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Abstract: Estimating functions with varying degrees of smoothness is a challenging

problem in nonparametric function estimation. In this paper, we propose the Lévy

adaptive B-Spline regression (LABS) model, an extension of the Lévy adaptive re-

gression kernels (LARK) models, for estimating functions with varying degrees of

smoothness. The LABS model is a LARK model with B-spline basis functions as

generating kernels. The B-spline basis functions consist of piecewise k-degree poly-

nomials with k− 1 continuous derivatives, and can systematically express functions

with varying degrees of smoothness. By changing the order of the B-spline basis, the

LABS model systematically adapts to the smoothness of the functions, for example,

jump discontinuities, sharp peaks, and so on. The results of simulation studies and

real-data examples show that the proposed model captures smooth areas, jumps,

and sharp peaks of functions. The proposed model also perform best in almost all

examples. Finally, we provide theoretical results that the mean function for the

LABS model belongs to certain Besov spaces, based on the order of the B-spline

basis, and that the prior of the model has full support on the Besov spaces.

Key words and phrases: Besov space, Lévy random measure, Nonparametric func-

tion estimation, reversible jump Markov chain Monte Carlo.

1. Introduction

Suppose we observe n pairs of observations, (x1, y1), . . . , (xn, yn), where

yi = η(xi) + εi, εi
i.i.d.∼ N (0, σ2), i = 1, . . . , n, (1.1)

and η is an unknown real-valued function that maps R to R. We wish to estimate

the mean function η, which may have varying degrees of smoothness, including

discontinuities. In nonparametric function estimation, particularly in climate

and economic data sets, we often encounter smooth curves, except for a finite

number of jump discontinuities and sharp peaks. For example, heavy rainfall can

cause a sudden rise in the water level of a river, epidemics such as the COVID-19

can increase unemployment rates, and policymakers’ decisions can cause abrupt
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changes. For instance, the United States Congress passed the National Minimum

Drinking Age Act in 1984, establishing 21 as the minimum legal age for purchasing

alcohol. This Act caused a sudden rise in mortality for young Americans around

the age of 21. Abrupt changes can provide us with meaningful information about

such issues.

There has been much research on estimating the local smoothness of func-

tions. The first approach is to minimize the penalized sum of squares based on

a locally varying smoothing parameter or penalty function across the whole do-

main. Pintore, Speckman and Holmes (2006), Liu and Guo (2010), and Wang,

Du and Shen (2013) modeled the smoothing parameter of a smoothing spline to

vary over the domain. Ruppert and Carroll (2000), Crainiceanu et al. (2007), and

Yang and Hong (2017) suggested penalized splines based on a local penalty that

adapts to spatial heterogeneity in the regression function. The second approach

is to use adaptive free-knot splines to choose the number and locations of the

knots from the data. Friedman (1991) and Luo and Wahba (1997) determined

a set of knots using stepwise forward/backward knot selection procedures. Zhou

and Shen (2001) avoided the problems of stepwise schemes by proposing opti-

mal knot selection schemes that introduced a knot relocation step. Smith and

Kohn (1996), Denison, Mallick and Smith (1998a), Denison, Mallick and Smith

(1998b), and DiMatteo, Genovese and Kass (2001) studied Bayesian estimations

of free knot splines using Markov chain Monte Carlo (MCMC) techniques. The

third approach is to use wavelet shrinkage estimators, including VisuShrink based

on the universal threshold (Donoho and Johnstone (1994)), SureShrink based on

Stein’s unbiased risk estimator (SURE) function (Donoho and Johnstone (1995)),

Bayesian thresholding rules that use a mixture prior (Abramovich, Sapatinas and

Silverman (1998)), and empirical Bayes methods for level-dependent threshold se-

lection (Johnstone and Silverman (2005)).

We consider a function estimation method using overcomplete systems. A

subset of the vectors {φ}j∈J of a Banach space F is called a complete system if∥∥∥∥η −∑
j∈J

βjφj

∥∥∥∥ < ε, ∀η ∈ F ,∀ε > 0,

where βj ∈ R and J ∈ N∪{∞}. Such a complete system is overcomplete if remov-

ing a vector φj from the system does not alter the completeness. In other words,

an overcomplete system is constructed by adding basis functions to a complete

basis (Lewicki and Sejnowski (2000)). The coefficients βj in the expansion of η

with an overcomplete system are not unique, owing to the redundancy intrinsic
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in the system. This non-uniqueness property can provide representations that

are more parsimonious than those offered by a complete system (Simoncelli et al.

(1992)).

The Lévy adaptive regression kernels (LARK) model, first proposed by Tu

(2006), is a Bayesian regression model that uses overcomplete systems with Lévy

process priors. Tu (2006) showed that the LARK model has sparse represen-

tations for η from an overcomplete system and improvements in terms of non-

parametric function estimation. Pillai et al. (2007) determined the relationship

between the LARK model and a reproducing kernel Hilbert space (RKHS), and

Pillai (2008) proved the posterior consistency of the LARK model. Chu, Clyde

and Liang (2009) used continuous wavelets as the elements of an overcomplete

system. Wolpert, Clyde and Tu (2011) obtained sufficient conditions for LARK

models to lie in some Besov space or Sobolev space. Lee, Mano and Lee (2020)

devised an extended LARK model with multiple kernels instead of only one type

of kernel.

In this study, we develop a fully Bayesian approach with B-spline basis func-

tions as the elements of an overcomplete system , called Lévy adaptive B-Spline

regression (LABS). Although the approach of Chu, Clyde and Liang (2009) and

the LARK methods are useful tools, the LABS model demonstrates clear ad-

vantages over them. First, the approach of Chu, Clyde and Liang (2009) uses

wavelet functions to generate an overcomplete system. Note that the wavelets

of the Daubechies’ family other than the Haar wavelet do not have closed-form

expressions. Thus, we need to use a numerical algorithm, namely, the Daubechies-

Lagarias pyramidial algorithm (Vidakovic (2009)), to evaluate wavelets at arbi-

trary points. The Daubechies-Lagarias algorithm requres multiplying a number

of (2N −1)× (2N −1) matrices, where N is the number of vanishing moments of

the mother wavelet. In theory, the number of matrices in the product needs to be

taken to∞, and it increases as more precision in the computation is required. In

addition, if N is large, the matrix multiplication can be burdensome. In a typical

wavelet application of equally spaced data, the Daubechies-Lagarias algorithm

can be avoided by using a discrete wavelet transform. However, in the LARK

model, the kernels are not equally spaced, and so we need to use a computa-

tionally expensive algorithm. The B-spline basis, defined as the convolution of

the unit box function, has a simple explicit format in both the time and the fre-

quency domains, which may be useful for statistical analysis. Second, splines are

piecewise polynomials, and it is easier to obtain their derivatives and integrals,

which may be required in the posterior analysis, than it is for other generating

functions, including wavelet and kernel functions. Third, splines provide a flexi-
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ble framework that can switch between two extreme cases, namely, the piecewise

constant model (degree zero) and the band-limited model (degree infinite), which

is not feasible with a wavelet basis and a kernel function. Finally, splines smooth

the signal by imposing smoothness, whereas wavelets impose sparsity. Therefore,

splines are more natural for smoothing than wavelets are.

The main contributions of this work are as follows.

1. The LABS model can systematically represent the smoothness of functions

that vary locally by changing the order of the B-spline basis. The vary-

ing degree of the B-spline basis enables the LABS model to adapt to the

smoothness of the functions. The LABS model can also be used to construct

overcomplete systems with B-spline bases with different types of differentia-

bility. In contrast, Tu (2006), Chu, Clyde and Liang (2009), and Wolpert,

Clyde and Tu (2011) use only one type of generating element in overcom-

plete systems. Using two or more types of generating functions as elements

of an overcomplete system is more effective for estimating the mean function

η with varying degrees of smoothness.

2. We investigate two theoretical properties of the LABS model. First, the

mean function of the LABS model exists in certain Besov spaces, based on

the degree of the B-spline basis. Second, the prior of the LABS model has

full support on some Besov spaces. Thus, the proposed model extends the

range of the smoothness classes of the mean function.

3. We provide empirical results demonstrating that our model performs well

in spatially inhomogeneous functions, such as functions with jump disconti-

nuities, sharp peaks, and smooth parts. The LABS model achieves the best

results in almost all experiments in comparison with other popular nonpara-

metric function estimation methods. In particular, the LABS model shows

remarkable performance when estimating functions with jump discontinu-

ities, outperforming other competing models.

The rest of the paper is organized as follows. In Section 2, we introduce the

LARK model and discuss its properties. In Section 3, we propose the LABS model

and present an equivalent model with latent variables that make the posterior

computation tractable. We present three theorems that show that the function

spaces for the proposed model depend on the degree of the B-spline basis, and

that the prior has large support in some function spaces. In Section 4, we compare

the LABS model with other methods in two simulation studies, and in Section

5, we analyze a real-world data set using the LABS model. The final section
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concludes the paper.

2. The LARK Model

In this section, we give a brief introduction to the LARK model. Let Ω be

a complete separable metric space, and ν be a positive measure on R × Ω, with

ν({0},Ω) = 0 satisfying the L1 integrability condition∫ ∫
R×A

(1 ∧ |β|)ν(dβ, dω) <∞, (2.1)

for each compact set A ⊂ Ω. The Lévy random measure L with the Lévy measure

ν is defined as

L(dω) =

∫
R
βN(dβ, dω),

where N is a Poisson random measure with intensity measure ν. We denote this

as L ∼ Lévy(ν). For any t ∈ R, the characteristic function of L(A) is

E
[
eitL(A)

]
= exp

{∫ ∫
R×A

(eitβ − 1)ν(dβ, dω)

}
, for all A ⊂ Ω. (2.2)

Let g(x, ω) be a real-valued function defined on X × Ω, where X is another

set. By integrating g with respect to a Lévy random measure L, we define the

following real-valued function on X :

η(x) ≡ L[g(x)] =

∫
Ω
g(x, ω)L(dω) =

∫
Ω

∫
R
g(x, ω)βN(dβ, dω), ∀x ∈ X . (2.3)

We call g a generating function of η.

When ν(R×Ω) = M is finite, a Lévy random measure can be represented as

L(dω) =
∑

j≤J βjδωj , where J has a Poisson distribution with mean M > 0, and

{(βj , ωj)}
i.i.d.∼ π(dβj , dωj) := ν/M , for j = 1, . . . , J . In this case, equation (2.3)

can be expressed as

η(x) =

J∑
j=1

g(x, ωj)βj , (2.4)

where {(βj , ωj)} is a random set of the finite support points of a Poisson random

measure. If g is bounded, the L1 integrability condition (2.1) implies the existence

of (2.3) for all x. See Lee, Mano and Lee (2020).

If a Lévy measure satisfying (2.1) is infinite, the number of support points

of N(R,Ω) is infinite, almost surely. Tu (2006) proved that the truncated Lévy
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random field Lε[g] converges in distribution to L[g] as ε→ 0, where

Lε[g] =

∫ ∫
[−ε,ε]c×Ω

g(x, ω)βN(dβ, dω) =

∫ ∫
R×Ω

g(x, ω)βNε(dβ, dω),

and Nε is a Poisson measure on R with mean measure

ν(ε)(dβ, dω) := ν(dβ, dω)I|β|>ε.

This truncation is often used as an approximation of the posterior. For posterior

computation methods for the Poisson random measure without truncation, see

Lee (2007) and Lee and Kim (2004).

Together with the data-generating mechanism (1.1), the LARK model is

defined as follows:

E[Y |L, θ] = η(x) ≡
∫

Ω
g(x, ω)L(dω)

L|θ ∼ Lèvy(ν)

θ ∼ πθ(dθ),

where Lèvy(ν) denotes a Lèvy process that has the characteristic function, and

ν is a Lèvy measure satisfying (2.1). Tu (2006) used gamma, symmetric gamma,

and symmetric α-stable (SαS) (0 < α < 2) Lèvy random fields. The conditional

distribution for Y has a hyperparameter θ, and πθ denotes the prior distribution

of θ. The function g(x, ω) is used as elements of an overcomplete system. Tu

(2006) and Lee, Mano and Lee (2020) used the following Gaussian kernel, Laplace

kernel, and Haar wavelet as generating functions:

• Haar kernel: g(x, ω) := I (|(x− χ)/λ| ≤ 1)

• Gaussian kernel: g(x, ω) = exp
{
−(x− χ)2/2λ2

}
• Laplacian Kernel: g(x, ω) = exp {−|x− χ|/λ},

with ω := (χ, λ) ∈ R × R+ := Ω. All of the above generating functions are

bounded.

The LARK model can be represented in a hierarchical structure as follows:

Yi| η(xi)
ind.∼ N (η(xi), σ

2),

η(xi) =

J∑
j=1

g(xi,ωj)βj , J | ε ∼ Pois(ν(ε)(R,Ω))
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Figure 1. Comparison of curve fitting functions using (a) the LARK model, and (b) the
LABS model for the modified HeaviSine data set. The solid lines are estimated functions
and the dashed line represents the true function.

(βj ,ωj)|J, ε
i.i.d.∼ π(dβj , dωj) :=

ν(ε)(dβj , dωj)

ν(ε)(R,Ω)

for j = 1, . . . , J . Here J is a random number determined stochastically using a

Lèvy random measure, (β1, . . . , βJ) are the unknown coefficients of a mean func-

tion, and (ω1, . . . ,ωJ) are the parameters of the generating functions. Because

some parameters have varying dimensions, we use the reversible jump Markov

chain Monte Carlo (RJMCMC) proposed by Green (1995) to obtain samples

from the posterior distribution under the LARK model.

The LARK model stochastically extracts features and finds a compact repre-

sentation for η(·) based on an overcomplete system. That is, it enables functions

to be represented by a small number of elements from an overcomplete system.

However, the LARK model and most methods for function estimation use only

one type of kernel or basis, and can only be used to determine the restricted

smoothness of a target function. These models cannot capture all parts of a

function that has varying degrees of smoothness. For example, we consider a

noisy modified HeaviSine function sampled at n = 512 equally spaced points on

[0, 1] in Figure 1. The data contain both smooth regions and nonsmooth regions,

such as peaks and jumps. As shown in panel (a) of Figure 1, it is difficult for the

LARK model with a finite Lèvy measure using a Gaussian kernel to estimate the

jumps in the data. Therefore, we propose a new model that adapts the smooth-

ness of a function systematically by using a variety of B-spline basis functions as

the generating elements of an overcomplete system.
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3. Lévy Adaptive B-Spline Regression

We consider a general type of basis function to generate elements of an over-

complete system, rather than using specific kernel functions, such as the Haar,

Laplacian, or Gaussian functions. The LABS model uses B-spline basis functions,

which can all systematically express jumps, sharp peaks, and smooth parts of a

function.

3.1. B-spline basis

The B-spline basis function consists of piecewise k ∈ N ∪ {0}-degree polyno-

mials, where N is the set of natural numbers. The B-spline of degree k(≥ 1) has

k− 1 continuous derivatives at the knots. In general, the B-spline basis of degree

k can be derived using the Cox-de Boor recursion formula:

B∗0,i(x) :=

{
1 if ti ≤ x < ti+1

0 otherwise

B∗k,i(x) :=
x− ti
ti+k − ti

B∗k−1,i(x) +
ti+k+1 − x
ti+k+1 − ti+1

B∗k−1,i+1(x),

(3.1)

where ti are called knots, which must be in nondescending order ti ≤ ti+1 (de Boor

(1972), Cox (1972)). The B-spline basis of degree k, B∗k,i(x), then needs (k + 2)

knots, (ti, . . . , ti+k+1). For convenience of notation, we redefine the B-spline basis

of degree k with a knot sequence ξk := (ξk,1, . . . , ξk,k+2) as follows:

B0(x; ξ0) :=

{
1 if ξ0,1 ≤ x < ξ0,2

0 otherwise

Bk(x; ξk) :=
x− ξk,1

ξk,(k+1) − ξk,1
Bk−1(x; ξ?k) +

ξk,(k+2) − x
ξk,(k+2) − ξk,2

Bk−1(x; ξ??),

(3.2)

where ξ?k := (ξk,1, ξk,2, . . . , ξk,(k+1)) and ξ??k := (ξk,2, ξk,3, . . . , ξk,(k+2)).

The B-spline basis functions can vary in terms of shape and smoothness

depending on the knot locations and degrees. For example, a B-spline basis

function can be a piecewise constant (k = 0), linear (k = 1), quadratic (k = 2) , or

cubic (k = 3) function. Furthermore, B-spline basis functions with equally spaced

knots have a symmetric form on the interval on which they exist. These bases

are called uniform B-splines. Examples of B-spline basis functions of different

degrees with equally spaced knots are shown in Figure 2.



LÉVY ADAPTIVE B-SPLINE REGRESSION 2723

1.00

0.75

0.50

0.25

0.00

Constant
Linear
Quadratic
Cubic
Bi-quadratic

0.00                    0.25                    0.50                    0.75                     1.00 

Figure 2. Different shapes of the B-spline basis function by increasing the degree k.

3.2. Model specification

The LARK model with one type of kernel does not well estimate functions

with both continuous and discontinuous parts. To improve this, we consider var-

ious B-spline basis functions simultaneously to estimate all parts of the unknown

function. The new model uses a B-spline basis to systematically generate an over-

complete system with varying degrees of smoothness. For example, the B-spline

basis functions of degree zero, one, and two or more are for jumps, sharp peaks,

and the smooth parts of the function, respectively.

We express the mean function as a random finite sum:

η(x) =
∑
k∈S

∑
1≤l≤Jk

Bk(x; ξk,l)βk,l, (3.3)

where S denotes a subset of degree numbers of B-spline bases and Bk(x; ξk) is a

B-spline basis of degree k with knots ξk ∈ X (k+2) := Ω. The generating functions

of the LARK model are replaced with the B-spline basis functions. Jk has a

Poisson distribution with rate Mk > 0, and {(βk,l, ξk,l)}
i.i.d.∼ πk(dβk, dξk) :=

νk(dβk, dξk)/νk(R× Ω). We assume

πk(dβk, dξk) = N (βk; 0, φ2
k) dβk · U(ξk;X (k+2))dξk.

The mean function can be also defined as

η(x) ≡
∑
k∈S

∫
Ω
Bk(x; ξk)Lk(dξk). (3.4)
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The stochastic integral representation of the mean function is determined by

Lk ∼ Lévy(νk(dβk, dξk)), ∀k ∈ S,

where νk(dβk, dξk) is a finite Lévy measure satisfying Mk ≡ νk(R × Ω) < ∞.

Although the Lévy measure νk satisfying (2.1) may be infinite, the aforemetioned

Poisson integrals and sums are well defined for all bounded measurable compactly

supported Bk(·, ·) for which for all k ∈ S,∫ ∫
R×Ω

(1 ∧ |βkBk(·; ξk)|)νk(dβk, dξk) <∞. (3.5)

We consider only finite Lévy measures in the proposed model. In other words,

we restrict our attention to the Lévy measure of a compound Poisson process.

The proposed model is more complex than the LARK model with one kernel, and

is expected to give a more accurate estimate of the regression function. It can

estimate a mean function that has both smooth and peak shapes. The proposed

model can be written in hierarchical form as

Yi|xi
ind.∼ N (η(xi), σ

2),

η(xi) = β0 +
∑
k∈S

∑
1≤l≤Jk

Bk(xi; ξk,l)βk,l, i = 1, . . . , n,

σ2 ∼ IG

(
r

2
,
rR

2

)
, (3.6)

Jk ∼ Poi(Mk), Mk ∼ Ga(aγk , bγk),

βk,l
i.i.d.∼ N (0, φ2

k), ξk,l
i.i.d.∼ U(X (k+2)), l = 1, . . . , Jk,

for k ∈ S. We set β0 = Y and φk = 0.5× (maxi{Yi} −mini{Yi}) or
√

Var(Y ).

The LABS model intrinsically tries to lead to sparse representations by using

a Levy process prior. Specifically, the log(Jk!) terms in the log posterior for the

Levy process regularize the number of coefficients of the model. This directly pre-

vents the LABS model from causing over-parametrization issues. Furthermore,

the prior distribution on the B-spline coefficients indirectly penalizes the model

complexity, such as the Bayesian ridge regression and Bayesian LASSO. Refer to

Clyde and Wolpert (2007) and Jang et al. (2017) for further details.

As in the LARK models, becuase some parameters have varying dimensions

in the LABS model (3.11), the posterior sampling algorithm for the LABS model

has the RJMCMC and Metropolis-Hastings within Gibbs sampling part. Specif-

ically, the RJMCMC procedure for the LABS model is repeated |S| times by
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simultaneously considering various types of generating functions. A detailed sum-

mary and the pseudocode of the MCMC algorithm for the posterior sampling are

described in the Supplementary Material.

3.3. Support of LABS model

In this section, we present three theorems on the support of the LABS model.

We first define the modulus of the smoothness and Besov spaces.

Definition 1. Let 0 < p ≤ ∞ and h > 0. For f ∈ Lp(X ), the rth-order modulus

of the smoothness of f is defined by

ωr(f, t)p := sup
h≤t
‖∆r

hf‖p,

where ∆r
hf(x) =

∑r
k=0[r!/{k!(r − k)!}](−1)r−kf(x+kh), for x ∈ X and x+kh ∈

X .

If r = 1, ω1(f, t)p is the modulus of continuity. There exist equivalent def-

initions in defining Besov spaces. Here, we follow DeVore and Lorentz (1993,

Chap. 2.10).

Definition 2. Let α > 0 be given, and let r be the smallest integer such that

r > α. For 0 < p, q < ∞, the Besov space Bαp,q is the collection of all functions

f ∈ Lp(X ) such that

|f |Bαp,q =

(∫ ∞
0
{t−αωr(f, t)p}q

dt

t

)1/q

is finite. The norm on Bαp,q is defined as

‖f‖Bαp,q = ‖f‖p + |f |Bαp,q .

The Besov space is a general function space that depends on the smoothness

of the functions in Lp(X ) and, in particular, can allow smoothness of spatially

inhomogeneous functions, including spikes and jumps. The Besov space has three

parameters, α, p, and q, where α is the degree of smoothness, p represents that

Lp(Ω) is the function space where the smoothness is measured, and q is a param-

eter for finer tuning on the degree of smoothness.

Theorem 1. For fixed k ∈ S and ξk ∈ X (k+2), the B-spline basis Bk(x; ξk) falls

in Bαp,q(X ), for all 1 ≤ p, q <∞ and α < k + 1/p.

The proof of Theorem 1 is provided in the Supplementary Material. For

instance, the B-spline basis with degree zero satisfies Bk(·, ξk) ∈ Bαp,q for α < 1/p,
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the B-spline basis with degree one is in Bαp,q, for α < 1 + 1/p and the B-spline

basis with degree two falls in Bsp,q for α < 2 + 1/p.

Theorem 2 states that the mean function of the LABS model, η, is in a Besov

space with smoothness corresponding to the degrees of the B-spline bases used

in the LABS model. The proof of the theorem closely follows that of Wolpert,

Clyde and Tu (2011). The proof for Theorem 2 is provided in the Supplementary

Material.

Theorem 2. Suppose X is a compact subset of R. Let νk be a Lévy measure on

R×X (k+2) that satisfies the following integrability condition:∫ ∫
R×X (k+2)

(1 ∧ |βk|)νk(dβk, dξk) <∞. (3.7)

and let Lk ∼ Lévy(νk) for all k ∈ S. Define the mean function of the LABS model,

η(·) =
∑

k∈S
∫
X (k+2) Bk(x; ξk)Lk(dξk), on X , where Bk(x; ξk) satisfies (3.7) for

each fixed x ∈ X . Then, η has the convergent series

η(x) =
∑
k∈S

∑
l

Bk(x; ξk,l)βk,l, (3.8)

where S is a finite set, including the degree numbers of the B-spline bases. Fur-

thermore, η lies in the Besov space Bαp,q(X ), with α < min(S) + 1/p, almost

surely.

For example, if a zero element is included in S, then the mean function of

the LABS model, η, falls in Bαp,q, with α < 1/p, almost surely, and consists

of functions that are no longer continuous. If S = {3, 5, 8}, then η belongs to

Bαp,q, with α < 3 + 1/p, almost surely. Moreover, it is highly possible that the

function spaces for the LABS model are larger than those of the LARK model

with one type of kernel function. Specifically, the mean function for the LABS

model, with S = {0, 1} falls in Bαp,p, with α < 1/p, almost surely. If the mean

function of the LARK model with only one Laplacian kernel falls in Bαp,p, with

α < 1+1/p , then the function spaces of the LABS model with given α < 1/p are

larger than those of the LARK model for the range of the smoothness parameter,

1/p < α < 1 + 1/p, by the properties of the Besov space.

The next theorem shows that the prior distribution of our LABS model has

sufficiently large support on the Besov space Bαp,q, with 1 ≤ p, q <∞ and α > 0.

For η0 ∈ Bαp,q(X ), denote the ball around η0 of radius δ,

b̄δ(η0) = {η : ‖η − η0‖p < δ},
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where ‖ · ‖p is a Lp norm. The proof of Theorem 3 is given in the Supplementary

Material.

Theorem 3. Let X be a bounded domain in R. Let νk be a finite measure on

R×X (k+2), and let Lk ∼ Levy(νk), for all k ∈ S. Suppose η has a prior Π for the

LABS model (3.6). Then, Π{b̄δ(η0)} > 0, for every η0 ∈ Bαp,q(X ) and all δ > 0.

4. Simulation Studies

In this section, we evaluate and compare the performance of the LABS model

(3.6) and that of competing methods on simulated data sets. First, we apply the

proposed method to four standard examples: the Bumps, Blocks, Doppler and

HeaviSine test functions introduced by Donoho and Johnstone (1994). Second,

we consider three functions that we created ourselves with jumps and peaks to

assess the practical performance of the proposed model.

The simulated data sets are generated from equally spaced x on X = [0, 1],

with sample sizes n = 128 and 512. Independent normally distributed noise

N (0, σ2) is added to the true function η(·). The root signal-to-noise ratio (RSNR)

is defined as

RSNR :=

√∫
X {f(x)− f̄}2 dx

σ2
,

where f̄ := (1/|X |)
∫
X f(x) dx and is set to 3, 5, and 10. We run the LABS model

for 200,000 iterations, with the first 100,000 iterations discarded as burn-in, and

retain every 10th sample. For comparison between the methods, we compute the

mean squared error (MSE) of all methods using 100 replicate data sets for each

test function. The average of the posterior curves is used for the estimate of the

test function:

MSE =
1

n

n∑
i=1

{η(xi)− η̂(xi)}2.

4.1. Simulation 1: DJ test functions

We carry out a simulation study using the benchmark test functions sug-

gested by Donoho and Johnstone (1994) that are often used in the field of wavelet

and nonparametric function estimation. The four Donoho and Johnstone test

functions include sharp peaks (Bumps), jump discontinuities (Blocks), oscillat-

ing behavior (Doppler), and jumps/peaks in smooth functions (HeaviSine) (see

Figure 3).

The hyperparameters and types of basis functions shown in Table S1 of the

Supplementary Material were used in (3.6). For Bumps and Doppler, we set the
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Figure 3. The Donoho and Johnstone test functions: (a) Bumps, (b) Blocks, (c) Doppler,
and (d) HeaviSine.

parameter r of the prior distribution for σ2 to 100 to speed up the convergence.

We also considered combinations of B-spline bases, based on the shapes of the

test functions. We provide suggestions on how to choose the appropriate degrees

in S in the Supplementary Material.

We compared our model with various methods: a B-spline curve of degree

two with 50 knots (denoted as BSP-2); a local polynomial regression with auto-

matic smoothing parameter selection (denoted by LOESS); a smoothing spline

with the smoothing parameter selected using cross-validation (denoted by SS); a

Nadaraya–Watson kernel regression using the Gaussian kernel with bandwidth h

that minimizes the CV error (denoted by NWK); an empirical Bayes approach

for wavelet shrinkage using a Laplace prior with Daubechies “least asymmetric”

(la8) wavelets, except for the Blocks example, where it uses the Haar wavelet

(Johnstone and Silverman (2005)) (denoted by EBW); trend filtering with order

# based on an optimal regularization parameter (Tibshirani (2014)) (denoted by

TF-#); a Gaussian process regression with a Radial basis or Laplacian kernel

(denoted by GP-R and GP-L, respectively); a Bayesian curve fitting using piece-

wise polynomials with l = #1 and l0 = #2 (Denison, Mallick and Smith (1998a))

(denoted by BPP-#1-#2); Bayesian adaptive spline surfaces with degree # (Fran-

com et al. (2018)) (denoted by BASS-#); and a Lévy adaptive regression with

multiple kernels (Lee, Mano and Lee (2020)) (denoted by LARMuK). These com-
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Figure 4. Box plots of the MSEs from the simulation study with n = 128 and RSNR =
(a) 3, (b) 5, and (c) 10.

petitive models are implemented in R (R Core Team (2020)) using the splines2,

fANCOVA, EbayesThresh, genlasso, kernlab, miscF, and BASS packages.

Figure 4 and Figure 5 both show that our model outperforms the other meth-

ods, in general. The models in the two figures are selected by better outcomes

from simulations. More detailed simulation results can be seen in the Supple-

mentary Material. Figure 4 shows that the LABS model is superior to the other

models regardless of the noise levels, with n = 128. The proposed model also has

the smallest average MSE for all test functions, except for the HeaviSine example

with RSNR = 3. Similarly, for the sample size n = 512, the LABS model per-

forms best in Figure 5, except for the Doppler function, where it is competitive.

Our model removes high frequencies in the interval [0, 0.1] and produces a smooth

curve within the corresponding domain. In contrast, because there are few data

points in the Doppler example with n = 128, most models yield similar smooth

curves in [0, 0.1]. As a result, the LABS model demonstrates excellent numerical
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Figure 5. Box plots of the MSEs from the simulation study with n = 512 and RSNR =
(a) 3, (b) 5, and (c) 10.

performance. For the Blocks example, the LABS model yields the lowest average

and standard deviation of MSEs in all scenarios. This suggests that our model

has an excellent ability to find jump points. Furthermore, the LABS model con-

sistently outperforms the B-spline regression using only one basis function for

four simulated data sets, because its overcomplete systems can be constructed

using various combinations of B-spline basis functions; see the Supplementary

Material.
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Figure 6. The three test functions used in the second simulation: modified Blocks (left),
modified Bumps (center), and modified HeaviSine (right).

4.2. Simulation 2: Smooth functions with jumps and peaks

Our main interest lies in estimating smooth functions with discontinuities

such as jumps or sharp peaks, or both. We design three test functions to assess

the practical performance of the proposed method. The first and second examples

are modified by adding some smooth parts, unlike the original versions of the

Bumps and Blocks test functions. Each test function is given by

η1(x) =
0.6

0.92
{4ssgn(x− 0.1)− 5ssgn(x− 0.13) + 5ssgn(x− 0.25)

− 4.2ssgn(x− 0.4) + 2.1ssgn(x− 0.44) + 4.3ssgn(x− 0.65)

− 4.2ssgn(x− 0.81) + 2}+ 0.2 + sin(8πx),

η2(x) ={7K0.005(x− 0.1) + 5K0.07(x− 0.25) + 4.2K0.03(x− 0.4)

+ 4.3K0.01(x− 0.65) + 5.1K0.008(x− 0.78) + 3.1K0.1(x− 0.9)}
+ cos (4πx),

where sgn(x) = I(0,∞)(x) − I(−∞,0)(x), ssgn(x) = 1 + sgn(x)/2, and Kw(x) :=

(1 + |x/w|)−4. Finally, we create a sum of jumps, peaks, and some smoothness.

The formula for the last test function is

η3(x) = 6 sin(4πx) + 7

{
1 +

sgn(x− 0.1)

2

}
− 7

{
1 +

sgn(x− 0.18)

2

}
− 2sgn(x− 0.37) + 17K0.01(x− 0.5)− 3sgn(x− 0.72)

+ 10K0.05(x− 0.89).

The functions are displayed in Figure 6.

In these experiments, we use two or more types of B-spline bases as elements

of overcomplete systems, because the three functions have different shapes, unlike

in previous simulation studies. Hyperparameters are similar to the previous ones.

All hyperparameters for the prior distributions are summarized in Table S1 of
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Figure 7. Comparisons of the estimates of a data set generated from the modified Blocks
with n = 128 and RSNR = 3 using (a) LABS, (b) BASS-1, (c) BPP-10, and (d) EBW.
Dashed lines represent true curves, and solid lines represent estimates of the curves.

the Supplementary Material. This time, we only compare our model with the

BPP, BASS, EBW, TF, and LARMuK models, which exhibit relatively good

performance in some test functions of Simulation 1.

Table S12 in the Supplementary Material shows that the LABS model has

the best outcomes when the sample size is 128, which is difficult to estimate.

Furthermore, when n = 512 , Table S13 in the Supplementary Material shows

that the LABS model performs well in most cases, with either the lowest or the

second lowest average MSE values across 100 replicates. In particular, the LABS

model outperforms its competitors in the modified Blocks example, irrespective

of the sample size and the noise level as expected. The BASS-2 model performs

worst, because it does not estimate many of the jumps and peak points for the

given test functions. Figure 7 shows that the LABS model can overcome the

noise and adapt to smooth functions with discontinuities, such as jumps or sharp

peaks, or both.

5. Real-Data Analysis: Fine Particulate Matter in Seoul

We now apply the LABS model (3.6) to an air pollution data set containing

the daily maximum value of concentrations of fine particulate matter (PM2.5)
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in Seoul. This data set exhibits wildly varying patterns that may have jumps or

peaks. These fluctuating patterns are expected to further illustrate the features

of the LABS model.

We set the hyperparameter values of the proposed model as follows: aJ =

5, bJ = 1, r = 0.01, and R = 0.01. In this analysis, we practically choose

S = {0, 1, 2}, because the true curve of the real-data is unknown, and may have

varying smoothness. We run it 200,000 times with a burn-in of 100,000 and

thin by 10 to achieve convergence of the MCMC algorithm. We also compare

the performance of our model with that of other good methods in the simulated

studies.

Fine dust has become a national issue, with the result that much research

has been conducted on fine particulate matter (PM2.5). According to these

studies, Korea’s fine dust particles originate both from within the country and

from external sources, such as China. Many factors cause PM2.5 concentration

to rapidly rise or fall, and make it difficult to accurately predict its behavior.

We estimate the unknown function of daily maximum concentrations of

PM2.5 in Seoul. The PM2.5 data set collected from the AIRKOREA (https:

//www.airkorea.or.kr) includes 1261 daily maximum values of PM2.5 concen-

tration from January 1, 2015, to June 30, 2018. We removed all observations

that have missing values.

Figure 8 displays the daily fluctuations and seasonality. PM2.5 concentra-

tions are higher in winter and spring than they are in summer and fall. We take

advantage of combinations of basis functions, S = {0, 1, 2} to grasp the charac-

teristics of the PM2.5 data with multiple jumps and peak points. As shown in

Figure 8, the four methods represent different estimated lines of the unknown

mean function and pick features of the data in their own way. Interestingly,

LABS, BASS-1, and BPP-10 react differently in terms of detecting peaks, jumps,

and smooth parts of the PM2.5 data. The GP-R reflects seasonality, but does

not capture these features.

We also compute the average and standard deviation of the cross-validated

errors of LABS, BPP-10, BASS-1, LARMuK, and GP-R, which are given in Ta-

ble 1. The LABS model has the lowest cross-validation error among all methods.

Moreover, a comparably low standard deviation of the LABS model supports that

it has more stable performance when estimating any shape of function, because

it uses all three types of B-spline bases.

https://www.airkorea.or.kr
https://www.airkorea.or.kr
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Figure 8. Posterior mean of the mean function on the PM2.5 data set using four models:
(a) LABS, (b) BASS-1, (c) BPP-10, and (d) GP-R.

LABS BASS-1 BPP-10 LARMuK GP-R
Mean 384.8863 393.6049 398.17 399.6718 436.2286

Standard Deviation 56.88069 60.38016 58.63784 53.02499 67.98722

Table 1. Mean and standard deviation for the error rate of 10-fold cross-validation on
the Seoul PM2.5 data set.

6. Conclusion

We have proposed general function estimation methodologies using B-spline

basis functions as the elements of an overcomplete system. A B-spline basis can

systematically represent functions with varying smoothness, because it has nice

properties, such as local support and differentiability. The overcomplete system

and Lévy random measure enable a function with both continuous and discontin-

uous parts to capture all features of the unknown regression function. Simulation

studies and a real-data analysis show that the proposed model outperforms com-

peting models. We also showed that the prior has full support in certain Besov

spaces. The prominent limitation of the LABS model is the slow mixing of the

MCMC algorithm. In future work, we will develop an efficient algorithm for the

LABS model and extend it to include multivariate analyses.
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Supplementary Material

The online Supplementary Material contains proofs of the theorems in Sec-

tion 3, the model hyperparameters used for all experiments, additional simulation

results, and details about the steps of the MCMC algorithm and the derivation

of the full conditionals.
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