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Abstract: Hotelling’s T 2 is a well-known statistic for testing the mean vector of a

multivariate normal distribution. Control charts based on T 2 have been widely used

in statistical process control for monitoring a multivariate process. Although it is

a powerful tool, the T 2 statistic has a practical problem, namely, that a significant

T 2-value that normally signals an overall out-of-control condition in the process

mean vector does not provide direct information about which variable or group of

variables may have caused this out-of-control condition. We propose a diagnostic

method to identify the influential variable(s) for cases with and without a speci-

fied out-of-control mean vector. Our approach, based on the likelihood principle,

computes the conditional likelihood of a variable or sub-group of variables causing

or not causing the overall out-of-control condition. Unlike many existing meth-

ods, our method assumes that an out-of-control condition already exists; hence, all

conditional likelihoods in this paper are based on non-central distributions of the

monitoring/testing statistics. By comparing these conditional likelihoods, we iden-

tify the influential variable(s). We use an example from the literature to illustrate

our method and to demonstrate its effectiveness.

Key words and phrases: Hotelling’s T 2 statistic, hypothesis testing, influential vari-

ables, likelihood, mean vector, multivariate process control, out-of-control.

1. Introduction

To test a hypothesis about the mean vector of a multivariate normal distri-

bution, Hotelling (1947) proposed a T 2 statistic that has been widely used in sta-

tistical process control (SPC) to monitor a multivariate normal process. Thus a

process/population with p quality variables (characteristics) inX = (X1, . . . , Xp)

is assumed to follow a multivariate normal distribution with an unknown mean

vector µ and unknown but constant (in-control) covariance matrix Σ. The pro-

cess is said to be in-control in its mean (or simply in-control) at a given time

if the hypothesis H0 : µ = µ0 cannot be rejected based on a random sample

taken from the process at that time, where µ0 represents the in-control process

mean. On the other hand, µ can shift from µ0 at an unknown time, and the

main purpose of SPC is to detect this shift as soon as possible.
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Since the main concern in SPC practice is the stability of the mean vector,

µ0 is normally not specified and is estimated using some reference/training data

so a T 2 control chart can be set up in Phase I for future process monitoring

in Phase II. Assume we have reference observations, XR,i, i = 1, . . . , N , from

the in-control process in Phase I. We compute X̄R =
∑N

i=1XR,i/N and SR =∑N
i=1(XR,i − X̄R)(XR,i − X̄R)

′/(N − 1) to estimate µ0 and Σ, respectively. To

see the decision rule for monitoring the process mean during Phase II, assume a

random observation X is taken from the process Np(µ,Σ). A monitoring statistic

commonly used in practice (cf., Anderson (2003) and Hotelling (1947)) is

T 2 =
N

N + 1
(X − X̄R)

′S−1
R (X − X̄R). (1.1)

It is well known that [(N − p)/((N − 1)p)]T 2 follows a non-central Fp,N−p,λ dis-

tribution with non-centrality λ = (N/(N + 1))(µ − µ0)
′Σ−1(µ − µ0) (Anderson

(2003)). Under H0 : µ = µ0, λ = 0 and the distribution is a central F distribu-

tion. Hence, our 100(1−α)% decision rule is: H0 : µ = µ0 is rejected and an out-

control signal is triggered if T 2 > t20(α) = [(N − 1)p/(N − p)]Fp,N−p,0(α), where

Fp,N−p,0(α) is the (1 − α) percentile of Fp,N−p,0. This t20(α) is the 100(1 − α)%

control limit on a T 2 control chart.

When T 2 signals a change in the mean vector, corrective action is required.

A T 2 value, however, does not provide direct information about which variable

is responsible for the overall out-of-control condition. This information is of

practical importance because engineers/analysts need to know which individual

variable requires adjustments after the process is declared out-of-control. Iden-

tifying the influential variable(s) in a Hotelling’s T 2 statistic has been studied

by several authors. Alt (1985) proposed a set of Bonferroni control limits for

each individual variable; Hayter and Tsui (1994) proposed a procedure to obtain

control limits so that the overall alarm rate, α, is at or close to the desired value.

A different approach, based on Rencher’s (1993) decomposition of the T 2 statis-

tic, can be found in the following references: the MTY decomposition of Mason,

Tracy, and Young (1995, 1997) (more details can be found in Mason, Tracy, and

Young (2002)); the union-intersection or step-down method of Roy (1958); the

marginal contribution method of Murphy (1987); the numerical method of Do-

ganaksoy, Faltin, and Tucker (1991); the regression-adjusted variables method of

Hawkins (1991, 1993); and the finite intersection test of Timm’s (1996).

Jackson (1991) and Fuchs and Benjamini (1994) recommended principal

component analysis (PCA) for improving the interpretation of T 2. Kourti and

MacGregor (1996) provided another approach based on PCA and partial least

squares. Contribution plots proposed by Wasterhuis, Gurden, and Smilde (2000)
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can be constructed, for the normalized principal component scores with high val-

ues, to find the variables responsible for the out-of-control signal. Maravelakis

et al. (2002) proposed a new method based on PCA to identify the variable or

variables responsible for an out-of-control signal in the χ2 control chart.

The cause-selecting chart (CSC ) proposed by Zhang (1980, 1984, 1992) is a

different approach to solving the problem of interpreting an out-of-control sig-

nal in the T 2 chart. Wade and Woodall (1993) suggested a modification of the

CSC chart for diagnostic purposes and also investigated the relationship be-

tween cause-selection control and the multivariate T 2 chart. Sepulveda (1996)

developed a Minimax control chart that can give evidence about which variable

is causing the out-of-control signal. The Minimax control chart was again dis-

cussed in Sepulveda and Nachlas (1997) and is similar to the charts proposed

by Hayter and Tsui (1994) and Timm (1996). Kalagonda and Kulkarni (2003)

proposed a diagnostic procedure called ‘D-technique,’ using dummy variables in

a multiple-regression equation.

An important adjunct to the statistical procedures is a suitable graphical

scheme that can display the basic features of the data (see Iglewicz and Hoaglin

(1987), Fuchs and Benjamini (1994), Sparks, Adolphson, and Phatak (1997), and

Atienza, Tang, and Ang (1998)). More recent approaches based on an artificial

neural network and decision tree can be found in Aparisi, Avendano, and Sanz

(2006), Chen and Wang (2004), Guh and Shiue (2008), and references therein.

In this paper we propose a method based on the likelihood principle for

identifying a variable or group of variables most likely to be responsible for the

rejection of H0 : µ = µ0. We consider the cases with and without a specified out-

of-control mean vector. When no out-of-control mean is specified, our method

computes the conditional likelihood that an individual mean or a group of means

is in-control, given that H0 : µ = µ0 is rejected. When an alternative hypothesis

with a specified out-of-control mean is given, our method computes the condi-

tional likelihood that an individual mean or a group of means has shifted in the

direction specified by the overall alternative, given that H0 : µ = µ0 is rejected.

By comparing these conditional likelihoods, we identify the influential vari-

able(s). Our method assumes that the process is already out-of-control and

is therefore a diagnostic tool. In contrast, many existing methods assume that

H0 : µ = µ0 is true when deriving the distributions for their monitoring statistics;

e.g., the central F distributions for the decomposed statistics in Mason, Tracy,

and Young (1995) and z-distributions for the regression-adjusted variables in

Hawkins (1991). Note that, when H0 : µ = µ0 (in-control) is not rejected, we

may not be interested in the identification problem.
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This paper is organized as follows. Section 2 describes our proposed method

and provides formulas for computing the conditional likelihoods used in the

method. In Section 3, we illustrate our method using an example taken from

the literature.

2. The Proposed Method Based on the Likelihood Principle

In Section 2.1, we describe our proposed method for identifying the influential

variable(s) when H0 : µ = µ0 is rejected. Section 2.2 provides formulas for

computing the likelihood of causing an out-of-control condition for each variable

or group of variables.

2.1. Description of proposed method

We consider two cases for the alternative hypothesis: one specifies and the

other does not specify the out-of-control mean. For the first case, let the specified

out-of-control mean vector be µ∗
a ≡ (µ

∗(1)′
a , . . . , µ

∗(k)′
a )′ (̸= µ0), where µ

∗(j)
a is

a pj × 1 sub-vector and
∑k

j=1 pj = p. This µ∗
a and its partition need to be

determined before samples are taken from the process in Phase II, and they

represent the user’s belief or conjecture about the out-of-control mean vector.

Hence, the two cases are

(A) Ha : µ = µ∗
a,

(B) Ha : not H0.

Let X be a random sample taken from Np(µ,Σ) during Phase II and x be the

observed value. Assume that the observed t2 ≡ (N/(N+1))(x−X̄R)
′S−1

R (x−X̄R)

of T 2 satisfies t2 > t20(α), so H0 : µ = µ0 is rejected at significance level α. Note

that, when H0 is rejected, X and X̄R do not have the same mean.

For Case (A), to detect the out-of-control individual mean(s), we similarly

partition µ = (µ(1)′ , . . . , µ(k)′)′, µ0 = (µ
(1)′

0 , . . . , µ
(k)′

0 )′, X ≡ (X(1)′ , . . . , X(k)′)′,

and x = (x(1)
′
, . . . , x(k)

′
)′. Define H0j : µ(j) = µ

(j)
0 and Haj : µ(j) = µ

∗(j)
a , for

j = 1, . . . , k. Then, the question is: Which of the hypotheses Haj is most likely to

be true according to the data, given that Ha : µ = µ∗
a is accepted? We compute

the conditional maximum likelihood, ℓj(Haj | Ha), for each Haj . By comparing

these likelihoods, we identify which mean vector is most likely responsible for the

overall out-of-control condition. Our method is different from other critical-value

types of approach (e.g., Mason, Tracy, and Young (1995) and Hawkins (1991)).

The conditional maximum likelihood of Haj is calculated as

ℓj(Haj | Ha) = max
µ(j)∈Haj

fµ(j)(X(j) = x(j) | T 2 = t2), (2.1)
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where fµ(j)(X(j) = x(j) | T 2 = t2) denotes the likelihood of µ(j), also the condi-

tional pdf of X(j) at x(j), given that H0 : µ = µ0 is rejected with T 2 = t2. Since

Haj in Case (A) is a simple alternative, (2.1) reduces to

ℓj(Haj | Ha) = f
µ
∗(j)
a

(X(j) = x(j) | T 2 = t2), j = 1, . . . , k. (2.2)

The largest ℓ-value corresponds to the sub-vector most likely to have caused the

overall out-of-control condition.

For Case (B), since no pj ’s are pre-specified, we need to consider all possible

partitions of the mean vectors, µ and µ0. For each partition, our question is:

which hypothesis H0j is least likely to be true according to the data, given that

H0 is rejected with T 2 = t2 (> t20(α)). The conditional likelihood of H0j is similar

to (2.1) and can be calculated as (since H0j is simple):

ℓ′j(H0j | Ha) = f
µ
(j)
0

(X(j) = x(j) | T 2 = t2). (2.3)

For each partition, we first select the sub-set with the smallest ℓ′-value. Then, we

identify the variable or variables that have appeared in most or all of the selected

sub-sets as the out-of-control variable(s).

2.2. Calculations of conditional likelihoods

To calculate the conditional likelihoods in (2.2) and (2.3), it is sufficient to

consider only ℓ′1(H01 | Ha) and ℓ1(Ha1 | Ha) for X(1) with p1 (1 ≤ p1 ≤ p)

univariate means, because conditional likelihoods for other sub-vectors can be

computed similarly by rearranging and renaming the variables in X. To simplify

the notation, we group all sub-vectors other than X(1) to obtain

X = (X(1)′ , X(2)′)′, X̄R = (X̄
(1)′

R , X̄
(2)′

R )′, and SR =

[
SR,11 SR,12

SR,21 SR,22

]
,

where X(1) and X̄
(1)
R are p1 × 1 and X(2) and X̄

(2)
R are q1 × 1 with q1 = p − p1.

Similarly, µ, µ0, and Σ are partitioned as

µ = (µ(1)′ , µ(2)′)′, µ0 = (µ
(1)′

0 , µ
(2)′

0 )′, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Define the partial (conditional) covariance matrices

Σ22·1 = Σ22 − Σ21Σ
−1
11 Σ12, and SR,22·1 = SR,22 − SR,21S

−1
R,11SR,12.
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Then, T 2 can be decomposed as (see, for example, Mason, Tracy, and Young

(1995)):

T 2 =
N

N + 1
(X − X̄R)

′S−1
R (X − X̄R)

=
N

N + 1
(X(1) − X̄

(1)
R )′S−1

R,11(X
(1) − X̄

(1)
R )

+
N

N + 1
[(X(2) − X̄

(2)
R )− SR,21S

−1
R,11(X

(1) − X̄
(1)
R )]′

×S−1
R,22·1[(X

(2) − X̄
(2)
R )− SR,21S

−1
R,11(X

(1) − X̄
(1)
R )]

≡ T 2
1 + T 2

2·1, say.

Theorem 1. (Proof in Appendix A)

(i) T 2
1 follows a non-central [(N − 1)p1/(N − p1)]Fp1,N−p1,λ1 distribution with

non-centrality parameter λ1 = [N/(N +1)](µ(1)−µ
(1)
0 )′Σ−1

11 (µ
(1)−µ

(1)
0 ); and

(ii) The conditional distribution of T
2(∗)
2·1 ≡ T 2

2·1/(1+T 2
1 /(N−1)), given T 2

1 = t21 =

[N/(N + 1)](x(1) − x̄
(1)
R )′s−1

R,11(x
(1) − x̄

(1)
R ), is a non-central [(N − 1)q1/(N −

p)]Fq1,N−p,λ2 distribution with

λ2 =
N

N + 1

1

1 + t21/(N − 1)
[(µ(2) − µ

(2)
0 )− Σ21Σ

−1
11 (µ

(1) − µ
(1)
0 )]′

×Σ−1
22·1[(µ

(2) − µ
(2)
0 )− Σ21Σ

−1
11 (µ

(1) − µ
(1)
0 )]

=
λ− λ1

(1 + t21/(N − 1))
.

Note that the unconditional distribution of T 2
2·1 can be obtained from (i) and

(ii) above, and is given by
∫
t21>0 fT 2

2·1|T 2
1
(t22·1 | t21)fT 2

1
(t21)dt

2
1. This unconditional

distribution can be used to replace the central F -distributions for the decom-

posed monitoring statistics in the MTY decomposition and can thus be used as

a diagnostic tool (assuming that H0 is rejected).

To compute the conditional likelihood fµ(1)(X(1) = x(1) | T 2 = t2) whenH0 is

rejected, we first note from (i) and (ii) of Theorem 1 that the conditional distribu-

tion of T 2, given (X(1), X̄
(1)
R , SR,11) = (x(1), x̄

(1)
R , sR,11), is (1 + t21/(N − 1))[(N −

1)q1/(N − p)]Fq1,N−p,λ2 + t21, which depends on (x(1), x̄
(1)
R , sR,11) but through

t21 = [N/(N + 1)](x(1) − x̄
(1)
R )′s−1

R,11(x
(1) − x̄

(1)
R ). From the fact that X(1), X̄

(1)
R ,

and SR,11 are independently distributed as Np1(µ
(1),Σ11), Np1(µ

(1)
0 , (1/N)Σ11),
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and Wp1(N − 1, [1/(N − 1)]Σ11), respectively, we have

fµ(1)(X(1) = x(1) | t2) =
f(X(1),T 2)(x

(1), t2)

fT 2(t2)

=
1

fT 2(t2)

∫
sR,11>0

∫
x̄
(1)
R

f
(X(1),T 2)|(X̄(1)

R ,SR,11)
(x(1), t2 | x̄(1)R , sR,11)fX̄(1)

R

(x̄
(1)
R )

×fSR,11
(sR,11)dx̄

(1)
R dsR,11

=
fX(1)(x(1))

fT 2(t2)

∫
sR,11>0

∫
x̄
(1)
R

f
T 2|(X(1),X̄

(1)
R ,sR,11)

(t2 | x(1), x̄(1)R , sR,11)fX̄(1)
R

(x̄
(1)
R )

×fSR,11
(sR,11)dx̄

(1)
R dsR,11.

Note that f
T 2|(X(1),X̄

(1)
R ,SR,11)

(t2 | x(1), x̄(1)R , sR,11) = 0 if t21 > t2. Furthermore,

this last conditional distribution is the conditional distribution of T 2 ≡ T 2
1 +T 2

2·1
or t21 + T 2

2·1 and, from the proof of Theorem 1, it depends on x(1), x̄
(1)
R , sR,11 but

through t21. A simple transformation gives

f
T 2|(X(1),X̄

(1)
R ,SR,11)

(t2 | x(1), x̄(1)R , sR,11)

= f
T 2
2·1|(X(1),X̄

(1)
R ,SR,11)

(t2 − t21 | x(1), x̄
(1)
R , sR,11)

= f
T

2(∗)
2·1 |(X(1),X̄

(1)
R ,SR,11)

( t2 − t21
(1 + t21/(N − 1))

| x(1), x̄(1)R , sR,11

) 1

(1 + t21/(N − 1))
,

where the conditional distribution of T
2(∗)
2·1 , given T 2

1 = t21, can be found in The-

orem 1 (ii). Thus, we have

fµ(1)(X(1) = x(1) | t2)

=
fX(1)(x(1))

fT 2(t2)

∫
sR,11>0

∫
x̄
(1)
R

f
T

2(∗)
2·1 |(X(1),X̄

(1)
R ,SR,11)

( t2 − t21
(1+t21/(N−1))

| x(1), x̄(1)R , sR,11

)
× 1

(1 + t21/(N − 1))
f
X̄

(1)
R

(x̄
(1)
R )fSR,11

(sR,11)dx̄
(1)
R dsR,11

=
fX(1)(x(1))

fT 2(t2)
E∗

(X̄
(1)
R ,SR,11)(

f
T

2(∗)
2·1 |(X(1),X̄

(1)
R ,SR,11)

( t2 − t21
(1+t21/(N−1))

∣∣∣x(1), X̄(1)
R , SR,11

) 1

(1+t21/(N−1))

)
, (2.4)

where the conditional expectation, E∗, is with respect to X̄
(1)
R and SR,11, sub-

jected to t21 = [N/(N + 1)](x(1) − X̄
(1)
R )′S−1

R,11(x
(1) − X̄

(1)
R ) and t21 ≤ t2.
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Since it is generally difficult to compute the conditional expectation E∗ in

(2.4), we propose the following asymptotic results for the conditional expectation

(proof in Appendix B):∫∫
sR,11>0,x̄

(1)
R ,t21≤t2

( m∑
h=0

f (h)
asympN

−h+O(N−(m+1))

)
f
X̄

(1)
R

(x̄
(1)
R )fSR,11

(sR,11)dx̄
(1)
R dsR,11,

(2.5)

where

f (h)
asymp =

∑∗

{j1+···+j7=h}
e−(λ−λ1)/2+(t21−t2)/2β

(1)
j1

(t21)β
(2)
j2

(1− t2,−1

2
)β

(3)
j3

(1− t21,
1

2
)

×

[ ∞∑
β=0

(t2 − t21)
q1/2−1+β

Γ(q1/2 + β)β!

(λ− λ1

2

)β
β
(4)
j4

(β)2−(q1/2+β)β
(5)
j5

(β)β
(6)
j6

(t2, β)β
(7)
j7

(t21, β)

]
,

(2.6)

and the summation
∑∗ is over ji’s such that all β

(d)
ji

̸= 0. For example, when

m = 2, (2.5) becomes∫∫
sR,11>0,x̄(1),t21≤t2

(
f (0)
asymp + f (1)

asympN
−1 + f (2)

asympN
−2 +O(N−3)

)
f
X̄

(1)
R

(x̄
(1)
R )

fSR,11
(sR,11)dx̄

(1)
R dsR,11,

with

f (0)
asymp = e−(λ−λ1)/2+(t21−t2)/2

( ∞∑
β=0

(t2 − t21)
q1/2−1+β

Γ(q1/2 + β)β!

(λ− λ1

2

)β
2−(q1/2+β)

)
, (2.7)

f (1)
asymp = e−(λ−λ1)/2+(t21−t2)/2

∞∑
β=0

(t2 − t21)
q1/2−1+β

Γ(q1/2 + β)β!

(λ− λ1

2

)β
2−(q1/2+β)

×
((λ−λ1)t

2
1

2
− (1−t21)(1−t21−2p)

4
− (1−t2)(1−t2−2p1)

4

+
q1
2
(
q1
2

− p− 1)− (t2 + t21 + p1 − β)β
)
, (2.8)

and f
(2)
asymp given in Appendix B (B.16).

To compute both conditional null and alternative likelihoods, we note that

(2.5) depends on certain unknown model parameters that need to be estimated

from the reference or current data. First, the in-control µ0 and Σ are respectively

estimated by X̄R and SR from the reference data. For ℓ1(Ha1 | Ha) in Case (A),
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µ = (µ(1)′ , µ(2)′)′ is replaced by µ∗
a = (µ∗(1)′ , µ∗(2)′)′; for ℓ′1(H01 | Ha) in Case

(B), µ = (µ(1)′ , µ(2)′)′ is estimated by (µ
(1)′

0 , X(2)′)′. All other parameters are

known, and variables such as t2 and t21 are given. Furthermore, since the training

sample size is normally N = 20 or 25 in a univariate case and much larger in a

multivariate case, the two-term approximation in (2.5) suffices. We demonstrate

this in the next section.

3. Illustration of Method Using Example

We use an example from the literature to illustrate and evaluate our proposed

method. Out-of-control variables are identified for Case (B) and for Case (A).

3.1. Identifying out-of-control variables for Case (B)

We use the data in Flury and Riedwyl (1988, p.151), where five dimensions of

switch drums are measured: X1 is the inside diameter of a drum; X2, X3, X4, and

X5 are the distances from the head to the edges of four sectors cut in the drum,

respectively. Hawkins (1991) treated the mean and covariance matrix computed

from these data as the in-control population mean and covariance matrix:

µ0 = (17.960, 10.3, 13.76, 11.08, 11.08, 8.26)′, (3.1)

Σ = σ′Rσ, (3.2)

where

R =


1

0.1388 1

0.3496 0.7324 1

0.0829 0.9130 0.6824 1

0.2652 0.6932 0.8214 0.7640 1


is the (symmetric) correlation matrix with standard deviations σ = (1.8622,

1.7053, 1.7090, 1.8718, 2.2114)′. Hawkins then simulated N = 35 training obser-

vations from N5(µ0,Σ) and 15 observations after adding an upward shift of 0.5σ1
and 0.25σ5 to the in-control mean of X1 and X5, respectively, while keeping all

other process parameters unchanged. The reference/training sample mean and

covariance matrix based on the first N = 35 observations are respectively (in our

notation)

X̄R = (17.6289, 10.3365, 13.6189, 11.1776, 8.2437)′, (3.3)

where
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SR =


2.7355

0.5193 2.4673

1.3496 1.6465 2.2259

0.8029 2.5275 1.9026 3.4201

1.4865 2.0266 2.4228 2.9601 4.5689

 (3.4)

A T 2 statistic is computed for each of the observations 36−50. There is an out-of-

control signal at α = 5% for observation 48; namely, X = (13.065, 11.625, 14.923,

12.589, 12.446)′, with the observed T 2 = t2 = 22.2447 > t20(0.05) = (5(35 −
1)/(35 − 5))F5,35−5(0.95) = 14.3568. Note that the individual distances of vari-

ables between this X and the estimated in-control mean X̄R are: −2.7594σ1,

0.8203σ2, 0.8741σ3, 0.7632σ4, and 1.966σ5. The complete data is given in Hawkins

(1991).

For Case (B) where no alternative is specified, Table 1 gives the (approxi-

mated) conditional null likelihood, ℓ′j(H0j | Ha), for each X(j). Only two terms

in (2.5) are used to compute each likelihood. First, to see the accuracy of our

approximation, we used simulation to estimate the exact likelihood because the

exact likelihood in (2.4) is difficult to compute (each simulated likelihood was

obtained based on 10,000 iterations). The simulation procedure is given in Ap-

pendix C. The data in Table 1 indicate that our approximations are quite accu-

rate.

We interpret the results in Table 1. If we believe, for example, that there

is only one out-of-control variable (so pj = p1 = 1), then X1 is the most likely

one and its likelihood of being in-control is about 1/7 of the in-control likelihood

for the next variable, X5. On the other hand, if we think there are two out-of-

control variables (p1 = 2), then X1 and X5 are the most likely pair. The same

interpretation applies to the cases for p1 = 3 and 4.

From Table 1, we see that the sub-groups containing the two out-of-control

variables X1 and X5 always rank high under each p1 (from 1 to 4), which in-

dicates that our method is quite effective. Furthermore, we can also compare

results from different p1 values. For example, while the individual conditional

in-control likelihood for X1 and X5 is 3.189E-0.3 and 2.145E-02, respectively, the

joint conditional likelihood that X1 and X5 are simultaneously in-control is sig-

nificantly lower (at 4.355E-07), which is reasonable because these two variables

are indeed simultaneously out-of-control in this example. Furthermore, when

an in-control variable X4 is added (to obtain the first case under p1 = 3), the

joint in-control conditional likelihood becomes smaller (5.299E-08), but not sig-

nificantly smaller (note that X4 is in-control but the observed value is 0.7632σ4
from its in-control mean). If one is to identify three variables, they are: X1, X4
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Table 1. Conditional Null Likelihood, ℓ′j(H0j | Ha), for The Example in
Section 3.1.

pj Variable Simulation (std error)∗ Approximation
1 1 3.289E-03 (7.876E-06) 3.189E-03

5 2.324E-02 (1.999E-05) 2.145E-02
4 1.649E-01 (1.872E-05) 1.553E-01
2 1.849E-01 (2.438E-05) 1.740E-01
3 1.854E-01 (2.722E-05) 1.744E-01

2 1 5 3.946E-07 (3.401E-09) 4.355E-07
1 3 6.850E-06 (4.716E-08) 7.654E-06
1 4 1.899E-04 (6.734E-07) 1.944E-04
1 2 2.840E-04 (9.285E-07) 2.890E-04
4 5 4.242E-03 (4.917E-06) 3.951E-03
3 5 6.125E-03 (6.625E-06) 5.707E-03
2 5 7.043E-03 (5.910E-06) 6.534E-03
3 4 5.607E-02 (6.789E-06) 5.314E-02
2 3 6.596E-02 (8.465E-06) 6.250E-02
2 4 8.381E-02 (8.866E-06) 7.960E-02

3 1 4 5 4.898E-08 (4.075E-10) 5.299E-08
1 2 5 1.161E-07 (9.284E-10) 1.260E-07
1 3 5 1.810E-07 (1.433E-09) 1.987E-07
1 2 3 1.783E-06 (1.214E-08) 1.954E-06
1 3 4 2.139E-06 (1.390E-08) 2.366E-06
1 2 4 1.093E-04 (3.662E-07) 1.123E-04
3 4 5 1.505E-03 (1.805E-06) 1.409E-03
2 4 5 1.894E-03 (2.180E-06) 1.776E-03
2 3 5 2.373E-03 (2.259E-06) 2.218E-03
2 3 4 3.060E-02 (2.782E-06) 2.929E-02

4 1 3 4 5 1.461E-08 (1.037E-10) 1.438E-08
1 2 4 5 2.924E-08 (1.963E-10) 2.938E-08
1 2 3 5 3.392E-08 (2.345E-10) 3.427E-08
1 2 3 4 9.502E-07 (5.611E-09) 1.032E-06
2 3 4 5 5.155E-04 (7.543E-07) 4.931E-04

*Simulated averages (with std errors) are based on 10,000 iterations. See Appendix

C for the simulation procedure.

and X5. The reason that X4 was included before X2 or X3 is less clear, and

one has to consider the trade-off between some of the distances in (-2.7594σ1,

0.8203σ2, 0.8741σ3, 0.7632σ4, 1.966σ5), the correlations, and the regression coef-

ficients in the non-centrality of the conditional likelihood. Nevertheless, the null

likelihoods of the first three subgroups under p1 = 3 are fairly close.

According to our procedure in Section 2.1, {X1}, {X1, X5}, {X1, X4, X5},
and {X1, X3, X4, X5} are first selected (for each pj in Table 1). Since X1 and
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X5 appear in almost all of the sub-sets, they are (correctly) identified as the

out-of-control variables.

We would like to point out that the ranking of the variables based on our

conditional likelihood approach may be different from that obtained using the

marginal T 2 statistic (Mason, Tracy, and Young (1995)) and z-statistic (Hawkins

(1991)) for each individual variable. This is mainly because their methods do

not assume that an overall out-of-control condition existed; hence, all their non-

centralities were assumed to be zero. We are interested in the identification

problem when H0 : µ = µ0 is rejected.

3.2. Identifying out-of-control variables for Case (A)

Since our method for Case (A) can easily be illustrated in terms of shifts

in means, we define the parameter ∆ ≡ µ − µ0 = (∆(1)′ , . . . ,∆(k)′)′ and the

hypothesized shifts ∆∗
a ≡ µ∗

a − µ0 = (∆
∗(1)′
a , . . . ,∆

∗(k)′
a )′. Then, Haj can be

rewritten as Haj : ∆(j) = ∆
∗(j)
a . Because ∆∗

a is only a hypothesized vector

pre-specified by the user before the process monitoring in Phase II begins, it is

possible that the process shifts in a direction different from the ∆∗
a during Phase

II. To study the ability of the proposed method to detect out-of-control mean(s),

let µa = (µ
(1)′
a , . . . , µ

(k)′
a )′ be the actual out-of-control mean and ∆a ≡ µa −µ0 =

(∆
(1)′
a , . . . ,∆

(k)′
a )′ be the actual shift.

We use the example from Section 3.1 to illustrate and evaluate our method.

With ∆a = (2.5σ1, 0, 0, 0, 0)
′ and pj = 1, we simulated a random sample from the

out-of-control process N5(µa,Σ), with µa = µ0 + ∆a, to obtain X = (23.19104,

10.53652, 13.89620, 11.01731, 9.57183)′ with t2 = 17.99087 > t20(0.05) = 14.3568.

Hence, H0 was rejected. Here µ0 and Σ are given in (3.1) and (3.2), respectively.

First, we assume the pre-specified shift is the same as the true shift, ∆∗
a = ∆a.

For pj = 1, the individual conditional likelihoods, ℓj(Haj | Ha), for X1 to X5 are:

0.31519, 0.25097, 0.26626, 0.21544, and 0.15556, respectively.

From these likelihoods, Ha1 : ∆(1) = 2.5σ1 for X1 is first and correctly

identified by our sample as the most likely sub-group alternative. Furthermore,

since ∆
(j)
a = 0 for j = 2, . . . , 5, the sub-group alternative Haj : ∆(j) = 0 (which

is ∆
∗(j)
a ), j = 2, . . . , 5, should be true. Indeed, they also receive high ℓj values.

So, by confirming that X2 to X5 are in-control, we are able to single out X1 as

the out-of-control variable. We look to see if we still can detect X1 when the

pre-specified shift is ∆∗
a = (0, 2.5σ2, 0, 0, 0)

′ ̸= ∆a. Because the true mean shift

is ∆a = (2.5σ1, 0, 0, 0, 0)
′, Ha1 : ∆(1) = 0, and Ha2 : ∆(2) = 2.5σ2 are expected

to be the two least likely alternative hypotheses. Indeed, the ℓj(Haj | Ha)-

values for X1 through X5 are 0.00011, 0.03088, 0.31536, 0.25647, and 0.17074,
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respectively. These values indicate that X3-X5 are most likely to be in-control

and X2 is unlikely to be out-of-control. Again, we are able to detect X1 as the

out-of-control variable.

This example illustrates our method with only one sample. To extend it, we

also considered ∆a = (2.5σ1, 0, 0, 0, 2.5σ5)
′ with shifted means in bothX1 andX5.

We simulated 500 random samples, each of size of 1, from N5(µ0 +∆a,Σ). Note

that for a pre-specified ∆∗
a, each of the 500 simulated samples gives C5

2 = 10 ℓj-

values for comparison if pj = 2. Assume ∆∗
a = (2.5σ1, 2.5σ2, 2.5σ3, 2.5σ4, 2.5σ5)

′.

Based on the ℓj-values, Ha(1,5) : (∆
(1),∆(5)) = (2.5σ1, 2.5σ5) was first and cor-

rectly picked as the most likely alternative in 90.2% of the 500 simulated samples.

If ∆∗
a = (0, 0, 0, 2.5σ4, 0)

′, our method first identified Ha(2,3) : (∆
(2),∆(3)) = (0, 0)

as the most likely sub-group alternative in 86.6% of the 500 simulated cases.

This result is reasonable because the true and hypothesized means are equal for

(X2, X3); thus, our methods eliminated X2 and X3 as out-of-control variables.

Other alternative hypotheses for pairs of two variables were considered unlikely,

because their hypothesized shift vectors were not equal to the respective true

shift vectors. For example, the ℓj values of Ha(1,4) : (∆(1),∆(4)) = (0, 2.5σ4),

Ha(2,4) : (∆(2),∆(4)) = (0, 2.5σ4), and Ha(4,5) : (∆(4),∆(5)) = (2.5σ4, 0) were

ranked first in only 0.2%, 0.0%, and 0.0% in the 500 simulated cases, respec-

tively. From this, we see that X4 is unlikely to be out-of-control, and we again

identify the out-of-control variablesX1 andX5. Yen (2008) has conducted a more

extensive simulation study and found that our method is effective in identifying

out-of-control variable(s) in all scenarios considered.

Appendix A: Proof of Theorem 1

Part (i) follows immediately from Anderson (2003, p.143). Next, we find

the distribution of T 2
2 | {(X(1), X̄

(1)
R , SR,11) = (x(1), x̄

(1)
R , sR,11)}. Since (Theorem

3.3.9 of Gupta and Nagar (2000))

SR,21 | {SR,11 = sR,11} ∼ Nq1,p1(Σ21Σ
−1
11 sR,11,

1

N − 1
Σ22·1 ⊗ sR,11),

we have

SR,21S
−1
R,11(X

(1) − X̄
(1)
R ) |

{
(X(1), X̄

(1)
R , SR,11) = (x(1), x̄

(1)
R , sR,11)

}
∼Nq1

(
Σ21Σ

−1
11 sR,11s

−1
R,11(x

(1) − x̄
(1)
R ),

1

N

N + 1

N − 1
t21Σ22·1

)
, (A.1)

with t21 = (N/(N + 1))(x(1) − x̄
(1)
R )′s−1

R,11(x
(1) − x̄

(1)
R ). Furthermore, since X, X̄R,
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and SR are independent, from (A.1) and the fact that

(X(2) − X̄
(2)
R ) | {(X(1), X̄

(1)
R ) = (x(1), x̄

(1)
R )}

∼Nq1

(
µ(2) − µ

(2)
0 − Σ21Σ

−1
11 (x

(1) − x̄
(1)
R − (µ(1) − µ

(1)
0 )),

N + 1

N
Σ22·1

)
we have(
(X(2)−X̄

(2)
R )−SR,21S

−1
R,11(X

(1)−X̄
(1)
R )
)∣∣∣{(X(1), X̄

(1)
R , SR,11)=(x(1), x̄

(1)
R , sR,11)

}
∼Nq1(µ

(2) − µ
(2)
0 )− Σ21Σ

−1
11 (µ

(1) − µ
(1)
0 ),

N + 1

N
(1 +

1

N − 1
t21)Σ22·1

)
. (A.2)

From (A.2), Anderson (2003, p.143), and the fact that SR,22·1 ∼ Wq1(N − p1 −
1, (1/(N − 1))Σ22·1) is independent of (SR,21, SR,11), the conditional distribution

of T
2(∗)
2·1 ≡ T 2

2·1/(1 + t21/(N − 1)), given (X(1), X̄
(1)
R , SR,11) = (x(1), x̄

(1)
R , sR,11),

is a non-central [(N − 1)q1/(N − p)]Fq1,N−p,λ2 distribution with non-centrality

λ2 as given in the theorem. Since this conditional distribution depends on

(x(1), x̄
(1)
R , sR,11) but through t21, it is also the conditional distribution of T

2(∗)
2·1 ,

given t21, so we have proved Theorem 1.

Appendix B: Approximation to Expectation in (2.4)

From Theorem 1(ii), the integrand in (2.4) can be written as

e−λ2/2

N − 1

∞∑
β=0

(λ2/2)
β
[
(t2−t21)/[(N−1)(1+t21/(N − 1))]

]q1/2−1+β

B(N−p
2 , q12 + β)β!

[
1 +

t2−t21
(N−1)(1+t21/(N−1))

](N−p1)/2+β
· 1

1 + t21/(N−1)

= e−(N−1)(λ−λ1)/[2(N−1+t21)]
(N − 1 + t21)

N/2

(N − 1 + t2)N/2

×
∞∑
β=0

((N − 1)(λ− λ1)/2)
β(t2 − t21)

q1/2−1+β

B((N − p)/2, q1/2 + β)β!

(N − 1 + t21)
−p/2−β

(N − 1 + t2)−p1/2+β
, (B.1)

where [
B
(N − p

2
,
q1
2

+ β
)]−1

=
Γ
(
(N − p)/2 + q1/2 + β

)
Γ
(
(N − p)/2

)
Γ
(
q1/2 + β

) . (B.2)

We find the asymptotic expansion in N−1 for (B.1) by finding the asymptotic

expansion for each factor in (B.1).

We need the following result to derive several asymptotic expansions.



METHODS FOR IDENTIFYING INFLUENTIAL VARIABLES 861

Lemma B.1. If g(x) =
∑m

k=1 αkx
−k (1 ≤ m ≤ ∞), then exp(g(x)) =

∑∞
j=0 βj

(m)x−j, where βj’s satisfy the following recursive relation:

β0(m) = 1, βj(m) =
1

j

min(j,m)∑
k=0

kαkβj−k(m)x−j , j = 1, 2, . . . . (B.3)

Note that the βj ’s depend on m only through the number of terms in the

two sums in Lemma B.1. This m will be omitted and replaced by, if any, the

variables (but not the fixed model parameters) affecting the values of βj ’s. When

m ≥ 3, we have: β0 = 1, β1 = α1, β2 = 2α2 + α2
1, and β3 = 3α3 + 4α1α2 + α3

1.

The βj ’s can be computed rather easily because of the recursive relation in (B.3).

Begin with the first term in (B.1). We note

−1

2

(N − 1)(λ− λ1)

N − 1 + t21
= −λ− λ1

2
(N − 1)(N − 1 + t21)

−1

= −λ− λ1

2
(1− 1

N
)
[ ∞∑
j=0

(1− t21
N

)j]
= −λ− λ1

2

∞∑
j=1

(λ− λ1)t
2
1(1− t21)

j−1

2

( 1

N

)j
,

and hence (from Lemma B.1),

e−(N−1)(λ−λ1)/[2(N−1+t21)] = e−(λ−λ1)/2e
∑∞

k=1(1/2)(λ−λ1)t21(1−t21)
k−1(1/N)k

= e−(λ−λ1)/2
( m∑

j1=0

β
(1)
j1

(t21)N
−j1 +O(N−(m+1))

)
, (B.4)

with αk ≡ (λ − λ1)t
2
1(1 − t21)

k−1/2; β
(1)
0 (t21) = 1, β

(1)
1 (t21) = (λ − λ1)t

2
1/2, and

β
(1)
2 (t21) = (λ− λ1)t

2
1(1− t21)/2 + ((λ− λ1)t

2
1/2)

2.

Next, using the Taylor series expansion for the log function, we obtain

log
(
1− a

N

)bN
= −ba+

∞∑
k=1

(−bak+1

k + 1

)
N−k

and, from Lemma B.1, we obtain(
1− a

N

)bN
= e−ba

( m∑
j2=0

β
(2)
j2

(a, b)N−j2 +O(N−(m+1))
)
, (B.5)

where β
(2)
j2

(a, b)’s satisfy (B.3) with αk = −bak+1/(k+1). For example, β
(2)
0 (a, b)

= 1, β
(2)
1 (a, b) = −ba2/2, and β

(2)
2 (a, b) = −2ba3/3+b2a4/4. For the second term
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in (B.1), we now apply (B.5) to obtain:

1

(N − 1 + t2)N/2
= (N − 1 + t2)−N/2 = N−N/2

(
1− 1− t2

N

)−N/2

=N−N/2e(1−t2)/2
( m∑

j2=0

β
(2)
j2

(1− t2,−1/2)N−j2 +O(N−(m+1))
)
, (B.6)

where β
(2)
0 (1 − t2,−1/2) = 1, β

(2)
1 (1 − t2,−1/2) = (1 − t2)2/4, and β

(2)
2 (1 −

t2,−1/2) = (1− t2)3/3 + (1− t2)4/16. Similarly,

(N − 1 + t21)
N/2 = NN/2

(
1− 1− t21

N

)N/2

=NN/2e−(1−t21)/2
( m∑

j3=0

β
(3)
j3

(1− t21,
1

2
)N−j3 +O(N−(m+1))

)
, (B.7)

with β
(3)
j3

’s satisfying the same recursive relation as β
(2)
j2

in (B.5); for example,

β
(3)
0 (1 − t21, 1/2) = 1, β

(3)
1 (1 − t21, 1/2) = −(1 − t21)

2/4, and β
(3)
2 (1 − t21, 1/2) =

−(1− t21)
3/3 + (1− t21)

4/16.

Next, for the first term inside the summation in (B.1), we note that((N − 1)(λ− λ1)

2

)β
=
(λ− λ1

2

)β
Nβ(1− 1

N
)β

=
(λ− λ1

2

)β
Nβ

β∑
j4=0

(
(−1)j4Cβ

j4

)
N−j4 , (B.8)

where Cβ
j4

is the Binomial coefficient. If we define β
(4)
j4

(β) = (−1)j4Cβ
j4
Ij4≤β,

where indicator function Ij4≤β = 1 for j4 ≤ β, and = 0 otherwise, (B.9) can be

rewritten as (for all m)(λ− λ1

2

)β
Nβ
{ m∑

j4=0

β
(4)
j4

(β)N−j4 +N−(m+1)
}
. (B.9)

For (B.2), we use the asymptotic expansion of the log gamma function (An-

derson (2003, p.318) and Lemma B.1 to obtain, for each β ≥ 0,

Γ(N/2−p/2+q1/2+β)

Γ(N/2− p/2)
=
(N
2

)q1/2+β
exp

( m∑
k=1

αkN
−k +O(N−(m+1))

)
,

=
(N
2

)q1/2+β( m∑
j5=0

β
(5)
j5

(β)N−j5 +O(N−(m+1))
)
,(B.10)
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where αr ≡ αr(β) = [(−2)r/(r(r + 1))](Br+1(−p/2) − Br+1((q1 − p)/2 + β))

and the β
(5)
j5

(β) satisfy the recursive relation in (B.3). Here, Br+1(·) is the

Bernoulli polynomial of degree r+1 and order of unity defined by τehτ/(eτ−1) =∑∞
r=0(τ

r/r!)Br(h) (see Anderson (2003, p.318). For example,

β
(5)
0 (β) = 1,

β
(5)
1 (β) = α1 =

(−2)

(1 + 1)

(
B2(

−p

2
)−B2(

q1 − p

2
+ β)

)
= −

[(
(
−p

2
)2 − (

−p

2
) +

1

6

)
−
(
(
q1 − p

2
+ β)2 − (

q1 − p

2
+ β) +

1

6

)]
= (

q1
2

+ β)(
q1
2

− p+ β − 1),

β
(5)
2 (β) = 2α2 + α2

1,

where

α2 =
(−2)2

2(2 + 1)

(
B3(

−p

2
)−B3(

q1 − p

2
+ β)

)
= (

q1
2

+ β)
(1
3
(
q1
2

− p+ β)(3− q1 + p− 2β)− p2

6
− 1

3

)
.

Therefore, we obtain the following asymptotic expansion:[
B
(N − p

2
,
q1
2

+ β
)]−1

=
[
Γ
(q1
2

+ β
)]−1(N

2

)q1/2+β( m∑
j5=0

β
(5)
j5

(β)N−j5 +O(N−(m+1))
)
. (B.11)

For the last ratio in (B.1), we note that

(N − 1 + t2)p1/2−β =Np1/2−β
(
1− 1− t2

N

)p1/2−β

=Np1/2−β
( m∑

j6=0

β
(6)
j6

(t2, β)N−j6 +O(N−(m+1))
)
, (B.12)

where β
(6)
j6

’s satisfy (B.3) with αk ≡ −(1 − t2)k(p1/2 − β)/k. For example,

β
(6)
0 (t2, β) = 1, β

(6)
1 (t2, β) = −(1−t2)(p1/2−β), and β

(6)
2 (t2, β) = (1−t2)2(p1/2−

β)(p1/2− β − 1). Similarly,

(N − 1 + t21)
−p/2−β =N−p/2−β

(
1− 1− t21

N

)−p/2−β

=N−p/2−β
( m∑

j7=0

β
(7)
j7

(t21, β)N
−j7 +O(N−(m+1))

)
, (B.13)



864 CHIA-LING YEN AND JEN TANG

with αk ≡ (1 − t21)
k(p/2 + β)/k. For example β

(7)
0 (t21, β) = 1, β

(7)
1 (t21, β) =

(1− t21)(p/2 + β), and β
(7)
2 (t21, β) = (1− t21)

2(p/2 + β)(p/2 + β + 1).

Finally, using (B.4)−(B.13), (B.1) can be written

∞∑
β=0

{
(t2−t21)

q1/2−1+β

Γ(q1/2+β)β!
e(t

2
1−t2)/2e−(λ−λ1)/2

( m∑
j1=0

β
(1)
j1

(t21)N
−j1+O(N−(m+1))

)
×
(λ− λ1

2

)β
Nβ
( m∑

j4=0

β
(4)
j4

(β)N−j4 +N−(m+1)
)

×N−N/2
( m∑

j2=0

β
(2)
j2

(1− t2,−1

2
)N−j2 +O(N−(m+1))

)
×NN/2

( m∑
j3=0

β
(3)
j3

(1− t21,
1

2
)N−j3 +O(N−(m+1))

)
×
(N
2

)q1/2+β( m∑
j5=0

β
(5)
j5

(β)N−j5 +O(N−(m+1))
)

×Np1/2−β
( m∑

j6=0

β
(6)
j6

(t2, β)N−j6 +O(N−(m+1))
)

×N−p/2−β
( m∑

j7=0

β
(7)
j7

(t21, β)N
−j7 +O(N−(m+1))

)}
. (B.14)

If we group the powers of N , (B.1) and (B.14) become

m∑
h=0

{ ∑
{j1+···+j7}=h

e−(λ−λ1)/2+(t21−t2)/2β
(1)
j1

(t21)β
(2)
j2

(1− t2,−1

2
)β

(3)
j3

(1− t21,
1

2
)

·
[ ∞∑
β=0

(t2−t21)
q1/2−1+β

Γ(q1/2+β)β!

(λ−λ1

2

)β
β
(4)
j4

(β)2−(q1/2+β)β
(5)
j5

(β)β
(6)
j6

(t2, β)β
(7)
j7

(t21, β)

]}
×N−h +O(N−(m+1))

=

m∑
h=0

f (h)
asympN

−h +O(N−(m+1)), (B.15)

where f
(h)
asymp is given in (2.6). We need to note that the summation in (2.6) is

over all ji’s such that their beta coefficients are different from zero. The beta’s

are easy to compute because they satisfy the recursive relation in (B.3). The

f
(h)
asymp’s are also easy to calculate. As examples, f

(0)
asymp and f

(1)
asymp are given in
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(2.7) and (2.8), respectively, and

f (2)
asymp = e−(λ−λ1)/2+(t21−t2)/2

∞∑
β=0

(t2−t21)
q1/2−1+β

Γ(q1/2+β)β!

(λ− λ1

2

)β
2−(q1/2+β)

×
{(

β
(1)
2 (t21) + β

(2)
2 (1− t2,−1

2
) + β

(3)
2 (1− t21,

1

2
)

+β
(4)
2 (β) + β

(5)
2 (β) + β

(6)
2 (t2, β) + β

(7)
2 (t21, β)

)
+β

(1)
1 (t21)

(
+ β

(2)
1 (1− t2,−1

2
) + β

(3)
1 (1− t21,

1

2
)

+β
(4)
1 (β) + β

(5)
1 (β) + β

(6)
1 (t2, β) + β

(7)
1 (t21, β)

)
+β

(2)
1 (1− t2,−1

2
)
(
β
(1)
1 (t21) + β

(3)
1 (1− t21,

1

2
)

+β
(4)
1 (β) + β

(5)
1 (β) + β

(6)
1 (t2, β) + β

(7)
1 (t21, β)

)
+β

(3)
1 (1− t21,

1

2
)
(
β
(1)
1 (t21) + β

(2)
1 (1− t2,−1

2
)

+β
(4)
1 (β) + β

(5)
1 (β) + β

(6)
1 (t2, β) + β

(7)
1 (t21, β)

)
+β

(4)
1 (β)

(
β
(1)
1 (t21) + β

(2)
1 (1− t2,−1

2
)

+β
(3)
1 (1− t21,

1

2
) + β

(5)
1 (β) + β

(6)
1 (t2, β) + β

(7)
1 (t21, β)

)
+β

(5)
1 (β)

(
β
(1)
1 (t21) + β

(2)
1 (1− t2,−1

2
)

+β
(3)
1 (1− t21,

1

2
) + β

(4)
1 (β) + β

(6)
1 (t2, β) + β

(7)
1 (t21, β)

)
+β

(6)
1 (t2, β)

(
β
(1)
1 (t21) + β

(2)
1 (1− t2,−1

2
)

+β
(3)
1 (1− t21,

1

2
) + β

(4)
1 (β) + β

(5)
1 (β) + β

(7)
1 (t21, β)

)
+β

(7)
1 (t21, β)

(
β
(1)
1 (t21) + β

(2)
1 (1− t2,−1

2
)

+β
(3)
1 (1− t21,

1

2
) + β

(4)
1 (β) + β

(5)
1 (β) + β

(6)
1 (t21, β)

)}
. (B.16)

Finally, we integrate (B.15) or (B.16) with respect to X̄
(1)
R and SR,11 to obtain

(2.5).

Appendix C: Simulation Procedure for Table 1

To obtain the simulated values of (2.4) in Table 1, we first note that fX(1)(x(1))

and fT 2(t2) in (2.4) are, respectively, the pdfs of Np1(µ
(1),Σ11) and [((N −
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1)p)/(N − p)]Fp,N−p,λ with λ = (N/(N +1))(µ− µ0)
′Σ−1(µ− µ0). The function

inside (2.4), f
T

2(∗)
2·1 |T 2

1

((t2− t21)/(1+ t21/(N − 1))) | t21), can be obtained from The-

orem 1(ii) with λ2 = (λ− λ1)/(1 + t21/(N − 1)), where λ1 = (N/(N + 1))(µ(1) −
µ
(1)
0 )′Σ−1

11 (µ
(1) − µ

(1)
0 ).

To simulate the conditional expectation in (2.4), we took a random sample

from X̄
(1)
R ∼ Np1(µ

(1)
0 ,Σ11/N) and SR,11 ∼ Wp1(N−1,Σ11/(N−1)), respectively,

and computed t21 = (N/(N + 1))(x(1) − X̄
(1)
R )′S−1

R,11(x
(1) − X̄

(1)
R ). If this t21 was

less than or equal to the given t2 value, we computed the value of f
T

2(∗)
2·1 |T 2

1

((t2 −
t21)/(1+t21/(N−1))) | t21)/[1+t21/(N−1)] and, along with fX(1)(x(1)) and fT 2(t2),

we obtained a value for (2.4). The non-centrality λ was estimated by the observed

value of (N/(N +1))(X− X̄R)
′S−1

R (X − X̄R) when t2 was computed and an out-

of-control signal occurred. Since some of the parameters in these distributions

depend on unknown µ = (µ(1)′ , µ(2)′)′, µ0 = (µ
(1)′

0 , µ
(2)′

0 )′, and Σ = (Σij) in our

example, they were estimated by the observed/given values ofX = (X̄
(1)′

R , X(2)′)′,

X̄R = (X̄
(1)′

R , X̄
(2)′

R )′, and SR = (SR,ij), respectively. Note that, for Case (B)

considered in Table 1, µ(1) = µ
(1)
0 , hence both were estimated by the given value

of X̄
(1)
R .

We repeated the procedure described above 10,000 times. The average and

the standard error of the 10,000 simulated values of (2.4) for each case are given

in Table 1.
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