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Abstract: Large, family-based imaging studies can provide a better understanding

of the interactions of environmental and genetic influences on brain structure and

function. The interpretation of imaging data from large family studies, however,

has been hindered by the paucity of well-developed statistical tools for that per-

mit the analysis of complex imaging data together with behavioral and clinical

data. In this paper, we propose two methods for these analyses. First, a variance

components model, along with score statistics, is used to test linear hypotheses

of unknown parameters, such as the associations of brain measures (e.g., cortical

and subcortical surfaces) with their potential genetic determinants. Second, we

develop a test procedure, based on a resampling method, to simultaneously assess

the statistical significance of linear hypotheses across the entire brain. The value

of these methods lies in their computational simplicity and in their applicability

to a wide range of imaging data. Simulation studies show that our test procedure

can accurately control the family-wise error rate. We apply our methods to the

detection of statistical significance of gender-by-age interactions, and of the effects

of genetic variation on the thickness of the cerebral cortex in a family study of

major depressive disorder.

Key words and phrases: Cortical thickness, linear hypothesis, morphology, resam-

pling method, variance components model.

1. Introduction

Detailed and accurate measures of the morphology of the brain and its sub-

regions are important for understanding differences in brain structure across

subjects(see, for example, Ashburner and Friston (2000), Chung, Dalton, Evans

and Davidson (2007), Chung, Robbins, Dalton, Davidson, Alexander and Evans

(2005), Mechelli, Price, Friston and Ashburner (2005), Styner, Lieberman, Mc-

Clure, Weinberger, Jones and Gerig (2005), Thompson and Toga (2002), Sowell,

Peterson, Thompson, Welcome, Henkenius and Toga (2003) and Plomin and
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Kosslyn (2001)). An appropriate statistical analysis of these morphological mea-

sures is essential for understanding the joint effects of environmental and genetic

factors on normal and pathological brain structure and function (see, for ex-

ample, Thompson, Woods, Mega and Toga (2000)). Accordingly, considerable

effort has been devoted to developing statistical methods for the analysis of a

wide range of imaging measures (Friston, Holmes, Worsley, Poline, Frith and

Frackowiak (1995), Nichols and Hayasaka (2003), Nichols and Holmes (2002)

and Zhu, Ibrahim, Tang, Rowe, Hao, Bansal and Peterson (2007)).

The statistical methods for analyzing morphological measures from Mag-

netic Resonance Imaging (MRI) data are sequentially executed in two steps.

The first step involves fitting a statistical model to the MRI data from all

subjects at each voxel to generate a parametric map of test statistics (or p-

values). The second step is to calculate adjustments to the p-values that will

account for the multiple statistical tests that are performed across multiple

brain regions or across the many voxels of the imaging volume. These cal-

culations in the past have been performed using a variety of statistical meth-

ods, including random field theory, false discovery rate, or permutation methods

(Hayasaka, Phan, Liberzon, Worsley and Nichols (2004), Nichols and Hayasaka

(2003), Nichols and Holmes (2002), Worsley, Marrett, Neelin, Vandal, Friston

and Evans (1996) and Worsley, Taylor, Tomaiuolo and Lerch (2004)). Most of

these statistical procedures have been implemented in existing software plat-

forms, such as SPM (http://www.fil.ion.ucl.ac.uk), AFNI (http://www.afni.nimh

.nih.gov/afni/), and FSL (http://www.fmrib.ox.ac.uk/fsl), among others.

Existing methods used to perform each of these statistical procedures, how-

ever, have at least three major limitations. First, the standard linear model

that is most commonly employed in statistical modeling of imaging data was

developed primarily for use in cross-sectional studies, in which an MRI dataset is

collected for one subject and an MRI data from differing subjects are assumed to

be statistically independent (see, for example, Worsley, Marrett, Neelin, Vandal,

Friston and Evans (1996), Worsley, Taylor, Tomaiuolo and Lerch (2004), among

many others). In family studies, the effects of heritability and common envi-

ronment are thought to contribute to measures of regional brain volumes and

function, and to produce correlations in imaging data across family members.

Ignoring the correlation structure within the MRI datasets likely influences the

validity and accuracy of subsequent statistical inferences and therefore likely in-

creases the rates of false positive and false negative findings. Second, the meth-

ods of random field theory, commonly used to account for multiple statistical

comparisons across an imaging dataset, depend on three key assumptions of the
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standard linear model: the independence of MRI measures acquired from differ-

ent subjects within each voxel, the Gaussian distribution of random errors, and

the homogeneity of variance within each voxel (Nichols and Hayasaka (2003),

Worsley, Taylor, Tomaiuolo and Lerch (2004) and Zhu et al. (2007)). Random

field theory also requires several additional assumptions beyond those of the stan-

dard linear model, including the smoothness of images (Hayasaka et al. (2004),

Nichols and Hayasaka (2003) and Nichols and Holmes (2002)). Extending ran-

dom field theory to statistical models for the analysis of family-based imaging

data requires further research. Third, permutation methods cannot be extended

easily to the analysis of family data because of the enormous computational diffi-

culties that such extensions would entail. Permutation methods require refitting

‘complex’ statistical models at voxels, that number in the thousands to hundreds

of thousands in each permuted dataset (Nichols and Hayasaka (2003), Nichols

and Holmes (2002) and Zhu et al. (2007)).

The aim of this paper is to develop and apply new statistical methods to ad-

dress some of these limitations. Specifically, we develop and apply two methods

for the analysis of morphological measures acquired in family-based imaging stud-

ies: a variance components model that accounts for correlations within a family,

and a procedure for adjusting the associated p-values for multiple comparisons.

Variance components models have been used widely in quantitative genetic

trait studies (Almasy and Blangero (1998), Amos (1994), Amos, Zhu and Boer-

winkle (1996), Amos and de Andrade (2001) and Duncan (2004)). We use a

similar technique to explicitly model the correlations within each family to pro-

duce statistics that test linear hypotheses. We construct a pseudo-likelihood

function for the variance components model using the first and second moments

of the imaging measures and thereby avoid assuming that these imaging measures

are multivariate normal (Almasy and Blangero (1998)). This method therefore

permits the analysis of imaging real data sets that often deviate from multi-

variate Gaussian (Ashburner and Friston (2000), Nichols and Hayasaka (2003),

Nichols and Holmes (2002) and Zhu et al. (2007)). We calculate the maximum

pseudo-likelihood estimate for the associations of brain measures with covari-

ates of interest and with the degree of familial relatedness. Then we develop

statistics to test the linear hypotheses of unknown parameters. Although the

test statistic does not have a simple or exact parametric distribution, we use

a resampling method to improve its finite sample performance (Liu (1988) and

Efron and Tibshirani (1993)).

We also propose a test procedure to control the family-wise error rate when

conducting multiple statistical tests with intercorrelated imaging data. We per-

form statistical tests using the resampling method simultaneously at all voxels
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of the brain while preserving the dependence structure among the test statistics

(see, for example, Lin (2005), Kosorok (2003), Zhang, Feng and Zhu (2003) and

Zhu and Zhang (2004, 2006)). The resampling method does not involve repeated

analyses of simulated datasets, and therefore it is not computationally demand-

ing. The bootstrap resampling method, in particular, does not require complete

exchangeability and a Gaussian distribution for the imaging data. The test pro-

cedure is thus broadly applicable to a wide range of imaging modalities that are

acquired in longitudinal or family imaging studies, including anatomical MRI,

functional MRI, and Positron Emission Tomography.

2. Methods

2.1. Data structure

Suppose we have MRI measures and clinical variables from n families, with

mi family members within the ith family, i = 1, . . . , n. MRI measures might

be volumes of anatomical regions, or signed Euclidean distances of the sur-

faces of various cortical or subcortical regions from the surface of a template

structure (Ashburner and Friston (2000), Chung, Dalton, Evans and Davidson

(2007), Styner et al. (2005), Thompson and Toga (2002), Plomin and Kosslyn

(2001), Thompson et al. (2000) and Zhu et al. (2007)). Clinical variables might

include pedigree information, demographic characteristics (e.g., age, gender,

height), and diagnoses, among others. For the jth subject within the ith fam-

ily, we assume that we observe an ND × 1 vector of MRI measures, denoted by

Yij = {yij(d) : d ∈ D}, and a k × 1 vector of clinical variables xij , where D and

d, respectively, represent a specific brain region and a voxel on D. In most cases,

ND equals the number of points on D. For notational simplicity, we assume that

the yij(d) are univariate MRI measures.

2.2. Model

For simplicity, we temporarily drop voxel d from our notation. At a voxel d

on the brain subregion, we consider the variance components model

yij = xTijβ + gij + εij , (2.1)

for j = 1, . . . ,mi and i = 1, . . . , n, where β is a k × 1 vector representing un-

known parameters, gi = (gi1, . . . , gimi
)T is an mi×1 vector of genetic effects, and

εi = (εi1, . . . , εimi
)T is an mi×1 vector of environmental effects and/or measure-

ment errors. We assume that gi and εi are independent, (gi, εi) and (gk, εk) are

independent for any i 6= k, and E(εi) = E(gi) = 0. Moreover, Cov(εi) = σεImi
,

where Imi
is an mi ×mi identity matrix.
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We assume that the variance of genetic effect gij can be divided into two

components: the additive genetic variance from differences between homozygotes

and the dominance genetic variance from specific effects of various alleles in

heterozygotes (Fisher (1918)). Specifically, we assume

Cov(gi) = 2ΦiσA + ∆iσD, (2.2)

where σA is the additive genetic variance, Φi is the matrix of kinship coefficients,

σD is the dominance genetic variance, and ∆i is the matrix of the expected

probability of sharing two alleles IBD (called “identical by descent”) (Duncan

(2004, p.98)). The Cov(gi) in (2.2) can also be interpreted as the joint effects of

multiple genes (Almasy and Blangero (1998)). The kinship coefficient is defined

to be the probability that a randomly selected allele from each member of a pair

of individuals is IBD. For instance, the kinship coefficients for monozygotic twins,

dizygotic twins, a sib pair, and parent-offspring are, respectively, given by 0.5,

0.25, 0.25, and 0.25. Let Σi be the covariance of yi = (yi1, . . . , yimi
)T . It follows

from (2.1) and (2.2) that

Σi = 2σAΦi + σD∆i + σεImi
. (2.3)

2.3. Estimation method

Let θ be a (k+3)×1 vector of all unknown parameters (βT , σA, σD, σε)
T , and

xi = (xi1, . . . , ximi
) be a k ×mi matrix. We consider a quasi-likelihood function

Ln(θ) given by

Ln(θ) =
n
∑

i=1

ℓi(θ) = −
n
∑

i=1

{

log |Σi| + (yi − xTi β)TΣ−1
i (yi − xTi β)

}

. (2.4)

Note that in equations (2.1)−(2.4), we only assume first and second moments

of the MRI measures (Andrews (1999)). However, if we assume that both gi
and ǫi are Gaussian-distributed, then Ln(θ) in (2.4) is exactly the log-likelihood

function of the model (2.1).

The maximum quasi-likelihood estimate of θ is θ̂ = arg maxθ Ln(θ). We use

the Newton-Raphson algorithm to calculate θ̂ by iterating

θ(t+1) = θ(t) +
{

−∇2Ln(θ
(t))
}−1

∇Ln(θ
(t)), (2.5)

where ∇Ln(θ
(t)) and ∇2Ln(θ

(t)) denote, respectively, the first- and second-order

partial derivatives of the log-likelihood function with respect to θ evaluated at

θ(t). The Newton-Raphson algorithm stops when the absolute difference be-

tween consecutive θ(t)s is smaller than a predefined small number, say 10−4
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(Jennrich and Schluchter (1986), Laird and Ware (1982), and Lindstrom and

Bates (1988)). In addition, because −∇2Ln(θ
(t)) may not be positive defini-

tive, we use an approximation to −∇2Ln(θ
(t)) to stabilize the Newton-Raphson

algorithm. Detailed information about the Newton-Raphson algorithm is given

in Appendix I.

2.4. Hypotheses and test statistics

Our choice of hypotheses to test was motivated by two types of questions.

The first type involves a comparison of brain structure across diagnostic groups

or the detection of change in brain structure across time (Wright, Sham, Mur-

ray, Weinberger and Bullmore (2002), Plessen, Bansal, Zhu, Whiteman, Amat,

Quackenbusch, Martin, Durkin, Blair, Royal, Hugdahl and Peterson (2006) and

Styner et al. (2005)). These questions usually can be formulated as the testing

of linear hypotheses of about β

H0,µ : Rβ = b0 vs. H1,µ : Rβ 6= b0, (2.6)

where µ = Rβ, R is a r × k matrix of full row rank and b0 is a r × 1 specified

vector. We test the null hypothesis H0,µ : Rβ = b0 using the score test statistic

Sµ = ∂µLn
T Î−1

µµ ∂µLn, (2.7)

where ∂µLn =
∑n

i=1 Ûi,µ(θ̃) and Îµµ =
∑n

i=1 Ûi,µ(θ̃)Ûi,µ(θ̃)
T , in which θ̃ denotes

the estimate of θ under H0,µ and the explicit expressions of Ûi,µ(θ̃) and ∂µLn are

given in Appendix II. Particularly, Îµµ is an estimator of the covariance matrix

of ∂µLn and Î
−1/2
µµ ∂µLn is approximately a Gaussian random vector having an

identity covariance matrix. As shown in Appendix II, under H0,µ, ∂µLn has

zero mean and the statistic Sµ = ‖Î
−1/2
µµ ∂µLn‖

2
2 is asymptotically distributed as

χ2(r), where ‖·‖2 denotes the L2 norm of a vector (Lehmann and Romano (2005,

p.511)). However, for relatively small n, the asymptotic χ2 test for Sµ may be

highly conservative; see the simulation study in Section 3.1.

The second kind of questions on which we focus concern the testing of

genetic influences on brain structure (see, for example, Wright et al. (2002),

Thompson, Cannon and Toga (2002), Thompson, Cannon, Narr, van Erp, Pouta-

nen, Huttunen, Lonnqvist, Standertskjold-Nordenstam, Kaprio, Khaledy, Dail,

Zoumalan and Toga (2001) and Narr, Cannon, Woods, Thompson, Kim, Asunc-

tion, van Erp, Poutanen, Huttunen, Lonnqvist, Standerksjold-Nordenstam, Kaprio,

Mazziotta and Toga (2002)). We are interested in testing

H0,A : σA = 0 vs. H1,A : σA > 0. (2.8)
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Similar to testing H0,µ, we test H0,A using the score statistic

SA =

(

∂ALn
√

ÎAA

)2

1(∂ALn ≥ 0), (2.9)

where ∂ALn =
∑n

i=1 Ûi,A(θ̃A) and ÎAA =
∑n

i=1 Ûi,A(θ̃A)2, in which ∂A = ∂/∂σA,

θ̃A denotes the restricted estimate of θ under H0,A, and 1(·) is the indicator func-

tion. The explicit expression for Ûi,A(θ̃A) is given in Appendix II. Under H0,A,

∂ALn has zero mean, ÎAA is an estimator of the covariance of ∂ALn, ∂ALn/
√

ÎAA
is approximately a standard normal random variable and 1(∂ALn ≥ 0) is due to

the fact that σA ≥ 0 (Zhu and Zhang (2006), Zhang, Feng and Zhu (2003) and

Lehmann and Romano (2005)). As shown in Appendix II, the statistic SA is

asymptotically distributed as 0.5χ2(1)+0.5χ2(0) under the null hypothesis H0,A,

where χ2(0) denotes the constant 0.

We can test hypotheses (2.6) and (2.8) individually at each voxel d of the

brain region under examination. Henceforth, we keep d in our notation, for

example {SA(d), Sµ(d)}, as necessary.

2.5. Test procedure

To test whether H0,µ (or H0,A) holds in all voxels of the region under study,

we consider

Sµ,D = max
d∈D

Sµ(d) and SA,D = max
d∈D

SA(d). (2.10)

The maximum statistics Sµ,D and SA,D play a crucial role in controlling the

family-wise error rate. However, in order to use Sµ,D and SA,D as test statistics,

we need to know their distributions under the null hypothesis across all voxels of

the relevant region. We present a test procedure that is based on the resampling

method to approximate the distribution of Sµ,D; a similar procedure can be

developed for SA,D (Lin (2005), Kosorok (2003), Zhang, Feng and Zhu (2003) and

Zhu and Zhang (2004, 2006)). In Appendix III, we establish that the resampling

method is asymptotically valid. The test procedure is implemented as follows.

Step 1: At each voxel d of the brain structure, calculate the score test statistic

Sµ(d) given in (2.7) based on the observed data {(yi(d), xi) : i = 1, . . . , n}.

Compute Sµ,D = maxd∈D Sµ(d);

Step 2: Generate a random sample {η
(s)
i : i = 1, . . . , n} with

η
(s)
i =

{

1 with probability 0.5,

−1 with probability 0.5.
(2.11)
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Step 3: At each voxel d of D, calculate

Sµ(d)
(s) = ∂µLn(d)

(s)T [Îµµ(d)]
−1∂µLn(d)

(s) (2.12)

and compute S
(s)
µ,D = maxd∈DSµ(d)

(s), where ∂µLn(d)
(s) =

∑n
i=1 Ûi,µ(θ̃, d) η

(s)
i

and Îµµ(d) =
∑n

i=1 Ûi,µ(θ̃, d)Ûi,µ(θ̃, d)
T .

Step 4: Repeat Steps 2−3 S times and calculate {S
(s)
µ,D : s = 1, . . . , S}. The

p value of Sµ,D is approximated by

pµ,D = S−1
S
∑

s=1

1
(

S
(s)
µ,D ≥ Sµ,D

)

. (2.13)

We reject the null hypothesis H0 : Rβ = b0 across all voxels of the region when

pµ,D is smaller than a pre-specified value α, say 0.05.

Step 5: Calculate the p-value of Sµ(d) at each voxel d of the region according

to

p(d) ≈ S−1
S
∑

s=1

1
(

Sµ(d)
(s) ≥ Sµ(d)

)

. (2.14)

Step 6: Calculate the corrected p-value of Sµ(d) at each voxel d of the region

according to

pD(d) ≈ S−1
S
∑

s=1

1
(

S
(s)
µ,D ≥ Sµ(d)

)

. (2.15)

We note several advantages of using the resampling method as above. The

above procedure only requires the computation of Ûi,µ(θ̃, d) once besides the re-

peated calculation of Sµ(d)
(s). Thus, because it does not involve repeated analy-

ses of simulated datasets, the proposed test procedure is computationally much

more efficient than the permutation method. Specifically, fitting the variance

components models across all voxels of a brain region can take up to two or three

hours for each simulated dataset, and thus the permutation method can take

a week for only 100 simulated datasets. In contrast, the proposed resampling

method takes less than 5 minutes for S = 1, 000.

The proposed resampling method also performs better than do other resam-

pling methods, such as the parametric bootstrap and the traditional bootstrap.

For instance, the parametric bootstrap requires parametric assumptions for both

gi and ǫi, as well as the refitting of bootstrapped datasets. The traditional boot-

strap also has both computational and conceptual difficulties. The traditional

bootstrap, for example, requires the refitting of bootstrapped datasets, and how
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to use it in the variance components model to approximate the finite distribution

of Sµ(d) under the null hypothesis H0,µ is unclear.

3. Simulation Studies

We conducted two sets of Monte Carlo simulations. The first examined

the finite performance of Sµ and SA at the level of a single voxel. The second

evaluated the family-wise error rate and power of Sµ,D and SA,D at the level of

an entire brain region.

3.1. Monte Carlo simulations at a single voxel

We first simulated MRI measures from n pairs of siblings according to the

variance components model (2.1), in which ǫi = (ǫi1, ǫi2)
T and gi = (gi1, gi2)

T

were independently generated, respectively, from multivariate Gaussian genera-

tors with zero means and covariance matrices as given in (2.3). Thus, each family

contained only two siblings. The xij = (x1ij , x2ij , x3ij)
T was a 3 × 1 vector of

covariates of interest.We set x1ij ≡ 1, each x2ij was independently 0 or 1 with

probability 0.5, and we generated x3ij independently from a Gaussian generator

with zero mean and unit variance. The x2ij and x3ij were thought of as gender

and standardized age, respectively.

To assess the Type I and II error rates for Sµ, we tested the hypotheses

H0,µ : β3 = 0 and H1,µ : β3 6= 0.

We set (σA, σD, σǫ)
T = (2, 1, 2), and chose β = (β1, β2, β3)

T to be (1, 1, 0)T and

(1, 1, 1)T . In all cases, R = (0, 0, 1) and b0 = (0). We set n = 20, 40, and 60 for

examining the finite performance of Sµ.

To assess the Type I and II error rates for SA, we tested the hypotheses

H0,A : σA = 0 and H1,A : σA > 0.

We set (βT , σD, σǫ)
T = (1, 1, 1, 1, 2)T , and chose σA to be 0.0 and 2.0. We set

n = 20, 40, 60, 80, 100, and 200 for examining the finite performance of SA.

For each simulation, 20,000 replications were used to estimate the rejection

rates with significance levels set at α = 5% and 1%. For a fixed significance level

α, a test was conservative if its Type I rejection rate was smaller than α, whereas

the test was anticonservative if the Type I rejection rate was greater than α.

For the test statistic Sµ, the Type I rejection rates for the resampling method

were relatively accurate for all sample sizes (n = 20, 40, 60 and 80), whereas the

Type I rejection rates for the asymptotic χ2 test were somewhat conservative

when n = 20 and the significance level was α = 1% (Figure 1 a−d). Consistent
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with our expectations, the power increased with the sample size n. Compared
with the asymptotic χ2 test, the resampling method had slightly greater power

(Figure 1 c & d), because the upper 95th percentile of the sample distribution of
Sµ was much lower than that of the χ2−distribution when the sample size was
relatively small, say 40.

For the test statistic SA, the estimated significance levels of the resampling
method and the asymptotic χ2 test under the null hypothesis were reasonably
close to the nominal significance levels for all sample sizes (n = 20, 40, 60, 100,
and 200) (Figure 2 a−d). Again, consistent with our expectations, the power in-
creased with the sample size n. The power of the resampling method in rejecting
the null hypothesis is close to that of the asymptotic χ2 test (Figure 2 c & d).

Figure 1. Simulation Study for Sµ: Type I and Type II Error Rates. Re-
jection rates of the resampling method (“Boot”) and the asymptotic χ2 test
(“Chi2”) for Sµ are calculated for sample sizes of 20, 40, and 60 at the 1%
and 5% significance levels. Panels (a) and (c), respectively, show the es-
timated Type I error rates and Type II error rates at the 1% significance
level. Panels (b) and (d), respectively, show the estimated Type I and Type
II error rates at the 5% significance level.
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Figure 2. Simulation Study for SA: Type I and Type II Error Rates. Re-
jection rates of the resampling method (“Boot”) and the asymptotic χ2 test
(“Chi2”) for SA are calculated for sample sizes of 20, 40, 60, 100, and 200 at
the 1% and 5% significance levels. Panels (a) and (c), respectively, show the
estimated Type I and Type II error rates at the 1% significance level. Panels
(b) and (d), respectively, show the estimated Type I and Type II error rates
at the 5% significance level.

Compared with Sµ, a larger sample size was needed to detect genetic influ-

ences on brain measures using SA. For instance, at the significance level α = 5%,
a sample size n = 40 had a power more than 0.8 to detect β3 = 1, whereas a

sample size n = 200 had a power of approximately 0.8 to detect σA = 2.

3.2. Monte Carlo simulations for all voxels on a sphere

In this simulation, we used a variance components model (2.1) to generate
data at all m = 2, 064 points on the surface of a reference sphere for each member

of all n families. Every family contained only a sib pair, that is, j = 1, 2 for i =
1, . . . , n. For a given voxel d in D, β(d) = (β1(d), β2(d), β3(d))

T was a 3×1 vector

of unknown parameters and xij was the same 3×1 vector of covariates generated
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Figure 3. Simulation Study of a Region of Interest Analysis. The region of

interest is highlighted in red on the surface of a reference sphere: (a) anterior
and (b) right lateral views.

in the first set of simulations. Moreover, for i = 1, . . . , n and d = 1, . . . ,m, the

gi(d) = (gi1(d), gi2(d))
T were independently generated from a 2 × 1 Gaussian

generator with zero mean and covariance matrix given in (2.2).

To examine the finite sample performance of Sµ,D, we tested the null hy-

pothesis H0 : β3(d) = 0 at all points on the surface of the reference sphere. We

set n = 20, 40, and 60. We first assumed β(d) = (1, 1, 0)T at all points on the

reference sphere to assess the family-wise error rate. To assess both the power

and family-wise error rate, we selected a region-of-interest (ROI) with 64 points

on the reference sphere, and changed β3(d) from 0 to 2 for any point d in ROI

(Figure. 3 a & b). In both cases, we set (σA(d), σD(d), σǫ(d)) = (1, 0, 1) to test

the genetic influences on the reference sphere. Thus, R = (0, 0, 1) and b0 = (0).

To examine the finite performance of SA,D, we tested the null hypothesis

H0 : σA(d) = 0 at all points on the surface of the reference sphere. We set n =

20, 40, 60, 100, 200, and 400. We assumed β(d) = (1, 1, 1)T and (σD(d), σǫ(d))
T =

(0, 1)T at points on the reference sphere. To assess the family-wise error rate,

we set σA(d) to zero in all points on the reference sphere. In addition, to assess

both the power and family-wise error rate, we set σA(d) = 2 for all points within

the ROI (Figure 3 a & b).

We smoothed the simulated data on the reference sphere using heat kernel

smoothing with either 16 or 64 iterations, yielding an effective smoothness of

approximately 4mm or 8mm, respectively Chung, Robbins, Dalton, Davidson,

Alexander and Evans (2005)). We used the family-wise error rate (FWER=

P (V ≥ 1)) as the Type I error rate and estimated it based on 1,000 replications

at the significance level α = 5% (Dudoit, Shaffer and Boldrick (2003)). We also

calculated the average of the probabilities of rejecting each of the 64 points in

the ROI as an estimate of the average power using 1,000 replications and the

significance level α = 5%.
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Figure 4. Simulation Study: Family-wise error rates and average powers

of the resampling method. The test statistic Sµ,D, sample sizes 20, 40,

and 60, and three different degrees of smoothness at significance level 0.05

(Panels (a)−(c)). The test statistic SA,D, sample sizes 20, 40, 60, 100, 200,

and 400, and three different degrees of smoothness at significance level 0.05

(Panels (d)−(f)). In Panels (a) and (d), the null hypotheses are true in all

voxels of the reference sphere; in Panels (b), (e), (c), and (f), the alternative

hypotheses are true in all voxels within the ROI, whereas the null hypotheses

are true in all voxels outside the ROI. The family-wise error rates are in

Panels (a), (c), (d), and (f) and the average powers are in Panels (b) and

(e).

For the test statistic Sµ,D, our test procedure worked reasonably well for

relatively small sample sizes (n = 20, 40, and 60) (Figure 4 a−c). The family-wise

error rates for our robust test procedure were not particularly accurate for small

sample sizes, n = 20 and n = 40 (Figure 4 a); in contrast, they approximated

the 5% significance level at n = 60. Thus, sample size could influence the finite

sample performance of our test procedure, particularly when sample sizes are

small. Furthermore, although application of heat kernel smoothing may greatly

increase the average power to detect statistically significant effects at the vertices

of an ROI, it also dramatically increased the family-wise error rates (Figure 4 b

& c).

For the test statistic SA,D, our test procedure worked reasonably well for all

sample sizes (n = 20 − 400) (Figure 4 d−f). The family-wise error rates for our

procedure were close to the 5% significance level at sample sizes from n = 20 to

400 (Figure 4 d). Compared with the sample size needed to detect H0,µ : β3 6= 0,

n ≥ 400 was needed to detect genetic effects on brain structure. Application
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of heat kernel smoothing not only decreased the power to detect statistically

significant genetic effects in the ROI, but it also greatly increased family-wise

error rates (Figure 4 e & f).

We observed the effects of heat kernel smoothing on the detection of covariate

and genetic effects. Genetic effects, however, are mainly associated with the

variance components of MRI measures, and therefore independently smoothing

MRI measures from multiple subjects within each family may deteriorate their

correlation structure in family-based imaging data. We believe that for MRI

measures from longitudinal and family studies, there is a need to develop new

registration and smoothing methods that account for the correlation structure

within the MRI datasets (Csapo, Holland and Guttmann (2007)).

4. Example

We applied our test procedure to the assessment of statistically significant

effects of gender and genetic influences on the thickness of the cerebral cortex in

a family study of Major Depressive Disorder. The 131 subjects from 49 families

were recruited from a prospective study of individuals at high and low familial risk

for depression (Weissman, Wickramaratne, Nomura, Warner, Verdeli, Pilowsky,

Grillon, and Bruder (2005) and Weissman, Wickramaratne, Nomura, Warner,

Pilowsky, and Verdeli (2006)). The age of subjects ranged from 6 to 55 years

(mean 29.08, SD: 13.66 years). The high and low risk groups were similarly

distributed across gender (males: 61; female: 70). Subjects were predominantly

right-handed (91.0%). The families varied in size from 1 to 15 individuals.

We developed a three-step procedure to measure cortical thickness. First,

we used a 7-parameter rigid-body similarity transformation (3 translations, 3

rotations, and global scaling) to register the brains of all subjects to the cere-

brum of a selected reference subject (Viola and Wells (1995)). Second, we used

the method of fluid dynamics to identify correspondences for points on the sur-

faces of the cortex of each brain with the points on the surface of the reference

brain (Christensen, Rabbitt and Miller (1994) and Bansal, Staib, Wang and Pe-

terson (2005)). Third, we applied the morphological 3D distance transform to

the segmented cortical gray matter to measure cortical thickness and the value

at each point on the surface of the brain of each subject (Lohmann, Preul, and

Hund-Georgiadis (2003)).

To control for the effects of covariates (diagnosis, age, and gender) on our

models of cortical thickness, we considered the variance components model for

the signed-distance yij at each point on the cortical surface. Here xij = (x1ij , . . .,

x5ij)
T is a 5 × 1 vector, in which x1ij ≡ 1, x2ij is log(Age), x3ij is gender, x4ij

denotes the risk status (high-risk or low-risk), and x5ij = x2ijx3ij.
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We smoothed the cortical thickness measures of the 131 subjects using heat
kernel smoothing with parameters σ = 1 and 100 iterations, yielding an effec-
tive smoothness of approximately 10mm (Chung, Robbins, Dalton, Davidson,
Alexander and Evans (2005)).

We detected and localized the statistical significance of the age-by-gender
interaction on the morphology of the cortical thickness - i.e., H0 : β5(d) = 0 at
all points on the surface. Thus we have R = (0, 0, 0, 0, 1) and b0 = (0). The
p-values p(d) based on the resampling method were color-coded at each point of
the reference brain (Figure 5). To correct for multiple comparisons, we applied

Figure 5. Age×Gender Interactions for Cortical Thickness. Color-coded
maps of sign(β5) × [− log

10
(p)]-values, where p denotes the p-value of the

score-type statistics for testing age-by-gender interaction and β5 is the co-
efficient of x5ij . Row 1: smoothed data and uncorrected p-values. Row 2:
smoothed data and corrected p-values. Row 3: unsmoothed data and uncor-
rected p-values. Row 4: unsmoothed data and corrected p-values. Column
(a): dorsal surface. Column (b): ventral surface. Column (c): posterior
surface. Column (d): anterior surface. Column (e): right lateral surface.
Column (f): left lateral surface. After correction for multiple comparisons,
statistically significant interactions of Age×Gender remain in the occipital
lobe at the significance level 10% (Row 2 and Column (c)).
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Figure 6. Genetic Effects. Color-coded maps of − log
10

(p)−values for the

score-type statistics. Row 1: unsmoothed data and uncorrected p-values.
Row 2: smoothed data and uncorrected p-values. Column (a): dorsal sur-

face. Column (b): ventral surface. Column (c): posterior surface. Column
(d): anterior surface. Column (e): right lateral surface. Column (f): left

lateral surface. Smoothing substantially reduces the number of significant
voxels on the surface of the cerebral cortex.

our test procedure to calculate the corrected p-value pD(d) at each point on the

surface of the reference brain (Figure 5). Color-coded maps of p-values using

either the uncorrected p(d)-value alone, or the corrected pD(d)-value, indicated

several large-scale age×gender interactions in our model that were strongest in

the inferior prefrontal, lateral temporal, and visual cortices (Figure 5).

We detected and localized the effects of genetic influences on cortical thick-

ness (Figure 6 a−f). Corrected p-values p(d) at each point on the surface of

the reference cortex, however, did not detect statistically significant genetic ef-

fects on the cortical thickness (not presented here) at a significance level of 10%.

The uncorrected p-value p(d) maps alone indicated several large-scale genetic

influences in the morphology of cortical surface. We also applied the same test

procedure to the unsmoothed image data, but all points failed to reach the cor-

rected p value of 0.1 (data not shown). The uncorrected p-value maps indicated

genetic influences on cortical thickness that were sparsely distributed; moreover,

smoothing dramatically reduced the number of voxels at the surface of cerebral

cortex (Figure 6).

5. Conclusions and Discussion

There are we also note several advantages and limitations of our procedures.

We characterize the correlations among morphological measures within a fam-

ily using presumed genetic associations – specifically, the probability that two
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members of a pedigree share one or two alleles from the same source (Duncan

(2004)). Whether the genetic relationships fully characterize the correlations

among imaging measures within a family, however, is unclear. The analytic pro-

cedure that is based on the score test statistics and the resampling method can

accurately control the family-wise error rate under the various scenarios exam-

ined (Figures 1−2 and 4). However, if the multivariate Gaussian assumptions

are indeed valid, then we may incorporate the Gaussian distribution into our test

procedure to increase the statistical power of rejecting null hypothesis, including

hypotheses concerning a genetic effect. Moreover, for significance levels on the

order of α = 1%, a large S in the test procedure is needed to estimate pD and

pD(d) accurately.

Many aspects of this work warrant further research. Performance of our test

procedure should be assessed, for example, in analyses of data from other imaging

modalities, such as PET and fMRI. Our test procedure should also be extended

to include the use of cluster size in combination with a statistical threshold

(e.g., χ2
0.05(r)) to control the Type I error rates (Hayasaka et al. (2004) and

Friston, Worsley, Frackowiak, Mazziotta and Evans (1994)). We will report on

these efforts elsewhere. We will also explore the use and assumptions of varying

correlation structures for the morphological measures within a family. Finally,

we will incorporate genotype information into our analysis of the morphologic

features of the brain.

Appendix I. First and second derivatives of Ln(θ) with respect to θ

For completeness, we include the first and second derivatives of Ln(θ) with

respect to θ, that have already appeared in the literature (see, for example,

Jennrich and Schluchter (1986), Laird and Ware (1982) and Lindstrom and Bates

(1988)). For notational simplicity, we omit d from all parameters. Let ψ =

(ψ1, ψ2, ψ3)
T = (σA, σD, σǫ)

T . Differentiating Ln(θ) with respect to θ = (βT ,

ψT )T , we find

∂βLn(θ) =

n
∑

i=1

∂βℓi(θ) =

n
∑

i=1

xiΣ
−1
i ei,

∂ψ1
Ln(θ) =

n
∑

i=1

∂ψ1
ℓi(θ) = −0.5 × tr

[

2ΦiΣ
−1
i (Σi − eie

T
i )Σ−1

i

]

,

∂ψ2
Ln(θ) =

n
∑

i=1

∂ψ2
ℓi(θ) = −0.5 × tr

[

∆iΣ
−1
i (Σi − eie

T
i )Σ−1

i

]

,

∂ψ3
Ln(θ) =

n
∑

i=1

∂ψ3
ℓi(θ) = −0.5 × tr

[

Σ−1
i (Σi − eie

T
i )Σ−1

i

]

,
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where ei = ei(β) = yi − xTi β and ∂θ and ∂2
θ , respectively, denote the first- and

second-order derivatives with respect to θ. Furthermore, using the fact that

E[ei(β)] = 0 and E[ei(β)ei(β)T ] = Σi at β = β∗, in which β∗ denotes the true

value of β, we can obtain the approximate of the second derivatives of Ln(θ) with

respect to θ as

∂2
βLn(θ) = −

n
∑

i=1

xiΣ
−1
i xTi ,

∂2
ψLn(θ) ≈ −

n
∑

i=1

∂ψΣi(Σ
−1
i ⊗ Σ−1

i )∂ψΣT
i ,

∂ψ∂βLn(θ) = −
n
∑

i=1

∂ψΣi(Σ
−1
i ⊗ Σ−1

i ei)x
T
i ≈ 0,

where ⊗ denotes the Kronecker product of two matrices and ∂ψΣi, a 3 × mi

matrix, equals (∂ψ1
Σi, ∂ψ2

Σi, ∂ψ3
Σi)

T . Thus, we have

−∂2
θLn(θ) ≈

( ∑n
i=1 xiΣ

−1
i xTi 0

0
∑n

i=1 ∂ψΣi(Σ
−1
i ⊗ Σ−1

i )∂ψΣT
i

)

. (A.1)

In addition, we have

∂ψ1
Σi = Vec(2Φi), ∂ψ2

Σi = Vec(∆i), and ∂ψ3
Σi = Vec(Ii),

where Vec(C) denotes (c11, . . . , c1mi
, . . . , cmi1, . . . , cmimi

)T for anymi×mi matrix

C = (cij).

Appendix II. Test Statistics

To consider the test statistic Sµ, we need additional notation. Without loss

of generality, we assume that R = (R1, R2), in which R1 is an r × r nonsingular

matrix and R2 is an r × (k − r) matrix. Let β = (βT(1), β
T
(2))

T , where β(1) is an

r × 1 vector corresponding to R1 and β(2) is a (k − r) × 1 vector corresponding

to R2. If we set

µ = R1β(1) +R2β(2) − b0 and ν = (βT(2), ψ
T )T , (A.2)

then there exists a one-to-one correspondence between (µ, ν) = f(θ) and θ =

f−1(µ, ν). Thus, we have

∂(β(1), β(2), ψ)

∂(µ, β(2), ψ)
=











R−1
1 −R−1

1 R2 0

0 Ik−r 0

0 0 I3











.



STATISTICAL MODELLING OF BRAIN MORPHOLOGICAL MEASURES 1587

Moreover, the first- and second-order derivatives of Ln(θ) with respect to µ are

∂µLn(θ) = (R−1
1 , 0, 0)∂θLn(θ), ∂

2
µθLn(θ) = (R−1

1 , 0, 0)∂2
θLn(θ),

∂2
µLn(θ) = (R−1

1 , 0, 0)∂2
θLn(θ)(R

−1
1 , 0, 0)T .

We obtain the asymptotic distributions of the test statistics Sµ and SA as

follows. Let θ0 = (0, ν0) be the true parameter vector of θ under H0,µ and

θ̃ = f(0, ν̃) be the maximum quasi-likelihood estimate of θ under H0,µ. Assume

that

−∂2
f(θ)Ln(θ) = V (µ, ν) =

(

Vµµ Vµν

Vνµ Vνν

)

.

First, the use of a Taylor expansion yields

0 = ∂νLn(θ̃) ≈ ∂νLn(θ0) + ∂2
νLn(θ0)(ν̃ − ν0) = ∂νLn(θ0) − Vνν(ν̃ − ν0).

Thus, we have

ν̃ − ν0 ≈ V −1
νν ∂νLn(θ0). (A.3)

Second, using a Taylor expansion leads to

∂µLn(θ̃) ≈ ∂µLn(θ0) − VµνV
−1
νν ∂νLn(θ0) ≈

n
∑

i=1

Ui(0, ν̃),

where Ui(µ, ν) = ∂µℓi(µ, ν) − VµνV
−1
νν ∂νℓi(µ, ν). Thus, we have

Ûi(θ̃) = ∂µℓi(θ̃) − V̂µν V̂
−1
νν ∂νℓi(θ̃), (A.4)

where V̂µν = Vµν(0, ν̃) and V̂νν = Vνν(0, ν̃). We define Îµµ =
∑n

i=1 Ûi(0, ν̃)

Ûi(0, ν̃)
T . Under mild conditions described previously (van der Vaart (1998)),

Î
−1/2
µµ ∂µLn(θ̃) converges to a Gaussian distribution with mean 0 and covariance

matrix Ir; consequently, Sµ is asymptotically distributed as χ2(r) distribution

under H0,µ.

For SA, we proceed as follows. First, let δ = (βT , ψ2, ψ3)
T , which defines a

one-to-one map between θ and (ψ1, δ
T )T . Second, assume that

−∂2
(ψ1,δT )Ln(θ) = V (ψ, δ) =

(

Vψ1ψ1
Vψ1δ

Vδψ1
Vδδ

)

,

and Ui,A(θ) = ∂ψ1
ℓi(θ) − Vψ1δV

−1
δδ ∂δℓi(θ). Let k(θ̃A) = (0, δ̃T ), where θ̃A is the

estimate of θ under H0,A. Then, we have

Ûi,A(θ̃A) = ∂ψ1
ℓi(θ̃A) − V̂ψ1δV̂

−1
δδ ∂δℓi(θ̃A), (A.5)
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where V̂ψ1δ = Vψ1δ(0, δ̃) and V̂δδ = Vδδ(0, δ̃). Under conditions described previ-

ously (Zhu and Zhang (2006)), SA converges to 0.5χ2(0)+0.5χ2(1) in distribution

when the null hypothesis H0,A is true.

Appendix III. Theoretical Justification

We study the asymptotic properties of {Sµ(d), Sµ(d)
(r)} under the null hy-

pothesis H0,µ. First we need to distinguish D and D, where D denotes the set of

the centers of all voxels in a specific brain region and D denotes the collection of

all points in the same brain region. In practice, because we only observe data at

all points of D, we can only calculate {Sµ(d), Sµ(d)
(r)} for all d ∈ D, but we can

always embed {Sµ(d), Sµ(d)
(r) : d ∈ D} into {Sµ(d), Sµ(d)

(r) : d ∈ D}.

We regard {Sµ(d) : d ∈ D} and {Sµ(d)
(r) : d ∈ D} as two stochastic processes

indexed by d ∈ D. To validate the test procedure in Section 2.5, we need to

establish three main results

(a) Sµ(·) converges weakly to a χ2 process, denoted by Xµ(·);

(b) Sµ(·)
(r) converges weakly to Xµ(·);

(c) Sµ(·)
(r) converges conditionally to Xµ(·).

Sufficient conditions for ensuring (a)−(c) and the detailed proof have been dis-

cussed in the literature (Kosorok (2003), van der Vaart and Wellner (1996) and

Zhu and Zhang (2006)). After establishing (a)−(c), we can use the Continuous

Mapping Theorem to prove the desirable results as follows:

(d) Sµ,D = maxd∈D Sµ(d) converges weakly to maxd∈DXµ(d);

(f) S
(r)
µ,D = maxd∈D Sµ(d)

(r) converges conditionally to maxd∈DXµ(d).

Thus, we have proved that the resampling method presented in Section 2.5 is

asymptotically valid.
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