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Abstract: When analyzing large-scale data, subsampling methods and divide-and-

conquer procedures are appealing, because they ease the computational burden,

while preserving the validity of inferences. Here, sampling may occur with or

without replacement. In this paper, we propose a perturbation subsampling

approach based on independent and identically distributed stochastic weights for

analyzing large-scale data. We justify the method based on optimizing convex

objective functions by establishing the asymptotic consistency and normality of the

resulting estimators. This method simultaneously provides consistent point and

variance estimators. We demonstrate the finite-sample performance of the proposed

method using simulation studies and two real-data analyses.

Key words and phrases: Convex objective function, distributed computing, opti-

mization, perturbation, subsampling.

1. Introduction

The computation for a full-sample analysis of a large-scale data set is often

infeasible. One solution is to use parallel computing to process subsets of the full

data, and then combining the results from subsets (McDonald, Hall and Mann

(2010); Boyd et al. (2011); Terenin, Simpson and Draper (2015); Jordan, Lee and

Yang (2019)). An alternative approach is to use subsampling, where the analysis

is based on a selected fraction of the complete data set (Drineas, Mahoney and

Muthukrishnan (2006); Mahoney (2011); Dhillon et al. (2013); Ma, Mahoney and

Yu (2015); Quiroz et al. (2019)).

Optimal subsampling methods have been studied for various models, based

on sampling with or without replacement (Wang, Zhu and Ma (2018); Ai

et al. (2021); Keret and Gorfine (2020); Zuo et al. (2021); Wang and Ma

(2021)). These optimal subsampling methods require calculating data-dependent

nonuniform sampling probabilities for all data at once, which may require

significant computational resources. In general, it is nontrivial to justify the

asymptotic properties of the estimators resulting from such sampling strategies.

The underlying multinomial distribution of the sampling with replacement or the

multivariate hypergeometric distribution of the sampling without replacement

leads to nonindependence of the subsample, with negative correlations. In other
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words, although the subsample observations might be conditionally independent,

they are correlated unconditionally. In addition, current results, including those

related to optimal subsampling and Poisson subsampling (Särndal, Swensson and

Wretman (2003); Wang (2019); Yu et al. (2020); Wang and Ma (2021)), quantify

the difference between the subsample estimator and the full data estimator using

the conditional distribution and conditional variance. However, theoretical and

methodological discussions on the difference between the subsample estimator

and the true value are limited.

In this paper, we develop a perturbation subsampling method for statistical

inference of large-scale data by optimizing convex objective functions. The

proposed method depends on stochastic weights, generated by two steps: the first

step draws a subsample using Bernoulli sampling, and the second step generates

random perturbation weights for the subsample with a known probability

distribution in order to approximate the objective function of the full data.

Repeating the perturbation is feasible for a distributed computing framework

and provides an empirical distribution for statistical inference. The rest of

the paper is organized as follows. In Section 2, we introduce the proposed

perturbation subsampling method for analyzing large-scale data. Section 3

presents our theoretical results. Section 4 examines the performance of the

proposed approaches using simulated data sets. In Section 5, we analyze real

data sets and conclude with a discussion in Section 6. Proofs of the theoretical

results are provided in the Supplementary Material.

2. A Perturbation Subsampling for Large-Scale Data

2.1. Optimization of convex objective function

Suppose that Y is the response variable and X is a d-dimensional vector

of covariates. The relationship between Y and X can be characterized by a

d-dimensional unknown parameter β0 ∈ Rd, where

β0 = argmin
β∈Rd

Ef(β,X, Y ), (2.1)

with f(β,x, y) being a continuous, convex objective function with respect to

β. Throughout this paper, we assume that Ef(β,X, Y ) exists and is finite.

Based on the independent and identically distributed (i.i.d.) sample (yi,xi), for

i = 1, . . . , n, we can obtain the estimator of β0 by minimizing the empirical

analog of the convex objective function:

β̂n = argmin
β∈Rd

1

n

n∑
i=1

f(β,xi, yi). (2.2)



A PERTURBATION SUBSAMPLING FOR BIG DATA 913

In general, the resulting estimator is an M -estimator (Niemiro (1992)). It is the

maximum likelihood estimator (MLE) when the function f(β,xi, yi) is the minus

of the log-likelihood of (yi,xi), and is the Lp-norm estimator if f(β,xi, yi) =

|yi − xT
i β|p, for a known p > 1 and i = 1, . . . , n.

2.2. Perturbation subsampling

We introduce a perturbation subsampling method that reduces the sample

size from n to rn using Bernoulli sampling and approximates the objective

function of the full data using a perturbation with independently generated

stochastic weights.

The procedure generates two different i.i.d. completely known nonnegative

random variables. Here, rn is the desired reduced sample size (rn < n), and qn
is the ratio between the desired subset size and the full sample size. In the first

step, we achieve subsampling by generating n i.i.d. Bernoulli random variables

with probability qn. Specifically, if the generated ith Bernoulli random variable

takes the value one, then the ith sample is selected, otherwise, the ith sample is

not selected. The size of the resulting subsample is approximately rn, because

it is the expectation of the sum of n copies of Bernoulli random variables. In

the second step, we perform a perturbation using nonnegative stochastic weights,

generated independently from a known probability distribution with mean 1/qn,

to approximate the objective function of the full data; see Algorithm 1.

Algorithm 1: A perturbation subsampling algorithm.

1 Subset: Generate n i.i.d. random variables {Un,i}ni=1, where
Un,i ∼ Bernoulli(qn), qn = rn/n.

2 Stochastic weighting: Generate n i.i.d. nonnegative random variables
{Vn,i}ni=1 from a completely known probability distribution with EVn,i = 1/qn.

3 Estimation: Minimize the perturbed objective function to obtain an estimator

β̃n = argmin
β∈Rd

1

n

n∑
i=1

Wn,if(β,xi, yi), where Wn,i = Un,iVn,i. (2.3)

Remark 1. The first step is based on Bernoulli sampling in survey sampling

(Särndal, Swensson and Wretman (2003)), and has been used in subsampling

algorithms such as the pilot subsampling step in Algorithm 2 of Yu et al. (2020).

The second step is novel in terms of subsampling algorithms. Here, we use a

stochastic weight generated from a known probability distribution to approximate

the objective function of the full data, rather than rescale with fixed and data-

dependent weights in the subsampling, as in Ma, Mahoney and Yu (2015) and

Wang, Zhu and Ma (2018). More importantly, this step can be implemented

repeatedly to estimate the variance of the perturbation subsampling estimator.
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Remark 2. In practice, the second step needs to generate Vn,i only for those

Un,i = 1. However, for a theoretical justification, it is convenient to assume that

we generate Vn,i for all i = 1, . . . , n. The same remark holds for Algorithm 2 and

3.

Remark 3. Several common probability distributions can be used in the second

step. Examples include the following:

1. Continuous distributions:

(a) Gamma distribution, for example, Vn ∼ Gamma(1/qn, 1), Vn ∼
Exponential(1/qn);

(b) Scaled Beta distribution, for example, Vn ∼ 3/qnBeta(1, 2), Vn ∼
Uniform(0, 2/qn);

(c) Half normal distribution, for example, Vn ∼ Half-Normal(0, q2nπ/2).

2. Discrete distributions:

(a) Geometric distribution, for example, Vn ∼ Geometric(qn);

(b) Negative binomial distribution, for example, Vn ∼ Negative Binomial

(1/qn, 1/2);

(c) Poisson distribution, for example, Vn ∼ Poisson(1/qn).

Different choices of probability distribution satisfy the expectation requirement

of perturbation subsampling, but with different variances. Specifically, if the

variance of Vn is b2n, then var(Wn) = 1/qn − 1 + b2nqn. If bn = 0, then Algorithm

1 is the classic Bernoulli sampling. With the requirement b2n > 0, the stochastic

weighting can be used repeatedly to estimate the variance of the perturbation

subsampling estimator for statistical inference, as in Jin, Ying and Wei (2001).

The procedure is summarized in Algorithm 2.

2.3. Repeated perturbation subsampling for large-scale data

Repeatedly using Algorithms 1 and 2 yields a collection of subsampling

estimators that can be used for statistical inference. A more general algorithm for

repeated perturbation subsampling is summarized in Algorithm 3, which involves

both repeated Bernoulli subsampling and repeated stochastic weighting for each

Bernoulli subsampling. This algorithm can be implemented under parallel or

distributed computational architectures, with the data distributed as subsets

across the machines.

Remark 4. In Algorithm 2 and Algorithm 3, we can estimate the conditional

variance of the proposed estimator from the repeated subsampling estimates. We

can estimate the unconditional variance using an adjustment by a factor that
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Algorithm 2: A perturbation subsampling algorithm for variance estimation.

1 Subset: Generate n i.i.d. random variables {Un,i}ni=1, where
Un,i ∼ Bernoulli(qn).

2 for fixed k, k = 1, . . . ,m with prespecified number of perturbations m(> 1) do
3 Stochastic weighting: Generate n i.i.d. nonnegative random variables

{Vn,k,i}ni=1 from the completely known probability distribution with
E(Vn,k,i) = 1/qn and var(Vn,k,i) = b2n.

4 Estimation: Minimize the perturbed objective function to obtain an

estimator β̃n,k such that

β̃n,k = argmin
β∈Rd

1

n

n∑
i=1

Wn,k,if(β,xi, yi), where Wn,k,i = Un,iVn,k,i. (2.4)

5 end

6 Variance estimation: The conditional variance of β̃n in (2.3) can be
estimated by

ṽar(β̃n|Dn) =
1

bnqn(m− 1)

m∑
k=1

(
β̃n,k − 1

m

m∑
k=1

β̃n,k

)(
β̃n,k − 1

m

m∑
k=1

β̃n,k

)T

,

(2.5)
where Dn = {xi, yi}ni=1, and the unconditional variance can be estimated by

ṽar(β̃n) =

(
rn
nan

+ 1

)
ṽar(β̃n|Dn), where an = 1− qn + b2nq

2
n. (2.6)

involves the subsample size (rn), the number of parallel processes (M), and the

variance of the stochastic weight (b2n).

3. Theoretical Results

In this section, we study the theoretical properties of the estimators obtained

from Algorithm 1 and Algorithm 3. It is easy to see that Algorithm 2 is a

special case of Algorithm 3. Note that the stochastic weights Wn,i in the two

algorithms are independent of the data Dn = {yi,xi}ni=1. Conditional on the data,

only the stochastic weights are random. Unconditionally, the randomness in the

resulting estimators involves both the stochastic weights and the data. We use

Pr∗, E∗, and var∗ to denote the conditional probability, conditional expectation,

and conditional variance given the data, respectively. We write || · || for the

Frobenius norm for a matrix or the Euclidean norm for a vector. We assume the

following regularity conditions.

Assumption 1. The parameter space of β is compact in Rd. The β0 satisfying

(2.1) is an interior point of the parameter space and is unique.
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Algorithm 3: A repeated perturbation subsampling algorithm.

1 Prespecify the number of parallels M(> 1):
2 for fixed l, l = 1, . . . ,M do
3 Subset: Generate n i.i.d. r.v. {Un,i,l}ni=1, where Un,i,l ∼ Bernoulli(qn).
4 for fixed k, k = 1, . . . ,m with prespecified number of perturbations m(> 1)

do
5 Stochastic weighting: Generate n i.i.d. nonnegative r.v. {Vn,i,l,k}ni=1

with E(Vn,i,l,k) = 1/qn and var(Vn,i,l,k) = b2n.
6 Point estimation: Minimize the perturbed objective function such that

β̃n,l,k = argmin
β∈Rd

1

n

n∑
i=1

Wn,i,l,kf(β,xi, yi), where Wn,i,l,k = Un,i,lVn,i,l,k.

(2.7)
7 end

8 Variance estimation: The estimate of var(β̃n,l) can be obtained as in
(2.6).

9 end
10 Combination: Obtain the final estimator as

β̃(M)
n =

(
M∑
l=1

ṽar(β̃n,l)
−1

)−1 M∑
l=1

ṽar(β̃n,l)
−1β̃n,l. (2.8)

The estimates of the conditional and unconditional variance of β̃
(M)
n are

ṽar(β̃(M)
n |Dn) =

∑M
l=1 ẽlẽ

T
l

M − 1

M∑
l=1

(
β̃n,l −

1

M

M∑
l=1

β̃n,l

)(
β̃n,l −

1

M

M∑
l=1

β̃n,l

)T

and ṽar(β̃(M)
n ) =

(
rn(

∑M
l=1 ẽlẽ

T
l )

−1

nan
+ Id×d

)
ṽar(β̃(M)

n |Dn), (2.9)

where ẽl = (
∑M

l=1 ṽar(β̃n,l)
−1)−1ṽar(β̃n,l)

−1 and an = 1− qn + b2nq
2
n.

Assumption 2. The first and second gradients of the convex objective function

f(β,x, y) with respect to β in a neighborhood of β0 exist and are finite. The

gradients are denoted by ḟ and f̈ respectively, given by ḟ(β0,x, y) = (∂f(β,x, y)

/∂β)|β=β0
and f̈(β0,x, y) = (∂2f(β,x, y)/∂β∂βT )|β=β0

. We further assume that

the matrix E(f̈(β0,X, Y )) is positive definite.

Assumption 3. Stochastic weights Un ∼ Bern(qn), E(Vn) = 1/qn, and there

exists α > 0 such that lim supn→∞ q2+α
n EV 2+α

n < ∞.

Assumption 1 is required to guarantee the consistency of the minimizer of

the convex objective function. Assumption 2 guarantees E(||ḟ(β,X, Y )||2) < ∞
for each β in a neighborhood of β0, thus implying the asymptotic normality

of the full-data estimator (Theorem 4 of Niemiro (1992)). Assumption 3 is a

requirement on the stochastic weights. It is equivalent to there existing α > 0
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such that lim supn→∞ q1+α
n EW 2+α

n < ∞, because Un and Vn are independent,

E(Wα
n ) = E(Uα

n )E(V α
n ), and E(Uα

n ) = qn, for any α > 0.

Our first theorem establishes the consistency and asymptotic normality of

the estimator obtained from Algorithm 1, conditional on the full data.

Theorem 1. Under Assumptions 1-3, the estimator obtained from Algorithm 1

satisfies

Pr∗(||β̃n − β̂n|| ≥ ϵ) → 0, as rn → ∞ and n → ∞, (3.1)

for any ϵ > 0, and conditional on full data,

(C−1
1n M1nC

−1
1n )

−1/2

√
rn
an

(β̃n − β̂n)
D−→ Nd(0, Id×d), as rn → ∞, and n → ∞,

(3.2)

where M1n = (1/n)
∑n

i=1 ḟ(β̂n,xi, yi)ḟ(β̂n,xi, yi)
T , C1n = (1/n)

∑n
i=1 f̈(β̂n,

xi, yi), and an = 1− qn + b2nq
2
n.

The next theorem establishes the unconditional consistency and asymptotic

normality of the estimator obtained from Algorithm 1.

Theorem 2. Under Assumptions 1-3, the estimator obtained from Algorithm 1

satisfies

Pr(||β̃n − β0|| ≥ ϵ) → 0, as rn → ∞ and n → ∞, (3.3)

for any ϵ > 0, and

(C−1
2 M2C

−1
2 )−1/2

√
rn
dn

(β̃n−β0)
D−→ Nd(0, Id×d), as rn → ∞ and n → ∞, (3.4)

where M2 = E(ḟ(β0,X, Y )ḟ(β0,X, Y )T ), C2 = E(f̈(β0,X, Y )), and dn = 1 +

b2nq
2
n.

Remark 5. The estimate of the unconditional variance of β̃n can be approxi-

mated by the ratio of the adjusting factors, that is, (rn/an)/(rn/dn) = rn/(nan)

+1 times the corresponding estimate of the conditional variance of β̃n, which can

be obtained using (2.5) from Algorithm 2, in practice.

Algorithm 2 is a special case of Algorithm 3, with M = 1. Our next

corollary shows the asymptotic conditional normality of the proposed estimator

in Algorithm 3.

Corollary 1. Suppose that all conditions in Theorem 1 hold. Then the estimator

given by (2.8) obtained from Algorithm 3 is
√
rnM -consistent to the full-data

estimator conditional on the data, that is,

(
anM

M∑
l=1

ele
T
l C

−1
1n M1nC

−1
1n

)−1/2√
rnM(β̃(M)

n − β̂n)
D−→ Nd(0, Id×d),
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as rn → ∞ and n → ∞, (3.5)

where el = (
∑M

l=1 var(β̃n,l)
−1)−1var(β̃n,l)

−1, and an = 1− qn + b2nq
2
n.

The next corollary shows the asymptotic unconditional normality of the

proposed estimator in Algorithm 3.

Corollary 2. Suppose that all conditions in Theorem 2 hold. Then the estimator

given by (2.8) obtained from Algorithm 3 is
√
n-consistent to the true value

unconditionally when rnM ≥ n:

(hnC
−1
2 M2C

−1
2 )−1/2

√
n(β̃(M)

n − β0)
D−→ Nd(0, Id×d), as rn → ∞ and n → ∞,

(3.6)

where el = (
∑M

l=1 var(β̃n,l)
−1)−1var(β̃n,l)

−1, and hn = Id×d+(nan/rn)
∑M

l=1 ele
T
l .

Remark 6. The proposed estimator in Algorithm 3 is
√
rnM -consistent when

rnM < n, and is
√
n-consistent when rnM > n. The estimate of the

unconditional variance of β̃(M)
n can be approximated by the ratio of the adjusting

factors, that is, rn(
∑M

l=1 ele
T
l )

−1/(nan) + Id×d times the corresponding estimate

of the conditional variance of β̃(M)
n . The conditional variance can be obtained

using (2.9) from Algorithm 3, in practice.

Remark 7. When rnM > n, the estimator from the full data is still more efficie-

nt than the subsample estimator with perturbations. Under regularity conditions,

we can derive the asymptotic distribution of the estimator from the full data, as

follows:

(C−1
2 M2C

−1
2 )−1/2

√
n(β̂n − β0)

D−→ Nd(0, Id×d). (3.7)

The unconditional variance of the repeated perturbation estimator is approxi-

mately hn(> 1) times the variance of the estimator from the full data. Note that

different choices of stochastic weight Vn yield different hn.

4. Simulation Study

In this section, we present simulation studies that evaluate the finite-sample

performance of our proposed approaches. Three models are considered: a linear

regression model, logistic regression model, and probit regression model. The

design matrix Xn×d of the regression models is generated from the following

distributions:

1. Mean-zero normal data from a multivariate normal distribution N(0,Σ),

with Σi,j = 0.5|i−j|.

2. Mean-nonzero normal data from a multivariate normal distributionN(1,Σ),

with Σi,j = 0.5|i−j|.
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Figure 1. Empirical MSEs for a linear regression model, based on N = 1,000 simulations.

3. T3 data from a multivariate t-distribution t3(0,Σ), with Σi,j = 0.5|i−j|.

4. T5 data from a multivariate t-distribution t5(0,Σ), with Σi,j = 0.5|i−j|.

The true regression coefficients are set to be a 3 × 1 vector of ones (d = 3). A

total of N = 1,000 data sets are generated, with a sample size of n = 10,000
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Figure 2. Empirical MSEs for a logistic regression model, based on N = 1,000
simulations.

for each data set. The target sample size rn of the subsampling is set to

200, 500, 800, 1000, 1200, 1500, 1800, 2000, 3000 to 5000.

The empirical mean squared error (MSE) is used to evaluate the proposed

procedures and to compare different estimators. The unconditional MSE is
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Figure 3. Empirical MSEs for a probit regression model, based on N = 1,000 simulations.

defined as (1/N)
∑N

i=1 ||β̃n,i − β0||2. The conditional MSE is defined as (1/N)∑N
i=1 ||β̃n,i − β̂n||2. We use the empirical coverage of the confidence intervals to

examine the proposed variance estimator. The computing time, including the

subsampling and the estimation, is used to assess the computational efficiency.

All methods are implemented in the R programming language (R Core Team
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Table 1. Empirical coverage probabilities of β10 based on the proposed unconditional
variance estimation method from Algorithm 2, with different subset sizes, for a linear
regression model with *m=500, **m=1000, based on N = 1000 simulations.

Design matrix Size r gammaPERT* betaPERT* geomPERT* gammaPERT** betaPERT** geomPERT**

Mean zero 1,000 0.945 0.915 0.850 0.947 0.897 0.846

normal 1,200 0.947 0.912 0.868 0.950 0.924 0.850

1,500 0.956 0.942 0.872 0.943 0.941 0.863

1,800 0.950 0.935 0.877 0.951 0.922 0.867

2,000 0.949 0.940 0.865 0.958 0.932 0.871

3,000 0.939 0.943 0.885 0.946 0.928 0.889

Mean nonzero 1,000 0.949 0.926 0.849 0.950 0.913 0.843

normal 1,200 0.949 0.920 0.871 0.955 0.917 0.836

1,500 0.962 0.944 0.873 0.951 0.939 0.867

1,800 0.954 0.927 0.875 0.951 0.927 0.879

2,000 0.948 0.935 0.872 0.951 0.936 0.874

3,000 0.941 0.945 0.886 0.943 0.937 0.891

T3 1,000 0.942 0.922 0.837 0.950 0.925 0.854

1,200 0.952 0.919 0.868 0.925 0.926 0.869

1,500 0.950 0.916 0.871 0.939 0.934 0.866

1,800 0.951 0.927 0.868 0.948 0.936 0.881

2,000 0.945 0.925 0.872 0.950 0.937 0.877

3,000 0.944 0.944 0.910 0.936 0.936 0.907

T5 1,000 0.948 0.923 0.859 0.944 0.936 0.847

1,200 0.958 0.923 0.860 0.932 0.935 0.841

1,500 0.963 0.926 0.867 0.952 0.919 0.865

1,800 0.950 0.926 0.875 0.946 0.918 0.886

2,000 0.944 0.938 0.864 0.952 0.921 0.896

3,000 0.953 0.945 0.905 0.954 0.947 0.912

(2013)). The computations are run on HPC, a Linux-based (CentOS 7.6.1810)

computer cluster in the Department of Systems Biology at Columbia University.

The following procedures are considered to evaluate Algorithm 1:

1. Uniform subsampling estimator based on sampling with replacement (unis-

MUL);

2. Uniform subsampling estimator based on sampling without replacement

(unisGEOM);

3. Bernoulli subsampling estimator (noPERT);

4. Perturbation subsampling estimator based on Gamma(1/qn, 1) distribution

(gammaPERT);

5. Perturbation subsampling estimator based on 2/qnBeta(1, 1) distribution

(betaPERT);

6. Perturbation subsampling estimator based on Geometric(qn) distribution

(geomPERT).

The results are shown in Figure 1-3. The patterns are similar among the

three regression models. The unconditional MSEs (A1-A4) are larger than the
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Table 2. Empirical coverage probabilities of β10 based on the proposed unconditional
variance estimation method from Algorithm 2, with different subset sizes, for a logistic
regression model with *m=500, **m=1000, based on N = 1000 simulations.

Design matrix Size r gammaPERT* betaPERT* geomPERT* gammaPERT** betaPERT** geomPERT**

Mean zero 1,000 0.956 0.924 0.848 0.947 0.909 0.857

normal 1,200 0.941 0.932 0.864 0.954 0.924 0.844

1,500 0.941 0.921 0.881 0.950 0.940 0.848

1,800 0.953 0.925 0.872 0.941 0.922 0.872

2,000 0.957 0.931 0.881 0.952 0.924 0.885

3,000 0.939 0.936 0.884 0.943 0.934 0.908

Mean nonzero 1,000 0.946 0.932 0.847 0.950 0.931 0.845

normal 1,200 0.938 0.927 0.845 0.963 0.924 0.868

1,500 0.948 0.930 0.862 0.957 0.941 0.877

1,800 0.944 0.937 0.878 0.960 0.918 0.871

2,000 0.961 0.935 0.885 0.951 0.912 0.869

3,000 0.953 0.946 0.911 0.949 0.936 0.907

T3 1,000 0.942 0.924 0.837 0.945 0.931 0.854

1,200 0.943 0.945 0.863 0.937 0.915 0.860

1,500 0.952 0.944 0.863 0.949 0.921 0.874

1,800 0.961 0.922 0.864 0.947 0.934 0.849

2,000 0.955 0.947 0.859 0.941 0.936 0.867

3,000 0.945 0.929 0.894 0.944 0.935 0.900

T5 1,000 0.950 0.922 0.852 0.943 0.932 0.838

1,200 0.954 0.920 0.855 0.950 0.906 0.859

1,500 0.961 0.934 0.844 0.961 0.926 0.861

1,800 0.942 0.928 0.862 0.942 0.936 0.866

2,000 0.957 0.939 0.882 0.945 0.919 0.880

3,000 0.954 0.947 0.910 0.946 0.957 0.891

conditional MSE (B1-B4). Both MSEs decrease as the subset size increases

under different design matrices for all methods. The perturbation subsampling

estimators with Gamma and Beta distributions perform similarly to the sampling

with replacement method. The sampling without replacement method and the

Bernoulli subsampling estimator yield the lowest MSEs, and the perturbation

subsampling estimator with a Geometric distribution has the largest MSE.

Table 1 shows the coverage probabilities based on Algorithm 2 with m =

500 and m = 1,000 for the linear regression model. The empirical coverage of

the 95% confidence interval for β10 based on the perturbation with a Gamma

distribution is close to the nominal level, and those based on perturbations with

Beta and Geometric distributions are less than the nominal level. The empirical

coverage remains stable when the perturbation number increases from m = 500

to m = 1,000. Table 2 shows similar results for the logistic regression.

The following procedures are considered to evaluate the performance of

Algorithm 3:

1. Full-data estimator (Full);

2. Uniform subsampling estimator based on sampling with replacement (unis-

MUL);
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Table 3. Computing time of repeated perturbation subsampling with M = 20 compared
with that of other subsampling methods. The CPU time is the average of N = 1,000
simulations across all subsample sizes and four design matrices.

Method unisMUL A-optsMUL L-optsMUL gammaPERT betaPERT geomPERT

CPU time(s) 0.008 4.576 4.231 1.368 1.632 1.414

3. Two-step A-optimal subsampling estimator (A-optsMUL) (Ai et al. (2021));

4. Two-step L-optimal subsampling estimator (L-optsMUL) (Ai et al. (2021));

5. Repeated perturbation subsampling estimator based on Gamma(1/qn, 1)

distribution (gammaPERT) with M = 20, 50;

6. Repeated perturbation subsampling estimator based on 2/qnBeta(1, 1)

distribution (betaPERT) with M = 20, 50;

7. Repeated perturbation subsampling estimator based on Geometric(qn)

distribution (geomPERT) with M = 20, 50.

The A-optimal and L-optimal nonuniform sampling probabilities are obtained

using the procedures in Ai et al. (2021). The sample size used to calculate

the initial estimator for the optimal subsampling methods is set to 200. The

number of perturbations m for each parallel process is set to 200. For the linear

regression model, Figure 4 shows that the optimal subsampling exhibits greater

estimation accuracy than that of the uniform subsampling method, especially

when Xn×d is generated from the t-distribution. The repeated perturbation

subsampling estimators have much smaller MSEs. Increasing M from 20 to 50

yields smaller MSEs. The repeated perturbation subsampling methods also take

less computational time than the optimal methods do (Table 3). Similar patterns

are observed for the logistic regression model.

Table 4 shows the empirical coverage of the 95% confidence interval for β10

in a linear regression model based on Algorithm 3 with M = 50, 200. The

empirical coverage is close to the nominal confidence level 0.95 for all three

perturbation distributions considered. The empirical coverage remains stable

when the perturbation number increases from M = 50 to M = 200. Table 5

shows the simulation results for the logistic regression.

The simulation studies show that perturbations with Gamma and Beta

distributions yield better results than those with a Geometric distribution.

Furthermore, the perturbation number m should be large if Algorithm 2 is used,

but can be smaller if Algorithm 3 is used.
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Figure 4. Comparison of empirical MSEs between repeated perturbation subsampling
with M = 20, 50 and other subsampling methods for a linear regression model based on
N = 1,000 simulations.

5. Application

5.1. Oceanographic data

In this section, we apply our proposed procedure to analyze the Cali-

fornia Cooperative Oceanic Fisheries Investigations (CalCOFI) Hydrographic
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Figure 5. Comparison of empirical MSEs between repeated perturbation subsampling
with M = 20, 50 and other subsampling methods for a logistic regression model based
on N = 1,000 simulations.

data set. The Hydrographic data set provides the longest duration oceano-

graphic data since 1949, and is available at https://calcofi.org/data/

oceanographic-data/. The current data set has 887,018 records, with n =

682,876 complete cases. We use the complete cases to examine the effect of
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Table 4. Empirical coverage probabilities of β10 based on the proposed unconditional
variance estimation method from Algorithm 3, with different subset sizes, for a linear
regression model with *M=50, **M=200, based on N = 1,000 simulations.

Design matrix Size r gammaPERT* betaPERT* geomPERT* gammaPERT** betaPERT** geomPERT**

Mean zero 500 0.958 0.950 0.932 0.962 0.960 0.954

normal 1,000 0.932 0.950 0.946 0.956 0.954 0.948

1,200 0.954 0.960 0.948 0.952 0.960 0.948

1,500 0.954 0.952 0.938 0.956 0.962 0.964

2,000 0.944 0.950 0.948 0.962 0.954 0.958

3,000 0.942 0.954 0.950 0.958 0.952 0.956

Mean nonzero 500 0.956 0.958 0.936 0.950 0.964 0.946

normal 1,000 0.936 0.940 0.936 0.954 0.958 0.944

1,200 0.952 0.954 0.936 0.944 0.950 0.952

1,500 0.958 0.956 0.948 0.950 0.956 0.952

2,000 0.934 0.946 0.948 0.954 0.948 0.956

3,000 0.942 0.954 0.946 0.956 0.942 0.954

T3 500 0.974 0.976 0.948 0.978 0.978 0.974

1,000 0.962 0.958 0.956 0.970 0.966 0.964

1,200 0.958 0.972 0.964 0.966 0.974 0.966

1,500 0.966 0.964 0.952 0.972 0.968 0.968

2,000 0.960 0.956 0.944 0.958 0.958 0.962

3,000 0.958 0.968 0.956 0.962 0.960 0.964

T5 500 0.964 0.950 0.934 0.962 0.952 0.956

1,000 0.962 0.950 0.962 0.960 0.958 0.958

1,200 0.950 0.954 0.954 0.960 0.950 0.964

1,500 0.956 0.956 0.952 0.954 0.966 0.952

2,000 0.960 0.946 0.960 0.956 0.954 0.958

3,000 0.950 0.954 0.942 0.956 0.952 0.960

salinity (in grams of salt per kilogram of water (g/kg)) and oxygen (mixing ratio

in ml/L) on the sea surface temperature using the following linear regression

model (Bograd and Lynn (2003); Sivasankari and Anandan (2020)),

Sea surface temperature = β0 + β1Salinity + β2Oxygen + error. (5.1)

Table 6 shows the analysis results. The analysis with the full data set shows

that both salinity and oxygen are significantly associated with sea surface

temperature (salinity: 2.406, SE 0.002, p-value < 0.001; oxygen: 4.269, SE

0.011, p-value < 0.001). The proposed repeated perturbation subsampling with

rn = 10000, M = 50, and m = 200 yields similar results. The conditional

standard errors are approximately the same as or larger than
√
nan/(rnM) (1.17

for gammaPERT, 1.34 for betaPERT, 1.64 for geomPERT) times the full-data

standard errors, which is consistent with Corollary 1. These results indicate

that the point estimation is robust across different subset perturbations. The

unconditional variances of the perturbation estimates are approximately hn (2.37

for gammaPERT, 2.80 for betaPERT, 3.69 for geomPERT) times the variances

of the full-data estimates, which is consistent with Corollary 2.
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Table 5. Empirical coverage probabilities of β10 based on the proposed unconditional
variance estimation method from Algorithm 3, with different subset sizes, for a logistic
regression model with *M=50, **M=200, based on N = 1,000 simulations.

Design matrix Size r gammaPERT* betaPERT* geomPERT* gammaPERT** betaPERT** geomPERT**

Mean zero 500 0.946 0.964 0.958 0.948 0.944 0.964

normal 1,000 0.948 0.954 0.964 0.952 0.946 0.964

1,200 0.950 0.952 0.950 0.964 0.952 0.950

1,500 0.962 0.946 0.966 0.950 0.954 0.956

2,000 0.952 0.954 0.966 0.954 0.958 0.952

3,000 0.952 0.952 0.956 0.952 0.952 0.952

Mean nonzero 500 0.926 0.926 0.944 0.916 0.932 0.944

normal 1,000 0.938 0.938 0.950 0.948 0.952 0.950

1,200 0.948 0.938 0.950 0.942 0.958 0.956

1,500 0.946 0.944 0.944 0.952 0.956 0.962

2,000 0.950 0.944 0.956 0.946 0.956 0.948

3,000 0.950 0.964 0.950 0.956 0.954 0.960

T3 500 0.952 0.952 0.956 0.948 0.946 0.960

1,000 0.942 0.956 0.938 0.948 0.942 0.950

1,200 0.928 0.944 0.950 0.940 0.948 0.944

1,500 0.928 0.938 0.946 0.930 0.938 0.940

2,000 0.944 0.936 0.934 0.936 0.934 0.936

3,000 0.920 0.926 0.926 0.928 0.928 0.930

T5 500 0.954 0.962 0.964 0.964 0.960 0.968

1,000 0.952 0.960 0.948 0.956 0.966 0.970

1,200 0.956 0.964 0.954 0.962 0.968 0.966

1,500 0.956 0.950 0.972 0.962 0.964 0.952

2,000 0.950 0.948 0.952 0.966 0.962 0.968

3,000 0.954 0.960 0.956 0.966 0.960 0.962

Table 6. Estimation of coefficients and standard errors for salinity and oxygen in the
linear association with sea surface temperature based on the CalCOFI Hydrographic data
set. The results from the full data set and from repeated perturbation algorithms with
M = 50 and rn = 10,000 are presented.

Full gammaPERT betaPERT geomPERT

Coef. SE Coef. (Cond. SE) SE Coef. (Cond. SE) SE Coef. (Cond. SE) SE

Intercept -141.7 0.370 -141.9(0.750) 0.983 -142.8(1.032) 1.280 -141.5(0.919) 1.080

Salinity 4.269 0.011 4.275(0.022) 0.029 4.299(0.030) 0.037 4.262(0.027) 0.031

Oxygen 2.406 0.002 2.404(0.004) 0.006 2.411(0.006) 0.007 2.402(0.005) 0.006

5.2. Supersymmetric benchmark data set

To demonstrate using the proposed approach with logistic regression and

probit regression models, we analyze the supersymmetric (SUSY) benchmark

data set of Baldi, Sadowski and Whiteson (2014) and Wang, Zhu and Ma

(2018). The data set is available at the Machine Learning Repository (Lichman

(2013)) at https://archive.ics.uci.edu/ml/datasets/SUSY, and has n =

5,000,000 records. The machine learning method with the full data set used

in Baldi, Sadowski and Whiteson (2014) requires very large computer memory

and an advanced processor. Calculating n = 5,000,000 nonuniform sampling

probabilities for the optimal subsampling method took a much longer time.
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Table 7. Estimation of the regression coefficients of the logistic classifier using 18
kinematic features for the supersymmetric benchmark data set. The results from the
full data set and the repeated perturbation algorithms with M = 50 and rn = 10,000 are
presented.

Kinematic Full gammaPERT betaPERT geomPERT

Feathers Coef. SE Coef. (Cond. SE) SE Coef. (Cond. SE) SE Coef. (Cond. SE) SE

feature1 4.683 0.010 4.711(0.033) 0.034 4.742(0.039) 0.040 4.725(0.053) 0.054

feature2 2.326 0.009 2.316(0.031) 0.033 2.362(0.034) 0.035 2.387(0.047) 0.049

feature3 −1.714 0.008 −1.756(0.026) 0.028 −1.694(0.034) 0.035 −1.724(0.041) 0.042

feature4 −0.623 0.005 −0.617(0.014) 0.014 −0.623(0.017) 0.017 −0.623(0.023) 0.023

feature5 −1.601 0.014 −1.643(0.054) 0.056 −1.629(0.054) 0.056 −1.621(0.066) 0.068

feature6 −0.410 0.004 −0.400(0.013) 0.014 −0.395(0.016) 0.017 −0.440(0.020) 0.020

feature7 0.470 0.005 0.501(0.015) 0.016 0.462(0.020) 0.021 0.479(0.022) 0.023

feature8 1.106 0.012 1.120(0.038) 0.039 0.990(0.051) 0.053 1.059(0.054) 0.055

feature9 0.317 0.005 0.317(0.016) 0.017 0.293(0.018) 0.018 0.294(0.019) 0.019

feature10 −2.038 0.034 −2.133(0.121) 0.127 −2.214(0.126) 0.131 −2.050(0.132) 0.135

feature11 0.533 0.009 0.546(0.038) 0.040 0.480(0.036) 0.037 0.562(0.051) 0.052

feature12 0.098 0.005 0.098(0.02) 0.021 0.099(0.017) 0.018 0.096(0.026) 0.026

feature13 0.204 0.036 0.274(0.134) 0.141 0.371(0.135) 0.140 0.169(0.148) 0.151

feature14 0.004 0.001 0.005(0.004) 0.004 −0.001(0.004) 0.004 0.005(0.005) 0.005

feature15 −0.002 0.001 −0.002(0.003) 0.003 0.001(0.005) 0.005 0.002(0.006) 0.006

feature16 0.001 0.001 0.005(0.004) 0.005 −0.002(0.004) 0.004 0.014(0.005) 0.005

feature17 −0.0002 0.001 −0.0001(0.004) 0.005 0.001(0.004) 0.004 −0.011(0.004) 0.005

feature18 −0.0001 0.001 −0.004(0.003) 0.003 −0.002(0.005) 0.005 −0.004(0.006) 0.006

Table 8. Estimation of the regression coefficients of the probit classifier using 18 kinematic
features for the supersymmetric benchmark data set. The results from the full data set
and the repeated perturbation algorithms with M = 50 and rn = 10,000 are presented.

Kinematic Full gammaPERT betaPERT geomPERT

Feathers Coef. SE Coef. (Cond. SE) SE Coef. (Cond. SE) SE Coef. (Cond. SE) SE

feature1 2.665 0.006 2.689(0.022) 0.023 2.727(0.025) 0.026 2.717(0.036) 0.037

feature2 −1.065 0.004 −1.087(0.017) 0.017 −1.047(0.021) 0.022 −1.074(0.026) 0.027

feature3 1.274 0.005 1.272(0.020) 0.020 1.309(0.022) 0.023 1.317(0.031) 0.031

feature4 −1.041 0.008 −1.067(0.037) 0.038 −1.065(0.038) 0.039 −1.073(0.049) 0.050

feature5 0.868 0.007 0.859(0.027) 0.028 0.759(0.037) 0.038 0.821(0.039) 0.040

feature6 −0.329 0.003 −0.328(0.009) 0.009 −0.331(0.011) 0.011 −0.328(0.015) 0.015

feature7 −0.206 0.002 −0.200(0.008) 0.009 −0.210(0.011) 0.012 −0.234(0.013) 0.013

feature8 0.299 0.003 0.320(0.010) 0.011 0.289(0.013) 0.014 0.310(0.015) 0.015

feature9 0.221 0.003 0.216(0.010) 0.011 0.199(0.012) 0.012 0.202(0.014) 0.014

feature10 0.333 0.005 0.346(0.026) 0.027 0.310(0.027) 0.028 0.361(0.038) 0.039

feature11 −0.964 0.019 −1.062(0.078) 0.082 −1.107(0.086) 0.089 −1.009(0.091) 0.092

feature12 0.096 0.003 0.085(0.013) 0.013 0.086(0.012) 0.013 0.089(0.019) 0.019

feature13 −0.061 0.020 0.019(0.087) 0.091 0.070(0.091) 0.094 −0.052(0.099) 0.101

feature14 0.002 0.001 0.003(0.002) 0.002 −0.002(0.002) 0.002 0.001(0.003) 0.003

feature15 −0.001 0.001 −0.001(0.002) 0.002 −0.0001(0.003) 0.003 −0.0004(0.004) 0.004

feature16 0.001 0.001 0.003(0.003) 0.003 −0.001(0.002) 0.002 0.006(0.003) 0.003

feature17 −0.0002 0.001 −0.002(0.002) 0.002 −0.001(0.003) 0.003 −0.002(0.004) 0.004

feature18 −0.0001 0.001 −0.0001(0.003) 0.003 0.000(0.002) 0.002 −0.006(0.003) 0.003

The goal of the analysis is to differentiate a process where new supersymmetric

particles are produced from a background process, with 18 kinematic features as
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covariates. Two models are considered, namely, a logistic regression model and

a probit regression model:

logit(Pr{Y = 1}) = β0 +
18∑
j=1

βjkinematic featurej, (5.2)

probit(Pr{Y = 1}) = β0 +
18∑
j=1

βjkinematic featurej, (5.3)

where Y = 1 indicates a process where new supersymmetric particles are

produced, and Y = 0 otherwise. Table 7 shows the results based on a

logistic regression analysis, and Table 8 shows the results based on a probit

regression analysis. The results based on the full data set show that 14 of

the 18 kinematic features capture the difference between the two processes,

with kinematic features 1-12 being highly significant. The proposed repeated

perturbation subsampling with rn = 10000, M = 50, and m = 200 yields a

similar result that kinematic features 1-12 are significantly associated with the

classification of the two processes. The conditional standard errors are stable

across different subset perturbations, and are approximately
√
nan/(rnM) (3.16

for gammaPERT, 3.65 for betaPERT, 4.47 for geomPERT) times the standard

errors with the full data set. The unconditional variances of the perturbation

estimates are approximately hn (11 for gammaPERT, 14.31 for betaPERT, 20.96

for geomPERT) times the variances of the estimates obtained with the full data

set. However, the computation reduced from O(nd2) to O(rnd
2), and required

much less memory than the estimation based on the full data set did.

6. Discussion

We have proposed a perturbation subsampling method as a parallel approach

to sampling, with or without replacement, for analyzing large-scale data by

optimizing convex objective functions. We have also developed a repeated

perturbation subsampling method that simultaneously provide a valid estimator

and its variance estimator, with relatively little computational effort. Further

research is needed for the optimal choices of the stochastic weighting random

variable, subsampling size, and repeated perturbation numbers for statistical

inferences in different types of data and statistical models.

Supplementary Material

The online Supplementary Material provides proofs for Theorems 1 and 2

and Corollaries 1 and 2.
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