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Abstract: We present a new method for estimating multivariate, second-order sta-

tionary Gaussian Random Field (GRF) models based on the Sparse Precision ma-

trix Selection (SPS) algorithm, proposed by Davanloo Tajbakhsh, Aybat and Del

Castillo (2015) for estimating scalar GRF models. Theoretical convergence rates

for the estimated between-response covariance matrix and for the estimated param-

eters of the underlying spatial correlation function are established. Numerical tests

using simulations and datasets validate our theoretical findings. Data segmentation

is used to handle large data sets.
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1. Introduction

Gaussian Random Field (GRF) models are very popular in Machine Learn-

ing, e.g., (Rasmussen and Williams (2006)); they also are widely used in Geo-

statistics, with applications in meteorology to model satellite data for forecast-

ing or to solve inverse problems to tune weather models (Cressie and Wikle

(2011)), and to model outputs of expensive-to-evaluate deterministic Finite Ele-

ment Method (FEM) computer codes, e.g.,(Santner, Williams and Notz (2003)).

More recently, there have been applications of GRF to model stochastic simula-

tions, e.g., queuing or inventory control models (Ankenman, Nelson and Staum

(2010); Kleijnen (2010)), and to model free-form surfaces of manufactured prod-

ucts from noisy measurements for inspection or quality control purposes (Del

Castillo, Colosimo and Davanloo Tajbakhsh (2015)).

In a GRF model, a key role is played by the covariance or kernel function

which determines how the covariance between the process values at two locations

changes as the locations change across the process domain. There are many

valid parametric covariance functions, e.g., Exponential, Squared Exponential,

or Matern; and Maximum Likelihood (ML) is the dominant method to estimate
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their parameters from data (Santner, Williams and Notz (2003)). The ML fitting

procedure suffers from two main challenges: the negative loglikelihood is a non-

convex function of the covariance matrix, the problem is computationally hard

when the number of spatial locations n is large. This is known as the “big-n”

problem in the literature. Along with some other approximation methods, there

is an important class that approximates the Gaussian likelihood using different

forms of conditional independence assumptions which reduces the computational

complexity significantly, e.g., Snelson and Ghahramani (2006); Pourhabib, Fam-

ing and Ding (2014) and references therein.

In (Davanloo Tajbakhsh, Aybat and Del Castillo (2015)) we proposed a

Sparse Precision Selection (SPS) algorithm for univariate processes to deal with

the first challenge by providing theoretical guarantees on the SPS parameter es-

timates, and presented a segmentation scheme on the training data to be able

to solve big-n problems. Given the nature of SPS, the segmentation does not

result in discontinuities in the predicted process. In contrast, localized regression

methods also rely on segmentation to reduce the computational cost; but may

suffer from discontinuities on the predicted surface at the boundaries of the seg-

ments. In this paper, we present a Generalized SPS (GSPS) method for fitting

a multivariate GRF process that deals with the two aforementioned challenges

when there are possibly cross-correlated multiple responses that occur at each

spatial location.

Compared to SPS (and also to GSPS), the likelihood approximation type

GRF methods, e.g., Snelson and Ghahramani (2006), have the advantage of

computational efficiency; but carry no guarantees on the quality of the param-

eter estimates as only an approximation to the likelihood function is optimized

(compared to MLE, this is a small dimensional problem, but still non-convex).

SPS has theoretical error bound guarantees on hyper-parameter estimates (this

is also the case for GSPS, see Theorem 4 below) – these bounds also imply error

guarantees on prediction quality through the mean of the predictive distribution.

There is a wide variety of applications that require the approximation of a

vector of correlated responses obtained at each spatial or spatial-temporal lo-

cation. Climate models are classic geostatistical examples where environmental

variables such as atmospheric CO2 concentration, ocean heat uptake and global

surface temperature are jointly modeled (Urban and Keller (2010)). Lin (2008)

uses a Multivariate GRF model to map spatial variations of five different heavy

metals in soil. This is an application close to that of Kriging in mining en-

gineering where the spatial occurrence of two metals may be cross-correlated,
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e.g., silver and lead. Multivariate GRFs are also popular in multi-task learning

(Bonilla, Chai and Williams (2007)), an area of machine learning where multiple

related tasks need to be learned so that simultaneously learning them can be

better than learning them in isolation without transfer of information between

the tasks. The joint modeling of spatial responses is also useful in metrology

when conducting multi-fidelity analysis (Forrester, Sobester and Keane (2008)),

where an expensive, high fidelity spatial response needs to be predicted from pre-

dominantly low fidelity responses, which are inexpensive – see also (Boyle and

Frean (2004)). Likewise, multivariate GRFs have been used to reconstruct 3-

dimensional free-form surfaces of manufactured products through modeling each

of the 3 coordinates of a measured point as a parametric surface response (Del

Castillo, Colosimo and Davanloo Tajbakhsh (2015)). Wang and Chen (2015)

model the response surface of a catalytic oxidation process with two highly cor-

related response variables; Castellanos et al. (2015) estimate low dimensional

spatio-temporal patterns of finger motion in repeated reach-to-grasp movements;

Bhat, Haran and Goes (2010) study a multi-output GRF for computer model cal-

ibration with multivariate spatial data to infer parameters in a climate model. In

many of such applications multiple realizations of the GRF are sensed/measured

over time (N > 1) over a fixed set of locations. GRF applications with N > 1

commonly arise in practice, including those in “metamodeling” of stochastic

simulations for modeling an expensive-to-evaluate queuing or inventory control

model, in modeling product surfaces for inspection or quality control purposes,

and in models for which we observe a spatial process over time at the same

locations for a system known to be static with respect to time.

Rather than considering each response independently, using the between-

response covariance can significantly enhance the prediction performance. As

mentioned by Cressie (2015), the principle of exploiting co-variation to improve

mean-squared prediction error goes back to Kolmogorov and Wiener in the first

half of the Twentieth century. It is well-known that the minimum-mean-square-

error predictor of a single response component of a multivariate GRF involves

the between-response covariances of all responses (Santner, Williams and Notz

(2003)), a result that lies at the basis of the so-called Co-Kriging technique in

Geostatistics (Cressie (2015)).

In this paper, we adopt a separable cross-covariance structure – see (3.2)

– which has been an assumption made in the literature since at least Mardia

and Goodall (1993), who proposed separability to model multivariate spatio-

temporal data. Bhat, Haran and Goes (2010) used separable cross-covariance for
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computer model calibration. See also (Gelfand et al. (2004); Banerjee, Carlin and

Gelfand (2014); Gelfand and Banerjee (2010)) and (Genton and Kleiber (2015)).

Li, Genton and Sherman (2008) proposed a technique to test the separability

assumption for a multivariate random process. Gelfand and Banerjee (2010)

mention an additional use of a separable covariance structure, as an example of

this type of application, Banarjee and Gelfand employed such separable models

(Banerjee and Gelfand (2002); Banerjee, Carlin and Gelfand (2014)) to analyze

the relationship between shrub density and dew duration for a dataset consisting

of 1129 locations in a west-facing watershed in the Negev desert in Israel.

Fitting multivariate GRFs can be difficult due to the two challenges men-

tioned above. In particular, the parametrization of the matrix-valued covariance

functions requires a higher-dimensional parameter vector that aggravates the

difficulty of GRF estimation (Banerjee, Carlin and Gelfand (2014); Cressie and

Wikle (2011)). The goal of this paper is to extend the theory of the univariate

SPS method (Davanloo Tajbakhsh, Aybat and Del Castillo (2015)) to include

the hyper-parameter estimation of multivariate GRF models for which the error

bounds on the approximation quality can be established. The paper is orga-

nized as follows: Section 1.1 introduces the notation, and Section 2 provides

some preliminary concepts related to the SPS method. In Section 3, GSPS, the

multivariate generalization of the SPS method is described and compared with

other methods for fitting multivariate GRF, and theoretical guarantees of the

GSPS estimates are discussed. Section 4 includes numerical results. We summa-

rize the main results in the paper and provide some future research directions in

Section 5.

1.1. Notation

Throughout the paper, given x ∈ Rn, ‖x‖, ‖x‖1, ‖x‖∞ denote the Euclidean,

`1, and `∞ norms, respectively. For x ∈ Rn, diag(x) ∈ Sn denotes a diagonal

matrix with its diagonal equal to x. Given X ∈ Rm×n, we denote the vectoriza-

tion of X using vec(X) ∈ Rnp, obtained by stacking the columns of the matrix

X on top of one another. Let r = rank(X), and σ = [σi]
r
i=1 ⊂ Rr++ (positive

orthant) denote the singular values of X; then, ‖X‖F := ‖σ‖, ‖X‖2 := ‖σ‖∞,

and ‖X‖∗ := ‖σ‖1 denote the Frobenius, spectral, and nuclear norms of X, re-

spectively. Given X,Y ∈ Rm×n, 〈X,Y 〉 := Tr(X>Y ) denotes the standard inner

product. Let V be a normed vector space with norm ‖.‖a. For x̄ ∈ V and r > 0,

B‖.‖a(x̄, r) := {x ∈ V : ‖x − x̄‖a < r} denotes the open ball centered at x̄ with

radius r > 0, and B̄‖.‖a(x̄, r) denotes its closure.
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2. Preliminaries: The SPS Method for a Scalar GRF

Let X ⊆ Rd and y : X → R be a GRF, where y(x) denotes the value of

the process at location x ∈ X . Let m(x) = E{y(x)} for x ∈ X , and c(x,x′) be

the spatial covariance function denoting the covariance between y(x) and y(x′).

Without loss of generality, we assume that the GRF has a mean equal to zero.

Suppose the training data D = {(xi, y(r)
i ) : i = 1, . . . , n, r = 1, . . . , N} contains

N realizations of the GRF at each of n distinct locations in Dx := {xi}ni=1 ⊂ X .

Let y(r) = [y
(r)
i ]ni=1 ∈ Rn denote the vector of r-th realization values for locations

in Dx.

For simplicity in estimation, the covariance function, c(x,x′), is typically

assumed to belong to some parametric family {c(x,x′;θ, ν) : θ ∈ Θ, ν ≥ 0} and

c(x,x′,θ) := νρ(x,x′,θ), where ρ(x,x′,θ) is a parametric correlation function

where θ and ν denote the spatial correlation and variance parameters, respec-

tively, and Θ ⊂ Rq is a set that contains the true spatial correlation parameters

– see e.g. Cressie (2015). Let θ∗ and ν∗ denote the unknown true parameters

of the process. Given a set of locations Dx = {xi}ni=1, let C(θ, ν) ∈ Sn++ be

such that its (i, j)th element is c(xi,xj ;θ, ν) – throughout, Sn++ and Sn+ denote

the set of n-by-n symmetric, positive definite and positive semidefinite matrices,

respectively.

Let C∗ = C(θ∗, ν∗) denote the true covariance matrix corresponding to lo-

cations in Dx = {xi}ni=1, and P ∗ = (C∗)−1 denote the true precision matrix. In

Davanloo Tajbakhsh, Aybat and Del Castillo (2015), we proposed a two-stage

method, SPS, to estimate the unknown process parameters θ∗ and ν∗. The

method is motivated by the results in numerical linear algebra which demon-

strate that if the elements of a matrix show a decay property, then the elements

of its inverse also show a similar behavior – see Benzi (2016) and Jaffard (1990).

The latter author considers the two decay classes defined as follows:

Definition 1. Given {xi}ni=1 ⊂ X and a metric d : X × X → R+, a matrix

A ∈ Rn×n belongs to the class Eγ for some γ > 0 if for all γ′ < γ there exists

a constant Kγ′ such that |Aij | ≤ Kγ′ exp(−γ′d(xi,xj)) for all 1 ≤ i, j ≤ n.

Moreover, A belongs to the class Qγ for some γ > 1 if there exists a constant K

such that |Aij | ≤ K(1 + d(xi,xj))
−γ for all 1 ≤ i, j ≤ n.

Theorem 1. Given {xi}ni=1 ⊂ X and a metric d : X ×X → R+, let A ∈ Rn×n be

an invertible matrix. If A ∈ Eγ for some γ > 0, then A−1 ∈ Eγ′ for some γ′ > 0.

Moreover, if A ∈ Qγ for some γ > 0, then A−1 ∈ Qγ.

Proof. See Proposition 2 and Proposition 3 in Jaffard (1990).
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Figure 1. Decaying behavior of elements of the Precision and Covariance matrices for
GRFs. The largest 1,000 off-diagonal elements of the precision and covariance matrices
(scaled by their maximums) plotted in descending order. The underlying GRF was
evaluated over 100 randomly selected points in X = {x ∈ R2 : −50 ≤ x ≤ 50} for three
covariance functions with range and variance parameters equal to 10, and 1, respectively.

This fast decay structure in the precision (inverse covariance) matrix of a

GRF makes it a compressible signal (Candes (2006)); hence, one can argue that

it can be well-approximated by a sparse matrix – compare it with the covariance

matrix depicted in Figure 1. For all stationary GRFs tested, we observed that

for a finite set of locations, the magnitudes of the off-diagonal elements of the

precision matrix decay to 0 much faster than the elements of the covariance

matrix.

Let a∗ and b∗ be given constants, 0 ≤ a∗ ≤ σmin(P ∗) ≤ σmax(P ∗) ≤ b∗ ≤
∞. In the first stage of the SPS algorithm, we solve a convex loglikelihood

problem penalized with a weighted `1-norm to estimate the true precision matrix

corresponding to the given data locations Dx:

P̂ := argmin{〈S, P 〉 − log det(P ) + α 〈G, |P |〉 : a∗I � P � b∗I}, (2.1)

where S = 1/N
∑N

r=1 y(r)y(r)> ∈ Sn+ is the sample covariance matrix. The weight

matrix G ∈ Sn is chosen as the matrix of pairwise distances:
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Gij = ‖xi − xj‖, if i 6= j, Gii = min{‖xi − xj‖ : j ∈ I \ {i}}, (2.2)

for all (i, j) ∈ I × I, where I = {1, 2, . . . , n} and | · | is the elementwise abso-

lute value operator. The sparsity structure of the estimated precision matrix P̂

encodes the conditional independence structure of a Gaussian Markov Random

Field (GMRF) approximation to the GRF. Using ADMM, the Alternating Direc-

tion Method of Multipliers, see Boyd et al. (2011), (2.1) can be solved efficiently.

Indeed, since − log det(·) is strongly convex and has a Lipschitz continuous gra-

dient for 0 < a∗ ≤ b∗ <∞, an ADMM iterate sequence converges to the optimal

solution with a linear rate (Deng and Yin (2015)).

In the second stage of the SPS method, we solve a least-square problem (2.3)

to estimate the unknown parameters θ∗ and ν∗:

(θ̂, ν̂) = argmin
θ∈Θ, ν≥0

‖C(θ, ν)− P̂−1‖2F . (2.3)

In Davanloo Tajbakhsh, Aybat and Del Castillo (2015), we showed how to solve

each optimization problem, and established a theoretical convergence rate of the

SPS estimator.

SPS is therefore based on a Gaussian Markov Random Field (GMRF) ap-

proximation to the GRF. In general, GMRF models cannot represent GRFs

exactly. Lindgren, Rue and Lindström (2011) established that the Matern GRFs

are Markovian; in particular, they are Markovian when the smoothing parameter

ν is such that ν − d/2 ∈ Z+, where d is the dimension of the input space – see

Lindgren, Rue and Lindström (2011) and Fulgstad et al. (2015) for using this

idea in the approximation of anisotropic and non-stationary GRFs. Rather than

using a triangulation of the input space as proposed by Lindgren, Rue and Lind-

ström (2011), or assuming a lattice process, the first stage of SPS lets the data

determine the near-conditional independence pattern between variables through

the precision matrix estimated via a weighted `1-regularization. This first stage

helps to “zoom into” the area where the true covariance parameters are located;

hence, it helps to not get trapped in local optimum solutions in the second stage

of the method.

3. Multivariate GRF Models

From now on, let y(x) ∈ Rp be the response vector at x ∈ X ⊆ Rd of

a multivariate Gaussian Random Field (GRF) y : X → Rp with zero mean

and a cross-covariance function c(x,x′) = cov (y(x), y(x′)) ∈ Sp++. The cross-

covariance function is a crucial object in multivariate GRF models which should
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converge to a symmetric and positive-definite matrix as ‖x − x′‖ → 0. Similar

to the univariate case, the process is second-order stationarity if c(·, ·) depends

on x and x′ only through x− x′, and it is isotropic if c(·, ·) depends on x and x′

only through ‖x− x′‖.
The parametric structure of the cross-covariance matrix should be such that

the resulting cross-covariance matrix is a positive-definite matrix. Gelfand et al.

(2004) and Banerjee, Carlin and Gelfand (2014) review some methods to con-

struct a valid cross-covariance function. In these methods, parameter estimation

involves solving nonconvex optimization problems.

Here we assume a separable cross-covariance function belonging to a para-

metric family, and propose a two-stage procedure for estimating the unknown

parameters. The separable model assumes that the cross-covariance function is

a multiplication of a spatial correlation function and a positive-definite between-

response covariance matrix (see Gelfand and Banerjee (2010); Gelfand et al.

(2004), and the references therein):

c(x,x′) = ρ(x,x′) Γ∗ ∈ Sp+, (3.1)

where ρ : X × X → [0, 1] is the spatial correlation function, and Γ∗ ∈ Sp++ is

the between-response covariance matrix. Let y = [y(x1)>, . . . , y(xn)>]> ∈ Rnp

denote the process values in long vector form corresponding to locations in Dx :=

{xi}ni=1 ⊂ X . Given the cross-covariance function (3.1), and the set of locations

Dx, y follows a multivariate Gaussian distribution with zero mean and covariance

matrix equal to

C∗ = R∗ ⊗ Γ∗, (3.2)

where R∗ ∈ Sn++ is the spatial correlation matrix such that R∗ij = ρ(xi,xj) for

i, j ∈ I := {1, . . . , n}, and ⊗ denotes the Kronecker product. Hence,

y ∼ N (0, C∗). (3.3)

Let D = {(xi, y(r)
i ) : i ∈ I, r = 1, . . . , N} be the training data set that

contains N realizations of the process over n distinct locations Dx ⊂ X ; for

each r ∈ {1, . . . , N}, y(r) = [y
(r)
i ]i∈I ∈ Rnp is an independent realization of y =

[y(xi)]i∈I . Hence, {y(r)}Nr=1 are i.i.d. according to (3.3).

Suppose the correlation function belongs to a parametric family {ρ(x,x′;θ) :

θ ∈ Θ}, where Θ is a closed convex set containing the true parameter vector,

θ∗, of the correlation function ρ. Given Dx = {xi}i∈I , let R∗ := R(θ∗), where

R(θ) ∈ Sn++ is such that

R(θ) = [rij(θ)]i,j∈I , rij(θ) = ρ(xi,xj ;θ) ∀i, j ∈ I. (3.4)
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For a GRF model with known parameters, the best linear unbiased predic-

tion at a new location x0 is given by the mean of the conditional distribution

p(y(x0)|{y(r)}Nr=1,Dx),

ŷ(x0) = {r(x0;θ∗)> ⊗ Γ∗}{R(θ∗)⊗ Γ∗}−1

∑N
r=1 y

(r)

N
, (3.5)

where r(x0;θ∗) ∈ Rn contains the spatial correlation between the new point x0

and n observed data points – see (Santner, Williams and Notz, 2003). This pre-

diction equation is a continuous function of the parameters θ∗ and Γ∗; hence,

biased estimation of the parameters will translate to poor prediction performance.

Then, too, (3.5) shows the importance of considering the between-response co-

variance matrix Γ∗.

The sample covariance matrix S ∈ Snp+ is S = (1/N)
∑N

r=1 y(r)y(r)>. Let G

∈ Sn be such that Gij > 0 for all i, j ∈ I. Here, we fix G as in (2.2) based on

inter-distances. Let P ∗ = (C∗)−1 be the true precision matrix corresponding to

locations in Dx, and let a∗ and b∗ be some given constants such that 0 ≤ a∗ ≤
σmin(P ∗) ≤ σmax(P ∗) ≤ b∗ ≤ ∞. To estimate P ∗, we propose to solve the convex

program

P̂ = argmin
a∗I�P�b∗I

〈S, P 〉 − log det(P ) + α
〈
G⊗ (1p1

>
p ), |P |

〉
, (3.6)

where |.| is the element-wise absolute value operator, and 1p ∈ Rp denotes the

vector of all ones. This objective penalizes the elements of the precision matrix

with weights proportional to the distance between their locations. Problem (3.6)

can be solved efficiently using the ADMM implementation proposed in Davanloo

Tajbakhsh, Aybat and Del Castillo (2015). Indeed, for 0 < a∗ ≤ b∗ < ∞, the

function − log det(.) is strongly convex and has a Lipschitz continuous gradient;

therefore, the ADMM iterate sequence converges to the optimal solution with a

linear rate – see Deng and Yin (2015).

Let Ĉ := P̂−1 and, for all (i, j) ∈ I × I, define block matrices Sij ∈ Sp,
Ĉij ∈ Sp, and Σij ∈ Sp such that Sij ∈ Sp, Ĉij ∈ Sp and Σij ∈ Sp are the sample,

estimated and true covariance matrices between the locations xi and xj . We

have a probability bound for the estimation error P̂ − P ∗.
Theorem 2. Let {y(r)}Nr=1 ⊂ Rnq be independent realizations of a GRF with

zero-mean and stationary covariance function c(x,x′;θ∗) observed over n distinct

locations {xi}i∈I with I := {1, . . . , n}; let C∗ = R(θ∗)⊗Γ∗ be the true covariance

matrix, and P ∗ := C∗−1 be the corresponding true precision matrix, where R(θ)

is defined in (3.4). If P̂ is the GSPS estimator computed as in (3.6) for some

G ∈ Sn such that Gij ≥ 0 for all (i, j) ∈ I × I, then for any given M > 0,
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N ≥ N0 := d2[(M + 2) ln(np) + ln 4]e, and b∗ ≥ σmax(P ∗),

Pr
{
‖P̂ − P ∗‖F ≤ 2b∗2p(n+ ‖G‖F )α

}
≥ 1− (np)−M , (3.7)

for all α such that 40 maxi=1,...,p(Γ
∗
ii)
√
N0/N ≤ α ≤ 40 maxi=1,...,p(Γ

∗
ii).

Proof. See the supplementary materials.

Given that C∗ = R∗⊗Γ∗, and the diagonal elements of the spatial correlation

matrix R∗ are equal to one, we have Σii = Γ∗. We propose to estimate the

between-response covariance matrix Γ∗ by taking the average of the p×p matrices

along the diagonal of Ĉ,

Γ̂ :=
1

n

n∑
i=1

Ĉii ∈ Sn++. (3.8)

Now (3.6) implies that P̂ ∈ Snp++, hence, Ĉ ∈ Snp++ as well. Therefore, all its

block-diagonal elements are positive definite, Σ̂ii ∈ Sn++ for i = 1, . . . , n. Since

Γ̂ is a convex combination of Σ̂ii ∈ Sn+, i = 1, . . . , n and the cone of positive

definite matrices is a convex set, we also have Γ̂ ∈ Sn++.

Theorem 3. Given M > 0, N ≥ N0 := d2[(M + 2) ln(np) + ln 4]e, and a∗, b∗

such that 0 < a∗ ≤ σmin(P ∗) ≤ σmax(P ∗) ≤ b∗ < ∞, let P̂ be the SPS estimator

as in (3.6). Then Γ̂, defined in (3.8), and Ĉ = P̂−1 satisfy

Pr

{
max(‖Ĉ − C∗‖2, ‖Γ̂− Γ∗‖2) ≤ 2

(
b∗

a∗

)2

p(n+ ‖G‖F )α

}
≥ 1− (np)−M ,

for all α such that 40 maxi=1,...,p(Γ
∗
ii)
√
N0/N ≤ α ≤ 40 maxi=1,...,p(Γ

∗
ii).

Proof. From (3.7), we have

‖Ĉ − C∗‖2 ≤
1

a∗2
‖P̂ − P ∗‖2 ≤

1

a∗2
‖P̂ − P ∗‖F ≤ 2

(
b∗

a∗

)2

p(n+ ‖G‖F )α,

where the first inequality follows from the Lipschitz continuity of P 7→ P−1 on

the domain P � a∗I with respect to the spectral norm ‖.‖2. Hence, given that

Γ∗ = Σii for all i ∈ I, we have ‖Ĉii−Γ∗‖2 ≤ 2(b∗/a∗)2p(n+‖G‖F )α for all i ∈ I.

From convexity of X 7→ ‖X − Γ∗‖2, it follows that

‖Γ̂− Γ∗‖2 ≤
∑
i∈I

1

n
‖Ĉii − Γ∗‖2 ≤ 2

(
b∗

a∗

)2

p(n+ ‖G‖F )α.

Remark 1. For Theorems 2 and 3 to hold, α should be in the interval

40 maxi=1,...,p(Γ
∗
ii)
√
N0/N ≤ α ≤ 40 maxi=1,...,p(Γ

∗
ii); for N ≥ N0 this inter-

val is non-empty. The trade-off here is such that smaller α makes the estimation



GENERALIZED SPS 951

error bounds inside the probabilities tighter – hence, desirable; at the same time,

smaller α makes the estimated precision matrix less sparse and requires more

memory to store a denser estimated precision matrix. Although the upper-bound

on α is fixed, one can play with the lower bound; in particular, one can make it

smaller by requiring more realizations N .

Given Dx = {xi}i∈I ⊂ X , define R : Rq → Sn over Θ ⊂ Rq as in (3.4).

To estimate the true parameter vector of the spatial correlation function, θ∗, we

propose to solve

θ̂ ∈ argmin
θ∈Θ

1

2

∑
i,j∈I
‖rij(θ)Γ̂− Ĉij‖2F . (3.9)

The objective function of (3.9) can be written in a more compact form as a

parametric function with parameters Γ ∈ Sp and C ∈ Snp,

f(θ; Γ, C) :=
1

2
‖R(θ)⊗ Γ− C‖2F . (3.10)

Let θ = [θ1, . . . , θq]
>, and R′k : Rq → Sn be such that R′k(θ) = {∂rij(θ)/∂θk}i,j∈I

for k = 1, . . . , q. Take R′′k` : Rq → Sn such that R′′k`(θ) = [∂2rij(θ)/∂θk∂θ`]i,j∈I
for 1 ≤ k, ` ≤ q. Let Z(θ; Γ, C) := R(θ) ⊗ Γ − C; hence, f(θ; Γ, C) =

‖Z(θ; Γ, C)‖2F /2, and let Z ′k(θ; Γ) := R′k(θ)⊗ Γ for k = 1, . . . , q.

Lemma 1. Suppose ρ(x,x′;θ) is twice continuously differentiable in θ over Θ

for all x,x′ ∈ X , then there exists γ∗ > 0 such that ∇2
θf(θ∗; Γ∗, C∗) � γ∗I if and

only if {vec(R′k(θ
∗))}qk=1 ⊂ Rn2

are linearly independent.

Proof. Clearly, ∇θf(θ; Γ, C) = [〈Z ′1(θ; Γ), Z(θ; Γ, C)〉 , . . . , 〈Z ′q(θ; Γ), Z(θ; Γ,

C)〉]>. Hence, it can be shown that for 1 ≤ k ≤ q,
∂

∂θk
f(θ; Γ, C) = ‖Γ‖2F

〈
R′k(θ), R(θ)

〉
−
〈
C,R′k(θ)⊗ Γ

〉
(3.11)

and, from the product rule for derivatives, it follows that for 1 ≤ k, ` ≤ q
∂2

∂θk∂θ`
f(θ; Γ, C) = ‖Γ‖2F

〈
R′k(θ), R′`(θ)

〉
+
〈
R′′k`(θ)⊗ Γ, R(θ)⊗ Γ− C

〉
. (3.12)

Thus, since C∗ = r(θ∗)⊗ Γ∗, we have

∂2

∂θk∂θ`
f(θ; Γ∗, C∗) = ‖Γ∗‖2F

〈
R′k(θ

∗), R′`(θ
∗)
〉
.

Therefore, ∇2
θf(θ∗; Γ∗, C∗) = ‖Γ∗‖2F J(θ∗)>J(θ∗), where J(θ) ∈ Rn2×q is such

that J(θ) := [vec(R′1(θ)), . . . ,vec(R′q(θ))]. Hence, there exists γ∗ > 0 such that

∇2
θf(θ∗; Γ∗, C∗) � γ∗I when {vec(R′k(θ

∗))}qk=1 ⊂ Rn2

are linearly independent.

Remark 2. As to the linear independence condition stated in Lemma 1, con-
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sider the anisotropic exponential correlation function ρ(x,x′,θ) = exp{−(x −
x′)> diag(θ)(x − x′)}, where q = d, and Θ = Rd+. Let X = [−β, β]d for some

β > 0, and suppose {xi}i∈I is a set of independent identically distributed uniform

random samples inside X . Then it can be easily shown that for the anisotropic

exponential correlation function, the condition in Lemma 1 holds with probabil-

ity 1.

The next result builds on Lemma 1, and shows the convergence of the GSPS

estimator as the number of samples per location, N , increases.

Theorem 4. Suppose θ∗ ∈ int Θ, and ρ(x,x′;θ) is twice continuously differen-

tiable in θ over Θ for all x,x′ ∈ X . Suppose {vec(R′k(θ
∗))}qk=1 ⊂ Rn2

are linearly

independent. For any given M > 0 and N ≥ N0 := d2(M + 2) ln(np) + ln 16e, let

θ̂(N) be the GSPS estimator of θ∗, θ̂ = argminθ∈Θ f(θ; Γ̂, Ĉ), and let Γ̂ be com-

puted as in (3.8). Then, for any sufficiently small ε > 0, there exists N ≥ N0 sat-

isfying N = O(N0/ε
2) such that setting α = 40 maxi=1,...,p(Γ

∗
ii)
√
N0/N in (3.6)

implies ‖θ̂(N)−θ∗‖ ≤ ε and ‖Γ̂−Γ∗‖ = O(ε) with probability at least 1−(np)−M ;

moreover, the STAGE-II function f(·; Γ̂, Ĉ) is strongly convex around the esti-

mator θ̂.

Proof. See the supplementary material.

Remark 3. In Theorem 4, α is explicitly set equal to the lower bound, i.e., α =

40 maxi=1,...,p(Γ
∗
ii)
√
N0/N = 40 maxi=1,...,p(Γ

∗
ii)
√

[d2[(M + 2) ln(np) + ln 4]e]/N .

HereM controls the probability bound; hence, the only unknown is maxi=1,...,p(Γ
∗
ii)

– we implicitly assume that this quantity can be estimated empirically or we have

a prior knowledge about it. Theorem 4 also guides us in how to select α. One

‖θ̂(N) − θ∗‖ ≤ ε and ‖Γ̂ − Γ∗‖ = O(ε) whenever N = O(N0/ε
2); which implies

a choice of α = O(ε). In the simulations provided in Section 4, α is set equal

to c
√

log(np)/N , where c is chosen 10−2 after some preliminary cross-validation

studies.

A summary of the proposed algorithm for fitting multivariate GRF models

follows.

3.1. Connection to SPS

The main difference between the SPS method and GSPS is how Γ̂, the esti-

mator for Γ∗, is computed (when p = 1, Γ∗ ∈ R++ corresponds to the variance

parameter ν∗ > 0 in SPS), and this difference in the way Γ∗ is estimated has

significant implications on the numerical stability of solving STAGE-II problem,

and on the proof technique to show consistency of the hyperparameter estimate
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Algorithm 1 GSPS algorithm to fit multivariate GRFs

input: D = {(xi,y
(r)
i )}ni=1 ⊂ X × Rp, i ∈ I, r = 1, . . . , N}

/* Compute the sample covariance and distance matrices*/

y(r) ← [y(x1)T , . . . ,y(xn)T ]T ∈ Rnp, r = 1, . . . , N

S ← 1

N

N∑
r=1

y(r)y(r)>

Gij ← ‖xi − xj‖2, if i 6= j,Gii ← min{‖xi − xj‖2 : j ∈ I \ {i}

/* Compute the precision matrix and its inverse */

P̂ ← argmin{〈S, P 〉 − log det(P ) + α
〈
G⊗ (1q1

T
q ), |P |

〉
: a∗I � P � b∗I}

Ĉ ← P̂−1

/* Compute the between response covariance matrix */

Γ̂← 1

n

∑
i∈I

Ĉii

/* Compute the spatial correlation parameter vector*/

θ̂ ← argmin
θ∈Θ

1

2

∑
i,j∈I

‖ρij(θ) Γ̂− Ĉij‖2F

return: Γ̂ and θ̂

as the number of process realizations, N , increases.

The STAGE-II problem proposed in (3.9), minθ∈Rd+(1/2)‖R(θ) ⊗ Γ̂ − Ĉ‖2F
where Γ̂ = (1/n)

∑n
i=1 Ĉii, behaves well (although it is non-convex in general),

and Theorem 4 shows that the STAGE-II objective is strongly convex around a

neighborhood of the estimator. In all our numerical tests, standard nonlinear op-

timization techniques were able to compute a point close to the global minimizer

very efficiently.

As to using GSPS to fit a multivariate GRF as opposed to using SPS to

fit p independent univariate GRFs to p responses, the simulations and real-data

examples in Sections 4.2 and 4.3 show that the proposed GSPS method performs

significantly better than modeling each response independently.

3.2. Computational complexity

The computational bottleneck of GSPS method is the singular value decom-
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positions (SVD) that arises when solving the STAGE-I problem using the ADMM

algorithm. The per-iteration complexity is O((np)3). However, the STAGE-I

problem is strongly convex; and ADMM has a linear rate (Deng and Yin (2015)).

Therefore, an ε-optimal solution can be computed within O(log(1/ε)) iterations

of ADMM, thus, the overall complexity to solve STAGE-I is O((np)3 log(1/ε)).

Likelihood approximation methods do not have such iteration complexity results

due to the nonconvexity of the approximate likelihood problem, even though

they have cheaper per-iteration-complexity. In case of an isotropic process, the

STAGE-II problem in (3.9) is one dimensional and it can simply be solved by

using bisection. If the process is anisotropic, then (3.9) is nonconvex in general.

That said, this problem is low dimensional due to d� n; hence, standard nonlin-

ear optimization techniques can compute a local minimizer very efficiently – we

also show that STAGE-II objective is strongly convex around a neighborhood of

the estimator. In all our numerical tests, STAGE-II problem was solved in much

shorter time than the STAGE-I problem; hence, it does not affect the overall

complexity significantly. In the code, we use golden-section search for isotropic

processes, and Knitro’s nonconvex solver to solve (3.9) for general anisotropic

processes.

To eliminate O((np)3) complexity due to an SVD computation per ADMM

iteration and due to computing Ĉ, we used a segmentation scheme. We partition

the data to K segments, each one composed of ≈ n/K points chosen uniformly

at random among n locations, and assuming conditional independence between

blocks. In Davanloo Tajbakhsh, Aybat and Del Castillo (2015), we discussed

two blocking/segmentation schemes: Spatial Segmentation (SS) and Random

Selection (RS). Solving the STAGE-I problem with blocking schemes assumes a

conditional independence assumption between blocks. In SS scheme such con-

ditional independence assumption is potentially violated for points along the

common boundary between two blocks. The RS scheme, however, works numer-

ically better for “big-n” scenarios. We believe that with the RS scheme the infill

asymptotics make the blocks conditionally independent to a reasonable degree.

Using such blocking schemes, the bottleneck complexity reduces to O((np/K)3)

by solving STAGE-I problem for each block; hence, solving STAGE-I and com-

puting Ĉ, which we assume to be block diagonal, requires a total complexity

of O(log(1/ε) (np)3/K2) and this bottleneck complexity can be controlled by

properly choosing K.
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4. Numerical Results

In this section, comprehensive simulation analyses are reported for the study

of the performance of the proposed method. N realizations of a zero-mean p-

variate GRF with anisotropic spatial correlation function were simulated in a

square domain X = [0, 10]d over n distinct points. The separable covariance

function is the product of an anisotropic exponential spatial correlation function

ρ(x,x′,θ∗) = exp{−(x−x′)> diag(θ∗)(x−x′)} and a p-variate between-response

covariance matrix Γ∗ ∈ Sp++. The correlation function parameter vector θ∗` was

sampled uniformly from the surface of a hyper-sphere in Rd in the positive orthant

for each replication ` ∈ {1, . . . , L}. The between-response covariance matrix was

Γ∗` = A>A for A ∈ Rw×p such that w > p, where the elements of A were sampled

independently from N (0, 1) per replication. To solve the STAGE-I problem,

the sparsity parameter α in (2.1) was c
√

log(np)/N for some constant c. After

some preliminary cross-validation studies, we set c equal to 10−2. In our code,

we used golden-section search for isotropic processes which requires a univariate

optimization in STAGE-II, and we used Knitro’s nonconvex solver to solve (3.9)

for general anisotropic processes.

4.1. Parameter estimate consistency

To compare the quality of the GSPS parameter estimate with the Maximum

Likelihood Estimate (MLE), for ten replicates, we simulated N independent re-

alizations of GRF, described above under different scenarios, and the mean of

{‖θ̂` − θ∗‖}10
`=1 and {‖Γ̂` − Γ∗‖F }10

`=1 are reported.

To deal with the nonconcavity of the likelihood, the MLEs were calculated

from ten random initial solutions and the best final solutions are reported. To

solve the problem in (3.6) for scenarios with np > 2,000, we used the Random

Selection (RS) blocking scheme as described in Davanloo Tajbakhsh, Aybat and

Del Castillo (2015). Tables 1 and 2 show the results for p-variate GRF models

with p = 2 and p = 5, respectively.

For fixed n, the parameter estimation error increases with the dimension

of the input space d, which is reasonable due to higher number of parameters

in the anisotropic correlation function. Furthermore, the errors increase with

p, the number of responses. As expected, increasing the point density n helps

in improving the estimation of the parameters, a result in accordance to the

expected effect of infill asymptotics.

Overall, the GSPS method results in better parameter estimates compared to

MLE with relative performance improvements becoming more obvious as p and
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Table 1. Comparison of GSPS vs. MLE for p = 2 response variables.

N = 1 N = 10 N = 40 Time

d n Method ‖θ̂l−θ∗‖2 ‖Γ̂`−Γ∗‖F ‖θ̂l−θ∗‖2 ‖Γ̂`−Γ∗‖F ‖θ̂l−θ∗‖2 ‖Γ̂`−Γ∗‖F (sec)

2

100
GSPS 0.43 0.89 0.34 0.66 0.21 0.53 14.9
MLE 0.38 0.78 0.36 0.70 0.26 0.61 21.3

500
GSPS 0.39 0.81 0.29 0.60 0.13 0.43 312.3
MLE 0.37 0.83 0.32 0.62 0.19 0.50 496.1

1,000
GSPS 0.33 0.73 0.23 0.57 0.08 0.34 2,342.5
MLE 0.32 0.74 0.28 0.58 0.11 0.40 3,216.5

5

100
GSPS 0.49 0.96 0.38 0.71 0.26 0.56 18.9
MLE 0.46 0.93 0.42 0.71 0.36 0.61 36.5

500
GSPS 0.44 0.88 0.33 0.69 0.29 0.53 527.4
MLE 0.46 0.89 0.38 0.67 0.34 0.59 1,023.4

1,000
GSPS 0.40 0.81 0.30 0.62 0.29 0.50 2,987.3
MLE 0.43 0.92 0.35 0.66 0.34 0.56 6,120.8

10

100
GSPS 0.55 1.05 0.39 0.82 0.35 0.58 29.1
MLE 0.57 1.02 0.56 0.89 0.53 0.69 75.2

500
GSPS 0.47 0.99 0.35 0.73 0.31 0.49 613.8
MLE 0.54 1.00 0.53 0.81 0.50 0.58 4,125.6

1,000
GSPS 0.41 0.89 0.31 0.71 0.29 0.43 4,920.5
MLE 0.51 0.97 0.49 0.76 0.47 0.50 7,543.3

Table 2. Comparison of GSPS vs. MLE for p = 5 response variables.

N = 1 N = 10 N = 40 Time

d n Method ‖θ̂l−θ∗‖2 ‖Γ̂`−Γ∗‖F ‖θ̂l−θ∗‖2 ‖Γ̂`−Γ∗‖F ‖θ̂l−θ∗‖2 ‖Γ̂`−Γ∗‖F (sec)

2

100
GSPS 0.66 1.43 0.38 0.91 0.30 0.76 17.2
MLE 0.62 1.40 0.57 1.30 0.41 1.28 26.3

500
GSPS 0.58 1.35 0.35 0.87 0.27 0.73 363.4
MLE 0.57 1.32 0.51 1.24 0.39 1.15 512.5

1,000
GSPS 0.49 1.24 0.31 0.82 0.24 0.70 2,835.4
MLE 0.49 1.22 0.42 1.19 0.33 1.10 3,913.7

5

100
GSPS 0.73 1.49 0.50 0.92 0.39 0.79 25.6
MLE 0.71 1.47 0.62 1.36 0.49 1.35 53.1

500
GSPS 0.60 1.41 0.44 1.00 0.36 0.75 665.6
MLE 0.64 1.43 0.54 1.26 0.44 1.24 1,424.3

1,000
GSPS 0.54 1.32 0.39 1.06 0.31 0.74 3,783.6
MLE 0.63 1.36 0.47 1.20 0.38 1.17 7,346.7

10

100
GSPS 0.77 1.57 0.59 0.98 0.52 0.85 45.3
MLE 0.79 1.60 0.67 1.39 0.61 1.43 87.2

500
GSPS 0.65 1.47 0.54 1.03 0.46 0.81 717.6
MLE 0.74 1.56 0.60 1.31 0.52 1.37 4,994.3

1,000
GSPS 0.59 1.39 0.49 1.08 0.42 0.75 6,001.3
MLE 0.66 1.48 0.53 1.27 0.45 1.29 8,223.1

d increase. Further, as the number of realizations N increases, GSPS performs

consistently better than MLE. The robust performance of the proposed method
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Table 3. MSPE comparison for p = 2 re-
sponse variables.

d n Method N = 1 N = 10 N = 40

2

100
mSPS 7.02 2.68 2.08
GSPS 6.71 2.12 1.44
CMGP 6.40 2.39 1.61

400
mSPS 6.76 2.22 1.87
GSPS 5.53 1.89 0.91
CMGP 5.16 2.04 1.33

5

100
mSPS 7.12 3.09 2.39
GSPS 6.98 2.45 1.52
CMGP 6.74 2.95 1.99

400
mSPS 7.34 3.04 2.24
GSPS 5.88 2.45 1.05
CMGP 6.32 2.89 1.73

10

100
mSPS 7.83 4.15 3.23
GSPS 7.11 3.34 2.02
CMGP 6.97 3.67 2.39

400
mSPS 7.65 3.53 2.65
GSPS 6.13 2.96 1.22
CMGP 6.63 3.32 2.28

Table 4. MSPE comparison for p = 5 re-
sponse variables.

d n Method N = 1 N = 10 N = 40

2

100
mSPS 7.83 4.42 3.08
GSPS 7.05 3.89 2.11
CMGP 6.74 3.71 2.49

400
mSPS 7.51 3.78 2.18
GSPS 6.81 2.96 1.32
CMGP 6.23 3.36 2.03

5

100
mSPS 8.54 5.30 3.32
GSPS 7.19 4.43 2.01
CMGP 7.10 4.97 2.86

400
mSPS 8.22 4.15 2.63
GSPS 7.00 3.10 1.45
CMGP 7.45 4.04 2.65

10

100
mSPS 9.23 5.67 3.43
GSPS 7.23 4.68 2.19
CMGP 8.53 5.25 3.24

400
mSPS 8.54 4.24 2.94
GSPS 7.08 3.23 1.63
CMGP 7.82 4.20 2.87

The mean of the Mean Squared Prediction Error (MSPE) comparison of multiple SPS
(mSPS), Generalized SPS (GSPS) and Convolved Multiple Gaussian Process (CMGP)
of Alvarez and Lawrence (2011) for p response variables.

is theoretically guaranteed for N ≥ N0 by Theorem 4.

4.2. Prediction consistency

To evaluate prediction performance, we compared the GSPS method against

multiple univariate SPS (mSPS) and against the Convolved Multiple output

Gaussian Process (CMGP) method of Alvarez and Lawrence (2011). Given the

size of the training data n, none of the approximations in Alvarez and Lawrence

(2011) with induced points were used.

For ten replicates, we simulated N independent realizations of the GRF

defined at the beginning of Section 4, under different scenarios, to learn the

model parameters. We also simulated the p-variate response over a fixed set of

n0 = 1,000 test locations per replicate. The mean of the conditional distribution

p(y(x0)|{y(r)}Nr=1,Dx) was used to predict at these test locations. The mean of

Mean Squared Prediction Error (MSPE) over ten replicates, p outputs, and n0

test points are reported for p = 2 and p = 5 in Tables 3 and 4, respectively.
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The prediction performance of the GSPS method is almost always better

than that of the mSPS method. Learning the cross-covariance between different

responses provides additional useful information that helps improve the predic-

tion performance of the joint model, GSPS. Comparing GSPS vs. CMGP, we

observe relatively better performance of CMGP over GSPS when N = 1 in a

lower-dimensional input space, e.g., (N, d) = (1, 2). As n, the number of loca-

tions, increases, the GSPS predictions become better than CMGP even if N = 1,

e.g., for (N, d) = (1, 5), GSPS does better than CMPG for n = 400. The predic-

tion performance of GSPS improves significantly with increasing N , the number

of realizations of the process. In d = 10 dimensional space, GSPS performs con-

sistently better, even when N = 1 for both p = 2 and p = 5. However, CMGP

with 50 inducing points is significantly faster than GSPS in the learning phase.

4.3. Performance on a real data set

We used a data set to compare the prediction performance of GSPS with

the naive method of using multiple univariate SPS (mSPS) fits, and with the

two approximation methods proposed in Alvarez and Lawrence (2011). The

data set consists of n = 9,635 (x, y, z) measurements obtained by a laser scanner

from a free-form surface of a manufactured product. Del Castillo, Colosimo and

Davanloo Tajbakhsh (2015) proposed modeling each coordinate, separately, as

a function of the corresponding (u, v) surface coordinates (obtained using the

ISOMAP algorithm by Tenenbaum, de Silva and Langford (2000)). These (u, v)

coordinates are selected such that their pairwise Euclidean distance is equal to

the pairwise geodesic distances between their corresponding (x, y, z) points along

the surface. We modeled (x(u, v), y(u, v), z(u, v)) as a multivariate GRF using

GSPS, and compared against fitting p = 3 independent univariate GRF using

the SPS method (mSPS).

Given the large size of the data set, n = 9,635, we used the Random Selec-

tion blocking scheme as described in Davanloo Tajbakhsh, Aybat and Del Castillo

(2015) for varying number of blocks; hence, there are different number of obser-

vations per block. Table 5 reports the MSPE and the corresponding standard

errors (std. error) obtained from 10-fold cross validation.

According to Table 5, the best predictions are obtained when the number

of observations per block is 500. We also compared the GSPS method with

500 data points per block against the two approximation methods developed in

Alvarez and Lawrence (2011), the Full Independent Training Conditional (FITC)

method and the Partially Independent Training Conditional (PITC) method.
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Table 5. 10-fold cross validation to evaluate prediction performance of multiple SPS
(mSPS) and GSPS for the metrology data set with n = 9,635 data points.

Method n/block MSPE std. error
mSPS 100 0.0932 0.0047
mSPS 500 0.0621 0.0021
mSPS 1,000 0.0842 0.0013
GSPS 100 0.0525 0.0023
GSPS 500 0.0167 0.0012
GSPS 1,000 0.0285 0.0019

Table 6. 10-fold cross validation to compare prediction performance of mSPS, GSPS vs.
FITC and PITC methods by Alvarez and Lawrence (2011) for the metrology data set
with n = 9,635 data points.

Method MSPE std. error
mSPS (n/block = 500) 0.0621 0.0021
GSPS (n/block = 500) 0.0167 0.0012
FITC (K = 100) 0.0551 0.0042
FITC (K = 500) 0.0463 0.0011
FITC (K = 1,000) 0.0174 0.0010
PITC (K = 100) 0.0698 0.0062
PITC (K = 500) 0.0421 0.0021
PITC (K = 1,000) 0.0197 0.0007

These methods were run for different numbers of inducing points K ∈ {100,

500, 1,000} with their initial locations selected at random. The locations of the

inducing points along with the hyper-parameters’ values are found by maximizing

the likelihood through a scaled conjugate gradient method proposed by Alvarez

and Lawrence (2011). Results are reported in Table 6.

The best prediction performance for both FITC and PITC approximations

are obtained for the larger K values as this represents a better approximation

of the underlying GRF. The GSPS method performed better than FITC and

PITC for all K parameter choices. As expected, fitting p univariate GRF models

(mSPS) performed worse than the multivariate methods.

5. Conclusions and Future Research

We presented a new two-stage estimation method to fit multivariate Gaus-

sian Random Field (GRF) models with separable covariance functions. Theoret-

ical convergence rates for the estimated between-response covariance matrix and

the estimated correlation function parameter are established with respect to the
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number of process realizations. Numerical studies confirm the theoretical results.

We considered separable covariance functions. Future research may consider

non-separable covariance functions, e.g., convolutions of covariance functions,

or kernel convolutions. As another potential future work, we propose estimat-

ing the cross-covariance matrix Γ̂ at the outset by solving Γ̂ = argminΓ{‖Γ −
1/n

∑n
i=1 S

ii‖F : Γ � εI}. Then we solve, as the new STAGE-I,

P̂ρ = argmin
Pρ

〈
S, Pρ ⊗ Γ̂−1

〉
− log det(Pρ ⊗ Γ̂−1) + α

〈
G⊗ (1p1

>
p ), |Pρ ⊗ Γ̂−1|

〉
s.t. a∗λmax(Γ̂)I � Pρ � b∗λmin(Γ̂)I.

Here log det(Pρ ⊗ Γ̂−1) = p log det(Pρ) − n log det(Γ̂). Hence, there exists some

Sρ, Gρ ∈ Sn, which can be computed very efficiently, such that

P̂ρ = argmin
Pρ

{
〈Sρ, Pρ〉 − p log det(Pρ) + α 〈Gρ, |Pρ|〉 :

a∗λmax(Γ̂)I � Pρ � b∗λmin(Γ̂)I
}
.

Such an approach would be much easier to solve in terms of computational com-

plexity – the overall complexity is O(log(1/ε)n3) for this STAGE-I problem. Fur-

ther work could then be devoted to proving consistency of the resulting estimator

and its rate could be compared to log(1/ε2) of GSPS.

Supplementary Materials

The proofs for Theorems 2 and 4 are provided in the online supplementary

materials.
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