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Abstract: In this paper, we propose some new necessary and sufficient conditions
for identifying isomorphism in two-level fractional factorial designs, using a parallel
flats structure. A new algorithm for checking isomorphism is provided accordingly.
The proposed algorithm is simple and general, and can be used for either regular
or nonregular designs. By taking advantage of the parallel flats structure when
it exists, the method is much faster than current methods for assessing the
isomorphism of nonregular two-level designs. Examples are given to illustrate the
results. An efficient implementation of the proposed algorithm in Matlab can be
found in the online Supplementary Material.
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1. Introduction

In this study, we restrict our attention to two-level fractional factorial designs,
which are extremely popular screening designs. Two fractional factorial designs
are called isomorphic if and only if one design can be obtained from the other by
row permutations, column permutations, and level permutations within columns.
Two isomorphic designs share the same statistical properties in some classical
ANOVA models, and thus are considered essentially the same. Thus, determining
isomorphism is important both in theory and in practice.

Given the simple algebraic structure of regular designs, the earliest studies
on isomorphism checks focused on such designs. Draper and Mitchell (1967,
1968)) proved that two isomorphic regular designs must have the same word
length pattern. Draper and Mitchell| (1970) further showed that two isomorphic
regular designs must have the same letter pattern. The letter pattern counts
the frequency of letters in words of different lengths. Agreement in letter
pattern implies having the same word length pattern. Note that designs with
the same letter pattern are not necessarily isomorphic; see (Chen and Lin| (1991)),
who disprove a conjecture of Draper and Mitchell (1970)). Chen, Sun and Wu
(1993) first proposed necessary and sufficient conditions by “applying some
algebraic and combinatorial methods” to identify isomorphic regular designs.
By matching the factors using their delete-one-factor projections, Xu (2009)
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greatly improved the isomorphism checking procedure of [Chen, Sun and Wul
, and developed a sequential algorithm for constructing efficient two-level
regular designs. |Shrivastava and Ding| (2010) provided a new approach for
testing the isomorphism of two-level regular designs by modeling them as simple
bipartite graphs. Liu, Yang and Liu | (2011]) proposed the three-dimensional letter
interaction pattern matrix (LIPM), showing that it can uniquely determine a

design, and thus be an efficient tool for checking isomorphism.

For isomorphism in general two-level fractional factorial designs (which can
be either regular or nonregular), |Ma, Fang and Lin| (2001) introduced the NIU
algorithm based on the centered Lo-discrepancy, and Fang and Zhang (2004)
proposed the minimum aberration majorization criterion based on the generalized

word length pattern. However, the centered Ls-discrepancy and generalized word
length pattern do not uniquely determine an isomorphism class, and so can only

be used for initial screening for non-isomorphism. (Clark and Dean (2001)) were
the first to present necessary and sufficient conditions for any two designs to
be isomorphic, using the Hamming distance matrices of their projection designs

and providing a checking algorithm. Beyond the Hamming distance matrices,
(2003), |Cheng and Ye| (2004), and [Pang and Liu| (2011) developed other
necessary and sufficient conditions, as well as algorithms for checking isomorphism

using indicator functions. Lin and Cheng] (2012)) proposed several efficient initial
screening methods for distinguishing designs based on the count vector. They
proved that their split-count matrix N*®P is more efficient than initial screening
methods based on CFV,GWLP,K,, and CD?. Further details about these
measures can be found in Deng and Tang| (1999)), Tang and Deng| (1999),
(2003), and Ma, Fang and Lin| (2001)). For other developments related to design
isomorphism and complete enumeration results, see Stufken and Tang (2007,
Sun, Li and Ye| (2008), |Shrivastava and Ding| (2010)), Schoen, Eendebak and|
Nguyen | (2010), Ke et al|(2023), and Weng, Fang and Elsawah | (2023).
Parallel flats designs (PFDs), introduced in |Connor and Young (1961)), are a
class of nonregular designs that retain some of the simplicity of regular fractional

factorial designs. PFDs have received widespread attention, because they enjoy
many desirable properties; see, for example, Srivastava and Li (1996)), Liao, Iyer|
and Vecchia (1996)), Srivastava and Chopra (1973), and Jones et al. (2019). More
recently, Wang and Mee| (2021) give a comprehensive review of two-level PFDs
and develop a general theory. Edwards and Mee (2023) systematically study

the structure of nonregular two-level designs, and connect the block diagonal
information matrix of nonregular designs to the parallel flats structure.

This study aims to provide some new necessary and sufficient conditions for
identifying isomorphism in two-level fractional factorial designs, by incorporating
the parallel flats structure of two-level nonregular designs. A new algorithm for
checking isomorphism is provided that is simple and applicable to both regular
and nonregular designs. For nonregular designs with a parallel flats structure,
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the method is much faster than existing methods. Two examples are given to
illustrate the results.

The rest of the paper is organized as follows. Section 2 gives some preliminary
notation. In Section 3, we propose some necessary and sufficient conditions for
identifying isomorphism in two-level fractional factorial designs. In Section 4, we
propose a new algorithm for checking isomorphism and present several examples.
Section 5 concludes the paper.

2. Preliminary Notation and Results

A regular 2"7P design is also known as a single flat design, in the sense that
it consists of all treatment combinations © = (zy,2s,...,2,) that satisfy the
equation A ® = ¢, where A = (a;;) is a p X n alias matrix over GF|[2] of rank
p (GF[2], the Galois Field of order 2, is a finite field consisting of two elements,
where the operations of addition and multiplication are performed over the set
{0,1} modulo 2 (Mukerjee and Wu/ (2006, p.18)), cis a px 1 vector with levels £1,
and A ® z is defined as the p x 1 vector with ith element z7" - --z%~. For given
A, one has 27 different options for the vector ¢, corresponding to the 27 disjoint
single flats; the full 2" design is the concatenation of these. Taking f single flats
corresponding to C' = [cy, ..., ¢;s], we obtain a PFD with f flats (f-PFD). Thus,
an f-PFD is determined by the pair (A, C).

For even f, the matrix C can sometimes be reduced, such that the design is
an (f/2)-PFD composed of flats of size 2"~ (P~1). If an f-PFD cannot be reduced
in this way, it is said to be of minimal form (Edwards and Mee| (2023)); without
loss of generality, we assume the f-PFD is of this form. Following [Edwards and
Mee (2023), a two-level design defined by (A, C) with N runs and n factors is
an f-PFD with 1 < f < N. When f = 1, it is a regular design, and any 2-
PFD reduces to f = 1. When f = N, it is an N-PFD composed of flats of
size 1, with p = n; in this case, there is no special structure, because an N-
PFD is determined by an (A, C) pair, where A is an identity matrix of order n
and C' is a transpose of the design. (Cheng (2014, p.139) excludes the case of
f = N, considering only p < n. The best gains in our isomorphism check occur
for f-PFDs with 3 < f < N/2.

Some new necessary and sufficient conditions for identifying isomorphism
designs can be proposed based on their (A,C) pairs, and a new algorithm for
checking isomorphism is provided accordingly. Using a parallel flats structure,
the proposed algorithm can greatly reduce the computational effort compared
with that of existing algorithms. This is the subject and motivation of our study.

3. Necessary and Sufficient Conditions for Isomorphism

Benefiting from the parallel flats structure, in this section, we propose
several necessary and sufficient conditions for identifying isomorphism in two-
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level fractional factorial designs.

Let Dy, D5 be two 2-level designs with N runs and n factors. Without loss
of generality, suppose that the first row of each design consists entirely of +1.
Then, for i = 1,2, D, must be determined by (A4;,C;) with N = f; x 277  for
some f; and p;. There is a column consisting entirely of +1 in C};, and we denote
the single flat corresponding to this column as Dy;. We focus only on the case
f1 = fo; otherwise, the two designs are non-isomorphic.

Following [Wang and Mee (2021), two f-PFDs are called equivalent if one
f-PFD can be obtained from the other by row permutations and column sign
switches. Thus, equivalent designs must be isomorphic. The following lemma is
obvious.

Lemma 1. If D, and D, are isomorphic, there exists a column permutation to
make them equivalent.

Then, we have the following result, which is taken from (Wang and Mee
(2021)).

Proposition 1. If A} = Ay, then D, and D, are equivalent if and only if C; and
Cs belong to the same group. Therein, the group of C; is

Gci = {C”OCl j = ].,2, Ce ,f}7 with CijOCi = {Cij *Cﬂ, - '7Cij *Cif}a (31)

where C;; represents the jth column of C;, fori = 1,2 and j = 1,...,f, and
axf = (aif,...,apBs)", for any two column vectors o = (ay,...,ap)" and

B = (ﬂla"'aﬁf)T-

In Proposition 1, the two f-PFDs are assumed to have the same A matrix.
However, two equivalent designs can have different A matrices, because the (A, C)
pair representing a PFD is not unique. Now, we propose a general theory for
checking the equivalence of two f-PFDs.

Theorem 1. Let Dy, Dy be two f-PFDs with N runs and n factors, where D; is
determined by (A;, C;), both of minimal form, with N = f x 2"7?_ for i = 1,2.
Then, Dy and Dy are equivalent if and only if (i) the row spaces of A; and A,
are equal, and (ii) when (As, Cs) is re-expressed as (Ah, Cy), so that Ay = A,
the corresponding C? belongs to the same group as C}.

Proof. We first consider the sufficiency of the conditions. If the row spaces of
A; and A, are the same, then Dy, and Dy, are equal up to row permutations,
and hence are equivalent. Thus, we can choose A} to equal A;. By condition (ii),
C! is in the same group as C, so by Wang and Mee| (2021, Thm. 1), D; and D,
are equivalent.

Next, we prove the necessity, in two parts. First, if (i) does not hold, then
Dy, and Dgy are nonequivalent 2" P designs. They are based on at least one
different generator, and thus must have at least 2°~! different defining words.
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Let W, be the defining words for Dy;, and W5 be the set of defining words for
Dy,. Denote the set of words in W; but not in W, as W \ W, and the set of
words in Wy but not in W, as Wy \ W;. The cardinality of each of these sets is at
least 27!, Suppose D; and D, are equivalent. Then, the words in W, \ W, can
be removed in Dy, and the words in W, \ W; can be removed in D,. Consider
the words in W, \ Wy. There exist 2°~! words in W, \ W, corresponding to p
independent words of W; and all the odd-order interactions of these p words.
Let W, be this set of 2°~! words. We have W; C W, \ Ws. Because all words
in W, \ W, are removed from D, for each of the 2°~! words in W;, the sum of
the values of the word in all f flats of D; should be zero. This indicates that
each row of K (C}) sums to zero, where K(C}) is the 2P~ x f matrix generated
by the p rows of C} and all its odd-order interaction rows. Design C{ must be a
foldover design, and thus D; can be reduced to a (f/2)-PFD. Similarly, D, can
be reduced to a (f/2)-PFD by considering the words of W5\ W;. Thus, if D; and
D,, based on nonequivalent single flats Dg; and Dy, respectively, are equivalent,
then both can be reduced. This contradicts our assumption that both (A4;,C})
and (As, Cy) are of minimal form.

Now, we consider the second part of the necessity proof. If (i) holds, then
Dy and Dy, are equivalent, and so Dy; = Dy, up to row permutation. Then,
by Wang and Mee| (2021, Thm. 1), if (ii) does not hold, then D; and D, are not
equivalent.

Moreover, we obtain the detailed form of C} when (¢) holds. Let A be the
binary 0-1 matrix denoting a full 27 factorial, sorted by columns from right to left,
omitting the first row of all zeroes. Thus, the row number of \; = [Ai1,..., Ain],
the ith row of A, is given by [1,2,4,...,2P7 AT (i = 1,...,27 — 1). If the row
spaces of A; and A, are equal, then the rows of A; are a subset of the rows of AA,.
Let I = [iy,... i, such that Ay = [X;;;...;\;,]A; = A}. Now, we determine the
C matrix, say C5, under A} for design D,. According to the definition of (A, C)
of an f-PFD, the p rows of A correspond to p independent words, and the p rows
of C indicate the values of these words in f flats. Let I'(Cs) be a (2? — 1) x f
matrix with the ith row defined as [T5_, (1 — 2X;j)cq;, for Cp = (c3;,...,a3,)",
and let the product of two row vectors o = (a1, ...,a5) and § = (f54,...,[8s) be
defined as o x 8 = (a1 f,...,a¢0¢). Then, the jth row of I'(Cs) indicates the
values of the word A;A, in the f flats, for j = 1,...,27 — 1. Thus, C} can be
obtained by concatenating the p rows of I'(Cy) by index I, where I = [iy,...,1,],
such that Ay = [X;;;... 5\ Ay = AS.

Based on Lemma 1 and Theorem 1, a new necessary and sufficient condition
for identifying isomorphism can be obtained, as shown in the following theorem.

Theorem 2. Let Dy, Dy be two f-PFDs with N runs and n factors, where D; is
determined by (A;, C;), both of minimal form, with N = f x 2" for i = 1,2.
Then, they are isomorphic if and only if there exists a permutation T of integers
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{1,...,n} such that (i) the row spaces of A, and Aé”} are equal, and (ii) when
(Ag, Cy) is re-expressed as (Ah, Ch), so that Ay, = Ay, the corresponding C} belongs
to the same group as Cy. Therein, A;C'T} reorders the n columns of Ay with index
7. We call 7 the isomorphic map from Dy to D;.

The proof of Theorem 2 is provided in Appendix B. By a similar proof to that
for Theorem 1, we can obtain the form of C), when (i) holds. That is, C} can be
obtained by concatenating the p rows of I'(Cs) by index I'*, where I* = [i], ..., ],
such that A; = [A;:;...; )\i;]Aéc'T} = A} and AL reorders the n columns of A,
with index 7.

A full search of the n! possible permutations of 7 is very time consuming, and
can be avoided by using the parallel flats structure. First, we have the following
results.

Proposition 2. Row spaces of A; and Aém} are equal for some permutation T
if and only if Dy and Dé;’T} are equivalent for permutation 7. That is, T is an
isomorphic map from single flat Doy to Dy .

Both Dgy; and Dg;y are 2" P designs. From Theorem 2 and Proposition 2, an
isomorphic map from D, to D; must be an isomorphic map from Dy, to Dy;.
This reduces the number of permutations we need to search from n! to n!/p!,
because all n columns in the regular designs can be generated by any n — p
independent columns. The number can be reduced further by using the row
coincidence distributions of the delete-one-factor projections. See Appendix A
for details about row coincidence distributions.

For any permutation 7 of integers {1,...,n}, if 7 is an isomorphic map
from Dgy to Dyy, Doi1(—i) and Dgo(—7(i)) must be isomorphic, and thus must
have the same row coincidence distribution, where D(—i) is obtained from D by
deleting the ith factor for any design D. Thus, 7 cannot be an isomorphic map
if Do1(—i) and Dga(—7(i)) do not have the same row coincidence distribution,
for some i. For convenience, we call a permutation 7 feasible if Dy;(—i) and
Doy (—7(4)) have the same row coincidence distribution for every i. The key idea
of this insight is to entertain only feasible maps by matching the factors using
the row coincidence distributions of the delete-one-factor projections (delete-one
row coincidence distributions, for short). An analogous technique was previously
used by Xu (2009), demonstrating significant computational advantages.

Thus, all we need to do is search from all feasible maps. Note that such an
isomorphic map may not be unique; however, we care only about the existence
of such a map, not its uniqueness. An algorithm for identifying isomorphism in
two-level fractional factorial designs is proposed in the next section.
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4. An Algorithm for Isomorphism Check

In this section, we propose a new algorithm for testing for isomorphism in
two-level fractional factorial designs, based on Theorem 2. Consider two 2-level
designs, with N runs and n factors being compared. The isomorphism check
method is given in the following algorithm.

Step 0. Multiply the N rows of each design by its first row, and denote the
resulting designs as D; and Ds, respectively. Thus, the first rows of D; and
D5 have entries of +1.

Step 1. Compute the row coincidence distributions for D; and D,. If the
row coincidence distributions do not coincide, then the designs are not
isomorphic. Otherwise, go to Step 2.

Step 2. For i = 1 and 2, obtain (A;, C;) from D, using the algorithm of Edwards
and Mee| (2023)), in which N = f; x 277/ A; and C; are matrices of size
p; X n and f; X p;, respectively, and C; has d; distinct columns, for ¢ = 1, 2.
If fi # f5 or dy # da, D; and D, are non-isomorphic. If f; = fo = N, go
to Step 4*. Otherwise, let f = f; = fo and p = p; = py, obtain the single
flats of Dy and D,, denoted as Dy; and Dys, respectively, containing the
row (1,...,1), and go to Step 3.

Step 3. Compute the row coincidence distributions for Dy; and Dgy,. If these
differ, then D; and D, are not isomorphic. Otherwise, compute the n delete-
one row coincidence distributions for Dy, and Dgs. If the sets of delete-
one row coincidence distributions do not coincide, then D; and D, are not
isomorphic. Otherwise, go to Step 4.

Step 4. For each column of Dy, count the frequency for each distinct delete-
one row coincidence distribution that appears. Let k; be the frequency
for the ith column. Relabel the columns of Dy; by selecting ¢ = n —
p new independent columns so that their frequency numbers k; are as
small as possible sequentially, and denote the resulting design as Dy,.
Select ¢ independent columns from Dy, that have the same delete-one row
coincidence distributions as those of the ¢ independent columns from Dy,
and relabel the columns. If Dy, and Dy, do not match after relabeling the
independent columns, consider another choice of relabeling and/or another
choice of independent columns from the feasible maps. If Dy; and Dy, match
after relabeling the independent columns under the choice of independent
columns, obtain the permutation 7 and check whether C; and T'(Cy){™1"}
belong to the same group, where I'(Cy)™!"} consists of the p rows of T'(Cy)
with index I*. I* = [if, ..., 4], such that A; = [A;;;...;A;;] A7 If so, the
algorithm stops, D; and D, are isomorphic, and it outputs the isomorphic
map 7. If not, consider another choice of relabeling and/or another choice
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of independent columns. If no such isomorphic map 7 can be found after
an exhaustive search, the two designs are non-isomorphic.

Step 4*. With f = N, both A; and A, can be identity matrices of order n; then,
C, = D} and Cy = D). For each permutation 7 of integers {1,...,n}, check
whether C; and C{"™ belong to the same group, where C4"™ reorders
the n rows of Cy with index 7. If so, the algorithm stops, D; and D, are
isomorphic, and it outputs the isomorphic map 7. If not, consider another
choice. If no such isomorphic map 7 can be found after an exhaustive search,
the two designs are non-isomorphic.

In theory, our Step 4 requires O(nf3 (Z)q!) operations for the worst case,
because there are at most (Z)q! feasible maps for relabeling the n columns, and
each permutation requires nf? operations. In most instances, far fewer feasible
maps need to be considered, owing to mismatched delete-one row coincidence
distributions.

Remark 1. Note that, theoretically, in Step 3, we can only detect non-
isomorphism between Dy; and Dg,. In most instances, however, we can also verify
whether two designs are isomorphic, because the row coincidence distribution (or,
equivalently, the word length pattern) uniquely determines a regular design for
the vast majority of cases; see the catalog of all regular designs for n < 11
of size 4 and 8 in Wang and Me¢| (2021, Supplement) and H. Xu’s website
http://www.stat.ucla.edu/~hqgxu/pub/ffd2r/ for all resolution III designs of
size 16 and 32.

An efficient Matlab implementation of the proposed algorithm is given in the
Supplementary Material.

We can easily see that the new algorithm presents a considerable time saving
over the isomorphism checking procedures of |Clark and Dean| (2001)), [Ye (2003),
and |Pang and Liu| (2011)), as summarized in Table 1. In particular, rather than
considering all 2" sign switches, in Step 4*, we consider only N possible sign
switches, because we always have the treatment combination (1,...,1). Thus,
even when there is an f-PFD structure with f = N, our algorithm is more
efficient. However, the greatest gains in efficiency occur when there is an f-PFD
structure with f < N, because then much of the computation depends on the
isomorphism of a regular design of size N/f > 2.

Remark 2. Our proposed isomorphism checking method generalizes the method
of |Xul (2009), which corresponds to the special case of f = 1, and thus allows
isomorphism checking for general two-level designs.

We now consider two examples: (1) confirming isomorphism for all strength-
two designs with 10 factors and 16 runs; (2) determining the number of non-
isomorphic designs among a set of 80-run, 10-factor 5-PFDs.


http://www.stat.ucla.edu/~hqxu/pub/ffd2r/

MORE EFFICIENT ISOMORPHISM CHECK FOR TWO-LEVEL NONREGULAR DESIGNS 2191

Table 1. Computational efficiency of the proposed algorithm and related algorithms.

Source of the algorithm The number of operations
Clark and Dean| (2001)) O(N!n(n!)?)
Ye| (2003)) O(n(n!)22m)
Pang and Liu| (2011)) O(N?n!2m)
The new algorithm - Step 4 O(nf3 (Z)q!)
The new algorithm - Step 4* O(N3n!)

N = f x 2™~P holds for any (f,p) pair in the new algorithm.

Table 2. Ten row coincidence distributions for the 78 designs of 16 runs and 10 factors.

Row coincidence moments

M = (M3, My) Frequency f Corresponding design
Mi=(48, 712) 71 I

4 {13, 16, 20}
8 {48, 54, 57}
4 {15}

8 {40, 45, 49, 77}
6

1

4

8

My=(51, 688) 6

{65}
{3}
{8,9, 12, 18, 21}
{24, 26, 29, 32, 39, 41, 42
46, 50, 51, 53, 68, 72, 76, 78}
16 {60, 63, 64}
M, =(54, 676) 3 8 {31, 71}
16 {62}
M =(54, 633) 3 4 {7}
8 (25, 27}
M =(55.5, 658) 8 4 {6}
{23, 36, 56, 69, 75}
{61, 66}
{14}
{30, 34, 38, 47, 70, 74}
{58, 67}
{19}
{35, 52, 73}
{59}
{2}
{11}
{37, 44}
{1}
{5, 10, 17}
{22, 28, 33, 43, 55}

The rth row coincidence moment M, is defined as M, = Ef;l Zjvzl t;'j/NQ, where t;; is the (¢,7)th

Ms =(54, 664) 24

My =(57, 664) 9

Mg =(58.5, 658) 5

My =(60, 640) 4

Mo =(60, 664) 9

= = 0O = = OY 00 = OY CO = O 00

oo

element of T'= DD’. See Appendix A for more details.
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Table 3. The parallel flats structure of the 78 designs of 16 runs and 10 factors.

D is an f-PFD with row coincidence moment M,
where Dy has row coincidence moment M,

D M f My D M f Mo
D4 My 1 (0, 10, 48, 712) D62 My 16 (10, 100, 1000, 10000)
D20 (0, 36, 192, 2832) D7 M 4 (3,26, 252, 2504)
D16 (1, 34, 196, 2824) D27 8 (5, 50, 500, 5000)
D13 (2, 28, 248, 2512) D25 (6, 52, 504, 5008)
D57 8 (2, 68 392, 5648) D6 Mg 4 (3,28, 252, 2512)
D54 (3, 58, 468, 5128) D56 8 (3, 58 468, 5128)
D438 (4, 52, 496, 5008) D36 (4, 52, 496, 5008)
D15 M, 4 (2, 26, 248, 2504) D75
D40 8 (4, 52, 496, 5008) D23 (6, 52, 504, 5008)
D49 D69
D77 D61 16 (10, 100, 1000, 10000)
D45 (5, 50, 500, 5000) D66
D65 16 (10, 100, 1000, 10000) D14 My 4 (2, 26, 248, 2504)
D3 M 1 (0, 10, 54, 664) D34 8 (4, 52, 496, 5008)
D21 (0, 34, 216, 2632) D38
D18 (1 ,30 232, 2568) D74
D12 (2, 28, 248, 2512) D30 (5, 50, 500, 5000)
D9 (2, 30 236, 2568) D47
D8 (3, 26, 252, 2504) D70
D41 8 (3, 58 468, 5128) D58 16 (10, 100, 1000, 10000)
D78 D67
D39 (4, 52, 496, 5008) D19 Mg 4 (1, 28, 244, 2512)
D50 D35 8 (4, 52, 496, 5008)
D51 D52
D53 D73
D76 D59 16 (10, 100, 1000, 10000)
D46 (5, 50, 500, 5000) D2 My 1 (0, 10, 60, 640)
D29 Di1 4 (2,28, 248, 2512)
D32 D37 8 (4, 52 496, 5008)
D72 D44 (6, 52, 504, 5008)
D24 (6, 52, 504, 5008) D1 Mg 1 (0, 10, 60, 664)
D26 D17 4 (1, 30, 232, 2568)
D42 D10 (2, 28, 248, 2512)
D68 D5 (3, 30 264, 2568)
D60 16 (10, 100, 1000, 10000) D55 8 (3,58, 468, 5128)
D63 D33 (4, 52, 496, 5008)
D64 D28 (5, 50, 500, 5000)
D31 My 8 (5, 50, 500, 5000) D43 (6, 52, 504, 5008)
D71 D22 (7, 58, 532, 5128)

M denotes the row coincidence moments (Ms, My) for D listed in Table 2.; Mg denotes the row
coincidence moments (M1, Ma, M3, M) of the single flat Dg; the design in boldface means that the
single flat of the corresponding design is not unique among those of all non-isomorphic 78 designs.
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Example 1. Sun (1993) obtained all 78 non-isomorphic strength-two designs
with 16 runs and 10 factors by checking the corresponding projections of all
non-isomorphic Hadamard matrices of order 16. The 78 non-isomorphic designs
are listed in Appendix B of |[Sun/ (1993), and we denote them in order as
Dy, ..., Dss. This can also be achieved using our algorithm, with greatly reduced
computational effort spent on testing isomorphism, because many design pairs
correspond to different row coincidence distributions, different numbers of flats,
or non-isomorphic single flats. Accordingly, in general, our algorithm terminates
before steps 4 or 4*.

Details on all non-isomorphic 78 nonregular designs with 16 runs and 10
factors are summarized in Tables 2 and 3. In step 1, we found 10 different row
coincidence distributions. In step 2, these designs were found to be regular designs
or 4-PFDs, 8-PFDs, or 16-PFDs. In step 3, we discovered 22 non-isomorphic Dy,
four of resolution II and 18 of resolution I. With 78 designs, there are 3,003 pairs
of designs. For 98.57% (2,960) of these pairs, non-isomorphism is determined
before steps 4 or 4*. Of the remaining 43 pairs, 38 are distinguished in step 4,
and five pairs are examined in Step 4*, where f = 16.

Example 2. The variable neighborhood search algorithm in |[Edwards and Mee
(2023) can be employed to generate D-efficient PFDs for estimating the two-
factor interaction model. Nearly 1200 5-PFDs with 80 runs were constructed.
Thirty-four of these 5-PFDs had D-efficiency of 88.8%, and the remainder all had
lower D-efficiency. We are interested in how many non-isomorphic designs appear
in this set of 34 designs. All have the same A-efficiency (74%) and maximum
variance inflation factor (2.1875) for the two-factor interaction model. However,
they are not all isomorphic. In step 1, we found three different row coincidence
distributions. In step 2, all designs were found to be 5-PFDs, with no repeated
flats. In step 3, we discovered two non-isomorphic Dy, one of resolution II and
one of resolution I. In step 4, it was confirmed that there are exactly eight non-
isomorphic designs, which occurred with frequencies between 1 and 13 times each.
In Table 4, we list the characteristics of these eight designs in terms of their
generalized resolution, GWLP, frequency among the 34 designs, and trace(A'A),
where A is the 56 x 120 alias matrix with columns corresponding to the 120
possible three-factor interactions. For more details, see Appendix A.

5. Conclusion

Checking for isomorphism is vital for design construction, because, in general,
we can ignore designs from the same isomorphism class. (Clark and Dean (2001))
provided the initial necessary conditions for checking isomorphism of nonregular
two-level designs. |Ye| (2003)) and |Pang and Liu (2011) made subsequent improve-
ments. In this paper, we propose new necessary and sufficient conditions, as well
as a new algorithm for identifying isomorphism in two-level fractional factorial
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Table 4. Eight non-isomorphic 5-PFDs with 80 runs and 10 factors, with D-efficiency =
88.8%.

= (tQ@L,,, Dp)}
Design  Frequency Rt GWLP=(By, Bs, B3, By, Bs) tr(A'A)t t Dj

D1 1 2.8 (0.00, 0.04, 0.32, 1.16, 5 84) 101.20 0 10-6.7
D2 5 2.8  (0.00, 0.04, 0.32, 1.16, 5.84) 105.74 0 10-6.7
D3 3 2.8 (0.00, 0.04, 0.32, 1.16, 5. 84) 110.28 0 10-6.7
D4 13 2.8  (0.00, 0.04, 0.64, 0.84, 4.56) 107.52 0 10-6.7
D5 3 2.8 (0.00, 0.04, 0.64, 0.84, 4.56) 112.21 0 10-6.7
D6 2 2.8  (0.00, 0.04, 0.64, 0.84, 4.56) 116.71 0 10-6.7
D7 6 1.8 (0.04, 0.00, 0.56, 0.92, 4.56) 105.45 1 9-5.2
D8 1 1.8 (0.04, 0.00, 0.56, 0.92, 4.56) 109.64 1 9-5.2

f R represents generalized resolution; 1.4 represents the alias matrix (Xin)_lX{XQ, where X3
consists of the intercept, main effects, and two-factor interaction effects, and X2 consists of three-
factor interaction effects; { Designs D1-Dg are 5-PFDs based on single flat Do = (t@Q1y,, D{)); Design
10-6.7 is a resolution-II design that consists of columns of indices {1,2,4,8,1,3,5,10,12,15} of Hi6, and
design 9-5.2 is a resolution-III design that consists of columns of indices {1, 2,4,8,3,5,10,12,15} of His,
where Hig is the Sylvester Hadamard matrix of order 16 (with columns labeled from 0 to 15).

designs, using a parallel flats structure. The proposed algorithm is simple and
general. In addition, by checking for and exploiting any parallel flats structure,
the proposed algorithm is much faster than competing methods in the literature.

Supplementary Material

In the online Supplementary Material, we provide an efficient Matlab im-
plementation of the proposed algorithm for checking the isomorphism of two-
level designs, called “isocheck”. All 78 non-isomorphic strength-two designs with
16 runs and 10 factors in Example 1 are provided in the MATLAB .mat file
“N16p10designs.mat”. The eight non-isomorphic D-efficient 5-PFDs with 80 runs
and 10 factors in Example 2 for a two-factor interaction model are provided in
the MATLAB .mat file “N80p10f5PFDs.mat”.
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Appendix

A. Details for Generalized Word Length Pattern and Row Coincidence
Distributions

For a regular two-level design with levels £1, the word length pattern is the
vector WLP = (A3, Ay, ..., A,), where A, is the number of r-factor interaction
columns that sum to £N. For nonregular designs, Tang and Deng (1999)
defined the generalized word length pattern GWLP = (Bs, By, ..., B,), where
B, is the sum of the squares of all r-factor interaction columns, divided by V.
Note that for a regular design, A, = B,. The Gs-aberration criterion ranks
designs based on GWLP. The Gs-aberration criterion is very cheap to compute,
due to its connection to the moments of the row coincidence distribution, or
equivalently, the moments of Hamming distances. For a two-level design D,
T = DD’ gives the row coincidence distribution. The 7" moment of the row
coincidence distribution, also called as the 7" row coincidence moment, is defined
as M, = YN | Zjvzl t7;/N?; therein t;; is the (i, j)-th element of T'. Butler| (2003)
proved that ranking designs in terms of Gy-aberration is equivalent to sorting on
the moments of their row coincidence distributions. Furthermore, |Butler| (2003)

gave explicit formulae for the B,’s in terms of M,’s (see Mee| (2009, App. J)).

B. Proof of Theorem 2

Proof. The sufficiency of the conditions is obvious. Next we prove the necessity
by showing that two f-PFDs of minimal form, say D; and D,, based on non-
isomorphic single flats Dy; and Dgs, respectively, must be non-isomorphic.

As Dy, and Dy, are non-isomorphic 2" P designs, they must have at least
2r~1 different words for any permutation 7 of Dy,’s columns. Let W) be the
defining words for Dy, and WJ be the set of defining words for Dy, after the
permutation 7. Given 7, the words in W; but not in Wy form the set W5 \ W7,
while the words in WJ but not in W; form the set W7 \ W;. The cardinality of
each of these sets is at least 2P~! for any permutation 7.

Suppose D; and D, are isomorphic. Then there must exist a permutation
7 under which the words in W, \ WJ can be removed in D; and the words in
W3 \ Wi can be removed in Dy. Consider the words in W7 \ Wy . There exist
27~ words in W, \ Wy corresponding to p independent words of W; and all the
odd-order interactions of these p words. Let W; be this set of 2°~! words. We
have Wy € Wi \ Wy. As all words in W, \ W3 should be removed in Dy, then
for each of the 27~ words in W;, the sum of the values of the word in all f
flats of D; should be 0. This indicates that each row of L(C}) sums to zero,
where L(C}) is the 2°~! x f matrix generated by the p rows of C; and all its odd-
order interaction rows. Design C] must be a foldover design, and thus D; can
be reduced to a (f/2)-PFD. Similarly, we can obtain that Dy can be reduced to
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a (f/2)-PFD by considering the words of Wy \ W;. Thus, if two f-PFDs based
on non-isomorphic single flat are isomorphic, then both can be reduced. This
contradicts our assumption that both (A;,C) and (As, Cs) are of minimal form.

In summary, two f-PFDs based on non-isomorphic single flat must be non-
isomorphic. The proof is complete.
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