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Abstract: We investigate several well-known estimators of finite population means
and the functions of these means under standard sampling designs. Such func-
tions include the variance, correlation coefficient, and regression coefficient in the
population as special cases. We compare the performance of these estimators
under different sampling designs, based on their asymptotic distributions. We
construct equivalence classes of estimators under different sampling designs so that
estimators in the same class have equivalent performance in terms of the asymptotic
mean squared error (MSE). We then compare estimators from different equivalence
classes under superpopulations that satisfy linear models. We show that the pseudo
empirical likelihood (PEML) estimator of the population mean under simple random
sampling without replacement (SRSWOR) has the lowest asymptotic MSE of the
estimators considered here. In addition, for the variance, correlation coefficient, and
regression coefficient of the population, the plug-in estimators based on the PEML
estimator have the lowest asymptotic MSEs under SRSWOR. However, for any
high entropy 7PS sampling design, which uses auxiliary information, the plug-in
estimators based on the Héjek estimator have the lowest asymptotic MSEs.

Key words and phrases: Asymptotic normality, equivalence classes of estimators,
high entropy sampling designs, inclusion probability, linear regression model, rejec-
tive sampling design, relative efficiency, superpopulation models.

1. Introduction

Suppose that P = {1,2,..., N} is a finite population of size N, s is a sample
of size n (< N) from P, and S is the collection of all possible samples of size
n. Then, a sampling design P(s) is a probability distribution on § such that
0< P(s) <1lforallse Sand ) .sP(s) =1 In this study, we consider the
following designs: simple random sampling without replacement (SRSWOR), the
Lahiri-Midzuno-Sen (LMS) sampling design (see |Lahiri (1951)); Midzuno (1952);
Sen| (1953))), the Rao-Hartley-Cochran (RHC) sampling design (see |Rao, Hartley
and Cochran| (1962))), and high entropy n#PS (HE#PS) sampling designs (see
Section 2). Note that all of the above sampling designs other than SRSWOR use
some auxiliary variable.

Let (Y;, X;) be the value of (y, z) for the ith population unit, fori =1,..., N,
where gy is a univariate or multivariate study variable, and x is a positive
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real-valued size/auxiliary variable. Suppose that Y = Zf\il Y;/N is the finite
population mean of y. The Horvitz-Thompson (HT) estimator (see Horvitz and
Thompson| (1952)) and the RHC (see Rao, Hartley and Cochran (1962])) estimator
are popular design unbiased estimators of Y. Other well-known estimators of
Y are the Hajek estimator (see Héjek| (1971); [Sirndal, Swensson and Wretman
(2003), and the references therein), ratio estimator (see|Cochran (1977)), product
estimator (see Cochran| (1977))), generalized regression (GREG) estimator (see
Chen and Sitter| (1999))), and pseudo empirical likelihood (PEML) estimator
(see |Chen and Sitter| (1999)). However, these estimators are not always design
unbiased. See the Appendix for expressions of these estimators. Now, suppose
that y is a R%-valued (d > 1) study variable, and g(>.~ , h(Y;)/N) is a population
parameter. Here, h: R? — RP is a function with p > 1, and g: R» — R
is a continuously differentiable function. All vectors in Euclidean spaces are
taken as row vectors, and a superscript 1" denotes their transpose. Examples of
such parameters are the variance, correlation coefficient, and regression coefficient
associated with a finite population. For simplicity, we often write h(Y;) as h;.

Then, g(h) = g(zij\il h;/N) is estimated by plugging in the estimator 7 of .
Our objective is to find an asymptotically efficient (in terms of the mean

squared error (MSE)) estimator of g(h). In Section 2, using the asymptotic
distribution of the estimator of g(h) under the above sampling designs, we
construct equivalence classes of estimators such that any two estimators in
the same class have the same asymptotic MSE. In Section 3, we consider the
special case of g(h) = Y, and compare the equivalence classes of estimators
under superpopulations that satisfy linear models. For the estimators considered
here under different sampling designs, the PEML estimator of the population
mean under SRSWOR has the lowest asymptotic MSE. Furthermore, the PEML
estimator has the same asymptotic MSE under SRSWOR and the LMS sampling
design. Interestingly, the performance of the PEML estimator under the RHC
and any HE7PS sampling designs, which use auxiliary information, is worse than
that under SRSWOR. The GREG estimator has been shown to be asymptotically
at least as efficient as the HT, ratio, and product estimators under SRSWOR
(see (Cochran| (1977)). It follows from our analysis that the PEML estimator
is asymptotically equivalent to the GREG estimator under all sampling designs
considered here.

In Section 3, we consider the cases when g(h) is the variance, the correlation
coefficient, and the regression coefficient in the population. Note that if the
estimator of the population variance is constructed by plugging in the HT, ratio,
product, or GREG estimator of the population mean, then the estimators of the
variance may become negative. The same applies to the correlation coefficient
and regression coefficient, because these estimators require an estimator of
the population variance. On the other hand, if the estimators of the above-
mentioned parameters are constructed using the Hajek or PEML estimators of the
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population mean, such a problem does not occur. Therefore, for these parameters,
we compare only those equivalence classes that contain plug-in estimators based
on the H4jek and PEML estimators. Under superpopulations that satisfy linear
models, we again conclude that the plug-in estimator for these parameters based
on the PEML estimator has the lowest asymptotic MSE under SRSWOR and the
LMS sampling design. Moreover, under any HE7PS sampling design, which uses
the auxiliary information, the plug-in estimator based on the Hajek estimator has
the lowest asymptotic MSE.

Scott and Wul (1981)) prove that the ratio estimator has the same asymptotic
distribution under SRSWOR and the LMS sampling design. |Chen and Sitter
(1999) show that the PEML estimator is asymptotically equivalent to the GREG
estimator under conditions on the sampling design that are satisfied by SRSWOR
and the RHC sampling design. However, this is the first study to produce
asymptotic equivalence classes, such as those in Table 2 in Section 2, which
consist of several estimators of a function of the population mean under several
sampling designs.

When the study and size variables are exactly linearly related, Raj| (1954)
compared the sample mean under simple random sampling with replacement
and the usual unbiased estimator of the population mean under the probability
proportional to size sampling with replacement. |Avadhani and Sukhatme, (1970)
compared the ratio estimator of the population mean under SRSWOR with the
RHC estimator under the RHC sampling design when an approximate linear
relationship holds between the study variable and the size variable. |[Avadhani and
Srivastaval (1972)) compared the ratio estimator of the population mean under the
LMS sampling design and the RHC estimator under the RHC sampling design
when the study and size variables are approximately linearly related. It has also
been shown that the GREG estimator of the population mean is asymptotically
at least as efficient as the HT, ratio, and product estimators under SRSWOR (see
Cochran| (1977)). However, the above comparisons included neither the PEML
estimator nor HE7PS sampling designs.

In our empirical studies, presented in Section 4, using synthetic and real
data, our numerical results support our theoretical results. Section 5 concludes
the paper. All proofs are given in the Appendix.

2. Comparison of Different Estimators of g(h)

In this section, we compare the estimators of g(h) obtained by plugging in the
estimators of h given in Table 1. First, we find equivalence classes of estimators

of g(h) such that any two estimators in the same class are asymptotically normal,
with the same mean g(h) and the same variance.
We define our asymptotic framework as follows. Let {P,} be a sequence of

nested populations with N,, n, — 0o as v — oo (see [Isaki and Fuller (1982);



2202 DEY AND CHAUDHURI

Table 1. Estimators of h.

Sa@pllng Estimators

designs

SRSWOR HT (which coincides with Héjel? estimator), ratio,
product, GREG and PEML estimators

LMS HT, Hajek, ratio, product, GREG and
PEML estimators

HEAPS HT (which coincides with ratio and product
estimators), Hdjek, GREG and PEML estimators

RHC RHC, GREG and PEML estimators

Wang and Opsomer| (2011); |Conti and Marella| (2015)); Boistard, Lopuhaa and
Ruiz-Gazen| (2017)); Han and Wellner| (2021); and the references therein), where
N, and n,, are, respectively, the population size and the sample size corresponding
to the vth population. Henceforth, we suppress the subscript v that tends to oo,
for the sake of simplicity. Throughout this paper, we consider the following
condition (cf. Assumption 1 in|Cardot and Josserand, (2011, A4 in |Conti (2014]),
A1 in |Cardot, Goga and Lardin| (2014), A4 in |Conti and Marella, (2015), and
(HT3) in Boistard, Lopuhaéd and Ruiz-Gazen| (2017))).

Condition 1. n/N — X as v — oo, where 0 < A < 1.

Before we state the main results, let us discuss the HExPS sampling
design and some conditions on {(X;,h;) : 1 < i < N} (recall that h; =
h(Y;)). A sampling design P(s) satisfying the condition D(P||R)= > . P(s)log
{P(s)/R(s)} — 0 as v — oo, for some rejective sampling design (see Hajek
(1964)) R(s), is known as a high entropy sampling design (see Berger| (1998));
Conti (2014); Cardot, Goga and Lardin (2014); Boistard, Lopuhaé and Ruiz-
Gazen| (2017); and the references therein). A sampling design P(s) is called an
HE#PS sampling design if it is a high entropy sampling design and its inclusion
probabilities satisfy the condition m; = nX,;/ Zi\il X,, fors =1,...,N. An
example of an HE7PS sampling design is the Rao-Sampford (RS) sampling design
(see Sampford (1967) and Berger| (1998)). We now state several conditions.

Condition 2. {P,} is such that 1 ||h||*/N = O(1) and SN, X}/N =0(1)
as v — oco. Further, lim,_ . h exists, and X = Zf\; X;/N and S?= Zivzl(Xi —
X)2/N are bounded away from zero as v — oo. Moreover, Vg(uo) # 0, where
o = lim,_,o h and Vg is the gradient of g.

Condition 3. maxi<i<n Xz/ minlSiSN Xi = O(l) as v — O0.

Let Vj, be one of hi, hz —E, hz —EXZ/Y, hi +EXZ/Y, and h,’ —E— th(Xi —
X)/8%, fori=1,...,N, h=~ hi/N, and S, = 3V, X;h;/N — h X. Define
T = Zf\il Vi(l—m)/ Zivzl m;(1 —;), where 7; is the inclusion probability of the
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ith population unit. Furthermore, in the case of the RHC sampling design, define
V=N V/N,X=%V" X;/N,and v = 3" | Ni(N; — 1)/N(N — 1), where
N is the size of the ith group formed randomly in the RHC sampling design (see
Rao, Hartley and Cochran| (1962)), for i = 1,...,n. Now, we state the conditions
on the population values and the sampling designs.

Condition 4. P(s) is such that nN-23.~ (V; — Tr;))"(V; — Tr;)(n; ' — 1)
converges to some positive-definite (p.d.) matriz as v — 0.

Condition 5. nyXN'SN (V; — X, V/X)T(V, — X, V/X)/X; converges to
some p.d. matriz as v — oo.

Conditions similar to Conditions 2, 4, and 5 are often used in the sample
survey literature (see Assumption 3 in |Cardot and Josserand (2011), A3 and A6
in both Conti| (2014)) and |Conti and Marella (2015), (HT2) in Boistard, Lopuhaa
and Ruiz-Gazen (2017), and F2 and F3 in Han and Wellner (2021)). Conditions 2
and 5 hold (almost surely) whenever {(X;, h;) : 1 <i < N} are generated from a
superpopulation model that satisfies appropriate moment conditions (see Lemma
S2 in the Supplementary Material). The condition S~ ||h;|[*/N = O(1) holds
when & is a bounded function (e.g., h(y) = y and y is a binary study variable).
Condition 3 implies that the variation in the population values X1, ..., Xy cannot
be too large. Under any 7wPS sampling design, Condition 3 is equivalent to the
condition that L < Nm;/n < L', for some constants L, L' > 0, any i = 1,..., N,
and all sufficiently large v > 1; see (C1) in Boistard, Lopuhaa and Ruiz-Gazen
(2017) and Assumption 2-(i) in |Wang and Opsomer| (2011)). Condition 3 holds
(almost surely) when {X;}¥ | are generated from a superpopulation distribution,
and the support of the distribution of X, is bounded away from zero and ooc.
Condition 4 holds (almost surely) for SRSWOR, the LMS sampling design, and
any 7PS sampling design under appropriate superpopulation models (see Lemma
S2 in the Supplementary Material). For the RHC sampling design, we also assume
that {N;}7, is given by

N/n, fori=1,...,n, when N/n is an integer,
N; =4 |N/n|, fori=1,...,k, and (2.1)
IN/n|]+1, fori=k+1,...,n, when N/n is not an integer,

where k is such that Y. | N; = N. Here, | N/n| is the integer part of N/n. Rao,
Hartley and Cochran| (1962)) showed that this choice of {N;}? ; minimizes the
variance of the RHC estimator. Now, we state the following theorem.

Theorem 1. Suppose that Condition 1 through Condition 4 hold. Then, classes

1,2,3, and 4 in Table 2 describe equivalence classes of estimators for g(h) under
SRSWOR and the LMS sampling design.
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Table 2. Disjoint equivalence classes of estimators for g(h).

Estimators of h
i:;?;mg GII‘DEE(;Aind HT RHC  Hijek  Ratio  Product
SRSWOR class 1 class 2* class 2* class 3 class 4
LMS class 1 class 2 class 2 class 3 class 4
HE#PS class 5 class 6** class 7 class 6** class 6**
RHC class 8 class 9

*The HT and H§jek estimators coincide under SRSWOR.
**The HT, ratio, and product estimators coincide under HE7PS sampling designs.

For the next two theorems, we assume that nmax;<;<y X;/ Zfil X; < 1.
Note that this condition is required to hold for any without-replacement 7wPS
sampling design.

Theorem 2.

(i) If Condition 1 through Condition 4 hold, then classes 5,6, and 7 in Table

2 describe equivalence classes of estimators for g(h) under any HEmPS
sampling design.

(i) Under the RHC sampling design, if Condition 1 through Condition 3 and
Condition 5 hold, then classes 8 and 9 in Table 2 describe equivalence classes

of estimators for g(h).

Remark 1. If Condition 2 through Condition 4 hold, and Condition 1 holds with
A =0, then in Table 2, class 8 merges with class 5, and class 9 merges with class
6. For details, see Section S3 in the Supplementary Material.

Next, suppose that W; = Vg(h)hT, for i = 1,...,N, W = Zf\;l W;/N,
Sew= Zivzl WiXi/N — W X, S’i]: Zf\; Wi2/N _Wzv Si = sz\; XZQ/N - YQ,
and ¢ = X — (n/N) S, X2/NX. Now, we state the following theorem.

Theorem 3. Suppose that the assumptions of Theorems 1 and 2 hold. Then,
Table 3 gives expressions for the asymptotic MSEs, A2, ... A2, of the estimators
i equivalence classes 1,...,9, respectively, in Table 2.

Remark 2. It can be shown in a straightforward way from Table 3 that A7 < A
for i = 2,3, and 4. Thus, the plug-in estimators of g(h) based on the GREG and
the PEML estimators are asymptotically as good as, if not better than, those
based on the HT (which coincides with the Héjek estimator), ratio, and product
estimators under SRSWOR, and those based on the HT, Héjek, ratio, and product

estimators under the LMS sampling design.
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Table 3. Asymptotic MSEs of estimators for g(h) (note that to simplify the notation, we
omit the subscript v from expressions on which limits are taken).

2 _ (Sow)2
= (1-A) lim {87 - (%)}
= (=) lim S, 2
W Saw w
= (1= ) Jim {82 -2 4 () 52}
— L2
Wsw
A2 :( A)Jggo{s? 4o WSew (%) 2}
— 2 ~
7_1 n N i X )12 X n
A%:gggom L+ PO X T W) < (-
2 X
A%:VIE{)IONZ ( N¢X w) X (Xi _%)
112
Ag:,}i)n;oTWN - 1{W W — “’(Xi—X)} /X
> o
A = hm nv( val V; -W )
Table 4. Examples of g(h).
Parameter d p h g
Mean 1 1 hy)=y g(s)=s
Variance 1 2 hy) =2y g(s1,82) = 51 — 83
Correlation h(Zl ) = 85—5182
2 5 S 78 78 78 78 3 .2 3 3
coefficient (21, 22,22, 25, 21 22) 9(51, 52,85, 54, 85) = {(sa=sD)(sa—s3) 1/
Regression h(z1,22) = S4—8182
4 $1,82,83,84,85) = “ g3
coefficient (21, 20,23, 2122) 9(51, 2, 83, 84, 55) 53752

Let us now consider some examples of g(h) in Table 4. The conclusions of
Theorems 1 through 3 and Remarks 1 and 2 hold for all parameters in Table 4.
Here, recall that for the variance, correlation coefficient, and regression coefficient,
we consider only the plug-in estimators based on the Hajek and PEML estimators.

3. Comparison of Estimators under Superpopulation Models

In this section, we derive asymptotically efficient estimators for the mean,
variance, correlation coefficient, and regression coefficient under superpopulations
that satisfy linear regression models. Raj| (1954), Murthy| (1967), Avadhani and
Sukhatme| (1970), |Avadhani and Srivastava (1972)), and |Cochran (1977)) used
the linear relationship between Y; and X; to compare different estimators of
the mean. However, they did not use a probability distribution for (Y, X;).
Subsequently, Rao| (2003), Fuller| (2011), and |Chaudhuri (2014) (see chap. 5),
among others, considered the linear relationship between Y; and X; and a
probability distribution for (Y;, X;) to construct different estimators and study
their behavior. However, to the best of our knowledge, no prior studies have
shown how to find asymptotically the most efficient estimator for the mean
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among a large class of estimators, as we do here. In addition, our study is
the first to compare plug-in estimators of the variance, correlation coefficient,
and regression coefficient for large samples. Suppose that {(V;, X;): 1 <i < N}
are independently and identically distributed (i.i.d.) random vectors defined on
a probability space (Q,F,P). Without any loss of generality, for convenience,
we take 02 = Ep(X; — Ep(X;))? =1. This might require rescaling the variable
x. Here, Ep denotes the expectation with respect to the probability measure P.
Recall that the population values X, ..., Xy are used to implement some of the
sampling designs. In such a case, we consider a function P(s,w) on & x  such
that P(s,-) is a random variable on Q for each s € S, and P(-,w) is a probability
distribution on S for each w € Q (see Boistard, Lopuhaa and Ruiz-Gazen| (2017))).
Note that P(s,w) is the sampling design for any fixed w in this case. Then, the A?
in Table 3 can be expressed in terms of superpopulation moments of (h(Y;), X;),
from the strong law of large numbers (SLLN), and we can easily compare different
classes of estimators in Table 2 under linear models. Let us first state several
conditions on the superpopulation distribution P.

Condition 6. X; < b a.s. [P] for some 0 < b < oo, Ep(X;)™? < oo, and
max;<;<y X;/ minj<;<y X; = O(1) as v — 0o a.s. [P]. In addition, the support
of the distribution of (h(Y;), X;) is not a subset of a hyper-plane in RPT.

The condition X; < b a.s. [P] for some 0 < b < oo in Condition 6 and Con-
dition 1, along with 0 < X\ < Ep(X,)/b, ensure that n max;<;<n X,/ Zf\il X; <
1 for all sufficiently large v a.s. [P|, which is required to hold for any
without-replacement 7PS sampling design. On the other hand, the condition,
maxi<j<y X;/ minj<;<y X; = O(1) as v — oo a.s. [P] in Condition 6 implies that
Condition 3 holds a.s. [P|. Further, Condition 6 ensures that Condition 5 holds
a.s. [P] (see Lemma S2 in the Supplementary Material). Condition 6 also ensures
that Condition 4 holds under the LMS and any 7PS sampling designs a.s. [P]
(see Lemma S2 in the Supplementary Material).

Let us first consider the case when g(h) is the mean of y (see the second row in
Table 4). Further, suppose that V; = a+ X, +¢;, fora,f e Randi=1,..., N,
where {¢;}¥, are i.i.d. random variables and are independent of {X;}Y ,, with
Ep(e;) =0 and Ep(e;)* < 0o. Then, we have the following theorem.

Theorem 4. Suppose that Condition 1 holds, with 0 < A\ < Ep(X;)/b, and
Condition 6 holds. Then, a.s. [P], the PEML estimator under SRSWOR and the
LMS sampling design has the lowest asymptotic MSE among all estimators of the
population mean under different sampling designs considered here.

Remark 3. Note that for SRSWOR, the PEML estimator of the population
mean has the lowest asymptotic MSE among all estimators considered here a.s.
[P] when Condition 1 holds with 0 < A < 1 and Condition 6 holds (see the proof
of Theorem 4).
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Theorem 5. Suppose that Condition 1 holds with 0 < \ < Ep(X;)/b, and
Condition 6 holds. Then, a.s. [P], the performance of the PEML estimator of the
population mean under the RHC and any HEmPS sampling designs, which use
auziliary information, is worse than its performance under SRSWOR.

Recall from the introduction that for the variance, correlation coefficient,
and regression coefficient, we compare only those equivalence classes that contain
plug-in estimators based on the Hajek and PEML estimators. We first state the
following condition.

Condition 7. & > 2max{u, pu_1/(pp—1 — 1)}, where & = ps — popy is the
covariance between X? and X;, and p; = Ep(X;)?, for j = —1,1,2,3.

The above condition is used to prove part (i) in each of Theorems 6 and
7. This condition holds when X; follows a well-known distribution, such as the
gamma (with shape parameter value larger than one and any scale parameter
value), beta (with the second shape parameter value greater than the first shape
parameter value, and the first shape parameter value larger than one), Pareto
(with shape parameter value lying in the interval {3, (5 ++/17)/2} and any scale
parameter value), log-normal (with both the parameters taking any value), and
Weibull (with shape parameter value lying in the interval (1,3.6) and any scale
parameter value). Now, consider the case when g(h) is the variance of y (see the
third row in Table 4). Recall the linear model Y; = a + X, +¢; from above, and
assume that Fp(e;)® < co. Then, we have the following theorem.

Theorem 6.

(i) Let us first consider SRSWOR and the LMS sampling design, and suppose
that Condition 1 and Condition 6 hold. Then, a.s. [P], the plug-in estimator
of the population variance based on the PEML estimator has the lowest
asymptotic MSE among all estimators considered here.

(i) Next, consider any HEmPS sampling design, and suppose that Condition 1
holds with 0 < XA < Ep(X;)/b, and Conditions 6 and 7 hold. Then, a.s. [P],
the plug-in estimator of the population variance based on the Hdjek estimator
has the lowest asymptotic MSE among all estimators considered here.

Now, suppose that y = (z1,22) € R?, and consider the case when g(h) is
the correlation coefficient between z; and 2z, (see the fourth row in Table 4).
We also consider the case when g(h) is the regression coefficient of z; on z,
(see the fifth row in Table 4). Further, suppose that ¥; = a + X, + ¢; for
Yi = (Z1,Z2), a,8 € R* and i = 1,..., N, where {¢;}Y, are ii.d. random
vectors in R? independent of {X;}Y, with Ep(¢;) = 0 and Ep||¢;||® < oo. Then,
we have the following theorem.
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Theorem 7.

(i) Let us first consider SRSWOR and the LMS sampling design, and suppose
that Conditions 1 and 6 hold. Then, a.s. [P], the plug-in estimator of each
of the correlation and the regression coefficients in the population based on
the PEML estimator has the lowest asymptotic MSE among all estimators
considered here.

(i) Next, consider any HEmPS sampling design, and suppose that Condition 1
holds with 0 < X\ < Ep(X;)/b, and Conditions 6 and 7 hold. Then, a.s. [P],
the plug-in estimator of each of the above parameters based on the Hdjek
estimator has the lowest asymptotic MSE among all estimators considered
here.

4. Data Analysis

In this section, we empirically compare the estimators of the mean, variance,
correlation coeflicient, and regression coefficient using real and synthetic data.
Note that for the empirical comparison, we exclude some of the estimators
considered in the theoretical comparison, for the following reasons:

(i) Because the GREG estimator is well-known to be asymptotically better
than the HT, ratio, and product estimators under SRSWOR (see |(Cochran
(1977))), we exclude these estimators under SRSWOR.

(ii) Because the MSEs of the estimators under the LMS sampling design become
very close to the MSEs of the same estimators under SRSWOR, as expected
from Theorem 1, we do not report these results under the LMS sampling
design. Moreover, SRSWOR is a simpler and more commonly used sampling
design than is the LMS sampling design.

Thus, we consider the estimators in Table 5 for the empirical comparison. Recall
from Table 1 that the HT, ratio, and product estimators of the mean coincide
under any HE7PS sampling design. We draw I = 1000 samples, each of sizes
n = 75, 100, and 125, using the sampling designs in Table 5. We use the software
R to draw the samples and compute the various estimators. For the RS sampling
design, we use the “pps” package in R, and for the PEML estimator, we use the
R code in [Wu| (2005). We compare the two estimators g(h;) and g(h,) of g(h)
empirically under the sampling designs P;(s) and P,(s), respectively, in terms of
their relative efficiency, defined as

MSEp, {g(hs))
MSEp,{g(h1)}

RE{g(h), Pi|g(h2), Py} =

where MSEp, {g(ﬁ])} =I! Z{zl{g(ﬁjl) — g(ho)}? is the empirical mean squared
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Table 5. Estimators considered for the empirical comparison.

Parameters Estimators
GREG and PEML estimators under SRS-
WOR; HT, Hajek, GREG and PEML
Mean estimators under RS sampling design*;
and RHC, GREG and PEML estimators
under RHC sampling design
Obtained by plugging in H4jek and PEML
estimators under SRSWOR and RS
sampling design*, and PEML estimator
under RHC sampling design

Variance, correlation
coefficient and regression
coefficient

*We consider the RS sampling design, because it is a HExPS sampling design, and it is easier
to implement than other HE7PS sampling designs.

error of g(ﬁj) under P;(s), for j =1, 2. Here, ﬁjl is the estimate of h based on the
jth estimator and the /th sample, and g(hg) is the true value of the parameter
g(h), for j = 1,2, 1 =1,...,1. Here, g(h;) under P;(s) is more efficient than
g(hy) under Py(s) if RE{g(h1), Pi|g(hs), P} > 1.

Next, for each of the parameters considered in this section, we compare the
average lengths of the asymptotically 95% confidence intervals (CIs) constructed
using the various estimators. In order to construct asymptotically 95% Cls,
we need an estimator of the asymptotic MSE of /n{g(h) — g(h)}. If we
consider SRSWOR or the RS sampling design, it follows from the proofs of
Theorems 1 and 2 that the asymptotic MSE of /n{g(h) — g(h)} is A% =
lim, 0o nN~2Vg(h) S0 (Vs — Tr)T (Vi — Tr)(n;7 ' — 1)Vg(R)T, where T =
zjilviu —m)/ vazl 7;(1 — ;). Moreover, V; is h; or h; — h or h; — h —
Sun(X; — X)/S2% if h is hyr or hy or hppyyr (as well as hgrpa), respectively,
with d(i,s) = (Nm;)~'. Recall that S,, = S~ | X;h;/N —X h. Following Cardot,
Goga and Lardin| (2014)), we estimate A? by

A2 = nN=2Tg(h) 3 (Vi = Tm) T (Vi = Tr) (n7 = D Vo), (1)

i€s

where T = Y ics Vi(wjl - 1)/> e, (1 =), = ﬁHT in the case of the mean,
variance, and regression coefﬁcign‘c, and EA: hy in the case of the cor}"elagion
coefficient. Here, V is h; or h;—hyr or hT;—EHT—S’m,l(Xi—YHT)/S’g’l if his hyr
or hy or hpparr (as well as hareg), respectively, with d(i, s) = (N;)~!. Further,
~ o~ 2~ ~ ~ 2

th,l = Zies(Nﬂ-i)_lXihi - XHThHT and S;,l = ZieS(Nﬂ-i)_lXiQ — XHT' We
estimate h in Vg(h) using hyr in the case of the mean, variance, and regression

coefficient, because hyr is an unbiased estimator, and it is easier to compute than
the other estimators of h considered here. On the other hand, some estimators of
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the correlation coefficient may be undefined if we estimate h using any estimator
other than hH or hpEML (see the introduction). In this case, we choose hH,
because it is easier to compute than ﬁpE ML-

Next, if we consider the RHC sampling design, it follows from the
proof of Theorem 2 that the asymptotic MSE of /n{g(h) — g(h)} is A} =
lim, 0 nY XN 'x Vg(h) N (V= X, V/X)T(V,— X,V /X)X 'Vg(h)T, where
~v and V are as in the paragraph followmg Condition 3. Moreover, V; is h; or
hi —h — 8. (X; — X)/S%if h is hrpe or hppar (as well as hGREG) respectively,
with d(i,s) = G;/NX,. We estimate A2 by

A2 =y XN"'g(h) Y <V - XiVRHC) (V - XiVRHC)

i€s

(G X 2)Vg()T,
(4.2)
where %RHC =5 V G, /NXZ, h hRHC in the case of the mean, variance, and
regression coefficient, and h = hpEML in the case of the correlatlon coefficient.
Here, V, is h; or h; — hRHC S 2(X;— X)/S2 5 1fh is hRHC or hpEML (as well as
ﬁGREG), respectively, with d(i, s) = G;/NX;. Further, Smhg = s hiGi/N — X
ﬁRHC and S’il =D ics X,G;/N — Y2. In the case of the mean, variance, and

i€ES

regression coefficient, we estimate h in Vg(h) using hryc for the same reason

that we estimate h using hyy under SRSWOR and the RS sampling design.
On the other hand, in the case of the correlation coefficient, we estimate h in
Vg(h) using hppgyrr under the RHC sampling design so that the estimator of the
correlation coefficient in the expression of Vg(h) in this case is well defined.

We draw I = 1000 samples, each of sizes n = 75, 100, and 125, using the
sampling designs in Table 5. Then, for each of the parameters, sampling designs,
and estimators, we construct I asymptotically 95% CIs based on these samples,
and compute the average and the standard deviation of their lengths.

4.1. Analysis based on synthetic data

In this section, we consider the population values {(V;, X;) : 1 < i < N}
on (y,z) generated from a linear model, as follows. We choose N = 5000
and generate the X; from a gamma distribution with mean 1,000 and standard
deviation (s.d.) 200. Then, Y; is generated from the linear model Y; = 500 +
Xi:+e€, fori=1,...,N, where ¢ is generated independently of {X;}Y, from a
normal distribution with mean zero and s.d. 100. We also generate the population
values {(Y;,X;) : 1 < i < N} from a linear model in which y = (z1,29) is a
bivariate study variable. The population values {X;}Y, are generated in the
same way as in the earlier case. Then, Y; = (Zy;, Zs;) is generated from the linear
model Z;;, = a; + X; + €, for i = 1,..., N, where oy = 500 and o, = 1000.
The €,; are generated independently of the X; from a normal distribution with



ESTIMATION IN FINITE POPULATIONS 2211

Table 6. Description of study variables.

y1  Number of primary schools in village
yo  Scheduled castes population size in village
ys Number of secondary schools in village

ys  Scheduled tribes population size in village

mean zero and s.d. 100, and the €,; are generated independently of the X; and
the €;; from a normal distribution with mean zero and s.d. 200. We consider
the estimation of the mean and the variance of y for the first data set and the
correlation and the regression coefficients between z; and z, for the second data
set.

The results of the empirical comparison based on synthetic data are sum-
marized as follows. For each of the mean, variance, correlation coefficient, and
regression coefficient, the plug-in estimator based on the PEML estimator under
SRSWOR is more efficient than any other estimator under any other sampling
design (see Tables 2 through 6 in the Supplementary Material) considered in Table
5. In addition, for each of the above parameters, the asymptotically 95% CI based
on the PEML estimator under SRSWOR has the least average length (see Tables
7 through 11 in the Supplementary Material). Thus, the empirical results stated
here corroborate the theoretical results stated in Theorems 4 through 7.

4.2. Analysis based on real data

In this section, we consider a data set on village amenities in the state
of West Bengal in India obtained from the Office of the Registrar General &
Census Commissioner, India (https://censusindia.gov.in). The relevant
study variables for this data set are described in Table 6. We consider the
following estimation problems for a population of 37,478 villages. For these
estimation problems, we use the number of people living in village x as the size
variable.

(i) First, we estimate the mean and variance of each of y; and y,. The scatter
plot and the least square regression line in Figure 1 in the Supplementary
Material show that y; and x have an approximately linear relationship. In
addition, the correlation coefficient between y; and z is 0.72. On the other
hand, y» and x do not seem to have a linear relationship (see the scatter
plot and the least square regression line in Figure 2 in the Supplementary
Material).

(ii) Next, we estimate the correlation and regression coefficients of y; and ys,
and of y, and y,. The scatter plot and least square regression line in Figure 3
in the Supplementary Material show that y; does not seem to be dependent
on x. Further, we see from the scatter plot and the least square regression
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Table 7. Most efficient estimators, in terms of relative efficiency (it follows from Tables
22 through 31 in the Supplementary Material that the asymptotically 95% CIs based on
the most efficient estimators have the least average lengths).

Parameters Most efficient estimators

The plug-in estimator based on the
PEML estimator under SRSWOR
Mean of ys The HT estimator under RS sampling design

Mean and variance of y;

The plug-in estimator based on the Héjek

Variance of
b2 estimator under RS sampling design

Correlation and regression The plug-in estimator based on the PEML
coefficients of y; and ys estimator under SRSWOR

Correlation and regression The plug-in estimator based on the Hajek

coefficients of y» and y4 estimator under RS sampling design

line of y4 and z (see Figure 4 in the Supplementary Material) that y4 and
x do not seem to have a linear relationship.

The results of the empirical comparison based on real data are summarized
in Table 7. For further details, see Tables 12 through 31 in the Supplementary
Material. The approximate linear relationship between y; and x (see the scatter
plot and the least square regression line in Figure 1 in the Supplementary
Material) could be a possible reason why the plug-in estimator based on the
PEML estimator under SRSWOR is the most efficient for the mean and variance
of y;. Furthermore, possibly for the same reason, the plug-in estimators of the
correlation and regression coefficients between y; and y3; based on the PEML
estimator under SRSWOR are the most efficient.

On the other hand, y» and y,; do not seem to have a linear relationship with
x (see the scatter plots and the least square regression lines in Figures 2 and 4 in
the Supplementary Material). Possibly for this reason, the plug-in estimators of
the parameters related to y» and y, based on the PEML estimator are not able
to outperform the plug-in estimators of the same parameters based on the HT
and Hajek estimators. Next, we observe that there is substantial correlation
between y» and z (correlation coefficient=0.67), and y, and z (correlation
coefficient=0.25). Possibly because of this, under the RS sampling design, which
uses auxiliary information, the plug-in estimators of the parameters related to y,
and gy, based on the HT and H&jek estimators are the most efficient.

5. Conclusion

It follows from Theorem 4 that the PEML estimator of the mean under
SRSWOR becomes asymptotically either more efficient than, or equivalent to any
other estimator under any other sampling design considered here. It also follows
from Theorems 1 and 2 that the GREG estimator of the mean is asymptotically
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equivalent to the PEML estimator under the sampling designs considered here.
However, our numerical studies based on finite samples indicate that the PEML
estimator of the mean performs slightly better than the GREG estimator under
all the sampling designs considered in Section 4 (see Tables 2, 12, and 14 in the
Supplementary Material). Moreover, if the estimators of the variance, correlation
coefficient, and regression coefficient are constructed by plugging in the GREG
estimator of the mean, then the estimators of the population variances in these
parameters may become negative. On the other hand, if the estimators of these
parameters are constructed by plugging in the PEML estimator of the mean,
then such a problem does not occur. Further, for these parameters, the plug-in
estimators based on either the PEML or the Hajek estimator are asymptotically
best, depending on the sampling design (see Theorems 6 and 7).

We see from Theorem 4 that for the population mean, the PEML estimator,
which is not design unbiased, outperforms design unbiased estimators such as
the HT and RHC estimators. Further, the plug-in estimators of the population
variance based on the HT and RHC estimators may become negative. This affects
the plug-in estimators of the correlation and regression coefficients based on the
HT and RHC estimators.

It follows from Table 2 that under the LMS sampling design, the large-sample
performance of the estimators of the functions of means considered here is the
same as that under SRSWOR. The LMS sampling design was introduced to make
the ratio estimator of the mean unbiased. It follows from Remark 2 in Section
2 that the performance of the ratio estimator of the mean is worse than that of
several other estimators, even under the LMS sampling design.

The coefficient of variation is another well-known finite population parame-

ter, and can be expressed as a function of the population mean g(h). We have
d=1,p=2 hiy) = (y*,y), and g(s1,82) = /1 — $3/s> in this case. Of the

estimators considered here, the plug-in estimators of g(h) based on the PEML and
H&jek estimators of the mean can be used to estimate this parameter, because
it involves the finite population variance. We have omitted a comparison of
the estimators of the coefficient of variation, owing to the complexity of the
mathematical expressions. However, the asymptotic results stated in Theorems
6 and 7 hold for this parameter as well.

An empirical comparison of the biased estimators considered here and
their bias-corrected versions is performed using jackknifing in Section S4 in
the Supplementary Material. It follows from this comparison that for all the
parameters considered here, the bias-corrected estimators become worse than
the original biased estimators for both the synthetic and the real data. This is
because, although bias-correction reduces the bias in the original estimators, it
causes the variances of these estimators to increase substantially.
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Table 8. Estimators of Y

Estimator Expression

HT ?HT = Zies(N”i)flyi
RHC Y ruc = Z’iES %)}/
Hajek Y= PO

) - T Y =
Ratio YRra = %x

Yy - ies(NT) 71X,
Product }:'PR = Eigs(NWz‘) 1}2%
GREG Yerpe =Y. +B(X —X.)
PEML ?PE]WL = icsCiYi

Supplementary Material

In the online Supplementary Material, we discuss some conditions from the
main paper, and describe situations in which these conditions hold. Then, we
state and prove some additional mathematical results. We also give proofs for
Remark 1 and Theorems 2, 3, 6, and 7. Furthermore, we compare the biased
estimators considered in this paper empirically, with their bias-corrected versions
based on jackknifing in terms of the MSE. Finally, we provide numerical results
related to the analyses of the synthetic and real data in Section 4.
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Appendix

Let us begin by providing the expressions (see Table 8 above) of those
estimators of Y, which are considered in this paper. In Table 8, {m;}, denote
inclusion probabilities, and G; is the total of the x values of that randomly
formed group from which the ' population unit is selected in the sample by
RHC sampling design (cf. |Chaudhuri, Dihidar and Bose| (2006)). In the case
of the GREG estimator, Y, = > .., d(i,s)Y;/ Y., d(i,s), X. = >, d(i,s)
XXi/ Zies d(iv 3) and B = Eies d(iv S)(Yl _?*)(Xl _Y*)/ ZiES d(i’ S)(Xz _Y*)Qa
where {d(i,s) : i € s} are sampling design weights. Finally, the ¢;’s (> 0) in
the PEML estimator are obtained by maximizing >, . d(4, s) log(c;) subject to
Sies G = 1and 3, ¢;(X; — X) = 0. Following |Chen and Sitter| (1999), we



ESTIMATION IN FINITE POPULATIONS 2215

consider both the GREG and the PEML estimators with d(i, s) = (N7;)~! under
SRSWOR, LMS sampling design and any HE7PS sampling design, and with
d(i,s) = G;/NX,; under RHC sampling design.

Let us denote the HT, the RHC, the Hajek, the ratio, the product, the GP}EG
and the PEML estimators of population means of h(y) by hxr, hruc, hi, hra,
hpR, hGREG and hpEML, respectively. Now, we give the proofs of Theorems 1, 4
and 5. The proofs of Remark 1 and Theorems 2, 3, 6 and 7 are given in Section
S3 of the supplement.

Proof of Theorem 1. Let us consider SRSWOR and LMS sampling design. It
follows from (i) in Lemma S6 in the supplement that \/n(h — h) 5N (0,I') as
vV — 00 for some p.d. matrix I', when ﬁ is one of ﬁHT, ﬁH, ﬁRA, ﬁpR, and
harpe with d(i,s) = (Nm;)~! under any of these sampling designs. Now, note
that max;e, | X; — X| = 0,(v/n), and >, m "X — X)/ >, m (X — X)? =
0,(1/+/n) as v — oo under the above sampling designs (see Lemma S8 in the
supplement). Then, by applying Theorem 1 of |Chen and Sitter| (1999) to each
real-valued coordinate of ﬁpEML and ﬁGREG, we get \/ﬁ(ﬁpE‘ML —ﬁGREG) =0,(1)
as v — oo for d(i,s) = (N7;)~! under these sampling designs. This implies that
ﬁpEML and ﬁgREG with Ad(z', 52 (Nm) I have the same asymptotlc distribution.

Therefore, lfﬁ is one OfEHT, EH) hRA’ hpR, and hGREG and hPEML with d(’L, S)
(Nm;)~!, we have

Va{g(h) — g(R)} 5 N(0,A%) as v — oo (A1)

under any of the above-mentioned sampling designs for some A? > 0 by the
delta method and the condition Vg(u) # 0 at po = lim,_,» k. It can be shown
from the proof of (i) in Lemma S6 in the supplement that A? = Vg(uo)T'y
(Vg(uo))T, where T'y = lim, 0o nN 2N (V; — Tm)T(V; — Tmy)(m;t — 1), Tt
can also be shown from Table 1 in the supplement that under each of the above
sampling designs, V; in 'y is h; or h; — h or h; — hX;/X or h; + hX;/X or
hi — h — Sun(X; — X)/S? if h is hyr or hy or hra or hpg, or harpe Wwith
d(i,s) = (Nm;) ™!, respectively.
Now, by (i) in Lemma S7 in the supplement, we have

N 1)\2

02 =05 =(1-)) lim M

v—00 N ’ (Az)

where o} and o3 are as defined in the statement of Lemma S7, and A, =
Vg(uo)V,T for different choices of V; mentioned in the preceding paragraph. Note

that g(harec) and g(hpear) have the same asymptotic distribution under each

of SRSWOR and LMS sampling design since v/n(hpgyr — harea) = 0,(1) for
v — oo under these sampling designs as pointed out earlier in this proof. Further,
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implies that g(hgrrg) with d(i, s) = (N;)~! has the same asymptotic MSE
under SRSWOR and LMS sampling design. Thus g(hgrec) and g(hpgarz) with
d(i,s) = (Nm;)~! under SRSWOR and LMS sampling design form class 1 in
Table 2. .

Next, yields that g(hgr) has the same asymptotic MSEAunder SR-

SWOR and LMS sampling design. It also follows from (A.2)) that g(hy) has the
same asymptotic MSE under SRSWOR and LMS sampling design. Now, note

that g(hgr) and g(hy) coincide under SRSWOR. Thus g(hyr) under SRSWOR,
and g(hgr) and g(hg) under LMS sampling design form class 2 in Table 2.
Next, (A.2) implies that g(hzs) has the same asymptotic MSE under

SRSWOR and LMS sampling design. Further, (A.2]) implies that g(hpg) has
th<? same asymptotic MSE under SRSWOR and LMS sampling design. Thus

g(hga) under SRSWOR and LMS sampling design forms class 3 in Table 2, and

g(hpr) under those sampling designs forms class 4 in Table 2. This completes
the proof of Theorem 1.

Proof of Theorem 4. Note that Conditions 2 and 3 hold a.s. [P] since Condi-
tion 6 holds and Ep(e;)* < co. Also, note that Condition 4 holds a.s. [P] under
SRSWOR and LMS sampling design (see Lemma S2 in the supplement). Then,
under the above sampling designs, conclusions of Theorems 1 and 3 hold a.s. [P]
ford=p =1, h(y) =y and g(s) = s. Note that W, = Vg(h)hI =Y;. Also, note
that the A?’s in Table 3 can be expressed in terms of superpopulation moments
of (Y;, X;) a.s. [P] by SLLN since Ep(e;)* < oo. Recall from the beginning of
Section 3 that we have taken o7 = 1. Then, we have A — A? = (1 — \)o2,,
A2 = A2 = (1= N{0w, — Eo(Y)/in}? and A2 — A2 = (1= {0, + Es(¥) /1 1
a.s. [P], where py = Ep(X;) and o,, = covp(X;,Y;). Hence, A? < A? a.s. [P] for
i=2,3,4.

Next consider the case of 0 < A < Ep(X;)/b. Note that ny — c as v — o0
for some ¢ > 1 — A by Lemma S1 in the supplement. Also, note that a.s. [P,
Condition 5 holds in the case of RHC sampling design and Condition 4 holds
in the case of any HE7PS sampling design (see Lemma S2 in the supplement).
Then, under RHC and any HE7®PS sampling designs, conclusions of Theorems
2 and 3 hold a.s. [P] for d = p = 1, h(y) = y and g(s) = s. Further, we
have AZ — A7 = [Ee{Y; — Eo(Y)2(1/X; — A) — 1800, omycous(X;, 1/X,) —
2c0u (Vi 1/X0)} + A02,] — (1= A)(02 — 02,), A2 — AZ= Eo{Y2(uu/X; — A)} —
INER(YiX,) — Ep (Yo 1 /xin — [BedYi — Be(Yi) — 00y(X; — )21/ X: — V)],
A2 A2 = 130, {0ycovs (X, 1/X,) — 26008 (Yi, 1/ X0) )~ A2, — N2, [, A2
A2 = clji Be{Y — Bo(Y) 2/ X, — 1204, {0,c00s(X,, 1/ X0) — 20005 (i, 1/ X)) —
(1= M2~ 02,) and A — A3 = e[ Be(Y2/X,) — EA(Y)} — (1 - N)(2 ~ o%,)
a.s. [P], where o7 = varp(Y;), x = 1 —A(p2/p1) and py = Ep(X;)?. Here, we note
that x = Ep{X?(pt1/X; — A)}/p1 > 0 because Condition 6 holds and Condition



ESTIMATION IN FINITE POPULATIONS 2217

1 holds with 0 < A < Ep(X;)/b. Moreover, from the linear model set up, we can
show that AZ — A? = 0?(uypu_ — 1) > 0, A2 — AZ = Ep{(a+ X;) — x ' Xi(a+
5#1—)\a—/\ﬁuz/ﬂ1)}2(ﬂl/xi—)‘) >0, A?—Ag = 52EP{(X1—M1)—)\X71X1‘(M1 -
po/pn) (e /Xi = A) 2 0, A= A = o*{cpap—1 — (L= A} > co®(pap—1 —1) >0
and A2 — A = o*{cup1 — (1 = N} + ca®(up—y — 1) > 0 a.s. [P], where
o? = Ep(€;)?. Note that A7 — A2 > 0 and A2— A2 > 0 because Condition 6 holds
and Condition 1 holds with 0 < X\ < Ep(X;)/b. Therefore, A? < A? a.s. [P] for
1=2,...,9. This completes the proof of Theorem 4.

Proof of Theorem 5. The proof follows in a straightforward way from Theo-
rem 4.
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