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Abstract: We consider inference for the parameters of a linear model when the

covariates are random and the relationship between response and covariates is pos-

sibly non-linear. Conventional inference methods such as z intervals perform poorly

in these cases. We propose a double bootstrap-based calibrated percentile method,

perc-cal, as a general-purpose CI method which performs very well relative to

alternative methods in challenging situations such as these. The superior perfor-

mance of perc-cal is demonstrated by a thorough, full-factorial design synthetic

data study as well as a data example involving the length of criminal sentences.

We also provide theoretical justification for the perc-cal method under mild con-

ditions. The method is implemented in the R package ‘perccal’, available through

CRAN and coded primarily in C++, to make it easier for practitioners to use.
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1. Introduction

In many applied settings, practitioners would like to make interpretable

statements such as the expected average difference in a response variable, Y ,

associated with a unit difference in a covariate of interest, Xj , controlling for all

other predictors. In situations like these, practitioners often run linear regres-

sions despite the fact that the true but unobservable relationship between Y and

Xj ’s may be non-linear. Doing so may be sensible when the utility of being able

to make more interpretable statements such as the one above outweighs the cost

of possible model bias, which may hard to discern (particularly in multivariate

settings). An important challenge is how practitioners can produce valid infer-

ence upon their estimates of the true population-level best linear approximation

for the relationship between predictor and response in these settings. We denote
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the target of interest by β (for more detail, please see Section 2.4). Our aim

with this paper is to help practitioners perform better inference for β in these

situations.

Buja et al. (2015) call much-needed attention to this issue, showing that

when the relationship between response Y and covariates ~X = (1, X1, . . . , Xp)
T

is truly non-linear with noise that is possibly heteroskedastic, and when ~X is itself

random, standard linear model theory standard errors are asymptotically invalid.

They show that the “sandwich estimator” of standard error does provide asymp-

totically correct inference for the population slopes, even when non-linearity and

heteroskedasticity are present, and ~X is random.

While the sandwich estimator may provide asymptotically valid inference,

practitioners will also be understandably interested in better understanding how

the finite sample performance of various methods of inference compare, as well

as the asymptotic properties of those methods. We will show that in our setting,

empirical coverage of population regression slopes deteriorates considerably for

all traditional confidence interval methods. The primary contribution of this

paper is to shine new light on these issues, proposing and studying an inference

method which is convincingly superior to the sandwich estimator, and making a

very fast implementation of this proposed method accessible to practitioners.

We propose a double bootstrap-based calibrated percentile method, perc-

cal. The seminal work of Peter Hall shows the advantages of double bootstrap

approach in classical settings involving population means. Population slopes as

defined here are a more complex, non-linear object. For example, Hall (1992)

studies univariate data without model misspecification. The methods he uses,

then, need to be augmented with additional material about Edgeworth expan-

sions that is adapted from Jensen (1989). For the first time, we prove in Section

3 and in the appendix that even when Y and ~X have a non-linear joint distribu-

tion, and ~X is random, that under relatively mild regularity conditions the rate

of coverage error of perc-cal for two-sided confidence intervals of the best linear

population slopes between a response variable Y and p-dimensional covariates ~X

is O(n−2). In contrast, conventional methods achieve a rate of coverage error of

O(n−1). We then show in a Monte Carlo study that perc-cal performs better

than traditional confidence interval methods, including the BCa method (Efron

(1987)), and other Sandwich-based estimators discussed in Cribari-Neto, Souza

and Vasconcellos (2007) and MacKinnon (2013). Our study is similar in struc-

ture to the simulation study that was performed in Gonçalves and White (2005),

but modified to study a very wide variety of misspecified mean functions. We fol-
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low up this synthetic simulation study with a data example involving a criminal

sentencing dataset, and show that perc-cal once again performs satisfactorily.

We have released an R package, ‘perccal’ (McCarthy (2016)), available through

CRAN and coded primarily in C++, so that practitioners may benefit from a fast

implementation of perc-cal for their own analyses.

We argue that the combination of theoretical and empirical justification pre-

sented in this paper supports the claim that perc-cal is a reliable confidence

interval methodology that performs well in general, even in the presence of rel-

atively severe model misspecification. The remainder of the paper is organized

as follows. Section 2 provides a review of confidence interval methods. Section 3

presents the theoretical results. Section 4 compares the performance of perc-cal

with that of other often more commonly used confidence interval estimators in

synthetic and real data settings. Section 5 provides concluding remarks, and an

Appendix gives all of the proofs.

2. Literature Review

2.1. Review of bootstrap confidence intervals

There is a very wide variety of bootstrap methods that have been proposed

in the literature to compute (1 − α) confidence intervals. These methods in-

clude Efron’s percentile method (Efron (1981)), Hall’s percentile approach (Hall

(1992)), and Hall’s percentile-t method (Hall (1988)). Other forms of bootstrap

CIs include symmetric CIs (Hall (1992)) and short bootstrap confidence intervals

(Hall (1992)). In general, performance of these methods depends upon the prop-

erties of the data generating process and/or the sample size. We are primarily

interested in confidence interval methods that assume much less about the true

underlying data generating process, which is usually unknown and often not well

behaved in applications, making these methods less relevant to the work which

follows.

Hall advocates the use of pivotal bootstrap statistics because they have

higher asymptotic accuracy when the limiting distributions are indeed pivotal

(Hall (1992, p. 83)). We emphasize that Hall’s preference for pivotal bootstrap

statistics, and much of the discussion regarding the relative merits of various

confidence interval methods, are based on the asymptotic properties of these

methods. When the sample size is small, these asymptotic considerations do

not necessarily reflect the empirical performance of these methods. For example,

Hall cautioned that “our criticism of the percentile method and our preference for
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percentile-t lose much of their force when a stable estimate of σ2 is not available”

(Hall (1988)). Simulation studies that reinforce this include Scholz (2007).

Another class of confidence intervals may be formed by replacing the stan-

dard error estimator in the standard z or t interval with a so-called ‘Sandwich’

estimator (White (1980)), or one of the many extensions of the Sandwich esti-

mator (Cribari-Neto, Souza and Vasconcellos (2007)). A comprehensive review

of Sandwich estimators can be found in MacKinnon (2013), and we will compare

these methods with our proposed method in Section 4.

2.2. Review of iterative bootstrap confidence intervals

The idea of the iterative bootstrap (or double-bootstrap) was first introduced

in Efron (1983). The improvement on coverage probability of CIs was first ana-

lyzed in Hall (1986) and later discussed in more detail in Loh (1987), Hall and

Martin (1988), Hall, Martin and Schucany (1989) and Martin (1990a,b). A com-

prehensive review can be found in Section 3.11 in Hall (1992) (see also Efron and

Tibshirani (1994)). In general, the iterative bootstrap provides more accurate

coverage probability at the cost of more computing.

To fix ideas, in this section we shall introduce the proposed double-bootstrap

confidence interval method in a univariate case with generic notations. We will

extend this procedure to the regression setting in Section 2.4. We assume that we

observe Z1, . . . , Zm
iid∼ F for some distribution F . Let θ = θ(F ) be a parameter

of our interest. We will estimate θ through the empirical distribution F̂ (z) =

(1/m)
∑m

i=1 I(Zi ≤ z). The estimator is denoted by θ̂ = θ(F̂ ) = θ(Z1, . . . , Zm).

The construction of the confidence interval is illustrated in Figure 1 and is de-

scribed as follows.

1. For chosen bootstrap sample size B1, obtain bootstrap samples (Z∗1, . . . ,

Z∗B1
). Each Z∗j consists of m i.i.d. samples with replacement from F̂ .

For chosen bootstrap sample size B2, obtain double bootstrap samples

corresponding to all bootstrap samples, (Z∗∗1,1, . . . ,Z
∗∗
1,B2

,Z∗∗2,1, . . . ,Z
∗∗
2,B2

, . . . ,

Z∗∗B1,1
, . . . ,Z∗∗B1,B2

) in the same manner as in the first-level bootstrap. De-

note the empirical distributions by F̂ ∗j ’s, j = 1, . . . , B1, and F̂ ∗∗j,k’s, j =

1, . . . , B1, k = 1, . . . , B2, respectively.

2. Obtain parameter estimates corresponding to the observed sample, θ̂ =

θ(F̂ ), all bootstrap samples, (θ̂∗1, . . . , θ̂
∗
B1

) with θ̂∗j = θ(F̂ ∗j ) and all double

bootstrap samples corresponding to all bootstrap samples, (θ̂∗∗1,1, . . . , θ̂
∗∗
1,B2

,

θ̂∗∗2,1, . . . , θ̂
∗∗
2,B2

, . . . , θ̂∗∗B1,1
, . . . , θ̂∗∗B1,B2

) with θ̂∗∗j,k = θ(F̂ ∗∗j,k).
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Figure 1. perc-cal diagram.

3. Form B1 double-bootstrap histograms θ̂∗∗1 , . . . , θ̂
∗∗
B1

, where each histogram

θ̂∗∗j is comprised of all B2 double bootstrap estimates (θ̂∗∗j,1, . . . , θ̂
∗∗
j,B2

) corre-

sponding to the jth bootstrap sample and estimate, Z∗j and θ̂j , respectively,

j ∈ {1, 2, . . . , B1}.

4. Find the largest λ̂ such that 1/2 < λ̂ < 1 and that θ̂ lies in the 1 − λ̂

percentile and the λ̂ percentile of the histograms 1 − α proportion of the

time.

5. θ̂ lies between the (1 − λ̂, λ̂) percentiles of the second-level bootstrap dis-

tributions 1 − α proportion of the time. Therefore our perc-cal (1 − α)

interval for θ is equal to the (1− λ̂, λ̂) percentiles of the first-level bootstrap

distribution, [θ̂∗
(1−λ̂), θ̂

∗
(λ̂)

].

For a (1− α) left-sided perc-cal confidence interval for θ, the only change

in the procedure is in Step 4, where one uses the histograms to find the smallest

λ̂ such that θ̂ lies below the λ̂ percentile of the histograms 1 − α percent of

the time. In what follows, we shall refer the two-sided perc-cal interval as

I2 = [θ̂∗
(1−λ̂), θ̂

∗
(λ̂)

] and the one-sided perc-cal interval as I1 = (∞, θ̂∗
(λ̂)

].

A similar double-bootstrap confidence interval is the double-bootstrap-tmethod

which uses the second-level bootstrap to calibrate the coefficient of the bootstrap



2570 MCCARTHY ET AL.

standard deviation estimate. In practice, both methods can be applied. Hall

commented in his book (Hall (1992)) that “either of the two percentile methods

could be used, although the ‘other percentile method’ seems to give better results

in simulations, for reasons that are not clear to us.” Here “the ‘other percentile

method’ ” refers to confidence intervals I1 and I2. Our simulation studies in Sec-

tion 4 demonstrate the same phenomenon. We have observed through simulation

that the performance of double-bootstrap-t can be erratic at times due to the

instability which arises by relying upon a statistic which has a double bootstrap

estimated standard error in its denominator. Some samples will inevitably have

very small or even degenerate bootstrap standard errors, making this statistic

very large. This issue is particularly acute when sample sizes are small.

Research on optimizing the trade-off between the number of simulations, B1

and B2, in double-bootstrap and the CI accuracy can be found in Beran (1987,

1988), Booth and Hall (1994), Booth and Presnell (1998), Lee and Young (1999),

among many others. In particular, Lee and Young (1999) study the asymptotic

convergence rate of the coverage probability involving B1 and B2, and suggest

an adaptive method to optimize the choice of B2 as a function of B1. They note

that B1 should be to set to a larger number (for example, B1 = 1,000), and B2

equal to a lesser value. In all simulations which follow, we set B1 = B2 = 2,000.

Since the computation of perc-cal is reasonably efficient as discussed in Section

5, we do not optimize the number of bootstrap samples further but note that

further performance gains for robust linear regression inference are a promising

area for future research (in particular, with respect to B2).

2.3. Review of bootstrap applications in conventional linear models

Bootstrap in linear models is studied in Section 4.3 in Hall (1992). Hall

refers the fixed design case the “regression model” and the random design case

the “correlation model.” Bootstrap estimation and confidence intervals for the

slopes, as well as simultaneous confidence bands, are described.

Since the seminal paper of Freedman (1981), the bootstrap has been widely

used in regression models because of its robustness to the sample distributions.

A review of bootstrap methods in economics can be found in MacKinnon (2006).

Gonçalves and White (2005) consider bootstrapping the sandwich estimator for

the standard error when the observations are dependent and heterogeneous.

Bootstrap applications under other types of model misspecifications are recently

considered in Kline and Santos (2012) and Spokoiny and Zhilova (2014). In this

paper, we focus on a different case when observations of (Y, ~X) are i.i.d. but the
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joint distribution is assumption-lean – we elaborate upon this further in the next

section.

2.4. The assumption-lean framework and double-bootstrap applica-

tions

Conventional linear models assume E(Y |~X) = ~Xβ for some (p+ 1)-vector β

as regression coefficients, so that Y depends on ~X only through a linear function.

While this is commonly assumed in the bootstrap literature, we may not want to

require it when performing inference in data settings because the true relation-

ship may not be linear. Moreover, as first noted in White (1980), a non-linear

relationship between Y and ~X and randomness in ~X can lead to serious bias in

the estimation of standard errors. Buja et al. (2015) reviewed this problem, and

proposed an “assumption-lean” framework for inference in regressions. In this

framework, no assumption is made regarding the relationship between Y and
~X. The only assumptions are on the existence of certain moments of the joint

distribution of ~V = (X1, . . . , Xp, Y )T . This consideration makes the model very

general and thus widely applicable. Readers are referred to Buja et al. (2015) for

more details.

Even though a linear relationship between E(Y |~X) and ~X is not assumed

in an assumption-lean framework, the slope coefficients that are estimated are

always well-defined through a population least-squares consideration: the pop-

ulation least-squares coefficients β minimize squared error risk over all possible

linear combinations of ~X:

β = argminbE‖Y − bT ~X‖22 = E(~X~XT )−1E(Y ~X). (2.1)

This definition of coefficients β is meaningful in addition to being well defined

under minimal assumptions: β provides us with the best linear approximation

from ~X to Y , whether or not ~X and Y are linearly related to one another. This

setup allows for situations including random ~X, non-Normality, non-linearity

and heteroskedasticity and we show later that the proposed perc-cal method

provides better empirical coverage of the true population least-squares coefficients

β on average over a wide variety of data generating processes, even if those

data generating processes involve random ~X, non-linearity in E(Y |~X) and/or

heteroskedasticity. In contrast, previous research on the double bootstrap has

studied functions that are linear or approximately linear.

To estimate β, denote the i.i.d. observations of ~V by ~V1, . . . , ~Vn and de-

note the n × (p + 1) matrix with rows ~V1, . . . , ~Vn by V. Denote the dis-
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tribution of V by G. The multivariate empirical distribution of ~V is then

Ĝ(~V) = Ĝ(x1, . . . , xp, y) = (1/n)
∑n

i=1 I(X1,i ≤ x1, . . . , Xp,i ≤ xp, Yi ≤ y). The

least squares estimate for β defined in (2.1) is

β̂ = (XTX)−1XTY, (2.2)

where X is the n× (p+ 1) matrix and Y is the n× 1 vector containing the i.i.d.

observations of ~X and Y respectively. Note that each estimate β̂j of βj can be

written as a function of Ĝ, β̂j = βj(Ĝ).

The perc-cal confidence intervals for each of the slopes βj in β are con-

structed similarly as described in Section 2.2. We use the pairs bootstrap first

proposed by Freedman (1981) and create B1 i.i.d. bootstrap samples, V∗k, where

each matrix V∗k consists n i.i.d. samples with replacement from Ĝ. From these

samples, one can create the empirical distribution Ĝ∗k. To find the proper calibra-

tion of I1 or I2 (as defined in Section 2.2), we sample B2 i.i.d. pairs bootstraps

V∗∗k,h with empirical distributions Ĝ∗∗k,h. The other steps in the construction are

identical to those in Section 2.2 with θ(·) replaced by βj(·) with respective empir-

ical distributions as arguments. We note here that although confidence intervals

can be built through empirical process theory van der Vaart (1998), the accuracy

is usually not as good as the proposed perc-cal method, as will be discussed

in the next section. While Delaigle, Hall and Jamshidi (2015) studies bootstrap

confidence bands under a nonparametric regression setting, we are unaware of

any existing general bootstrap theory that yields general results for iterated boot-

strap confidence intervals for a non-linear function of expectations of non-linear

functions.

3. Asymptotic Theory

In this section, we discuss the theoretical properties of perc-cal. The fol-

lowing theorem describes the accuracy on the coverage probability of perc-cal

confidence intervals.

Theorem 1. Consider n i.i.d. observations of the (p + 1)-dimensional random

vector ~V = (X1, . . . , Xp, Y )T . Denote the vector of Y and the continuous Xj’s

by ~VC and that of the discrete Xj’s by ~VD. Suppose that

1. ∃ C0 > 0, such that the minimal eigenvalue of the covariance matrix V ar(~V)

is larger than C0.

2. The moment generating function of the random variable ‖~V‖2 exists for all

t ∈ R: E[et‖
~V‖2 ] <∞ for all t ∈ R.
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3. Conditional on every single value of ~VD, the joint distribution of ~VC is

absolutely continuous with respect to the Lebesgue measure.

Consider the population least squares parameter defined in (2.1) whose estimate

is the sample least squares defined in (2.2). Then for each 1 ≤ j ≤ p, the (1−α)

perc-cal CI for βj described in Section 2.2 and Section 2.4 have the coverage

probabilities

P(βj ∈ I1) = 1− α+O(n−1), (3.1)

P(βj ∈ I2) = 1− α+O(n−2). (3.2)

The proof of Theorem 1 is in Section A in the Appendix. It uses techniques

of the Edgeworth expansion as in Section 3.11.3 of Hall (1992), with a focus

on the assumption-lean regression model setting where the dependence between

Y and Xj ’s are not necessarily linear. We are not aware of prior investigation

of the performance of the double bootstrap confidence intervals under this sit-

uation. Moreover, the results in Martin (1990a) and Hall (1992) accommodate

only Xj ’s satisfying Cramèr’s condition, which excludes distributions such as the

Poisson distribution. Discrete distributions for Xj are often encountered in mod-

els involving categorical predictors, and the data example we study in Section 4

involves such covariates. Through a conditioning argument in Jensen (1989), we

are able to show that the same performance is enjoyed by a wider class of mixed

discrete and continuous Xj ’s.

Our results show that the coverage probability is 1 − α + O(n−2). Note

that for other construction approaches of confidence intervals such as from the

sandwich estimator or from the empirical process theory, the resulting one-sided

confidence intervals often have a coverage probability of 1 − α + O(n−1/2), and

two-sided ones often have a coverage probability of 1− α+O(n−1) (see Section

3.5.4 and Section 3.5.5 in Hall (1992)). Thus, the double bootstrap method

provides better coverage.

4. Numerical Studies

In this section, we study the performance of perc-cal compared to alter-

native (often more common) methods for forming confidence intervals, including

other double bootstrap methods. We first compare perc-cal to these other

methods using simulated data under a very wide variety of true data generating

processes. We then illustrate our approach in a data example. We will see that

perc-cal performs very satisfactorily in general.
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4.1. Synthetic simulation study

4.1.1. Design: synthetic simulation

We compared the performance of perc-cal with ten other methods that are

commonly used for constructing confidence intervals:

1. Standard normal interval: z (Efron and Tibshirani (1994)).

2-6. Five sandwich variants: sand1, sand2, sand3, sand4 and sand5 (MacKin-

non (2013) provides a review of these methods, denoted there by H1, H2,

H3, HC4 and HC5).

7. Hall’s Studentized interval: stud (Hall (1988)).

8. Hall’s “bootstrap-t” method: boot-t (Efron and Tibshirani (1994)).

9. Efron’s BCa interval: BCa (Efron (1987)).

10. Single percentile method: perc (Efron and Tibshirani (1994)).

We considered a very wide range of underlying true data generating models,

to obtain a more general understanding for how these confidence interval methods

compare against one another in a wide variety of data settings, for large sample

sizes as well as small. The data generating models represent a full factorial

design of the following 48 factors, after excluding non-denerate combinations

(i.e., combinations for which the conditional mean is not finite):

• Simple regression - one predictor, Y = β0 + β1X + ε.

• Sample size n = 32, 64, 128, 256.

• Relationships between Y and X: (1) Y = X + e; (2) Y = exp(X) + e; (3)

Y = X3 + e.

• Distribution of X: (1) X ∼ N (0, 1), (2) X ∼ exp(N (0, 1)).

• Noise: ε ∼ (1)N(0, 1); (2) |X| ∗ N (0, 1); (3) exp(N (0, 1)).

In each of the above cases, we used 2,000 first and second-level bootstrap

samples for all bootstrap methods (B1 = B2 = 2,000). We obtained empirical

coverage figures for the slope coefficient in the regression, β1. Results were aver-

aged over 500 replications to reduce the empirical standard error of the resulting

intervals to below 1.5% on average across scenarios and methods. We present
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Figure 2. Scatterplot of empirical coverage proportion of methods by scenario number –
90% target coverage.

the results for a target coverage of 90%, without loss of generality (results for a

target coverage of 95% are qualitatively the same).

4.1.2. Results

To more easily visualize the performance of many methods under many dif-

ferent scenarios, we begin with a coverage scatterplot in Figure 2. We rank sort

the 48 scenarios by the empirical coverage proportion of perc-cal, in ascending

order. This ordered list determines the scenario number associated with each

scenario (i.e., scenario number 1 represents the scenario in which perc-cal’s

empirical coverage was the smallest, while scenario number 48 represents the

scenario in which perc-cal’s empirical coverage was the largest). On the x-axis,

we provide the scenario number. On the y-axis, we provide the empirical cover-

age proportion of β1 using all methods. We exclude sand1, sand2, sand3, and

sand4 but include sand5, because sand5 has a better empirical coverage propor-

tion than the other sandwich estimators. We add a horizontal line to the graph

at the desired target coverage level of 90%.

In general, none of the methods was “perfect” in the sense of always provid-

ing coverage at or above the target level of coverage. All noticeably undercover in

particular cases and in these cases, perc-cal’s relative performance is generally
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noticeably strong. Specifically, perc-cal achieves coverage less than target in 31

of the 48 scenarios. In 27 of those 31 below-target scenarios, perc-cal achieved

a higher empirical coverage than all other alternative methods. In the remaining

4 of the 31 below-target scenarios where perc-cal was not the best-performing

method, its absolute performance was close to target, averaging to 88.7%, and

only one scenario with under 88% coverage. While perc-cal also had the high-

est empirical average coverage across all scenarios, we believe this robustness to

challenging scenarios is more important to practitioners, who may take comfort

in the fact that when perc-cal undercovers it almost always outperforms al-

ternative methods, and in all other scenarios, it achieves or exceeds the desired

coverage.

Across scenarios, while perc-cal provided the most consistent empirical

coverage, sand5 was itself generally superior to the other alternative methods,

including BCa, which has favorable asymptotic properties. perc-cal achieved

a mean absolute deviation from target coverage of only 3.8 percentage points,

versus 5.8 and 8.9 percentage points for sand5 and BCa, respectively. Restricting

our attention to just the scenarios in which perc-cal achieved empirical coverage

below 90%, the corresponding mean absolute deviation statistics were 5, 7.7, and

10.4, respectively. While it is perhaps no surprise that traditional methods such

at the z interval fare so poorly because they typically assume a fixed-X setting,

the relative performance of these methods which do not make such assumptions

is more interesting.

perc-cal’s improved coverage came at the cost of modestly longer interval

lengths – across these 48 scenarios, perc-cal had an average interval length of

1.39, at the upper end (but not the top) of other methods – excluding the poor

performance of z and boot-t, these other methods had interval lengths between

0.99 and 1.49, averaging to 1.16. While these other methods have interval lengths

that are approximately 16% smaller on average, it would not be acceptable to

a practitioner for this shortness to come at the expense of falling below desired

target coverage. Only when target coverage is achieved do considerations like

average interval length become a primary concern, and 16% longer intervals seems

like a reasonable price for the “insurance” provided by perc-cal.

4.2. Data example: criminal sentencing dataset

4.2.1. Design: data example

We turn now to an example of how well perc-cal performs in practice, on

data. In this section, we compare perc-cal to other methods on a criminal
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sentencing dataset. This dataset contains information regarding criminal sen-

tencings in a large state from January 1st 2002 to December 31st 2007. There

are a total of 119,983 offenses in the dataset, stemming from a variety of crimes –

murder (899 cases), violent crime (80,402 cases), sex-related crime (7,496 cases),

property-related crime (92,743 cases), firearm-related crime (15,326 cases) and

drug crime (93,506 cases). An individual offense can involve multiple types of

crime, and an offender’s case can involve multiple charges of each type of crime.

Our modeling objective is to form marginal confidence intervals for the slope

coefficients of a linear regression. The response variable of our regression is the

number of days of jail time an offender must serve (log-transformed), which we

predict with the following 8 covariates:

1. race: Binary variable for the race of the offender (1 if white, 0 if non-white).

2. seriousness: A numerical variable scaled to lie between 0 and 10 indicating

the severity of the crime. A larger number denotes a more serious crime.

3. age: Age of offender at the time of the offense.

4. race: The percent of the neighborhood that is not of Caucasian ethnicity

in the offender’s home zip code.

5. in-state: Binary variable for whether the offender committed the crime

in his/her home state (1 if in offenders home state, 0 otherwise).

6. juvenile: Binary variable for whether the offender had at any point com-

mitted a crime as a juvenile (1 if yes, 0 otherwise). 18% of all offenses

involved offenders who had committed a crime as a child.

7. prior-jaildays: Number of days of jail time the offender had previously

served.

8. age-firstcrime: The age of the offender when the offender was charged

with his/her first crime as an adult.

This is truly a random X setting because the predictors themselves are

stochastic, coming to us from an unknown distribution. ~X is stochastic, the

relationship between ~X and Y is unknown and possible non-linear, and error

may have heteroskedastic variance. These results are not meant to be a com-

plete study of the issue, but rather are presented to illustrate the potential of

our methodology.
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We first ran a linear regression upon the full dataset containing all 119,983

offenses. We treated the coefficients as if this were a population-level regression.

We then proceeded as if we did not have the full dataset and instead only had

the ability to observe random subsets of the dataset of size 500 – large, but not

so large that all coefficient estimates are over-powered. We studied the empirical

coverage performance of confidence intervals formed using the methods in the

simulation exercise over repeated realizations which are obtained through random

subsamples of size 500.

4.2.2. Results: data example

Linear regression across the full dataset has an R2 of 16.9% with 6 of the 8

predictors coming up as significant. We then took repeated random subsamples

of size 500 from this population of offenses and treated these subsamples as if

they were the observed dataset. Presupposing that each crime represents an iid

draw, this framework allows us to compare and contrast the empirical coverage

performance of confidence interval methods.

In Figure 3, we present the empirical coverage for each of our predictors when

we form 90% confidence intervals. The y-axis of the plot below represents the

empirical coverage over 10,000 realizations for each of the methods in question

(i.e., 90% empirical coverage for a particular method implies that 9,000 of the

10,000 realizations had confidence intervals for that method which contained the

true but unknown population-level parameters). Along the x-axis, we have the

predictors listed above. We include a bold horizontal line at the target level

of empirical coverage of 90%. The standard error associated with the coverages

presented below average to 0.002 across scenarios, predictors and methods.

There are a number of inferences that we can draw from the above chart:

• All methods generally perform as expected, with empirical coverage pro-

portions generally falling between 85% and 92%.

• perc-cal is the only method that consistently achieves empirical coverage

over 90%. All other methods, including sand5, where unable to do so.

• prior-jaildays appears to be the predictor with the most disappointing

empirical coverage. All methods except for perc-cal do not achieve 90%

empirical coverage. The average empirical coverage of prior-jaildays for

all non-perc-cal methods was 87.0%.

• There is also considerable disparity in the ability of various methods to

cover the coefficients associated with the intercept term and the in-state
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Figure 3. Scatterplot of coverage proportion of methods – 90% Target Coverage.

covariate. Although the BCa method has near-90% empirical coverage of

the in-state super-population coefficient, its coverage is less satisfactory

for the seriousness and prior-jaildays covariates.

When we plot the relationship of jail length (log transformed) against prior

total jail length in Figure 4, adjusted for all of the other covariates in the super-

population, we see an almost bi-modal relationship.

It is clear from the plot in Figure 4 that the highly misspecified relationship

between Y and ~X is likely to be driving the large disparity (and general dete-

rioration) in coverage performance across the various non-perc-cal confidence

interval methods. Overall, these results support the notion that perc-cal is a

good all-purpose confidence interval method, and that all other methods, while

performing well for some of the covariates, do not perform well for all of the

covariates as was the case for perc-cal. The results assuming target coverage

of 95% are qualitatively the same as the results presented above.

5. Discussion and Concluding Remarks

If perc-cal performs so well relative to alternative more popular CI meth-

ods, why is it not used more in practice? We believe the use of double bootstrap

methods in general have not been widely adopted primarily because of their com-

putational cost. Although it is true that double bootstrap methods in general

and perc-cal in particular require more computation, the computational burden
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Figure 4. Jail length (log transformed) versus previous total jail length, adjusted for
other predictors.

of these procedures is far less problematic than in the past because of current

computational advances. For example, the rise of grid computing has greatly

facilitated parallel computation. Because perc-cal is trivially parallelizable, it

is relatively straightforward to compute all second-level bootstrap calculations

in parallel, allowing researchers to compute perc-cal at a computational “cost”

that is on the order of a single bootstrap. Furthermore, the perceived computa-

tional cost of double bootstrap methods may be inflated due to the inefficiency

with which the calculations are carried out in popular statistical programming

languages, most notably R – the very same calculations are orders of magnitude

faster in lower level languages, such as C++. The rising popularity and adoption

of packages integrating R with C++ (Eddelbuettel et al. (2011)) can greatly reduce

the cost of double bootstrap methods for practitioners performing data analysis

in R who do not know C++. In the spirit of this, the R package we have created

allows users to compute perc-cal intervals in R efficiently using C++ code via

Rcpp. We are optimistic that the use of double bootstrap methods will only

increase further as the cost of computing declines further over the next 10 years.
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We have restricted our attention to equal-tailed intervals for all methods

considered here. It is natural and certainly possible to extend our approach to

compute the shortest unequal-tailed interval, even if other methods cannot or

would not, because of the symmetry of the asymptotic distribution underlying

those alternative methods. At the same time, this advantage should not be over-

stated – for example, one may be forced so far into the tails of the bootstrap

distribution that a considerably larger number of first and second-level bootstrap

samples are required. Because this is not the focus of our paper, we do not pursue

it further here.

The asymptotic theory we developed, examined, and compared the more tra-

ditional percentile and “bootstrap-t” methods to their double bootstrap analogs

in our “assumption lean” setting. We did not study the asymptotic properties

of alternative confidence interval methods in our setting. Although it would be

interesting to do so, there are a very wide range of methods in the literature,

making systematic theoretical study impractical.

In summary, randomness in ~X, non-linearity in the relationship between Y

and ~X, and heteroskedasticity “conspire” against classical inference in a regres-

sion setting (Buja et al. (2015)), particularly when the sample size is small. We

have shown that, in theory, the percentile-calibrated method perc-cal provides

very satisfactory empirical coverage – the asymptotic rate of coverage error under

mild regularity conditions for a two-sided confidence interval of the best linear ap-

proximation between Y and ~X is O(1/n2). Furthermore, perc-cal performs very

well in practice, both in synthetic and data settings. We believe that perc-cal

is a good general-purpose CI method and merits consideration when confidence

intervals are needed in applied settings by practitioners.
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Appendix

A. Proof of Theorem 1

The proof consists of two parts. The first part shows the existence of the

Edgeworth expansion of the pivoting quantity. The second part derives the

asymptotic order of the error term by using the first terms in this expansion

and the Cornish-Fisher expansion, which can be regarded as the inverse of the

Edgeworth expansion.

Part I: Existence of Edgeworth Expansion.

Under three assumptions on the joint distribution in which part of the variables

can be discrete, the validity of the Edgeworth expansion was shown in Jensen

(1989) through a conditioning argument. In this section, we shall show the

existence of the Edgeworth expansion of the pivoting quantity for the confidence

intervals by checking these three assumptions.

We note first that by (2.1), β(p+1)×1 can be written as a smooth function of

the moments E(XjY )’s and E(Xk1
j1
Xk2
j2

)’s, where 1 ≤ j,≤ p, 1 ≤ j1 < j2 ≤ p,

k1, k2 ≥ 0, and k1 + k2 ≤ 2. Moreover, by the Central Limit Theorem, the

asymptotic distribution of the least square estimate β̂ in (2.2) is given by
√
n
(
β̂ − β

)
→ N

(
0,E(~X~XT )−1E{(Y − ~XTβ)2 ~X~XT }E(~X~XT )−1

)
. (A.1)

Starting with the general case when p ≥ 4, we note that the (p+1)×1 vector of the

asymptotic variances of each
√
n(β̂j − βj), 1 ≤ j ≤ p, is again a smooth function

of the moments E(Xk1
j1
Xk2
j2
Xk3
j3
Xk4
j4

)’s, E(Xk5
j5
Xk6
j6
Xk7
j7
Y )’s, and E(Xk8

j8
Xk9
j9
Y 2)’s,

where 1 ≤ j1 < j2 < j3 < j4 ≤ p, 1 ≤ j5 < j6 < j7 ≤ p, 1 ≤ j8 < j9 ≤ p,

k1, k2, . . . , k9 ≥ 0, k1 + k2 + k3 + k4 ≤ 4, k5 + k6 + k7 ≤ 3, and k8 + k9 ≤ 2.

These moments for the asymptotic mean and variance of β̂ can all be consistently

estimated by their corresponding sample moments.

We now collect all related monomials of Xj and Y into a random vector Wp

such that

Wp = ({Xk1
j1
Xk2
j2
Xk3
j3
Xk4
j4
}, {Xk5

j5
Xk6
j6
Xk7
j7
Y }, {Xk8

j8
Xk9
j9
Y 2})T , (A.2)

where 1 ≤ j1 < j2 < j3 < j4 ≤ p, 1 ≤ j5 < j6 < j7 ≤ p, 1 ≤ j8 < j9 ≤ p,

k1, k2, . . . , k9 ≥ 0, k1 + k2 + k3 + k4 ≤ 4, k5 + k6 + k7 ≤ 3, and k8 + k9 ≤ 2. For

p ≥ 4, the dimension of Wp is

dp =

(
p

4

)(
8

4

)
+

(
p

3

)(
6

3

)
+

(
p

2

)(
4

2

)
=

1

12
p(p− 1)(35p2 − 135p+ 166).

For 1 ≤ p ≤ 3, we can take a similar approach to write out Wp.



DOUBLE BOOSTRAP CIS FOR REGRESSION 2583

1. For p = 1, W1 = ({Xk1
1 }, {X

k2
1 Y }, {X

k3
1 Y

2})T where 0 ≤ k1 ≤ 4, 0 ≤ k2 ≤
3, and 0 ≤ k3 ≤ 2. The dimension of W1 is d1 = 12.

2. For p = 2, W2 = ({Xk1
1 X

k2
2 }, {X

k3
1 X

k4
2 Y }, {X

k5
1 X

k6
2 Y

2})T where k1 + k2 ≤
4, k3 + k4 ≤ 3, and k5 + k6 ≤ 2. The dimension of W2 is d2 = 31.

3. For p = 3, W3 = ({Xk1
1 X

k2
2 X

k3
3 }, {X

k4
1 X

k5
2 X

k6
3 Y }, {X

k7
j7
Xk8
j8
Y 2})T , where

1 ≤ j7 < j8 ≤ 3, k1, k2, . . . , k9 ≥ 0, k1 + k2 + k3 ≤ 4, k4 + k5 + k6 ≤ 3, and

k7 + k8 ≤ 2. The dimension of W3 is d3 = 73.

With Wp defined, we can write β(p+1)×1 = β(E(Wp)). We can also write

the vector of the asymptotic variances of
√
n(β̂j − βj), 1 ≤ j ≤ p, as σ2

(p+1)×1 =

σ2(E(Wp)). From the n i.i.d. samples of ~V = (X1, . . . , Xp, Y )T , we can form

the Wp’s as Wp,1, . . . ,Wp,n. The estimates of β and σ2 can thus be written as

β̂ = β(W̄p) and σ̂2 = σ2(W̄p), respectively, where W̄p = (1/n)
∑n

i=1 Wp,i.

To check the three assumptions in Jensen (1989), we first denote the random

vector of discrete variables in Wp by WD with dimension dD and the random

vector of the rest of the variables in Wp by WC with dimension dC . We shall use

the same subscripts D and C for other related quantities to distinguish discrete

variables from others. Note that in WC , some variables are products of discrete

and continuous variables. The distributions of these product variables may not

be absolutely continuous with respect to the Lebesgue measure. Nonetheless,

the characteristic function of WC still exists, and the proof in Jensen (1989) still

holds with this relaxation. Thus, we continue to check these three conditions.

Assumptions 1(i), 1(ii), 1(iii), 3(i), and 3(ii) pertain to the cumulants of Wp.

Under the existence of the moment generating function of ~V, these assumptions

are satisfied.

To check Assumptions 2(i) and 2(ii), note that the pivoting quantity for the

confidence intervals for β is (β̂ − β) ◦ σ◦(−1), where ◦ denotes the Hadamard

product. Let W̃p = W̄p − E(Wp) be the centered version of W̄p. The function

g(·) in Jensen (1989) for regression can be written as

g(W̃p) = {β(W̃p + E(Wp))− β(E(Wp))} ◦ σ(E(Wp))
◦(−1). (A.3)

It is easy to see that g(0) = 0. Furthermore, it can be shown that, since the

distribution of ~V is non-degenerate, the derivatives of g with respect to W̃C

exist, are continuous in a neighborhood of 0, and the dC × (p+ 1) matrix of the

derivatives has full rank.

To check Assumptions 1(iv) and 1(v), we first note that the derivatives

of the characteristic functions are bounded by appropriate moments, which all
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exist under the assumptions of Theorem 1. Therefore, we only need to show that

the characteristic function of Wp is bounded away from 1. To show this, we

decompose this characteristic function by conditioning on WD,

E(eit
TWp) =

∑
wD

eit
T
DwDE(eit

T
CWC |WD = wD), (A.4)

where the dimensions of t, tD, and tC are dp, dD, and dC respectively. To

verify Assumptions 1(iv) and 1(v), it now suffices to show that |E[eit
T
CWC |WD =

wD]| < 1 for each wD. This proof is patterned after the arguments in Section

2.4 of Hall (1992).

Denote the joint density of ~VC condition on wD by fwD
(xC , y) : RpC → R.

We first approximate this density through simple functions. Given ε > 0, let

f1(xC , y) =
∑M

m=1 cmI((xC , y) ∈ Sm), where cm’s are appropriate constants,

Sm’s are appropriate rectangular prisms, and 1 ≤ m ≤ M for some appropriate

M > 0 such that
∫
RpC
|fwD

(xC , y)− f1(xC , y)|dxCdy < ε. We can then focus on

showing that lim‖tC‖2→∞ |
∫
Sm

eit
T
CwCdxCdy| → 0 for each m.

Let tC = tC(u), where u is an index that diverges to infinity. Through

a subsequence argument, we can assume without loss of generality that for

some 1 ≤ h ≤ dC , and with s(h, h̃, u) = th̃(u)/th(u), the limit s(h, h̃) =

lim supu→∞ s(h, h̃, u) exists for 1 ≤ h̃ ≤ dC , and |s(h, h̃)| ≤ 1. We now can

take s = {s(h, h̃, u)} and write the real part of the integral
∫
Sm

eit
T
CwCdxCdy as∫

Sm
cos(ths

TwC)dxdy. Note that each entry in wC is a monomial of xj ’s and y.

Thus, sTwC is a polynomial of xj ’s and y. We can now take transformations

of variables to show that
∫
Sm

cos(ths
TwC)dxdy = O(t−1h ). Similarly, the imagi-

nary part of the integral can be shown to be O(t−1h ). These facts entail that the

magnitude of the conditional characteristic function is strictly less than 1 when

‖tC‖2 is large, which completes the proof.

Part II: The Asymptotic Accuracy of Double Bootstrap CIs

With the existence of the Edgeworth expansion, we develop the asymptotic accu-

racy of the two-sided double-bootstrap CI for regression. In this section, we use

θ0 to denote a generic βj and use θ̂ to denote the corresponding β̂j . We show here

only the proof for the two-sided perc-cal confidence intervals I1. The one-sided

case for I1 is proved in a similar (and easier) manner. The techniques used in this

proof are patterned after those in Section 3.11 in Hall (1992) but are reorganized

for readability and included so that our analysis is self-contained.

Consider the distribution of Â(W̄∗) = (θ̂∗ − θ̂)/σ̂, where W̄∗ is the bootstrap

version of W̄p. For any 0 < γ < 1, the quantile estimate v̂γ satisfies
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P

(√
n
θ̂∗ − θ̂
σ̂

≤ v̂γ
∣∣∣∣Wp,1, . . . ,Wp,n

)
= γ. (A.5)

Due to the existence of the Edgeworth expansion as described in Part I, we

can write v̂γ in the standard normal quantile zγ through the Cornish-Fisher

expansion:

v̂γ = zγ + n−1/2p̂1(zγ) + n−1p̂2(zγ) +Op(n
−3/2) (A.6)

where p̂1 and p̂2 are polynomials whose coefficients are sample estimates of those

of p1 and p2, and the coefficients of p1 and p2 depend only on the moments of

Wp. Given the condition that all moments of ~V exist, all of these estimates are

root-n consistent.

Now consider the quantile ŵλ in the bootstrap distribution of θ̂∗ such that

P(θ̂∗ ≤ ŵλ|Wp,1, . . . ,Wp,n) = λ. (A.7)

By comparing (A.7) and (A.5) with γ = λ, we see

ŵλ = θ̂+n−1/2σ̂v̂λ = θ̂+n−1/2σ̂{zλ+n−1/2p̂1(zλ)+n−1p̂2(zλ)+Op(n
−3/2)} (A.8)

Thus, by Proposition 3.1 in Hall (1992), we have

P(θ0 ∈ (−∞, ŵλ))

= P(θ0 ≤ θ̂ + n−1/2σ̂{zλ + n−1/2p̂1(zλ) + n−1p̂2(zλ) +Op(n
−3/2)})

= λ+ n−1/2r1(zλ)φ(zλ) + n−1r2(zλ)φ(zλ) +O(n−3/2)

(A.9)

where φ is the density of the standard normal distribution, and r1 and r2 are even

and odd polynomials whose coefficients can be root-n consistently estimated.

Let ξ = 2(1 − α/2 − λ) and λ = 1 − α/2 + ξ/2. To find a proper λ for the

perc-cal interval I2 is now to find ξ such that

P(θ0 ∈ (ŵ1−λ, ŵλ)) = P(θ0 ∈ (ŵα/2−ξ/2, ŵ1−α/2+ξ/2)) = 1− α. (A.10)

Note that the coverage probability of a two-sided CI can be written as

P(θ0 ∈ (ŵ1−λ, ŵλ))

= P(θ0 ≤ ŵλ)−P(θ0 ≤ (ŵ1−λ))

= 2λ− 1 + 2n−1r2(zλ)φ(zλ) +O(n−2).

= 1− α+ ξ + 2n−1r2(z1−α/2+ξ/2)φ(z1−α/2+ξ/2) +O(n−2)

(A.11)

The cancellation of the O(n−1/2) term due to that −z1−λ = zλ and that r1 is an

even polynomial is crucial for the improvement in double-bootstrap. To achieve

the accuracy of the coverage in Theorem 1, we would like to choose ξ such that

ξ = −2n−1r2(z1−α/2+ξ/2)φ(z1−α/2+ξ/2) +O(n−2) (A.12)
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Now consider the second-level bootstrap, in which we calibrate ξ̂ for λ̂ =

1 − α/2 + ξ̂/2 in the perc-cal intervals. Through a similar argument for the

first-level bootstrap, we see that the calibrated ξ̂ satisfies that

ξ̂ = −2n−1r̂2(z1−α/2+ξ̂/2)φ(z1−α/2+ξ̂/2) +Op(n
−2) (A.13)

so that

ξ̂ − ξ = Op(n
−3/2). (A.14)

Finally, consider the coverage probability of the double-bootstrap CI (ŵα/2−ξ̂/2,

ŵ1−α/2+ξ̂/2). By (A.8), the Taylor expansion

zγ+ε = zγ + εφ(zγ)−1 +O(ε2), (A.15)

and the derivations for (3.36) in Hall (1992), we have

P(θ0 ∈ (−∞, ŵ1−α/2+ξ̂/2))

= P

(√
n
θ̂ − θ0
σ̂

> −z1−α/2+ξ̂/2 − n
−1/2p̂1(z1−α/2+ξ̂/2)− n

−1p̂2(z1−α/2+ξ̂/2)

+ · · ·
)

= P

(√
n
θ̂ − θ0
σ̂

> −z1−α/2+ξ/2 − n−1/2p̂1(z1−α/2+ξ/2)−
1

2
(ξ̂ − ξ)φ(z1−α/2)

−1

− n−1p̂2(z1−α/2+ξ/2) +Op(n
−2)

)
= P

(√
n
θ̂ − θ0
σ̂

> −z1−α/2+ξ/2 − n−1/2p̂1(z1−α/2+ξ/2)− n−1p̂2(z1−α/2+ξ/2)

+ · · ·+ 1

2
(ξ̂ − ξ)φ(z1−α/2)

−1
)

+O(n−2)

= P(θ0 < ŵ1−α/2+ξ/2) + n−3/2bz1−α/2φ(z1−α/2) +O(n−2) (A.16)

where the constant b is defined through

E

(√
n
θ̂ − θ0
σ̂

n3/2
ξ̂ − ξ

2

)
= b+O(n−1). (A.17)

The O(n−1) term is derived as in equation (3.35) in Hall (1992). Similarly,

P(θ0 ∈ (−∞, ŵα/2−ξ̂/2)) = P(θ0 ∈ (−∞, ŵα/2−ξ/2))−n−3/2bzα/2φ(zα/2)+O(n−2)

(A.18)

Now

P(θ0 ∈ (ŵα/2−ξ̂/2, ŵ1−α/2+ξ̂/2))
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= P(θ0 ∈ (−∞, ŵ1−α/2+ξ̂/2))−P(θ0 ∈ (−∞, ŵα/2−ξ̂/2))

= P(θ0 ∈ (−∞, ŵ1−α/2+ξ/2)) + n−3/2bz1−α/2φ(z1−α/2) +O(n−2) (A.19)

− (P(θ0 ∈ (−∞, ŵα/2−ξ/2))− n−3/2bzα/2φ(zα/2) +O(n−2))

= 1− α+O(n−2),

which concludes our proof.
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