zt−2, . . .} are referred to as instrumental variables. Write

Yt =
(
I{rt ≤ V aRt(β)} − p

)
k(zt−1, zt−2, . . .) ≡ Itk(zt−1),

where zt−1 = (zt−1, zt−2, . . .) ∈ Ft−1. Note that {Yt : −∞ < t ≤ 0} is a
martingale difference sequence. Similar result can be derived when k(·) is a non-
constant random vector so that we can choose several functions of instrumental
variables. for notational clarity, we write

Yt =
(
I{rt ≤ V aRt(β)} − p

)
k(zt−1, zt−2, . . .) ≡ Itk(zt−1),

where k(zt−1) = (k1(zt−1), . . . , kd(zt−1)) and E{Yt|Ft−1} = 0, i.e., {Yt, t ≥ 1}
forms a d-dimensional martingale difference sequence.

Here we use this sequence to evaluate VaR model using a specification test
constructed by empirical likelihood ratio. More precisely, we assign the proba-
bility mass pt to the point Yt, and then construct empirical likelihood based on
Yt as

ρn := −2max
{ n∑

t=1

log(npi)
∣∣∣pt ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptYt = 0
}

.

By the Lagrange multiplier method, ρn = 2
∑n

t=1 log(1+λ ·Yt), where λ satisfies∑n
t=1[Yt/(1 + λ · Yt)] = 0. The following theorem is applied to VaR evaluation

in the next sections.

Theorem 1. Assume that the sequence {Yt : −∞ < t ≤ 0} is strongly stationary
and that the third moment of ‖Yt‖ is finite, where ‖ · ‖ is the Euclidian norm.
Then ρn is asymptotically chi-square with d degrees of freedom.

The basic idea to prove this theorem can be easily seen through the proof
when d = 1. We can show that ρn is asymptotically equivalent to(

(1/
√

n)
∑n

t=1 Yt

)2

(1/n)
∑n

t=1 Y 2
t

and the Lindeberg Central Limit Theorem for martingales (see Hall and Heyde
(1980)) implies the desired result. We do not present the details of the proof
here, it is available from the authors upon request.

When we consider nonnested testing to compare two VaR models, we can
use the martingale difference sequence formed by

Yt = I
{

rt ≤ V aRt(β)
}
− I

{
rt ≤ V aR1

t (β)
}
k(zt−1, zt−2, . . .)
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to construct an empirical likelihood ratio as we did for specification testing. The
asymptotic properties are almost identical and we do not give the details here.

3. Simulation Studies and Empirical Analysis

3.1. Estimation of volatilities

Volatilities play an important role in the calculation of VaR. Risk managers
have a plethora of volatility measures to choose from when calculating Value-at-
Risk measures. We give a brief review of some of these methods below.

In light of the observed volatility clustering, conditionally heteroskedastic
parametric models, which allow the scale parameter to be a function of past
information, are frequently used. Arguably the most popular formulation is
autoregressive conditional heteroskedasticity (ARCH) (Engle (1982)) model and
its generalization, GARCH model (Bollerslev (1986)). ARCH relates the error
variance to the square of a previous period’s error. It is commonly employed
in modeling financial time series that exhibit time-varying volatility. On the
other hand, GARCH models error variances by an autoregressive moving average
model. Some of the approaches given below are related to GARCH models.
Since these volatility forecasting models were introduced, there have been many
alternatives/modifications proposed to better their use in volatility forecasting.
In the following we briefly introduce four models with which we do specification
testing and nonnested testing.

1. GARCH(r, s) model (Bollerslev (1986)). The conditional variance is

rt = σtεt, σ2
t = c0 +

r∑
i=1

cir
2
t−i +

s∑
j=1

djσ
2
t−j ,

where the εt are IID with mean 0 and variance 1, c0 > 0, ci ≥ 0, dj ≥ 0, and∑r
i=1 ci +

∑s
j=1 dj < 1.

2. RiskMetrics. The benchmark measure advocated in Morgan (1996) is
RiskMetrics. It sets the conditional mean constant, and specifies the variance as
rt = σtεt, σ2

t = (1 − λ)r2
t−1 + λσ2

t−1, where λ is simply set to 0.94 for daily data.
By iteration, one can easily show that σ2

t = (1−λ)(r2
t−1+λt2t−2+λ2t2t−3+· · · ), an

example of exponential smoothing in the time domain. For this reason, the model
is often refereed to as the Exponentially Weighted Moving Average (EWMA)
model. It is similar to, but different from, GARCH(1, 1) since, in EWMA, one
has c0 = 0, and α + β = 1. The EWMA is also refereed to as the IGARCH(1, 1)
model in the literature.

3. GJR Models (Glosten, Jagannathan and Runkle (1993)). Investors usu-
ally react differently as the markets move up and down. Typically, the markets
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become more volatile as prices move down. To allow for asymmetric effects be-
tween positive and negative asset returns, one could consider using GJR models.
The general GJR(r, s) model for the conditional variance of the innovations with
leverage terms is

rt = σtεt, σ2
t = c0 +

r∑
i=1

cir
2
t−i +

s∑
j=1

djσ
2
t−j +

r∑
i=1

Lir
2
t−iI{rt−i < 0}.

For the special case r = s = 1, it can be seen that, if L1 6= 0, the model shows
asymmetric effects between positive and negative asset returns. If L1 > 0, we
say that there is a leverage effect.

4. History Simulation. History simulation is the simplest and most trans-
parent method of calculation. One calculates the standard error from some fixed
number of past observations before time t as an estimate of the standard error at
time t. The benefits of this method are its simplicity, and the fact that it does not
assume a normal distribution of asset returns. Drawbacks are the requirement
for a large market database, and the computationally intensive calculation.

3.2. Simulation studies

In this section, we report on some simulations conducted to study the perfor-
mances of the proposed empirical likelihood methods. Consider data generated
from the following GARCH(1, 1) model, regarded as the hypothetical model in
the testing procedure

rt = σtεt, σ2
t = 0.0004 + 0.12r2

t−1 + 0.85σ2
t−1, (3.1)

where the εt are IID N(0, 1) r.v.’s. All simulation results were based on B =
2, 000 repetitions. For each, 4, 000 observations were generated from the
GARCH(1, 1) model, the first 2, 000 in-sample observations were used to esti-
mate the model while the remaining 2, 000 out-of-sample observations were used
for testing purposes.

Four different volatility models were employed for comparisons: Historical
Simulations (HistSimu), RiskMetrics, GARCH(1, 1), and GJR(1, 1). For histor-
ical simulations, we used the standard error of the past 500 observations before
time t to forecast the standard error at time t + 1. We used the first lag of the
four volatility measures and the return as our instrumental variables.

3.2.1. Specification testing

Apart from the four models mentioned, we also include a few more models
for comparison. More precisely, we added some noise terms to the GARCH(1, 1)
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Table 3.1. Specification testing by the EL method (no instrumental variables).

VaR measure p = 0.01 p = 0.05 p = 0.10 p = 0.15 p = 0.25 average PR
GARCH(1, 1) 42 46 61 52 39 48 2.4%
HistSimu 431 25 147 284 299 237.2 11.9%
RiskMetrics 121 55 29 20 15 48 2.4%
GJR(1, 1) 41 43 60 50 34 46 2.3%
DISTURB1 42 46 61 52 39 48 2.4%
DISTURB2 42 49 54 52 36 47 2.3%
DISTURB3 1,448 542 197 90 36 46 23%
DISTURB4 2,000 2,000 2,000 2,000 1,803 1,961 98%

Table 3.2. Specification testing by the EL method (one instrumental variable).

VaR measure p = 0.01 p = 0.05 p = 0.10 p = 0.15 p = 0.25 average PR
GARCH(1, 1) 58 16 20 15 22 26.2 1.3%
HistSimu 38 26 30 29 22 29 1.5%
RiskMetrics 35 20 20 12 25 22.4 1.1%
GJR(1, 1) 66 25 24 18 26 31.8 1.6%
DISTURB1 58 16 20 15 22 26.2 1.3%
DISTURB2 59 18 23 16 23 27.8 1.4%
DISTURB3 34 12 15 18 20 19.8 0.99%
DISTURB4 20 20 21 19 14 18.8 0.9%

model (3.1), that can be roughly expressed as follows:

DISTURB(i) = GARCH(1, 1) + Normal(0, aiσ
2), i = 1, . . . , 4,

where σ2 was taken to be the absolute value of the smallest values of volatility
coming from GARCH(1, 1), and ai was chosen to be 0.0001, 0.01, 0.3, and 1.5,
respectively. Clearly as ai gets larger, we have added more noise to the true
model.

The simulation results for specification testing are presented in Tables 3.1−
3.3 where the nominal level is 0.05. Table 3.1 reports the result without any
instrumental variables, while Tables 3.2 and 3.3 include the results with one
and five instrumental variables, respectively. For the case with one instrumental
variable, we chose the first lag of the return; for the case with five instrumental
variables we chose the first lag of the four volatilities of the selected models and
the return. The entries in the tables are the number of rejections, with the last
two volume being the average and the percentages of rejections(PR) using various
methods. The following observations can be made from these tables.

1. When the data come from the true model, we would certainly hope that the
number of rejections would be small. This is confirmed from our simulation
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Table 3.3. Specification testing by the EL method (five instrumental variables).

VaR measure p = 0.01 p = 0.05 p = 0.10 p = 0.15 p = 0.25 average PR
GARCH(1, 1) 317 57 54 38 33 99.8 4.99%
HistSimu 1,959 1,989 1,989 1,981 1,749 1,933 96.7%
RiskMetrics 1,392 1,356 1,241 1,017 437 1,087 54.4%
GJR(1, 1) 341 69 66 50 37 112.6 5.6%
DISTURB1 318 57 54 38 33 100 5%
DISTURB2 320 52 56 41 31 100 5%
DISTURB3 1,212 320 109 60 25 345.2 17.3%
DISTURB4 2,000 2,000 2,000 2,000 1,446 1,889.2 94.5%

studies. In all the three tables, when the true model was GARCH(1, 1), the
percentages of rejections were 2.4%, 1.3%, and 4.99%, respectively. That is,
when no or one instrumental variable was included, the tests were conserva-
tive, while the test with five instrumental variables maintained the significance
level.

2. If we use the other methods to estimate the volatility, we can see the effects
of adding instrumental variables. For History Simulation, the percentages of
rejections from Tables 3.1−3.3 were 11.9%, 1.5%, and 96.7%, respectively.
So adding one instrumental variables is worse than having no instrumental
variables, but both were much worse than adding five instrumental variables,
which gave power 96.7%.

3. If we compare the four models DISTURB(i) for i = 1, 2, 3, 4, we see from
Tables 3.1 and 3.3 that the percentages of rejections tended to increase as the
noise got larger (There is not much change visible in Table 3.2).

4. For the GJR (1,1) model, we see from Tables 3.1−3.3 that the percentages of
rejections were all very low, 2.3%, 1.6%, and 5.6%, respectively. Again when
no or one instrumental variable was included, the tests were conservative,
while the test with five instrumental variables maintained the significance
level. This is because GJR(1,1) is also a GARCH-type model.

5. Intuitively, history simulation is the roughest volatility model. Therefore, the
percentages of rejections were usually larger than with such other methods as
RiskMetrics, GJR(1, 1). This can be seen from all the three tables.

6. Note that RiskMetrics also belongs to the class of GARCH-type models. Note
that the percentages of rejections were usually quite small in Tables 3.1 and
3.2. However, the proportions of rejections are quite high, indicating that
there is a great advantage in adding five instrumental variables.

7. In summary, the tests with five instrumental variables seem to perform the
best.
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Table 3.4. The results with CHI’s specification test.

VaR measure p = 0.01 p = 0.05 p = 0.10 p = 0.15 p = 0.25 average PR
GARCH(1, 1) 281 29 20 17 15 72.4 3.6%
HistSimu 1,711 1,886 1,860 1,789 1,275 1,749.4 87.5%
RiskMetrics 733 608 543 434 167 497 24.9%
GJR(1, 1) 293 33 26 20 14 77.2 3.9%
DISTURB1 280 29 20 17 15 72.2 3.6%
DISTURB2 290 32 18 15 15 74 3.7%
DISTURB3 169 36 18 15 15 50.1 2.5%
DISTURB4 2,000 2,000 2,000 1,862 63 1,585 79.3%

Table 3.5. Nonnested testing by the EL method (no instrumental variables).

VaR 0.01 0.05 0.10 0.15 0.25 average PR

GARCH(1, 1) vs HistSimu 916 488 807 1,093 1,364 933.6 46.7%

GARCH(1, 1) vs RiskMetrics 485 643 577 561 437 540.6 27%

GARCH(1, 1) vs GJR(1, 1) 756 547 440 472 454 533.8 26.7%

HistSimu vs RiskMetrics 588 741 1078 1,275 1,428 1,022 51.1%

HistSimu vs GJR(1, 1) 907 482 804 1,086 1,367 929.2 46.5%

RiskMetrics vs GJR(1, 1) 460 625 584 555 450 534.8 26.7%

GARCH(1, 1) vs DISTURB1 18 42 50 52 32 38.8 1.9%

GARCH(1, 1) vs DISTURB4 2,000 2,000 2,000 2,000 1,812 1,962.4 98.1%

8. Compared with the specification test proposed by Christoffersen, Hahn and
Inoue (2001), we can easily see from the results reported in Table 3.4 that the
tests with five instrumental variables outperformed it significantly.

3.2.2. Nonnested testing

Recall that the data were generated from GARCH(1, 1). We compared the
four volatility models and at the same time, we compared amongst GARCH(1,
1) and DISTURB1, DISTURB4.

The simulation results for nonnested testing are reported in Tables 3.5−3.8.
The results of Table 3.5 do not have any instrumental variables while those of
Table 3.6 include one instrumental variable which are the first lag of the return,
Tables 3.7 for three instrumental variables which are the first lag of the return
and the two volatilities compared, and Table 3.8 for five instrumental variables
which are the first lag of the return and the four volatilities.

The entries in the tables are the numbers of rejections, the last two columns
are the average and the percentages of rejections(PR) using various methods.
The following observations can be made.
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Table 3.6. Nonnested testing by the EL method(one instrumental variable).

VaR 0.01 0.05 0.10 0.15 0.25 average PR

GARCH(1, 1) vs HistSimu 42 25 27 20 19 26.6 1.3%

GARCH(1, 1) vs RiskMetrics 95 35 25 39 34 45.6 2.3%

GARCH(1, 1) vs GJR(1, 1) 899 869 835 837 860 860 43%

HistSimu vs RiskMetrics 37 24 27 20 19 25.4 1.3%

HistSimu vs GJR(1, 1) 42 33 34 33 29 34.2 1.7%

RiskMetrics vs GJR(1, 1) 127 55 58 63 60 72.6 3.6%

GARCH(1, 1) vs DISTURB1 18 42 50 52 32 38.8 1.9%

GARCH(1, 1) vs DISTURB4 17 22 20 20 19 19.6 0.99%

Table 3.7. Nonnested testing by the EL method (three instrumental variables).

VaR 0.01 0.05 0.10 0.15 0.25 average PR

GARCH(1, 1) vs HistSimu 2000 2000 2000 2000 2000 2000 100%

GARCH(1, 1) vs RiskMetrics 940 757 703 734 615 749.8 37.5%

GARCH(1, 1) vs GJR(1, 1) 1243 1440 1450 1431 1438 1400.4 70.9%

HistSimu vs RiskMetrics 2000 2000 2000 2000 2000 2000 100%

HistSimu vs GJR(1, 1) 2000 2000 2000 2000 2000 2000 100%

RiskMetrics vs GJR(1, 1) 930 765 738 783 638 770.8 38.5%

GARCH(1, 1) vs DISTURB1 16 42 50 52 33 39 1.95%

GARCH(1, 1) vs DISTURB4 2000 2000 2000 2000 1588 1917.60 95.9%

Table 3.8. Nonnested testing by the EL method (five instrumental variables).

VaR 0.01 0.05 0.10 0.15 0.25 average PR

GARCH(1, 1) vs HistSimu 2000 2000 2000 2000 2000 2000 100%

GARCH(1, 1) vs RiskMetrics 2000 2000 2000 2000 2000 2000 100%

GARCH(1, 1) vs GJR(1,1) 1281 1675 1770 1784 1752 1652.4 83.6%

HistSimu vs RiskMetrics 2000 2000 2000 2000 2000 2000 100%

HistSimu vs GJR(1,1) 2000 2000 2000 2000 2000 2000 100%

RiskMetrics vs GJR(1,1) 2000 2000 2000 2000 2000 2000 100%

GARCH(1, 1) vs DISTURB1 18 42 50 52 33 39 1.95%

GARCH(1, 1) vs DISTURB4 2000 2000 2000 2000 1425 1885 94.3%

1. The tests with only one instrumental variable had the lowest rejection rates.
In fact, the rejection rates were so low in almost all cases that the tests
failed to distinguish among various models. On the other hand, tests with
no instrumental variables, or three or five instrumental variables, are all did
much better. This indicates that one should be very careful in choosing the
instrumental variables if very few of them are being selected.

2. Except for Table 3.6, the largest three rejection rates were between History
Simulation and GARCH(1, 1), between History Simulation and GJR(1, 1),
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Table 3.9. The results with CHI’s Nonnested test.

VaR 0.01 0.05 0.10 0.15 0.25 average PR

GARCH(1, 1) vs HistSimu 1,000 1,310 1,295 1,030 347 996.4 49.8%

GARCH(1, 1) vs RiskMetrics 175 23 11 4 0 42.6 2.1%

GARCH(1, 1) vs GJR(1, 1) 12 0 0 0 0 2.4 0%

HistSimu vs RiskMetrics 80 0 0 0 0 16 0.8%

HistSimu vs GJR(1, 1) 53 0 0 0 0 10.6 0.5%

RiskMetrics vs GJR(1, 1) 62 0 0 0 0 12.4 0.6%

GARCH(1, 1) vs DISTURB1 0 0 0 0 0 0 0%

GARCH(1, 1) vs DISTURB4 1,981 2,000 1,990 914 0 1,377 68.9%

and between History Simulation and RiskMetrics. One possible explanation
is as follows. RiskMetrics and GJR(1, 1) models both belong to the GARCH-
type models while History Simulation does not. Therefore, it is not surprising
that tests can pick up the differences between History Simulation and the
other three models.

3. Although RiskMetrics and GJR(1, 1) models both belong to the GARCH-
type models, our tests can still pick up the differences among them. In fact,
we were able to tell them apart around 26.7% of the time when no instrumen-
tal variables were included, and these rejection rates increased substantially
when three or five instrumental variables were included. Similar phenomenon
happened between GARCH(1, 1) and RiskMetrics, and between RiskMetrics
and GJR(1, 1).

4. If we compare GARCH(1, 1) models and DISTURB(1), we see from Ta-
bles 3.5−3.8 that the proportion of rejections was very low, but between
GARCH(1, 1) models and DISTURB(4) the proportion of rejections was
very high, except for one instrumental variable. This agrees with our in-
tuition since, by construction, the DISTURB(1) model differs only little from
the GARCH(1, 1) model, while the DISTURB(4) model differs more from
GARCH(1, 1) than DISTURB(1).

5. In summary, we see that tests generally performed very well in all cases except
for the case where only one instrumental variable was used. When we chose
three or five instrumental variables, the performances seemed to improve a
great deal. One should also be careful when selecting very few instrumental
variables.

6. We also compared our tests with the one proposed by Christoffersen, Hahn
and Inoue (2001). When three or five instrumental variables were chosen, our
tests worked much better.
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Table 3.10. Specification testing by the EL method (no instrumental variables).

VaR 0.01 0.05 0.10 0.15 0.25
GARCH(1, 1) 14.6 9.2 3.87* 0.30* 0.02*
History Simulation 20.2 4.2* 0.77* 0.65* 1.04*
RiskMetrics 18.8 11.5 5.31* 2.73* 0*

(CV = 6.635 at 1% level.)

Table 3.11. Specification testing by the EL method (one instrumental variable).

VaR 0.01 0.05 0.10 0.15 0.25
GARCH(1, 1) 1.26* 0.02* 0.21* 0.71* 0.61*
History Simulation 0.01* 0.65* 0.25* 0.04* 0.79*
RiskMetrics 0.83* 1.07* 1.92* 0.80* 2.49*

(CV = 6.635 at 1% level.)

Table 3.12. Specification testing by the EL method (four instrumental variables).

VaR 0.01 0.05 0.10 0.15 0.25
GARCH(1, 1) 15.2 13.98 8.04* 13.11* 17.47
History Simulation 36.1 39.66 16.59 11.29* 6.67*
RiskMetrics 21.2 13.82 15.47 21.40 26.80

(CV = 13.277 at 1% level.)

3.3. Empirical analysis

We used some data from the stock markets in the USA to do some com-
parisons. The data are the S&P500 index from Jan. 1, 1997 to Dec. 1, 2006,
obtained from www.finance.com. Recall that daily return is defined as rt =
ln(St) − ln(St−1), where St is the daily closing price at day t. The numerical
results are presented in Tables 3.10−3.15. The entries in all tables are the ob-
served value of the test statistics. We considered testing at 1% only. Critical
values (CV) at these levels are given with the tables as well. In all tables, we use
“∗” to indicate “do not reject at 1%” .

For specification testing, we make the following remarks about Tables 3.10−
3.12.

1. First we look at the Table 3.10. With p = 0.01, all models were rejected.
When p 6= 0.01, all models were not rejected except for GARCH(1, 1). From
Table 3.11, since value of statistics are very low, all models were not rejected.

2. Now we look at Table 3.12. With p = 0.01, 0.05, all models were rejected.
When p 6= 0.01, 0.05, the results were mixed.
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Table 3.13. nonnested testing by the EL method (no instrumental variables).

VaR 0.01 0.05 0.10 0.15 0.25

GARCH(1, 1) vs History Simulation 277.26 866.43 866.43 589.18 1,143.7

GARCH(1, 1) vs RiskMetrics 7.36 17.45 21.07 11.64 11.6

History Simulation vs RiskMetrics 0* 1.1* 2.04* 0.05* 8.1

(CV = 6.635 at 1% level.)

Table 3.14. nonnested testing by the EL method (one instrumental variable).

VaR 0.01 0.05 0.10 0.15 0.25

GARCH(1, 1) vs History Simulation 0.30* 0.98* 2.08* 0.01* 7.0

GARCH(1, 1) vs RiskMetrics 1.56* 0.48* 0.34* 2.49* 0*

History Simulation vs RiskMetrics 0.96* 1.69* 1.49* 1.72* 6.3*

(CV = 6.635 at 1% level.)

Table 3.15. nonnested testing by the EL method (four instrumental variables).

VaR 0.01 0.05 0.10 0.15 0.25

GARCH(1, 1) vs History Simulation 277.23 866.27 866.34 589.15 1143.4

GARCH(1, 1) vs RiskMetrics 346.42 896.04 724.26 827.35 1021

History Simulation vs RiskMetrics 409.94 788.02 616.05 645.61 974.6

(CV = 6.635 at 1% level.)

For nonnested testing at 1% significance levels, we make the following re-
marks from Tables 3.13−3.15. First we compare with Table 3.3 and Table 3.14.
In Table 3.13, since values of statistics were very low, all null hypothesises were
not rejected, but as reported in Table 3.14, all null hypothesises were rejected. At
Table 3.15, we conclude that for all p there were significant differences between
GARCH(1, 1) and history simulation, between GARCH(1, 1) and RiskMetrics.
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