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Abstract: Records of geophysical events, such as earthquakes and volcanic erup-

tions, are usually modeled as marked point processes. These records often suffer

from missing data, resulting in underestimations of the corresponding hazards. We

propose a computational approach for replenishing data missing from the records

of temporal point processes with time-separable marks. The proposed method is

based on the notion that if such a point process is completely observed, it can be

transformed into a homogeneous Poisson process, approximately on the unit square

[0, 1]2, by a biscale empirical transformation (BEPIT). This approach includes three

key steps: (1) transforming the process onto [0, 1]2 using the BEPIT, and finding a

time–mark range that likely contains missing events; (2) estimating a new empirical

distribution function based on the data in the time–mark range in which the events

are supposed to be completely observed; and (3) generating events in the missing

region. We test this method on a synthetic data set, and apply it to records of

the volcanic eruptions of the Hakone Volcano in Japan and the aftershock sequence

following the 2008 Wenchuan Mw7.9 earthquake in Southwest China. The results

show that this algorithm provides a useful way to estimate missing data and to re-

plenish incomplete records of marked point processes. In addition, the replenished

data provide estimates of the hazard function that are more robust.

Key words and phrases: Biscale empirical probability, Hakone volcano, integral

transformation, marked point process, missing data, Monte Carlo simulation, vol-
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1. Introduction

Many geophysical processes, such as earthquakes and volcanic eruptions,

occur at random times and/or locations, and, thus, are described naturally by

point-process models (e.g., Vere-Jones (1970); Zhuang, Ogata and Vere-Jones

(2002); Wang and Bebbington (2012, 2013)). Point-process models and their re-

lated theories are also widely used in fields such as crime, disease, and fire (Diggle

and Rowlingson (1994); Schoenberg et al. (2007); Mohler et al. (2011)). Further-

more, advancements in the technology used to record these natural and social

phenomena are yielding significantly greater amounts of data. However, the de-
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gree of completeness of these records varies, and in many cases, small events

are often missed in the early period of observation. For example, smaller after-

shocks are less likely to be recorded than are larger aftershocks during the pe-

riod immediately following a large earthquake (Ogata and Katsura (1993); Omi

et al. (2013)). Other examples include missing data in volcanic eruption records

(Kiyosugi et al. (2015)) and in the field of communication in social networks

(Zipkin et al. (2015)). Missing data limit our efficient use of these records, often

resulting in biased estimates. However, statistical tools for analyzing incomplete

point-process data are not well developed.

Geophysicists have been searching for reliable methods of obtaining earth-

quake catalogs that are more complete. For example, waveform-based detection

methods for small earthquakes within an aftershock sequence have been proposed

(e.g., Enescu, Mori and Miyazawa (2007); Enescu et al. (2009); Peng et al. (2007);

Marsan and Enescu (2012); Hainzl (2016)). However, even these methods can-

not recover all missing aftershocks. An alternative is to switch to energy-based

descriptions (Sawazaki and Enescu (2014)); that is, rather than viewing earth-

quake occurrences as a process of events with different magnitudes, the process

is regarded as a stream of energies released by earthquakes. However, methods

related to such descriptions remain underdeveloped.

Based on the empirical law that the distribution of earthquake magnitudes

follows the Gutenberg–Richter magnitude–frequency relation (Gutenberg and

Richter (1944)), Ogata and others investigated why events were missing from

earthquake catalogs (Ogata and Vere-Jones (2003); Iwata (2008, 2013, 2014)).

They used a Bayesian method to make probabilistic earthquake forecasts, with

missing earthquakes taken into account (Ogata (2006); Omi et al. (2013, 2014,

2015)).

In most of the aforementioned studies, when dealing with missing events

in a point process, the full structure of the model, or at least the distribution

of marks, is assumed to be known. However, owing to incomplete records and

other reasons, on most occasions, the information available on the process or

the mark distribution is limited. Thus, a preferable method for evaluating the

missingness should be based on as few assumptions as possible, especially when

the temporal structure and the distribution of marks are unknown. Zhuang,

Ogata and Wang (2017) used a stochastic algorithm to restore missing aftershocks

in the aftershock sequences following several earthquakes in Kumamoto, Japan

(April 14, 2016, M6.5; April 15, 2016, M6.4; April 16, 2016, M7.3). This method

can be used to restore missing data in the records of a more general temporal
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point process with time-separable marks, using information from the parts of

the process that are completely observed. In Zhuang, Ogata and Wang (2017),

the mathematical background is not well addressed. In this study, we explain in

detail the mathematics related to this fast algorithm and discuss its asymptotic

properties.

In the following sections, we first introduce the biscale empirical probability

integral transformation (BEPIT), and then analyze the completely observed pro-

cess with time-separable marks after the transformation. Based on the results

of this transformation, we restore the empirical distributions from an incomplete

record using an iterative algorithm. We explain the algorithm using a simu-

lated data set. Finally, we apply the algorithm to investigate the incomplete

eruption record of the Hakone volcano in Japan, and the aftershock sequence of

the Wenchuan Mw7.9 earthquake that occurred in Southwest China on May 28,

2008. The proofs of the consistency and asymptotic normality of the algorithm

are given in the Supplementary Material.

2. Concepts, Methodology, and Illustration

2.1. Mark-separable temporal point process and BEPIT

Mathematically, a marked temporal point process N is a random subset

of discrete points on the space R × M, say {(ti,mi) : i = 1, 2, . . . , n}, which

includes a finite or countable number of elements, and satisfies the following two

conditions (Karr (1991)): (a) for any bounded subset A ⊂ R, Pr{N(A ×M) ≡
#[N ∩ (A×M)] < ∞} = 1, where #[ ] represents the number of elements in a

set; and (b) for each i, mi is a random variable on M. In our study, we assume

the following: (a) the marks are continuous random variables, and (b) the point

process is simple (i.e., Pr{maxt∈RN({t} ×M) ≤ 1} = 1), such that there are no

overlapping events on the time axis.

A marked temporal point process is often specified by its conditional intensity

function, defined by

λ(t,m) dt dm = E [N([t, t+ dt)× (m,m+ dm) | Ht] , (2.1)

where Ht denotes the history of N up to time t, but not including t. The

conditional intensity can be decomposed as

λ(t,m) = λg(t) g(m|t),
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where λg(t) =
∫
M λ(t,m) dm is called the conditional intensity of the ground

point process Ng induced by N on R, defined by Ng(A) = N(A×M), and g(m|t)
is the probability density function of the event mark at time t. An important

property of the conditional intensity is that if a temporal point process N has

conditional intensity λ(t), then the transformation

ti → τi =

∫ ti

0
λ(u) du (2.2)

transforms N into a Poisson process N ′ = {τi : i = 1, 2, . . .} (see, e.g., Ogata

(1988); Schoenberg (2003); Daley and Vere-Jones (2003)).

For the above conditional intensity, when the mark distribution is separable

from the occurrence times, that is,

λ(t,m) = λg(t) g(m), (2.3)

the marks of this point process are said to be time separable. Point-process

models with time-separable marks are widely used in many research areas. In

seismology, most practical versions of earthquake forecasting models explicitly

assume that the magnitude distribution is separable from time (see, e.g., Ogata

and Zhuang (2006); Zhuang, Ogata and Vere-Jones (2002, 2004); Zhuang (2011);

Werner et al. (2011); Ogata et al. (2013)). In volcanology, Bebbington (2014)

suggested that there is not enough evidence of a universal dependence of erup-

tion size on time. In forecasting, time-independent size distributions are used

frequently (e.g., Passarelli et al. (2010)).

Other ways to specify point-process models include moment intensity func-

tions, Papangelou intensities, and Palm intensities. Traditionally, when a point

process is specified in one of these ways, it refers to a spatial point process. A

point process can be completely determined by its likelihood (terminologically,

the local Janossy density; see Daley and Vere-Jones (2003, 2008)). This gives

the joint probability density/mass function of the total number and each location

of the particles in the process, assuming that the particles are indistinguishable.

The likelihood is also known (i.e., the point process is completely determined)

if one of the following three is known: (1) the moment intensities of all orders,

(2) the conditional intensity, and (3) the Papangelou intensity. Here, we refer to

Daley and Vere-Jones (2003, 2008) and Møller and Waagepetersen (2003) for the

relations between the Janossy density and three other types of intensities. In this

study, the method used to replenish missing data in a marked point process does
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not depend on any specific form of conditional intensity. Therefore, it can be

applied to spatial point processes as well if the ground space is one dimensional

and the conditional intensity is mark separable.

Before testing for missing data in a record of a marked point process and

replenishing the record, we need to know what a complete record looks like.

Given a series of independent and identically distributed (i.i.d.) observations on

X, x1, x2, . . . , xn, for a fixed x, the empirical cumulative distribution function

(cdf)

F̃X(x) =
1

n

n∑
i=1

1(xi < x)

converges almost surely to FX(x) and, thus, F̃X(Xj), for j = 1, 2, . . . , n, converges

to a unit uniform distribution. We call transformation x→ F̃X(x) the empirical

probability integral transformation induced by {x1, x2, . . . , xn}. In a general

marked point process N in [0, T ], the occurrence times of an arbitrary event may

depend on the occurrence times and/or marks of other events. However, the

empirical probability integral transformation still results in an approximate unit

uniform distribution, because the transformation does not require an explicit

formulation of the conditional intensity.

Suppose N = {(ti,mi) : i = 1, 2, . . . , n} is a realization of a temporal marked

point process in a time–mark domain [0, T ]×M, where M is the space of marks.

Consider the following BEPIT:

ΓN : [0, T ]×M→ [0, 1]× [0, 1]

(t,m) → (t′,m′) =
(
F̃ (t), G̃(m)

)
,

(2.4)

where F̃ and G̃ are the empirical cdfs of {ti : i = 1, 2, . . . , n} and {mi : i =

1, 2, . . . , n}, respectively. If the marks of the events in the process are separable

from the occurrence times, then {t′i : i = 1, 2, . . . , n} and {m′i : i = 1, 2, . . . , n},
which are the images of {ti : i = 1, 2, . . . , n} and {mi : i = 1, 2, . . . , n}, respec-

tively, form an approximately homogeneous Poisson process on [0, 1] × [0, 1]. It

is straightforward to show the independence between F̃ (t) and G̃(m). Thus,

given the total number of events N , the number of events in a cell of area

s⊆ [0, 1]× [0, 1] is a random variable from a binomial distribution B(N, s), which

can be approximated by a Poisson distribution with mean Ns. The smaller s

gets, the better this approximation becomes.

In the following discussion, we consider only mark-separable Poisson pro-
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Figure 1. A synthetic data set of a marked point process. (a) Marks versus occurrence
times. (b) Empirical marks versus empirical occurrence times of all synthetic events
under the transformation ΓN . (c) Empirical marks versus empirical occurrence times
for the observed incomplete record under the transformation ΓNobs

. The crosses in (a)
and (b) represent the missing events.

cesses. This is because we can transform a more general process, say N , with

a conditional intensity λ(t,m), into a Poisson process N ′ with a constant inten-

sity using the marked version of the transformation in (2.2), (ti,mi) ∈ N →
(τi,mi) ∈ N ′, where τi =

∫ ti
0

∫
M λ(t,m) dm dt. Because such a transformation

does not change the chronological order of the events or the mark-separable

property of the process, the BEPIT transforms N and N ′ into the same point

patterns.

Example 1. In Figure 1(a), we simulate a Poisson process N (the combination

of dots and crosses) with a temporal rate λ = 1 on [0, 2,000], and marks that

follow an exponential distribution with mean one; that is,

g(x) =

{
e−x, x > 0;

0, otherwise.

Figure 1(b) shows that under transformation (2.4), N is transformed into an

approximately homogeneous Poisson process, say N ′, which has rate λ = 2, 000

and i.i.d. marks uniformly distributed in [0, 1].

2.2. Detection of missing data

When events in part of an observed time–mark range are missing, determin-

istically or in probability, the separability between the occurrence times and the

marks of the observed events is usually destroyed. In addition, the image of the

observed Nobs mapped by the above BEPIT ΓNobs
, as defined in (2.4), may not
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be a homogeneous process.

Example 2. Consider the simulated data in Example 1 (Figures 1(a)). Assume

the missing probability is

q(t,m) = Pr{an event occurring at (t,m) is missing}

=

{
min

[
1, (1000−t)(1−m)

800

]
, if 0 < t < 800, m < 0.3,

0, otherwise.
(2.5)

If we thin the original process N (the combination of the crosses and dots) in

Figure 1(a) with this missing probability, then the crosses are deleted (i.e., they

are missing from the record). Denote the remaining events (i.e., the observed

process) as Nobs. Figure 1(c) shows that the image of the observed data of the

process under the BEPIT ΓNobs
is not homogeneous.

In the above BEPIT transformation, we do not need to know the exact forms

of g(m), λg, or q. This method relies only on the conditions that the original

process is mark separable, and that the process of missing events is time- and

mark-dependent. Thus, for a temporal point process N with time-separable

marks, we can test whether data are missing from its observed record, Nobs, by

testing the homogeneity of the image ΓNobs
(Nobs) of the observed data Nobs in

the bi-scale transformed domain, when the missing values are time- and mark-

dependent. After using the BEPIT ΓNobs
to map Nobs onto [0, 1]2, we divide the

overall area of [0, 1]2 into L sub-regions of equal areas, that is, L = L1×L2 cells.

Here, L1 is the number of cells along the transformed time domain, and L2 is

the number of cells along the transformed mark domain. Then, we calculate the

following statistics:

R=
min{C1, C2, . . . , CL}
max{C1, C2, . . . , CL}

, and D=max{C1, C2, . . . , CL}−min{C1, C2, . . . , CL},

(2.6)

where C1, C2, . . . , CL are the numbers of events falling within each of the L

cells. These two statistics are analogous to the test statistics for homogeneous

multinomial distributions, where “homogeneous” means that each category of the

possible outputs has the same probability (Johnson (1960); Johnson and Young

(1960); Corrado (2011)).

Suppose that [0, 1]2 is divided into L = L1 × L2 cells with equal areas; that

is, [0, 1]2 =
⋃L2

j=1

⋃L1

i=1[(i−1)/L1, i/L2]× [(j−1)/L2, j/L2), where L1 and L2 are

positive integers. For any point process N on [0, 1]2, if N is a homogenous Poisson
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process, then the numbers of events in the above L cells, C1, C2, . . . , CL, form a

homogeneous (n,p)-multinomial random vector, with p = (1/L, 1/L, . . . , 1/L).

However, if N is obtained by applying the BEPIT to a completely observed

mark-separable point process, then the row sum of Ci in the kth row (1 ≤ k ≤
L1) and the column sum of Ci in the jth column (1 ≤ j ≤ L2) are fixed to

bkn/L1c − b(k − 1)n/L1c and bjn/L2c − b(j − 1)n/L2c, respectively, where bxc
denotes the integer part of x, and n is the total number of events in N . Such

constraints do not hold for the homogeneous multinomial distribution. Because

the distributions of R and D are complicated, we obtain them by simulation, as

follows: (1) with n fixed, simulate n events uniformly distributed in [0, 1]2; (2)

apply the BEPIT to these n simulated events; (3) with the specified parameters,

L1 and L2, calculate R and/or D for the transformed points.

Example 3. We use a simulation to test for missing data in the original and

the thinned point processes, as shown in Figures 1(a) and (c), respectively. We

simulate 500,000 sequences of the marked Poisson process defined in Example

1, with the number of events in each simulation the same as those in Figure

1(a). For each simulated sequence, we apply the BEPIT in (2.4), which results

in an image similar to the combination of the crosses and the dots in Figure

1(b). Then, we divide the unit square image into five-by-five cells with equal

sizes, and calculate R and D, as defined in (2.6). Next, we plot the empirical cdf

of the 500,000 values of R and D, as shown in Figure 2(a). To test the thinned

process, we simulate further 500,000 sequences of the marked point process, with

the total number of events in each simulation the same as those in Figure 1(c).

The cumulative distributions of R and D are shown in Figure 2(b). We can see

that the hypothesis of no missing data in the observed (thinned) process can

be rejected, with a significance level below 0.001 (p ≤ 2 × 10−6, Figure 2(b)).

Meanwhile, for the original process, the p-values associated with R and D (0.396

and 0.700, respectively) provide no evidence for rejection.

2.3. Imputation method and algorithm

We start with a heuristic example to explain the algorithm. As shown in Fig-

ure 3, suppose thatN is a homogeneous point process on [0, 1]2, and that events in

the domain S are completely unobservable. Let Nobs ={(xi, yi) : (xi, yi) ∈ N \S}.
Then, the empirical distributions of the x- and y-coordinates are, respectively,

F̃X(x) =

∑
i:(xi,yi)∈N\S wx,iI(xi ≤ x)∑

i:(xi,yi)∈N\S wx,i
(2.7)
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Figure 2. Statistical tests of the existence of missing data on (a) all events and (b)
the observed events in the synthetic point process, with cdfs of R and D. R and D are
defined in (2.6), with L = L1 × L2, L1 = L2 = 5. The cdfs in (a) and (b) are obtained
from 500,000 simulations with the same numbers of events as in Figures 1(a) and (c),
respectively. The black dots in (a) and (b) are the statistics R and D, calculated for the
original process in Figures 1(a) and (c), respectively.

and

F̃Y (y) =

∑
i:(xi,yi)∈N\S wy,iI(yi ≤ y)∑

i:(xi,yi)∈N\S wy,i
, (2.8)

where

wx,i =
1

1−
∫ 1
0 I((xi, y) ∈ S)dy

, wy,i =
1

1−
∫ 1
0 I((x, yi) ∈ S)dx

. (2.9)

In most cases, N is not homogeneous in [0, 1]2, and the variation of the event

density in S should be considered. Equation (2.9) should then be

wx,i =
1

1−
∫ 1
0 I((xi, y) ∈ S)dFy(y)

, wy,i =
1

1−
∫ 1
0 I((x, yi) ∈ S)dFX(x)

.

(2.10)

Because FY and FX are unknown, we replace them with F̃Y and F̃X , respectively;

that is,

wx,i =
1

1−
∫ 1
0 I((xi, y) ∈ S)dF̃y(y)

, wy,i =
1

1−
∫ 1
0 I((x, yi) ∈ S)dF̃X(x)

.

(2.11)

The above equation, together with (2.7) and (2.8), form a solvable equation

system. Below we propose an algorithm to solve this equation system.

First, the missing region S needs to satisfy the following condition.
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Figure 3. A heuristic estimation of the empirical distribution with missing points. Sup-
pose that, among events ei = (xi, yi), for i = 1, 2, . . . , N , events that fall in S cannot
be observed. To estimate the empirical distribution F̃X(x) of xi, for i = 1, 2, . . . , N ,
weights need to be assigned to each observed point. That is, when N is uniform,

F̃X(x) =
∑N

i=1 wx,iI(xi < x)/
∑N

i=1 wx,i, where wx,i = 1/
∫ 1

0
I((xi, y) /∈ S) dy. In this

figure, wx,1 is the total length of the green part of the vertical line segments crossing
over e1, and wx,2 = 1 because the vertical line segment crossing e2 has no intersection
with S.

Condition 1. The projections of ([0, T ]×M) \ S (i.e., the sub-region in which

no event is missing) on the t- and m-axes cover the entire observation period and

the entire range of possible marks, respectively.

This requirement ensures that the empirical distributions of {ti} and {mi}
can be restored. With Condition 1 satisfied, when a record is incomplete, we can

determine the area, say S, outside of which the record is complete. This can be

done either in the original time-mark plot, based on prior knowledge of the data

quality, or in the BEPIT domain, based on the statistics R or D.

The algorithm to replenish the record includes three key steps: (1) trans-

forming the process onto [0, 1]2 using the BEPIT to find a time–mark range

that likely contains all missing events; (2) estimating a new empirical distribu-

tion function based on the data in the time–mark range, inside which events are

supposed to be completely observed; (3) generating events in the missing region.

Initial settings. Given the data set Nobs = {(ti,mi) : i = 1, 2, . . . , n} observed

in [0, T ]×M and a time–mark range S, known to include the missing events,

suppose that S satisfies Condition 1.

Step 1. We map the observed data and the range S that contains the missing
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data onto [0, 1]2 using the BEPIT in (2.4). Explicitly, set

(t
(1)
i ,m

(1)
i ) = Γ

(1)
Nobs

(ti,mi), (2.12)

where

Γ
(1)
Nobs

(t,m) =
(
F̃ (1)(t), G̃(1)(m)

)
=

 1

n

n∑
j=1

1(tj < t),
1

n

n∑
j=1

1(mj < m)

 .

(2.13)

Denote S(1) as the image of S under the transformation Γ
(1)
Nobs

.

Step 2. Starting from ` = 1, repeat the following iterative computation until

convergence (e.g., max{|t(`+1)
i − t

(`)
i |, |m

(`+1)
i − m

(`)
i |} < ε), where ε is a

given small positive number:

(t
(`+1)
i ,m

(`+1)
i ) = Γ

(`+1)
Nobs

(t
(`)
i ,m

(`)
i ;S(`)), i = 1, 2, . . . , n, (2.14)

S(`+1) = Γ
(`+1)
Nobs

(S(`);S(`)), (2.15)

where

Γ
(`+1)
Nobs

(t,m;A) =(∑n
j=1w

(`)
1 (t

(`)
j ,m

(`)
j , A)1(t

(`)
j < t)∑n

j=1w
(`)
1 (t

(`)
j ,m

(`)
j , A)

,

∑n
j=1w

(`)
2 (t

(`)
j ,m

(`)
j , A)1(m

(`)
j < m)∑n

j w
(`)
2 (t

(`)
j ,m

(`)
j , A)

)
(2.16)

is also denoted by (F (l+1)(t), G(l+1)(m)), with the weights

w
(`)
1 (t,m,A) =

1 ((t,m) 6∈ A)

1−
∫ 1
0 1 ((t,m′) ∈ A) dG(`)(m′)

, (2.17)

w
(`)
2 (t,m,A) =

1 ((t,m) 6∈ A)

1−
∫ 1
0 1 ((t′,m) ∈ A) dF (`)(t′)

, (2.18)

for any regular region A ⊂ [0, 1]2. Denote the results upon convergence as

N∗obs = {(t∗i ,m∗i ) : i = 1, 2, . . . , n} and S∗.

Step 3. Generate a random number K from a negative binomial distribution,

with parameters (k, 1− |S∗|), where |S∗| is the area of S∗ and
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k =

n∑
i=1

1((t∗i ,m
∗
i ) 6∈ S∗) = #(N∗obs \ S∗).

Step 4. Generate K random events independently, identically, and uniformly

distributed in S∗. Denote these newly generated events as N∗rep.

Step 5. For each event in N∗obs, say, (tj ,mj), that falls in S∗, sequentially

remove from N∗rep the event that is the closest to (tj ,mj).

Step 6. Convert the resulting N∗rep from the last step to the original observation

space [0, T ]×M through linear interpolation:

sj = LI
(
s∗j ; [0, t∗1, t

∗
2, . . . , t

∗
n, 1], [0, t1, t2, . . . , T ]

)
, (2.19)

vj = LI
(
v∗j ; [0, m∗1, m

∗
2, . . . , m

∗
n], [0, m1, m2, . . . , mn]

)
, (2.20)

for each (s∗j , v
∗
j ) ∈ N∗rep, where LI(x,A,B) represents the linear interpolation

value of x, conditional on the function values for each component in A being

locations corresponding to each component in B. Denote the set consisting

of all (sj , vj) as Nrep.

Final output. Return Nrep.

Example 4. Here we apply the above algorithm to the thinned data set in

Example 2. The output from Steps 4 to 6 is shown in Figures 4(b)–(c). The

final output for our simulation example is shown in Figure 4(d). The tests us-

ing statistics R and D in (2.6) give p-values of 0.605 and 0.718, respectively,

providing no evidence to reject the hypothesis that the replenished data set is

complete (Figure 4(e)). Figure 4(f) compares the cumulative numbers of events

in the original, observed, and replenished processes, showing that the replenishing

algorithm recovers the missing data to some extent.

Notes:.

(1) Equation (2.13) is the BEPIT mentioned in the previous section. If the

data are completely recorded, {(t(1)i ,m
(1)
i ), i = 1, 2, . . . , n} form an approx-

imately homogeneous process on [0, 1]2. As shown in Figure 2(b), the sparse-

ness of the points around the lower, left corner implies that smaller events

are missing in the earlier period. Rather than choosing S in Figure 1(a), it

is more convenient to specify S(1) directly in Figure 2(a) or (b).
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(2) Step 2 is carried out based on the fact that the transformation ΓNobs
and

S(1) = ΓNobs
(S) can be quite different from ΓN , owing to the missing data.

The iteration in this step helps us construct a bi-scale transformation as

close as possible to the BEPIT yielded by the complete data (i.e., Γ∗Nobs
≈

ΓN ). At the same time, the corresponding area that contains the missing

data, S∗, is restored. This can be seen by comparing Figures 1(b) and 4(b).

Step 2 essentially solves F ∗ and G∗ in the following equations:

F ∗(t) =

∑n
j=1w1(tj ,mj , S)1 (tj < t)∑n

j=1w1(tj ,mj , S)
, (2.21)

G∗(m) =

∑n
j=1w2(tj ,mj , S)1 (mj < m)∑n

j=1w2(tj ,mj , S)
, (2.22)

where

w1(t,m, S) =
1 ((t,m) 6∈ S)

1−
∫
M 1 ((t,m′) ∈ S) dG∗(m′)

(2.23)

w2(t,m, S) =
1 ((t,m) 6∈ S)

1−
∫
M 1 ((t′,m) ∈ S) dF ∗(t′)

. (2.24)

If we define Γ∗Nobs
(t,m) = (F ∗(t), G∗(m)) as a mapping from [0, T ]×M to

[0, 1]2, then Γ∗Nobs
(t,m) directly maps Nobs to N∗obs and S to S∗.

The existence of a solution in the iteration given by (2.21) to (2.24) and

the asymptotic property of the solution are given in the Supplementary

Material.

(3) Steps 3 and 4 are based on the following fact: given a homogeneous Pois-

son process with an unknown occurrence rate, if there are k events falling

within an area of S1, then the number of events falling in the comple-

mentary area, S2, follows a negative binomial distribution with parameter

(k, |S1|/(|S1|+ |S2|)) (e.g., DeGroot (1986, p.258–259)).

(4) In Step 5, we should keep the existing events observed in S, and remove the

same number of simulated points.

One advantage of the algorithm is that if S is unknown, we can use the time-

mark plot of N (1), as in Figure 2(b), to determine S(1) by justifying which region

is likely to contain the missing events, and then continue with Step 2. Once the

replenishment is complete, S can be obtained by substituting the coordinate of

each point on the boundary of S∗ into (2.19) and (2.20).
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Figure 4. An application of the proposed replenishing algorithm to the synthetic data
set. (a) Rescaled marks versus rescaled occurrence times of the observed events (dots),
with the bi-scale transformation ΓNobs

based on the observed process. The polygon is the
missing area, S(1). (b) Rescaled marks versus rescaled occurrence times of the observed
events (dots), with the rescaling Γ∗Nobs

based on the events outside of S. The polygon
is the missing area after transformation Γ∗Nobs

, that is., S∗. (c) Rescaled marks versus
rescaled occurrence times of the observed and replenished events (crosses) (i.e., newly
generated events after removing events that are closest to any of those observed in S,
with the rescaling Γ∗Nobs

based on the empirical distributions of the events outside S.
(d) Marks versus occurrence times of the observed synthetic events and the replenished
events. (e) Cdfs of R and D for testing missing data in the replenished data set in
(c). (f) Cumulative frequencies versus occurrence times for the original, observed, and
replenished processes.

2.4. Additional simulations

To illustrate the overall behavior of the above replenishing algorithm, we

repeat the algorithm many times, with S fixed, for the following two cases: (1)

simulating a Poisson process with λ= 2, 000; and (2) simulating Poisson processes

with rate λ, drawn from a uniform distribution within [100, 3,000]. Both simula-

tions have the same missing probability functions, as given by (2.5). Figures 5(a)

and (b) compare between the true numbers of missing events and the numbers

of replenished events for cases (1) and (2), respectively. In Figure 5(a), since

λ is fixed, the number of replenished events is independent of the true number
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Figure 5. Comparison between the number of true missing events and the number of
replenished events. (a) λ = 2, 000, fixed. (b) λ is drawn from a uniform distribution
between 100 and 3,000. The dashed line represents the case where the numbers of
missing and replenished events are equal. The curves represent the running mean and
the corresponding single and double standard deviation bands.

of missing events, and has a larger variance. Several statistics related to these

simulations are given in Table 1, including the mean numbers and the variances

of the missing and replenished points, the mean of the relative differences, and

the relative difference between the means in 500 and 2,000 simulations. In partic-

ular, the near-zero relative deviation of the mean number of replenished events

shows that the proposed method is consistent. Here, the larger values of the

mean relative deviation of the number of replenished events from the number of

missing events illustrate the nature of the uncertainty related to the problem.

Such uncertainty is produced not only by the randomness of the numbers of re-

plenished and missing events, but also by the uncertainty in the estimation of the

occurrence rate in the process from the events in the nonmissing part. In Figure

5(b), the expected number of replenished events in many repeated simulations is

close to the number of missing events. Moreover, the relative deviation decreases

when the number of missing events (or λ) increases. These results imply that

this algorithm replenishes the missing events reasonably well. In addition, when

λ or the number of events in the process is quite small, some outputs yield a

negative number of replenished events (when the number of missing events is less

than 50 in Figure 5(b)). The number of replenished events is calculated simply

as the number of simulated events in S in Steps 3 and 4 minus the number of

observed events in S. This finding indicates that the existence of missing data

in these situations cannot be quantified probabilistically.
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Table 1. Statistics related to Figure 5(a). #m: number of missing points; #r: number
of replenished points; ·: mean value; σ(·): standard deviation.

#simu. #m σ(#m) #r σ(#r)
[
|#m−#r|

#m

]
|#m−#r|

#m

500 228.274 14.929 232.006 63.926 0.226 0.016

2,000 227.712 14.719 230.860 62.145 0.224 0.014
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Figure 6. Results after applying the replenishment algorithm to volcanic eruption data.
(a) Marks versus occurrence times of the eruption events. (b) Empirical distribution of
marks versus that of occurrence times. (c) Rescaled marks versus rescaled occurrence
times, with the rescaling based on the empirical distributions of the events outside of
S. (d) Rescaled marks versus rescaled occurrence times of the observed and replenished
events (i.e., newly generated events after removing events that are closest to any of those
observed in S), with the rescaling based on the empirical distributions of the events
outside of S. (e) Marks versus occurrence times of the observed and replenished events.
(f) Cumulative numbers of events against occurrence times. The polygon is the area S
and its corresponding mappings, in which the missing events fall. The green dots are
the replenished events.

3. Application

3.1. Volcanic eruption record

In this example, we analyze a record of the eruptions from the Hakone vol-

cano, an active volcano located at the northern boundary zone of the Izu-Mariana
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volcanic arc in central Japan (Yukutake et al. (2010); Honda et al. (2014)). The

data on Japanese explosive eruptions are compiled from the Smithsonian’s Global

Volcanism Program database (Siebert and Simkin (2002)), the Large Magnitude

Explosive Volcanic Eruptions database (LaMEVE database, Crosweller et al.

(2012)), and additional Japanese databases (Machida and Arai (2003); Commit-

tee for Catalog of Quaternary Volcanoes in Japan (ed) (2000); Geological Survey

of Japan, AIST (ed) (2013); Hayakawa (2010)).

For the Hakone volcano, 46 of the 54 compiled events have an eruption

magnitude (M = log10[erupted mass in kg] − 7; see Pyle (2015)) equal to or

larger than 4.0 (Table S1 in the Supplementary material). Figure 6(a) shows

the eruption magnitudes versus occurrence times of these 46 events. Figure 6(b)

shows the empirical distribution, transformed following Step 1 of the algorithm.

From this plot, the polygon boundaries of S are determined based on the following

assumptions. First, the events of empirical marks < 0.8 (M < 5.7) are missing

before the empirical time = 0.2 (165 ka). Second, the recording of larger events

improves after the empirical time = 0.2 (165 ka), although the events of empirical

marks < 0.4 (M < 5.0) are still missing. Third, the recording of events improves

further and there are no missing events after the empirical time = 0.6 (105 ka).

The results of the replenishing algorithm are shown in Figures 6(c) to 6(e).

The estimated cumulative number of events for the replenished data set

shows a remarkable jump of around 180 ka (Figure 6(f)). This jump is caused

by the replenished events synthesized around 180 ka (Figure 6(e)), based on the

cluster of four large events (M ∼ 6) at 178 ka, 181 ka, 185 ka, and 190 ka (Figure

6(a); Hayakawa (2010)). The ages of the events at the Hakone volcano are still

not fully agreed upon in the literature. For example, Yamamoto (2015) assumed

that the ages of the aforementioned eruptions are about 135 ka, 135 ka, 180 ka,

and 215 ka, respectively. Therefore, the reliability of the jump of the cumulative

number of events (Figure 6(f)) might problematic in the volcanological dating of

event ages, as in estimating the tephra volume and rounded eruption magnitude

in volcanology (Brown et al. (2014)). For example, the analyzed data set has

clusters of events of magnitudes 4 and 5 (Figure 6(a)) and, therefore, the replen-

ished events around 180 ka are also clustered around magnitudes 4 and 5 (Figure

6(e)).

Note that it is difficult to determine the exact period of under-recording

in the eruption history of each volcano. Kiyosugi et al. (2015) showed that

many eruptions are still missing from the overall Japanese database, even for

the last 100,000 years. Therefore, the polygon shape (Figure 6(b)) we have used
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suggests that our replenished data have the same completeness level as that of the

data outside the polygon. Our method is a way to consider the under-recording

of events in volcanic hazard assessments of explosive eruptions using geological

records.

3.2. Earthquake catalog: missing aftershocks

It is well known that immediately after a large earthquake, many aftershocks

cannot be recorded, because the seismic waveforms generated by the aftershocks,

many of which occur in a short time after the mainshock, overlap with each other

and cannot be distinguished. In this section, we study the earthquake catalog

from Southwest China for the period from January 1, 1990 to April 20, 2013, in a

space range of 26◦−34◦N and 97◦−107◦E, with minimum magnitude 3.0 (Figure

S2 in the Supplementary Material). This data set is selected from the Chinese

Earthquake catalog compiled by the China Earthquake Data Center (CEDC)

(http://data.earthquake.cn/index.html). The Wenchuan Mw 7.9 (Ms 8.0)

earthquake, which occurred on May 12, 2008, was one of the two largest seismic

events in China during the last 50 years. There are 6,249 events in the selected

space and time range, of which 3,754 occurred after the Wenchuan earthquake,

indicating a low seismicity level above magnitude 3.0 in the study region prior

to 2008. Many aftershocks are missing immediately after the mainshock. In

particular, events of magnitudes between 3.0 and 4.0 are not properly recorded

for a period of about one-and-a-half months after the mainshock. The majority

of the events after May 12, 2008, can be taken as clustering events triggered by

the Wenchuan mainshock. When analyzing the seismicity in this area, Jia et al.

(2014) and Guo, Zhuang and Zhou (2015) chose a relatively high magnitude

threshold of 4.0 to avoid biases in estimates caused by missing events. As a

results, 5,217 of the 6,249 events had to be ignored.

This example is quite different from the previous example and that based on

the simulated data. The missing range can be well specified before replenishment:

the missing values are known immediately after the occurrence of the mainshock,

and the monitoring ability for events between magnitudes 3.0 and 4.0 are restored

one-and-a-half months later. The results are illustrated in Figure 7. We can see

that missing events take up about half the total number of events.

In seismology, the frequency of aftershock occurrences in an aftershock se-

quence can be modeled by the empirical Omori–Utsu formula (e.g., Utsu, Ogata

and Matsu’ura (1995)),

 http://data.earthquake.cn/index.html
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Figure 7. Results from applying the replenishment algorithm to earthquake data from
Southwest China. (a) Marks versus occurrence times of the earthquake events. (b)
Empirical distribution of marks versus that of occurrence times. (c) Rescaled marks
versus rescaled occurrence times, with the rescaling based on the empirical distributions
of the events outside of S. (d) Rescaled marks versus rescaled occurrence times of
the observed and replenished events (i.e., newly generated events after removing events
that are closest to any of the observed in S), with the rescaling based on the empirical
distributions of the events outside S. (e) Marks versus occurrence times of the observed
and replenished events. (f) Cumulative numbers of events against occurrence times. The
polygon is the area S and its corresponding mappings, in which the missing events fall.

λ(t) =
K

(t+ c)p
, (3.1)

where K is an index proportional to the number of earthquakes excited by the

mainshock, c is related to the period after the mainshock from which the af-

tershock rate drops slowly, and p is the power related to the decay rate of the

aftershocks. Utsu, Ogata and Matsu’ura (1995) discussed how the parameters c

and p change with the cut-off magnitude threshold, and hypothesized that such

changes occur because small aftershocks in an early stage of the sequence are

missing from the catalog. We fit the above Omori–Utsu formula to both the

original and the replenished catalogs (Table 2), and obtain maximum likelihood

estimates of the parameters. The results show that after the replenishment, the
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Table 2. Results from fitting the Omori–Utsu formula to the original and the replenished
data sets of earthquakes from Southwest China, with different magnitude thresholds.
tmain: occurrence time of the mainshock; T : end of the time interval.

Magnitude
Replenished dataset Orig. dataset

threshold
[tmain, T ] [tmain, T ]

K̂ ĉ p̂ K̂ ĉ p̂
2.95 804.4 0.1140 1.003 82.29 0.0553 0.6205
3.05 639.2 0.1131 1.003 80.31 0.0596 0.6547
3.15 511.5 0.1134 1.001 79.25 0.0660 0.6872
3.25 412.9 0.1110 0.9965 79.04 0.0737 0.7185
3.35 327.3 0.1067 0.9926 78.80 0.0825 0.7555
3.45 260.3 0.1141 0.9925 80.67 0.0991 0.7986
3.55 213.8 0.1142 0.9953 83.33 0.1177 0.8407
3.65 171.6 0.1135 0.9907 85.73 0.1360 0.8799
3.75 135.9 0.1132 0.9911 90.18 0.1642 0.9278
3.85 111.2 0.1029 0.9941 95.17 0.1935 0.9708
3.95 100.0 0.1241 1.015 103.2 0.2383 1.023
4.05 74.12 0.1082 1.013 79.20 0.1938 1.027
4.15 60.65 0.1266 1.026 62.92 0.1690 1.034

Omori parameters c and p no longer change. We also fit the Omori–Utsu formula

to the original data set, but only consider earthquakes that occurred at least 54

days after the mainshock. In this case, although c and p are slightly different

from the estimates for the replenshed data from the starting time, they do not

change much when the magnitude threshold changes from 2.95 to 4.15 (Table

S2 in the Supplementary Material). These results numerically confirm the hy-

pothesis of Utsu, Ogata and Matsu’ura (1995) that missing small events in the

early stage of an aftershock sequence causes the instability of the estimate of the

Omori–Utsu formula.

4. Conclusion

In this study, we proposed a method for replenishing missing data in marked

temporal point processes, based only on the assumption that the marks of the

events are separable from the occurrence times, regardless of how the events

interact on the time axis. The key point of this method is an algorithm that

iteratively estimates the missing area in the transformed domain, based on the

parts where the data are completely recorded. We applied the proposed method

to an eruption record of the Hakone volcano in Japan and to an earthquake

catalog from Southwest China, which includes the aftershock zone of the 2008
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Mw7.9 Wenchuan earthquake. The results show that the proposed method helps

to both evaluate the influence of missing data and correct the bias caused by

such data.

Detection of the missing area. In our two examples, the missing area is de-

termined by visual inspection of the bi-scale transformed data for the historical

records of the Hakone volcano, and by prior information on the seismic network

for the Wenchuan aftershock sequence. In most cases, the missing area is de-

termined by the experience of data analysts or by information on the data from

other sources. However, it is possible to turn the replenishing algorithm into an

automated algorithm.

Starting from S′ = ∅, we divide the unit square into small cells in the bi-

scale transformed domain, obtained by applying the transformation defined in

(9) to (13). Then, we carry out the statistical tests based on the statistics R

or D on the cells that do not intersect S′, as discussed in Section 3. If the test

shows that missing cells exist, then we merge these cells into S′. These steps

are iterated until no further cells are added to S′. Note that because this topic

belongs within the scope of data processing algorithms, we did not include it in

this paper.

Separability of marks. As discussed earlier, the applicability of this algorithm

depends on whether the mark distribution is separable from the occurrence time.

If such dependence is known explicitly as a probability density function, say

g(m | t), we can directly use the cdf that corresponds to f in Steps 1 and 2 in the

algorithm (i.e., m
(`)
i = G(mi | ti), for ` ≥ 1). Of course, such dependence should

also be considered when transforming the marks of replenished events from [0, 1]

to the original mark space. If the mark is dependent on time, but we do not know

how, together with the existence of missing events, the replenishment/imputation

problem becomes unidentifiable.

Another case worth discussing is when the mark distribution is known and

does not depend on time. We can again use the cdf of the marks in Steps 1 and 2

directly in the algorithm (i.e., by setting m
(`)
i = G(mi), for ` ≥ 1). Such missing

data can also be estimated using Bayesian methods, as in Ogata and Katsura

(1993), and then replenished by direct simulation.

Imputation of locations. This method is powerful for marked temporal point

processes, but it cannot be extended easily to high-dimensional or spatiotemporal
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Figure 8. Epicenter map of imputed earthquakes (solid blue circles) for the Wenchuan
aftershock sequence.

cases because, in most cases, the process is not homogeneous in space. However,

it is still possible case by case. For example, to replenish the Wenchuan aftershock

sequence, we can use the clustering feature of earthquakes. A simple replenishing

algorithm is as follows. For each simulated event, find a fixed number (e.g., 50) of

events closest to it in time in the observed process. Then, construct a Delaunay

tessellation network for these 50 events, and select with equal probability one

of the Delaunay triangles. Lastly, place the the simulated event randomly and

uniformly in this selected triangle. An example of the imputed locations of the

missing aftershocks of the Wenchuan earthquake is shown in Figure 8. For a

spatially inhibitive process, different methods should be used.

In summary, the proposed method is useful when dealing with the missing

data problem in point-process observations, such as volcano eruption records and

historical or short-term earthquake catalogs.

Supplementary Material

The online Supplementary Material includes the following topics: (1) a proof

of the existence of a solution to the equation system in (21) to (24); (2) the

asymptotic properties of the solution; (3) additional simulations for the case in

which the missing region is wrongly specified; (4) list of the history record of the

Hakone volcano; and (5) comments on the Wenchuan aftershock sequence.
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