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Abstract: We investigate several well-known estimators of finite population means

and the functions of these means under standard sampling designs. Such func-

tions include the variance, correlation coefficient, and regression coefficient in the

population as special cases. We compare the performance of these estimators

under different sampling designs, based on their asymptotic distributions. We

construct equivalence classes of estimators under different sampling designs so that

estimators in the same class have equivalent performance in terms of the asymptotic

mean squared error (MSE). We then compare estimators from different equivalence

classes under superpopulations that satisfy linear models. We show that the pseudo

empirical likelihood (PEML) estimator of the population mean under simple random

sampling without replacement (SRSWOR) has the lowest asymptotic MSE of the

estimators considered here. In addition, for the variance, correlation coefficient, and

regression coefficient of the population, the plug-in estimators based on the PEML

estimator have the lowest asymptotic MSEs under SRSWOR. However, for any

high entropy πPS sampling design, which uses auxiliary information, the plug-in

estimators based on the Hájek estimator have the lowest asymptotic MSEs.

Key words and phrases: Asymptotic normality, equivalence classes of estimators,

high entropy sampling designs, inclusion probability, linear regression model, rejec-

tive sampling design, relative efficiency, superpopulation models.

1. Introduction

Suppose that P = {1, 2, . . . , N} is a finite population of size N , s is a sample

of size n (< N) from P, and S is the collection of all possible samples of size

n. Then, a sampling design P (s) is a probability distribution on S such that

0 ≤ P (s) ≤ 1 for all s ∈ S and
∑

s∈S P (s) = 1. In this study, we consider the

following designs: simple random sampling without replacement (SRSWOR), the

Lahiri-Midzuno-Sen (LMS) sampling design (see Lahiri (1951); Midzuno (1952);

Sen (1953)), the Rao-Hartley-Cochran (RHC) sampling design (see Rao, Hartley

and Cochran (1962)), and high entropy πPS (HEπPS) sampling designs (see

Section 2). Note that all of the above sampling designs other than SRSWOR use

some auxiliary variable.

Let (Yi, Xi) be the value of (y, x) for the ith population unit, for i = 1, . . . , N ,

where y is a univariate or multivariate study variable, and x is a positive
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real-valued size/auxiliary variable. Suppose that Y =
∑N

i=1 Yi/N is the finite

population mean of y. The Horvitz-Thompson (HT) estimator (see Horvitz and

Thompson (1952)) and the RHC (see Rao, Hartley and Cochran (1962)) estimator

are popular design unbiased estimators of Y . Other well-known estimators of

Y are the Hájek estimator (see Hájek (1971); Särndal, Swensson and Wretman

(2003), and the references therein), ratio estimator (see Cochran (1977)), product

estimator (see Cochran (1977)), generalized regression (GREG) estimator (see

Chen and Sitter (1999)), and pseudo empirical likelihood (PEML) estimator

(see Chen and Sitter (1999)). However, these estimators are not always design

unbiased. See the Appendix for expressions of these estimators. Now, suppose

that y is a Rd-valued (d ≥ 1) study variable, and g(
∑N

i=1 h(Yi)/N) is a population

parameter. Here, h: Rd → Rp is a function with p ≥ 1, and g: Rp → R
is a continuously differentiable function. All vectors in Euclidean spaces are

taken as row vectors, and a superscript T denotes their transpose. Examples of

such parameters are the variance, correlation coefficient, and regression coefficient

associated with a finite population. For simplicity, we often write h(Yi) as hi.

Then, g(h) = g(
∑N

i=1 hi/N) is estimated by plugging in the estimator ĥ of h.

Our objective is to find an asymptotically efficient (in terms of the mean

squared error (MSE)) estimator of g(h). In Section 2, using the asymptotic

distribution of the estimator of g(h) under the above sampling designs, we

construct equivalence classes of estimators such that any two estimators in

the same class have the same asymptotic MSE. In Section 3, we consider the

special case of g(h) = Y , and compare the equivalence classes of estimators

under superpopulations that satisfy linear models. For the estimators considered

here under different sampling designs, the PEML estimator of the population

mean under SRSWOR has the lowest asymptotic MSE. Furthermore, the PEML

estimator has the same asymptotic MSE under SRSWOR and the LMS sampling

design. Interestingly, the performance of the PEML estimator under the RHC

and any HEπPS sampling designs, which use auxiliary information, is worse than

that under SRSWOR. The GREG estimator has been shown to be asymptotically

at least as efficient as the HT, ratio, and product estimators under SRSWOR

(see Cochran (1977)). It follows from our analysis that the PEML estimator

is asymptotically equivalent to the GREG estimator under all sampling designs

considered here.

In Section 3, we consider the cases when g(h) is the variance, the correlation

coefficient, and the regression coefficient in the population. Note that if the

estimator of the population variance is constructed by plugging in the HT, ratio,

product, or GREG estimator of the population mean, then the estimators of the

variance may become negative. The same applies to the correlation coefficient

and regression coefficient, because these estimators require an estimator of

the population variance. On the other hand, if the estimators of the above-

mentioned parameters are constructed using the Hájek or PEML estimators of the
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population mean, such a problem does not occur. Therefore, for these parameters,

we compare only those equivalence classes that contain plug-in estimators based

on the Hájek and PEML estimators. Under superpopulations that satisfy linear

models, we again conclude that the plug-in estimator for these parameters based

on the PEML estimator has the lowest asymptotic MSE under SRSWOR and the

LMS sampling design. Moreover, under any HEπPS sampling design, which uses

the auxiliary information, the plug-in estimator based on the Hájek estimator has

the lowest asymptotic MSE.

Scott and Wu (1981) prove that the ratio estimator has the same asymptotic

distribution under SRSWOR and the LMS sampling design. Chen and Sitter

(1999) show that the PEML estimator is asymptotically equivalent to the GREG

estimator under conditions on the sampling design that are satisfied by SRSWOR

and the RHC sampling design. However, this is the first study to produce

asymptotic equivalence classes, such as those in Table 2 in Section 2, which

consist of several estimators of a function of the population mean under several

sampling designs.

When the study and size variables are exactly linearly related, Raj (1954)

compared the sample mean under simple random sampling with replacement

and the usual unbiased estimator of the population mean under the probability

proportional to size sampling with replacement. Avadhani and Sukhatme (1970)

compared the ratio estimator of the population mean under SRSWOR with the

RHC estimator under the RHC sampling design when an approximate linear

relationship holds between the study variable and the size variable. Avadhani and

Srivastava (1972) compared the ratio estimator of the population mean under the

LMS sampling design and the RHC estimator under the RHC sampling design

when the study and size variables are approximately linearly related. It has also

been shown that the GREG estimator of the population mean is asymptotically

at least as efficient as the HT, ratio, and product estimators under SRSWOR (see

Cochran (1977)). However, the above comparisons included neither the PEML

estimator nor HEπPS sampling designs.

In our empirical studies, presented in Section 4, using synthetic and real

data, our numerical results support our theoretical results. Section 5 concludes

the paper. All proofs are given in the Appendix.

2. Comparison of Different Estimators of g(h)

In this section, we compare the estimators of g(h) obtained by plugging in the

estimators of h given in Table 1. First, we find equivalence classes of estimators

of g(h) such that any two estimators in the same class are asymptotically normal,

with the same mean g(h) and the same variance.

We define our asymptotic framework as follows. Let {Pν} be a sequence of

nested populations with Nν , nν → ∞ as ν → ∞ (see Isaki and Fuller (1982);
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Table 1. Estimators of h.

Sampling
Estimators

designs

SRSWOR
HT (which coincides with Hájek estimator), ratio,

product, GREG and PEML estimators

LMS
HT, Hájek, ratio, product, GREG and

PEML estimators

HEπPS
HT (which coincides with ratio and product

estimators), Hájek, GREG and PEML estimators

RHC RHC, GREG and PEML estimators

Wang and Opsomer (2011); Conti and Marella (2015); Boistard, Lopuhaä and

Ruiz-Gazen (2017); Han and Wellner (2021); and the references therein), where

Nν and nν are, respectively, the population size and the sample size corresponding

to the νth population. Henceforth, we suppress the subscript ν that tends to ∞,

for the sake of simplicity. Throughout this paper, we consider the following

condition (cf. Assumption 1 in Cardot and Josserand (2011), A4 in Conti (2014),

A1 in Cardot, Goga and Lardin (2014), A4 in Conti and Marella (2015), and

(HT3) in Boistard, Lopuhaä and Ruiz-Gazen (2017)).

Condition 1. n/N → λ as ν → ∞, where 0 ≤ λ < 1.

Before we state the main results, let us discuss the HEπPS sampling

design and some conditions on {(Xi, hi) : 1 ≤ i ≤ N} (recall that hi =

h(Yi)). A sampling design P (s) satisfying the condition D(P ||R)=
∑

s∈S P (s) log

{P (s)/R(s)} → 0 as ν → ∞, for some rejective sampling design (see Hájek

(1964)) R(s), is known as a high entropy sampling design (see Berger (1998);

Conti (2014); Cardot, Goga and Lardin (2014); Boistard, Lopuhaä and Ruiz-

Gazen (2017); and the references therein). A sampling design P (s) is called an

HEπPS sampling design if it is a high entropy sampling design and its inclusion

probabilities satisfy the condition πi = nXi/
∑N

i=1 Xi, for i = 1, . . . , N . An

example of an HEπPS sampling design is the Rao-Sampford (RS) sampling design

(see Sampford (1967) and Berger (1998)). We now state several conditions.

Condition 2. {Pν} is such that
∑N

i=1 ||hi||4/N = O(1) and
∑N

i=1 X
4
i /N =O(1)

as ν → ∞. Further, limν→∞ h exists, and X =
∑N

i=1 Xi/N and S2
x=

∑N
i=1(Xi −

X)2/N are bounded away from zero as ν → ∞. Moreover, ∇g(µ0) ̸= 0, where

µ0 = limν→∞ h and ∇g is the gradient of g.

Condition 3. max1≤i≤N Xi/min1≤i≤N Xi = O(1) as ν → ∞.

Let Vi be one of hi, hi − h, hi − hXi/X, hi + hXi/X, and hi − h−Sxh(Xi −
X)/S2

x, for i = 1, . . . , N , h =
∑N

i=1 hi/N , and Sxh =
∑N

i=1 Xihi/N − h X. Define

T =
∑N

i=1 Vi(1−πi)/
∑N

i=1 πi(1−πi), where πi is the inclusion probability of the
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ith population unit. Furthermore, in the case of the RHC sampling design, define

V =
∑N

i=1 Vi/N , X =
∑N

i=1 Xi/N , and γ =
∑n

i=1 Ni(Ni − 1)/N(N − 1), where

Ni is the size of the ith group formed randomly in the RHC sampling design (see

Rao, Hartley and Cochran (1962)), for i = 1, . . . , n. Now, we state the conditions

on the population values and the sampling designs.

Condition 4. P (s) is such that nN−2
∑N

i=1(Vi − Tπi)
T (Vi − Tπi)(π

−1
i − 1)

converges to some positive-definite (p.d.) matrix as ν → ∞.

Condition 5. nγXN−1
∑N

i=1(Vi − XiV/X)T (Vi − XiV/X)/Xi converges to

some p.d. matrix as ν → ∞.

Conditions similar to Conditions 2, 4, and 5 are often used in the sample

survey literature (see Assumption 3 in Cardot and Josserand (2011), A3 and A6

in both Conti (2014) and Conti and Marella (2015), (HT2) in Boistard, Lopuhaä

and Ruiz-Gazen (2017), and F2 and F3 in Han and Wellner (2021)). Conditions 2

and 5 hold (almost surely) whenever {(Xi, hi) : 1 ≤ i ≤ N} are generated from a

superpopulation model that satisfies appropriate moment conditions (see Lemma

S2 in the Supplementary Material). The condition
∑N

i=1 ||hi||4/N = O(1) holds

when h is a bounded function (e.g., h(y) = y and y is a binary study variable).

Condition 3 implies that the variation in the population valuesX1, . . . , XN cannot

be too large. Under any πPS sampling design, Condition 3 is equivalent to the

condition that L ≤ Nπi/n ≤ L′, for some constants L,L′ > 0, any i = 1, . . . , N ,

and all sufficiently large ν ≥ 1; see (C1) in Boistard, Lopuhaä and Ruiz-Gazen

(2017) and Assumption 2-(i) in Wang and Opsomer (2011). Condition 3 holds

(almost surely) when {Xi}Ni=1 are generated from a superpopulation distribution,

and the support of the distribution of Xi is bounded away from zero and ∞.

Condition 4 holds (almost surely) for SRSWOR, the LMS sampling design, and

any πPS sampling design under appropriate superpopulation models (see Lemma

S2 in the Supplementary Material). For the RHC sampling design, we also assume

that {Ni}ni=1 is given by

Ni =


N/n, for i = 1, . . . , n, when N/n is an integer,

⌊N/n⌋, for i = 1, . . . , k, and

⌊N/n⌋+ 1, for i = k + 1, . . . , n, when N/n is not an integer,

(2.1)

where k is such that
∑n

i=1 Ni = N . Here, ⌊N/n⌋ is the integer part of N/n. Rao,

Hartley and Cochran (1962) showed that this choice of {Ni}ni=1 minimizes the

variance of the RHC estimator. Now, we state the following theorem.

Theorem 1. Suppose that Condition 1 through Condition 4 hold. Then, classes

1, 2, 3, and 4 in Table 2 describe equivalence classes of estimators for g(h) under

SRSWOR and the LMS sampling design.
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Table 2. Disjoint equivalence classes of estimators for g(h).

Estimators of h

Sampling GREG and
HT RHC Hájek Ratio Product

design PEML

SRSWOR class 1 class 2∗ class 2∗ class 3 class 4

LMS class 1 class 2 class 2 class 3 class 4

HEπPS class 5 class 6∗∗ class 7 class 6∗∗ class 6∗∗

RHC class 8 class 9
∗The HT and Hájek estimators coincide under SRSWOR.
∗∗The HT, ratio, and product estimators coincide under HEπPS sampling designs.

For the next two theorems, we assume that nmax1≤i≤N Xi/
∑N

i=1 Xi < 1.

Note that this condition is required to hold for any without-replacement πPS

sampling design.

Theorem 2.

(i) If Condition 1 through Condition 4 hold, then classes 5, 6, and 7 in Table

2 describe equivalence classes of estimators for g(h) under any HEπPS

sampling design.

(ii) Under the RHC sampling design, if Condition 1 through Condition 3 and

Condition 5 hold, then classes 8 and 9 in Table 2 describe equivalence classes

of estimators for g(h).

Remark 1. If Condition 2 through Condition 4 hold, and Condition 1 holds with

λ = 0, then in Table 2, class 8 merges with class 5, and class 9 merges with class

6. For details, see Section S3 in the Supplementary Material.

Next, suppose that Wi = ∇g(h)hT
i , for i = 1, . . . , N , W =

∑N
i=1 Wi/N ,

Sxw=
∑N

i=1 WiXi/N − W X, S2
w=

∑N
i=1 W

2
i /N −W

2
, S2

x =
∑N

i=1 X
2
i /N − X

2
,

and ϕ = X − (n/N)
∑N

i=1 X
2
i /NX. Now, we state the following theorem.

Theorem 3. Suppose that the assumptions of Theorems 1 and 2 hold. Then,

Table 3 gives expressions for the asymptotic MSEs, ∆2
1, . . . ,∆

2
9, of the estimators

in equivalence classes 1, . . . , 9, respectively, in Table 2.

Remark 2. It can be shown in a straightforward way from Table 3 that ∆2
1 ≤ ∆2

i ,

for i = 2, 3, and 4. Thus, the plug-in estimators of g(h) based on the GREG and

the PEML estimators are asymptotically as good as, if not better than, those

based on the HT (which coincides with the Hájek estimator), ratio, and product

estimators under SRSWOR, and those based on the HT, Hájek, ratio, and product

estimators under the LMS sampling design.
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Table 3. Asymptotic MSEs of estimators for g(h) (note that to simplify the notation, we
omit the subscript ν from expressions on which limits are taken).

∆2
1 = (1− λ) lim

ν→∞

{
S2
w − (Sxw

Sx
)2
}

∆2
2 = (1− λ) lim

ν→∞
S2
w

∆2
3 = (1− λ) lim

ν→∞

{
S2
w − 2WSxw

X
+
(

W
X

)2

S2
x

}
∆2

4 = (1− λ) lim
ν→∞

{
S2
w + 2WSxw

X
+
(

W
X

)2

S2
x

}
∆2

5 = lim
ν→∞

1
N

∑N
i=1

{
Wi −W − (Sxw

S2
x
)(Xi −X)

}2 ×
(

X
Xi

− n
N

)
∆2

6 = lim
ν→∞

1
N

∑N
i=1

{
Wi + ϕ−1X

−1
Xi

(
n
N

∑N
i=1

WiXi

N −W X
)}2 ×

(
X
Xi

− n
N

)
∆2

7 = lim
ν→∞

1
N

∑N
i=1

(
Wi −W + n

NϕX
XiSxw

)2 × (
X
Xi

− n
N

)
∆2

8 = lim
ν→∞

nγX
N

∑N
i=1

{
Wi −W − Sxw

S2
x
(Xi −X)

}2
/Xi

∆2
9 = lim

ν→∞
nγ

(
X
N

∑N
i=1

W 2
i

Xi
−W

2)
Table 4. Examples of g(h).

Parameter d p h g

Mean 1 1 h(y) = y g(s) = s

Variance 1 2 h(y) = (y2, y) g(s1, s2) = s1 − s22
Correlation

2 5
h(z1, z2) = g(s1, s2, s3, s4, s5) =

s5−s1s2
{(s3−s21)(s4−s22)}1/2

coefficient (z1, z2, z
2
1 , z

2
2 , z1z2)

Regression
2 4

h(z1, z2) = g(s1, s2, s3, s4, s5) =
s4−s1s2
s3−s22coefficient (z1, z2, z

2
2 , z1z2)

Let us now consider some examples of g(h) in Table 4. The conclusions of

Theorems 1 through 3 and Remarks 1 and 2 hold for all parameters in Table 4.

Here, recall that for the variance, correlation coefficient, and regression coefficient,

we consider only the plug-in estimators based on the Hájek and PEML estimators.

3. Comparison of Estimators under Superpopulation Models

In this section, we derive asymptotically efficient estimators for the mean,

variance, correlation coefficient, and regression coefficient under superpopulations

that satisfy linear regression models. Raj (1954), Murthy (1967), Avadhani and

Sukhatme (1970), Avadhani and Srivastava (1972), and Cochran (1977) used

the linear relationship between Yi and Xi to compare different estimators of

the mean. However, they did not use a probability distribution for (Yi, Xi).

Subsequently, Rao (2003), Fuller (2011), and Chaudhuri (2014) (see chap. 5),

among others, considered the linear relationship between Yi and Xi and a

probability distribution for (Yi, Xi) to construct different estimators and study

their behavior. However, to the best of our knowledge, no prior studies have

shown how to find asymptotically the most efficient estimator for the mean
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among a large class of estimators, as we do here. In addition, our study is

the first to compare plug-in estimators of the variance, correlation coefficient,

and regression coefficient for large samples. Suppose that {(Yi, Xi) : 1 ≤ i ≤ N}
are independently and identically distributed (i.i.d.) random vectors defined on

a probability space (Ω,F,P). Without any loss of generality, for convenience,

we take σ2
x = EP(Xi − EP(Xi))

2 =1. This might require rescaling the variable

x. Here, EP denotes the expectation with respect to the probability measure P.
Recall that the population values X1, . . . , XN are used to implement some of the

sampling designs. In such a case, we consider a function P (s, ω) on S × Ω such

that P (s, ·) is a random variable on Ω for each s ∈ S, and P (·, ω) is a probability

distribution on S for each ω ∈ Ω (see Boistard, Lopuhaä and Ruiz-Gazen (2017)).

Note that P (s, ω) is the sampling design for any fixed ω in this case. Then, the ∆2
j

in Table 3 can be expressed in terms of superpopulation moments of (h(Yi), Xi),

from the strong law of large numbers (SLLN), and we can easily compare different

classes of estimators in Table 2 under linear models. Let us first state several

conditions on the superpopulation distribution P.

Condition 6. Xi ≤ b a.s. [P] for some 0 < b < ∞, EP(Xi)
−2 < ∞, and

max1≤i≤N Xi/ min1≤i≤N Xi = O(1) as ν → ∞ a.s. [P]. In addition, the support

of the distribution of (h(Yi), Xi) is not a subset of a hyper-plane in Rp+1.

The condition Xi ≤ b a.s. [P] for some 0 < b < ∞ in Condition 6 and Con-

dition 1, along with 0 ≤ λ < EP(Xi)/b, ensure that nmax1≤i≤N Xi/
∑N

i=1 Xi <

1 for all sufficiently large ν a.s. [P], which is required to hold for any

without-replacement πPS sampling design. On the other hand, the condition,

max1≤i≤N Xi/min1≤i≤N Xi = O(1) as ν → ∞ a.s. [P] in Condition 6 implies that

Condition 3 holds a.s. [P]. Further, Condition 6 ensures that Condition 5 holds

a.s. [P] (see Lemma S2 in the Supplementary Material). Condition 6 also ensures

that Condition 4 holds under the LMS and any πPS sampling designs a.s. [P]
(see Lemma S2 in the Supplementary Material).

Let us first consider the case when g(h) is the mean of y (see the second row in

Table 4). Further, suppose that Yi = α+βXi+ ϵi, for α, β ∈ R and i = 1, . . . , N ,

where {ϵi}Ni=1 are i.i.d. random variables and are independent of {Xi}Ni=1, with

EP(ϵi) = 0 and EP(ϵi)
4 < ∞. Then, we have the following theorem.

Theorem 4. Suppose that Condition 1 holds, with 0 ≤ λ < EP(Xi)/b, and

Condition 6 holds. Then, a.s. [P], the PEML estimator under SRSWOR and the

LMS sampling design has the lowest asymptotic MSE among all estimators of the

population mean under different sampling designs considered here.

Remark 3. Note that for SRSWOR, the PEML estimator of the population

mean has the lowest asymptotic MSE among all estimators considered here a.s.

[P] when Condition 1 holds with 0 ≤ λ < 1 and Condition 6 holds (see the proof

of Theorem 4).
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Theorem 5. Suppose that Condition 1 holds with 0 ≤ λ < EP(Xi)/b, and

Condition 6 holds. Then, a.s. [P], the performance of the PEML estimator of the

population mean under the RHC and any HEπPS sampling designs, which use

auxiliary information, is worse than its performance under SRSWOR.

Recall from the introduction that for the variance, correlation coefficient,

and regression coefficient, we compare only those equivalence classes that contain

plug-in estimators based on the Hájek and PEML estimators. We first state the

following condition.

Condition 7. ξ > 2max{µ1, µ−1/(µ1µ−1 − 1)}, where ξ = µ3 − µ2µ1 is the

covariance between X2
i and Xi, and µj = EP(Xi)

j, for j = −1, 1, 2, 3.

The above condition is used to prove part (ii) in each of Theorems 6 and

7. This condition holds when Xi follows a well-known distribution, such as the

gamma (with shape parameter value larger than one and any scale parameter

value), beta (with the second shape parameter value greater than the first shape

parameter value, and the first shape parameter value larger than one), Pareto

(with shape parameter value lying in the interval {3, (5 +
√
17)/2} and any scale

parameter value), log-normal (with both the parameters taking any value), and

Weibull (with shape parameter value lying in the interval (1, 3.6) and any scale

parameter value). Now, consider the case when g(h) is the variance of y (see the

third row in Table 4). Recall the linear model Yi = α+βXi + ϵi from above, and

assume that EP(ϵi)
8 < ∞. Then, we have the following theorem.

Theorem 6.

(i) Let us first consider SRSWOR and the LMS sampling design, and suppose

that Condition 1 and Condition 6 hold. Then, a.s. [P], the plug-in estimator

of the population variance based on the PEML estimator has the lowest

asymptotic MSE among all estimators considered here.

(ii) Next, consider any HEπPS sampling design, and suppose that Condition 1

holds with 0 ≤ λ < EP(Xi)/b, and Conditions 6 and 7 hold. Then, a.s. [P],
the plug-in estimator of the population variance based on the Hájek estimator

has the lowest asymptotic MSE among all estimators considered here.

Now, suppose that y = (z1, z2) ∈ R2, and consider the case when g(h) is

the correlation coefficient between z1 and z2 (see the fourth row in Table 4).

We also consider the case when g(h) is the regression coefficient of z1 on z2
(see the fifth row in Table 4). Further, suppose that Yi = α + βXi + ϵi for

Yi = (Z1i, Z2i), α, β ∈ R2 and i = 1, . . . , N , where {ϵi}Ni=1 are i.i.d. random

vectors in R2 independent of {Xi}Ni=1 with EP(ϵi) = 0 and EP||ϵi||8 < ∞. Then,

we have the following theorem.
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Theorem 7.

(i) Let us first consider SRSWOR and the LMS sampling design, and suppose

that Conditions 1 and 6 hold. Then, a.s. [P], the plug-in estimator of each

of the correlation and the regression coefficients in the population based on

the PEML estimator has the lowest asymptotic MSE among all estimators

considered here.

(ii) Next, consider any HEπPS sampling design, and suppose that Condition 1

holds with 0 ≤ λ < EP(Xi)/b, and Conditions 6 and 7 hold. Then, a.s. [P],
the plug-in estimator of each of the above parameters based on the Hájek

estimator has the lowest asymptotic MSE among all estimators considered

here.

4. Data Analysis

In this section, we empirically compare the estimators of the mean, variance,

correlation coefficient, and regression coefficient using real and synthetic data.

Note that for the empirical comparison, we exclude some of the estimators

considered in the theoretical comparison, for the following reasons:

(i) Because the GREG estimator is well-known to be asymptotically better

than the HT, ratio, and product estimators under SRSWOR (see Cochran

(1977)), we exclude these estimators under SRSWOR.

(ii) Because the MSEs of the estimators under the LMS sampling design become

very close to the MSEs of the same estimators under SRSWOR, as expected

from Theorem 1, we do not report these results under the LMS sampling

design. Moreover, SRSWOR is a simpler and more commonly used sampling

design than is the LMS sampling design.

Thus, we consider the estimators in Table 5 for the empirical comparison. Recall

from Table 1 that the HT, ratio, and product estimators of the mean coincide

under any HEπPS sampling design. We draw I = 1000 samples, each of sizes

n = 75, 100, and 125, using the sampling designs in Table 5. We use the software

R to draw the samples and compute the various estimators. For the RS sampling

design, we use the “pps” package in R, and for the PEML estimator, we use the

R code in Wu (2005). We compare the two estimators g(ĥ1) and g(ĥ2) of g(h)

empirically under the sampling designs P1(s) and P2(s), respectively, in terms of

their relative efficiency, defined as

RE{g(ĥ1), P1|g(ĥ2), P2} =
MSEP2

{g(ĥ2)}

MSEP1
{g(ĥ1)}

,

where MSEPj
{g(ĥj)} = I−1

∑I
l=1{g(ĥjl)−g(h0)}2 is the empirical mean squared
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Table 5. Estimators considered for the empirical comparison.

Parameters Estimators

Mean

GREG and PEML estimators under SRS-

WOR; HT, Hájek, GREG and PEML

estimators under RS sampling design∗;

and RHC, GREG and PEML estimators

under RHC sampling design

Variance, correlation
coefficient and regression

coefficient

Obtained by plugging in Hájek and PEML

estimators under SRSWOR and RS

sampling design∗, and PEML estimator

under RHC sampling design
∗We consider the RS sampling design, because it is a HEπPS sampling design, and it is easier
to implement than other HEπPS sampling designs.

error of g(ĥj) under Pj(s), for j = 1, 2. Here, ĥjl is the estimate of h based on the

jth estimator and the lth sample, and g(h0) is the true value of the parameter

g(h), for j = 1, 2, l = 1, . . . , I. Here, g(ĥ1) under P1(s) is more efficient than

g(ĥ2) under P2(s) if RE{g(ĥ1), P1|g(ĥ2), P2} > 1.

Next, for each of the parameters considered in this section, we compare the

average lengths of the asymptotically 95% confidence intervals (CIs) constructed

using the various estimators. In order to construct asymptotically 95% CIs,

we need an estimator of the asymptotic MSE of
√
n{g(ĥ) − g(h)}. If we

consider SRSWOR or the RS sampling design, it follows from the proofs of

Theorems 1 and 2 that the asymptotic MSE of
√
n{g(ĥ) − g(h)} is ∆̃2

1 =

limν→∞ nN−2∇g(h)
∑N

i=1(Vi − Tπi)
T (Vi − Tπi)(π

−1
i − 1)∇g(h)T , where T =∑N

i=1 Vi(1 − πi)/
∑N

i=1 πi(1 − πi). Moreover, Vi is hi or hi − h or hi − h −
Sxh(Xi − X)/S2

x if ĥ is ĥHT or ĥH or ĥPEML (as well as ĥGREG), respectively,

with d(i, s) = (Nπi)
−1. Recall that Sxh =

∑N
i=1 Xihi/N−X h. Following Cardot,

Goga and Lardin (2014), we estimate ∆̃2
1 by

∆̂2
1 = nN−2∇g(ĥ)

∑
i∈s

(V̂i − T̂πi)
T (V̂i − T̂πi)(π

−1
i − 1)π−1

i ∇g(ĥ)T , (4.1)

where T̂ =
∑

i∈s V̂i(π
−1
i − 1)/

∑
i∈s(1 − πi), ĥ = ĥHT in the case of the mean,

variance, and regression coefficient, and ĥ = ĥH in the case of the correlation

coefficient. Here, V̂i is hi or hi−ĥHT or hi−ĥHT−Ŝxh,1(Xi−X̂HT )/Ŝ
2
x,1 if ĥ is ĥHT

or ĥH or ĥPEML (as well as ĥGREG), respectively, with d(i, s) = (Nπi)
−1. Further,

Ŝxh,1 =
∑

i∈s(Nπi)
−1Xihi − X̂HT ĥHT and Ŝ2

x,1 =
∑

i∈s(Nπi)
−1X2

i − X̂
2

HT . We

estimate h in ∇g(h) using ĥHT in the case of the mean, variance, and regression

coefficient, because ĥHT is an unbiased estimator, and it is easier to compute than

the other estimators of h considered here. On the other hand, some estimators of
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the correlation coefficient may be undefined if we estimate h using any estimator

other than ĥH or ĥPEML (see the introduction). In this case, we choose ĥH ,

because it is easier to compute than ĥPEML.

Next, if we consider the RHC sampling design, it follows from the

proof of Theorem 2 that the asymptotic MSE of
√
n{g(h) − g(ĥ)} is ∆̃2

2 =

limν→∞ nγXN−1× ∇g(h)
∑N

i=1(Vi−XiV/X)T (Vi−XiV/X)X−1
i ∇g(h)T , where

γ and V are as in the paragraph following Condition 3. Moreover, Vi is hi or

hi − h−Sxh(Xi −X)/S2
x if ĥ is ĥRHC or ĥPEML (as well as ĥGREG), respectively,

with d(i, s) = Gi/NXi. We estimate ∆̃2
2 by

∆̂2
2 = nγXN−1∇g(ĥ)

∑
i∈s

(
V̂i −

XiV̂RHC

X

)(
V̂i −

XiV̂RHC

X

)
(GiX

−2
i )∇g(ĥ)T ,

(4.2)

where V̂RHC =
∑

i∈s V̂iGi/NXi, ĥ = ĥRHC in the case of the mean, variance, and

regression coefficient, and ĥ = ĥPEML in the case of the correlation coefficient.

Here, V̂i is hi or hi− ĥRHC− Ŝxh,2(Xi−X)/Ŝ2
x,2 if ĥ is ĥRHC or ĥPEML (as well as

ĥGREG), respectively, with d(i, s) = Gi/NXi. Further, Ŝxh,2 =
∑

i∈s hiGi/N −X

ĥRHC and Ŝ2
x,1 =

∑
i∈s XiGi/N − X

2
. In the case of the mean, variance, and

regression coefficient, we estimate h in ∇g(h) using ĥRHC for the same reason

that we estimate h using ĥHT under SRSWOR and the RS sampling design.

On the other hand, in the case of the correlation coefficient, we estimate h in

∇g(h) using ĥPEML under the RHC sampling design so that the estimator of the

correlation coefficient in the expression of ∇g(h) in this case is well defined.

We draw I = 1000 samples, each of sizes n = 75, 100, and 125, using the

sampling designs in Table 5. Then, for each of the parameters, sampling designs,

and estimators, we construct I asymptotically 95% CIs based on these samples,

and compute the average and the standard deviation of their lengths.

4.1. Analysis based on synthetic data

In this section, we consider the population values {(Yi, Xi) : 1 ≤ i ≤ N}
on (y, x) generated from a linear model, as follows. We choose N = 5000

and generate the Xi from a gamma distribution with mean 1,000 and standard

deviation (s.d.) 200. Then, Yi is generated from the linear model Yi = 500 +

Xi + ϵi, for i = 1, . . . , N , where ϵi is generated independently of {Xi}Ni=1 from a

normal distribution with mean zero and s.d. 100. We also generate the population

values {(Yi, Xi) : 1 ≤ i ≤ N} from a linear model in which y = (z1, z2) is a

bivariate study variable. The population values {Xi}Ni=1 are generated in the

same way as in the earlier case. Then, Yi = (Z1i, Z2i) is generated from the linear

model Zji = αj + Xi + ϵji, for i = 1, . . . , N , where α1 = 500 and α2 = 1000.

The ϵ1i are generated independently of the Xi from a normal distribution with
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Table 6. Description of study variables.

y1 Number of primary schools in village

y2 Scheduled castes population size in village

y3 Number of secondary schools in village

y4 Scheduled tribes population size in village

mean zero and s.d. 100, and the ϵ2i are generated independently of the Xi and

the ϵ1i from a normal distribution with mean zero and s.d. 200. We consider

the estimation of the mean and the variance of y for the first data set and the

correlation and the regression coefficients between z1 and z2 for the second data

set.

The results of the empirical comparison based on synthetic data are sum-

marized as follows. For each of the mean, variance, correlation coefficient, and

regression coefficient, the plug-in estimator based on the PEML estimator under

SRSWOR is more efficient than any other estimator under any other sampling

design (see Tables 2 through 6 in the Supplementary Material) considered in Table

5. In addition, for each of the above parameters, the asymptotically 95% CI based

on the PEML estimator under SRSWOR has the least average length (see Tables

7 through 11 in the Supplementary Material). Thus, the empirical results stated

here corroborate the theoretical results stated in Theorems 4 through 7.

4.2. Analysis based on real data

In this section, we consider a data set on village amenities in the state

of West Bengal in India obtained from the Office of the Registrar General &

Census Commissioner, India (https://censusindia.gov.in). The relevant

study variables for this data set are described in Table 6. We consider the

following estimation problems for a population of 37,478 villages. For these

estimation problems, we use the number of people living in village x as the size

variable.

(i) First, we estimate the mean and variance of each of y1 and y2. The scatter

plot and the least square regression line in Figure 1 in the Supplementary

Material show that y1 and x have an approximately linear relationship. In

addition, the correlation coefficient between y1 and x is 0.72. On the other

hand, y2 and x do not seem to have a linear relationship (see the scatter

plot and the least square regression line in Figure 2 in the Supplementary

Material).

(ii) Next, we estimate the correlation and regression coefficients of y1 and y3,

and of y2 and y4. The scatter plot and least square regression line in Figure 3

in the Supplementary Material show that y3 does not seem to be dependent

on x. Further, we see from the scatter plot and the least square regression

https://censusindia.gov.in
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Table 7. Most efficient estimators, in terms of relative efficiency (it follows from Tables
22 through 31 in the Supplementary Material that the asymptotically 95% CIs based on
the most efficient estimators have the least average lengths).

Parameters Most efficient estimators

Mean and variance of y1
The plug-in estimator based on the

PEML estimator under SRSWOR

Mean of y2 The HT estimator under RS sampling design

Variance of y2
The plug-in estimator based on the Hájek

estimator under RS sampling design

Correlation and regression The plug-in estimator based on the PEML

coefficients of y1 and y3 estimator under SRSWOR

Correlation and regression The plug-in estimator based on the Hájek

coefficients of y2 and y4 estimator under RS sampling design

line of y4 and x (see Figure 4 in the Supplementary Material) that y4 and

x do not seem to have a linear relationship.

The results of the empirical comparison based on real data are summarized

in Table 7. For further details, see Tables 12 through 31 in the Supplementary

Material. The approximate linear relationship between y1 and x (see the scatter

plot and the least square regression line in Figure 1 in the Supplementary

Material) could be a possible reason why the plug-in estimator based on the

PEML estimator under SRSWOR is the most efficient for the mean and variance

of y1. Furthermore, possibly for the same reason, the plug-in estimators of the

correlation and regression coefficients between y1 and y3 based on the PEML

estimator under SRSWOR are the most efficient.

On the other hand, y2 and y4 do not seem to have a linear relationship with

x (see the scatter plots and the least square regression lines in Figures 2 and 4 in

the Supplementary Material). Possibly for this reason, the plug-in estimators of

the parameters related to y2 and y4 based on the PEML estimator are not able

to outperform the plug-in estimators of the same parameters based on the HT

and Hájek estimators. Next, we observe that there is substantial correlation

between y2 and x (correlation coefficient=0.67), and y4 and x (correlation

coefficient=0.25). Possibly because of this, under the RS sampling design, which

uses auxiliary information, the plug-in estimators of the parameters related to y2
and y4 based on the HT and Hájek estimators are the most efficient.

5. Conclusion

It follows from Theorem 4 that the PEML estimator of the mean under

SRSWOR becomes asymptotically either more efficient than, or equivalent to any

other estimator under any other sampling design considered here. It also follows

from Theorems 1 and 2 that the GREG estimator of the mean is asymptotically
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equivalent to the PEML estimator under the sampling designs considered here.

However, our numerical studies based on finite samples indicate that the PEML

estimator of the mean performs slightly better than the GREG estimator under

all the sampling designs considered in Section 4 (see Tables 2, 12, and 14 in the

Supplementary Material). Moreover, if the estimators of the variance, correlation

coefficient, and regression coefficient are constructed by plugging in the GREG

estimator of the mean, then the estimators of the population variances in these

parameters may become negative. On the other hand, if the estimators of these

parameters are constructed by plugging in the PEML estimator of the mean,

then such a problem does not occur. Further, for these parameters, the plug-in

estimators based on either the PEML or the Hájek estimator are asymptotically

best, depending on the sampling design (see Theorems 6 and 7).

We see from Theorem 4 that for the population mean, the PEML estimator,

which is not design unbiased, outperforms design unbiased estimators such as

the HT and RHC estimators. Further, the plug-in estimators of the population

variance based on the HT and RHC estimators may become negative. This affects

the plug-in estimators of the correlation and regression coefficients based on the

HT and RHC estimators.

It follows from Table 2 that under the LMS sampling design, the large-sample

performance of the estimators of the functions of means considered here is the

same as that under SRSWOR. The LMS sampling design was introduced to make

the ratio estimator of the mean unbiased. It follows from Remark 2 in Section

2 that the performance of the ratio estimator of the mean is worse than that of

several other estimators, even under the LMS sampling design.

The coefficient of variation is another well-known finite population parame-

ter, and can be expressed as a function of the population mean g(h). We have

d = 1, p = 2, h(y) = (y2, y), and g(s1, s2) =
√
s1 − s22/s2 in this case. Of the

estimators considered here, the plug-in estimators of g(h) based on the PEML and

Hájek estimators of the mean can be used to estimate this parameter, because

it involves the finite population variance. We have omitted a comparison of

the estimators of the coefficient of variation, owing to the complexity of the

mathematical expressions. However, the asymptotic results stated in Theorems

6 and 7 hold for this parameter as well.

An empirical comparison of the biased estimators considered here and

their bias-corrected versions is performed using jackknifing in Section S4 in

the Supplementary Material. It follows from this comparison that for all the

parameters considered here, the bias-corrected estimators become worse than

the original biased estimators for both the synthetic and the real data. This is

because, although bias-correction reduces the bias in the original estimators, it

causes the variances of these estimators to increase substantially.
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Table 8. Estimators of Y

Estimator Expression

HT Ŷ HT =
∑

i∈s(Nπi)
−1Yi

RHC Ŷ RHC =
∑

i∈s
GiYi

NXi

Hájek Ŷ H =
∑

i∈s π−1
i Yi∑

i∈s π−1
i

Ratio Ŷ RA =
∑

i∈s π−1
i Yi∑

i∈s π−1
i Xi

X

Product Ŷ PR =
∑

i∈s(Nπi)
−1Yi

∑
i∈s(Nπi)

−1Xi

X

GREG Ŷ GREG = Ŷ ∗ + β̂(X − X̂∗)

PEML Ŷ PEML =
∑

i∈s ciYi

Supplementary Material

In the online Supplementary Material, we discuss some conditions from the

main paper, and describe situations in which these conditions hold. Then, we

state and prove some additional mathematical results. We also give proofs for

Remark 1 and Theorems 2, 3, 6, and 7. Furthermore, we compare the biased

estimators considered in this paper empirically, with their bias-corrected versions

based on jackknifing in terms of the MSE. Finally, we provide numerical results

related to the analyses of the synthetic and real data in Section 4.
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Appendix

Let us begin by providing the expressions (see Table 8 above) of those

estimators of Y , which are considered in this paper. In Table 8, {πi}Ni=1 denote

inclusion probabilities, and Gi is the total of the x values of that randomly

formed group from which the ith population unit is selected in the sample by

RHC sampling design (cf. Chaudhuri, Dihidar and Bose (2006)). In the case

of the GREG estimator, Ŷ ∗ =
∑

i∈s d(i, s)Yi/
∑

i∈s d(i, s), X̂∗ =
∑

i∈s d(i, s)

×Xi/
∑

i∈s d(i, s) and β̂ =
∑

i∈s d(i, s)(Yi− Ŷ ∗)(Xi−X̂∗)/
∑

i∈s d(i, s)(Xi−X̂∗)
2,

where {d(i, s) : i ∈ s} are sampling design weights. Finally, the ci’s (> 0) in

the PEML estimator are obtained by maximizing
∑

i∈s d(i, s) log(ci) subject to∑
i∈s ci = 1 and

∑
i∈s ci(Xi − X) = 0. Following Chen and Sitter (1999), we
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consider both the GREG and the PEML estimators with d(i, s) = (Nπi)
−1 under

SRSWOR, LMS sampling design and any HEπPS sampling design, and with

d(i, s) = Gi/NXi under RHC sampling design.

Let us denote the HT, the RHC, the Hájek, the ratio, the product, the GREG

and the PEML estimators of population means of h(y) by ĥHT , ĥRHC , ĥH , ĥRA,

ĥPR, ĥGREG and ĥPEML, respectively. Now, we give the proofs of Theorems 1, 4

and 5. The proofs of Remark 1 and Theorems 2, 3, 6 and 7 are given in Section

S3 of the supplement.

Proof of Theorem 1. Let us consider SRSWOR and LMS sampling design. It

follows from (i) in Lemma S6 in the supplement that
√
n(ĥ − h)

L−→ N(0,Γ) as

ν → ∞ for some p.d. matrix Γ, when ĥ is one of ĥHT , ĥH , ĥRA, ĥPR, and

ĥGREG with d(i, s) = (Nπi)
−1 under any of these sampling designs. Now, note

that maxi∈s |Xi − X| = op(
√
n), and

∑
i∈s π

−1
i (Xi − X)/

∑
i∈s π

−1
i (Xi − X)2 =

Op(1/
√
n) as ν → ∞ under the above sampling designs (see Lemma S8 in the

supplement). Then, by applying Theorem 1 of Chen and Sitter (1999) to each

real-valued coordinate of ĥPEML and ĥGREG, we get
√
n(ĥPEML−ĥGREG) = op(1)

as ν → ∞ for d(i, s) = (Nπi)
−1 under these sampling designs. This implies that

ĥPEML and ĥGREG with d(i, s) = (Nπi)
−1 have the same asymptotic distribution.

Therefore, if ĥ is one of ĥHT , ĥH , ĥRA, ĥPR, and ĥGREG and ĥPEML with d(i, s) =

(Nπi)
−1, we have

√
n{g(ĥ)− g(h)} L−→ N(0,∆2) as ν → ∞ (A.1)

under any of the above-mentioned sampling designs for some ∆2 > 0 by the

delta method and the condition ∇g(µ0) ̸= 0 at µ0 = limν→∞ h. It can be shown

from the proof of (i) in Lemma S6 in the supplement that ∆2 = ∇g(µ0)Γ1

(∇g(µ0))
T , where Γ1 = limν→∞ nN−2

∑N
i=1(Vi − Tπi)

T (Vi − Tπi)(π
−1
i − 1). It

can also be shown from Table 1 in the supplement that under each of the above

sampling designs, Vi in Γ1 is hi or hi − h or hi − hXi/X or hi + hXi/X or

hi − h − Sxh(Xi − X)/S2
x if ĥ is ĥHT or ĥH or ĥRA or ĥPR, or ĥGREG with

d(i, s) = (Nπi)
−1, respectively.

Now, by (i) in Lemma S7 in the supplement, we have

σ2
1 = σ2

2 = (1− λ) lim
ν→∞

∑N
i=1(Ai − Ā)2

N
, (A.2)

where σ2
1 and σ2

2 are as defined in the statement of Lemma S7, and Ai =

∇g(µ0)V
T
i for different choices of Vi mentioned in the preceding paragraph. Note

that g(ĥGREG) and g(ĥPEML) have the same asymptotic distribution under each

of SRSWOR and LMS sampling design since
√
n(ĥPEML − ĥGREG) = op(1) for

ν → ∞ under these sampling designs as pointed out earlier in this proof. Further,
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(A.2) implies that g(ĥGREG) with d(i, s) = (Nπi)
−1 has the same asymptotic MSE

under SRSWOR and LMS sampling design. Thus g(ĥGREG) and g(ĥPEML) with

d(i, s) = (Nπi)
−1 under SRSWOR and LMS sampling design form class 1 in

Table 2.

Next, (A.2) yields that g(ĥHT ) has the same asymptotic MSE under SR-

SWOR and LMS sampling design. It also follows from (A.2) that g(ĥH) has the

same asymptotic MSE under SRSWOR and LMS sampling design. Now, note

that g(ĥHT ) and g(ĥH) coincide under SRSWOR. Thus g(ĥHT ) under SRSWOR,

and g(ĥHT ) and g(ĥH) under LMS sampling design form class 2 in Table 2.

Next, (A.2) implies that g(ĥRA) has the same asymptotic MSE under

SRSWOR and LMS sampling design. Further, (A.2) implies that g(ĥPR) has

the same asymptotic MSE under SRSWOR and LMS sampling design. Thus

g(ĥRA) under SRSWOR and LMS sampling design forms class 3 in Table 2, and

g(ĥPR) under those sampling designs forms class 4 in Table 2. This completes

the proof of Theorem 1.

Proof of Theorem 4. Note that Conditions 2 and 3 hold a.s. [P] since Condi-

tion 6 holds and EP(ϵi)
4 < ∞. Also, note that Condition 4 holds a.s. [P] under

SRSWOR and LMS sampling design (see Lemma S2 in the supplement). Then,

under the above sampling designs, conclusions of Theorems 1 and 3 hold a.s. [P]
for d = p = 1, h(y) = y and g(s) = s. Note that Wi = ∇g(h)hT

i = Yi. Also, note

that the ∆2
i ’s in Table 3 can be expressed in terms of superpopulation moments

of (Yi, Xi) a.s. [P] by SLLN since EP(ϵi)
4 < ∞. Recall from the beginning of

Section 3 that we have taken σ2
x = 1. Then, we have ∆2

2 − ∆2
1 = (1 − λ)σ2

xy,

∆2
3 −∆2

1 = (1− λ){σxy −EP(Yi)/µ1}2 and ∆2
4 −∆2

1 = (1− λ){σxy +EP(Yi)/µ1}2
a.s. [P], where µ1 = EP(Xi) and σxy = covP(Xi, Yi). Hence, ∆

2
1 < ∆2

i a.s. [P] for
i = 2, 3, 4.

Next consider the case of 0 ≤ λ < EP(Xi)/b. Note that nγ → c as ν → ∞
for some c ≥ 1 − λ by Lemma S1 in the supplement. Also, note that a.s. [P],
Condition 5 holds in the case of RHC sampling design and Condition 4 holds

in the case of any HEπPS sampling design (see Lemma S2 in the supplement).

Then, under RHC and any HEπPS sampling designs, conclusions of Theorems

2 and 3 hold a.s. [P] for d = p = 1, h(y) = y and g(s) = s. Further, we

have ∆2
5 − ∆2

1 = [EP{Yi − EP(Yi)}2(µ1/Xi − λ) − µ2
1σxy{σxycovP(Xi, 1/Xi) −

2covP(Yi, 1/Xi)} + λσ2
xy] − (1 − λ)(σ2

y − σ2
xy), ∆

2
6 − ∆2

5= EP{Y 2
i (µ1/Xi − λ)} −

{λEP(YiXi) − EP(Yi)µ1}2/χµ1 − [EP{Yi − EP(Yi) − σxy(Xi − µ1)}2(µ1/Xi − λ)],

∆2
7−∆2

5 = [µ2
1σxy{σxycovP(Xi, 1/Xi)−2covP(Yi, 1/Xi)}−λσ2

xy−λ2σ2
xy/µ1χ], ∆

2
8−

∆2
1 = c[µ1EP{Yi − EP(Yi)}2/Xi − µ2

1σxy{σxycovP(Xi, 1/Xi)− 2covP(Yi, 1/Xi)}]−
(1− λ)(σ2

y − σ2
xy) and ∆2

9 −∆2
1 = c{µ1EP(Y

2
i /Xi)− E2

P(Yi)} − (1− λ)(σ2
y − σ2

xy)

a.s. [P], where σ2
y = varP(Yi), χ = µ1−λ(µ2/µ1) and µ2 = EP(Xi)

2. Here, we note

that χ = EP{X2
i (µ1/Xi − λ)}/µ1 > 0 because Condition 6 holds and Condition
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1 holds with 0 ≤ λ < EP(Xi)/b. Moreover, from the linear model set up, we can

show that ∆2
5 −∆2

1 = σ2(µ1µ−1 − 1) > 0, ∆2
6 −∆2

5 = EP{(α+ βXi)− χ−1Xi(α+

βµ1−λα−λβµ2/µ1)}2(µ1/Xi−λ) ≥ 0, ∆2
7−∆2

5 = β2EP{(Xi−µ1)−λχ−1Xi(µ1−
µ2/µ1)}2(µ1/Xi −λ) ≥ 0, ∆2

8 −∆2
1 = σ2{cµ1µ−1 − (1−λ)} ≥ cσ2(µ1µ−1 − 1) > 0

and ∆2
9 − ∆2

1 = σ2{cµ1µ−1 − (1 − λ)} + cα2(µ1µ−1 − 1) > 0 a.s. [P], where

σ2 = EP(ϵi)
2. Note that ∆2

6−∆2
5 ≥ 0 and ∆2

7−∆2
5 ≥ 0 because Condition 6 holds

and Condition 1 holds with 0 ≤ λ < EP(Xi)/b. Therefore, ∆2
1 < ∆2

i a.s. [P] for
i = 2, . . . , 9. This completes the proof of Theorem 4.

Proof of Theorem 5. The proof follows in a straightforward way from Theo-

rem 4.
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