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Abstract: In this paper, we propose some new necessary and sufficient conditions

for identifying isomorphism in two-level fractional factorial designs, using a parallel

flats structure. A new algorithm for checking isomorphism is provided accordingly.

The proposed algorithm is simple and general, and can be used for either regular

or nonregular designs. By taking advantage of the parallel flats structure when

it exists, the method is much faster than current methods for assessing the

isomorphism of nonregular two-level designs. Examples are given to illustrate the

results. An efficient implementation of the proposed algorithm in Matlab can be

found in the online Supplementary Material.
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1. Introduction

In this study, we restrict our attention to two-level fractional factorial designs,

which are extremely popular screening designs. Two fractional factorial designs

are called isomorphic if and only if one design can be obtained from the other by

row permutations, column permutations, and level permutations within columns.

Two isomorphic designs share the same statistical properties in some classical

ANOVA models, and thus are considered essentially the same. Thus, determining

isomorphism is important both in theory and in practice.

Given the simple algebraic structure of regular designs, the earliest studies

on isomorphism checks focused on such designs. Draper and Mitchell (1967,

1968) proved that two isomorphic regular designs must have the same word

length pattern. Draper and Mitchell (1970) further showed that two isomorphic

regular designs must have the same letter pattern. The letter pattern counts

the frequency of letters in words of different lengths. Agreement in letter

pattern implies having the same word length pattern. Note that designs with

the same letter pattern are not necessarily isomorphic; see Chen and Lin (1991),

who disprove a conjecture of Draper and Mitchell (1970). Chen, Sun and Wu

(1993) first proposed necessary and sufficient conditions by “applying some

algebraic and combinatorial methods” to identify isomorphic regular designs.

By matching the factors using their delete-one-factor projections, Xu (2009)
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greatly improved the isomorphism checking procedure of Chen, Sun and Wu

(1993), and developed a sequential algorithm for constructing efficient two-level

regular designs. Shrivastava and Ding (2010) provided a new approach for

testing the isomorphism of two-level regular designs by modeling them as simple

bipartite graphs. Liu, Yang and Liu (2011) proposed the three-dimensional letter

interaction pattern matrix (LIPM), showing that it can uniquely determine a

design, and thus be an efficient tool for checking isomorphism.

For isomorphism in general two-level fractional factorial designs (which can

be either regular or nonregular), Ma, Fang and Lin (2001) introduced the NIU

algorithm based on the centered L2-discrepancy, and Fang and Zhang (2004)

proposed the minimum aberration majorization criterion based on the generalized

word length pattern. However, the centered L2-discrepancy and generalized word

length pattern do not uniquely determine an isomorphism class, and so can only

be used for initial screening for non-isomorphism. Clark and Dean (2001) were

the first to present necessary and sufficient conditions for any two designs to

be isomorphic, using the Hamming distance matrices of their projection designs

and providing a checking algorithm. Beyond the Hamming distance matrices,

Ye (2003), Cheng and Ye (2004), and Pang and Liu (2011) developed other

necessary and sufficient conditions, as well as algorithms for checking isomorphism

using indicator functions. Lin and Cheng (2012) proposed several efficient initial

screening methods for distinguishing designs based on the count vector. They

proved that their split-count matrix N sp is more efficient than initial screening

methods based on CFV,GWLP,Ku, and CD2
2. Further details about these

measures can be found in Deng and Tang (1999), Tang and Deng (1999), Xu

(2003), and Ma, Fang and Lin (2001). For other developments related to design

isomorphism and complete enumeration results, see Stufken and Tang (2007),

Sun, Li and Ye (2008), Shrivastava and Ding (2010), Schoen, Eendebak and

Nguyen (2010), Ke et al. (2023), and Weng, Fang and Elsawah (2023).

Parallel flats designs (PFDs), introduced in Connor and Young (1961), are a

class of nonregular designs that retain some of the simplicity of regular fractional

factorial designs. PFDs have received widespread attention, because they enjoy

many desirable properties; see, for example, Srivastava and Li (1996), Liao, Iyer

and Vecchia (1996), Srivastava and Chopra (1973), and Jones et al. (2019). More

recently, Wang and Mee (2021) give a comprehensive review of two-level PFDs

and develop a general theory. Edwards and Mee (2023) systematically study

the structure of nonregular two-level designs, and connect the block diagonal

information matrix of nonregular designs to the parallel flats structure.

This study aims to provide some new necessary and sufficient conditions for

identifying isomorphism in two-level fractional factorial designs, by incorporating

the parallel flats structure of two-level nonregular designs. A new algorithm for

checking isomorphism is provided that is simple and applicable to both regular

and nonregular designs. For nonregular designs with a parallel flats structure,
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the method is much faster than existing methods. Two examples are given to

illustrate the results.

The rest of the paper is organized as follows. Section 2 gives some preliminary

notation. In Section 3, we propose some necessary and sufficient conditions for

identifying isomorphism in two-level fractional factorial designs. In Section 4, we

propose a new algorithm for checking isomorphism and present several examples.

Section 5 concludes the paper.

2. Preliminary Notation and Results

A regular 2n−p design is also known as a single flat design, in the sense that

it consists of all treatment combinations x = (x1, x2, . . . , xn) that satisfy the

equation A ⊙ x = c, where A = (aij) is a p × n alias matrix over GF[2] of rank

p (GF[2], the Galois Field of order 2, is a finite field consisting of two elements,

where the operations of addition and multiplication are performed over the set

{0,1} modulo 2 (Mukerjee and Wu (2006, p.18)), c is a p×1 vector with levels ±1,

and A⊙ x is defined as the p× 1 vector with ith element xai1
1 · · ·xain

n . For given

A, one has 2p different options for the vector c, corresponding to the 2p disjoint

single flats; the full 2n design is the concatenation of these. Taking f single flats

corresponding to C = [c1, . . . , cf ], we obtain a PFD with f flats (f -PFD). Thus,

an f -PFD is determined by the pair (A,C).

For even f , the matrix C can sometimes be reduced, such that the design is

an (f/2)-PFD composed of flats of size 2n−(p−1). If an f -PFD cannot be reduced

in this way, it is said to be of minimal form (Edwards and Mee (2023)); without

loss of generality, we assume the f -PFD is of this form. Following Edwards and

Mee (2023), a two-level design defined by (A,C) with N runs and n factors is

an f -PFD with 1 ≤ f ≤ N . When f = 1, it is a regular design, and any 2-

PFD reduces to f = 1. When f = N , it is an N -PFD composed of flats of

size 1, with p = n; in this case, there is no special structure, because an N -

PFD is determined by an (A,C) pair, where A is an identity matrix of order n

and C is a transpose of the design. Cheng (2014, p.139) excludes the case of

f = N , considering only p < n. The best gains in our isomorphism check occur

for f -PFDs with 3 < f ≤ N/2.

Some new necessary and sufficient conditions for identifying isomorphism

designs can be proposed based on their (A,C) pairs, and a new algorithm for

checking isomorphism is provided accordingly. Using a parallel flats structure,

the proposed algorithm can greatly reduce the computational effort compared

with that of existing algorithms. This is the subject and motivation of our study.

3. Necessary and Sufficient Conditions for Isomorphism

Benefiting from the parallel flats structure, in this section, we propose

several necessary and sufficient conditions for identifying isomorphism in two-
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level fractional factorial designs.

Let D1, D2 be two 2-level designs with N runs and n factors. Without loss

of generality, suppose that the first row of each design consists entirely of +1.

Then, for i = 1, 2, Di must be determined by (Ai, Ci) with N = fi × 2n−pi , for

some fi and pi. There is a column consisting entirely of +1 in Ci, and we denote

the single flat corresponding to this column as D0i. We focus only on the case

f1 = f2; otherwise, the two designs are non-isomorphic.

Following Wang and Mee (2021), two f -PFDs are called equivalent if one

f -PFD can be obtained from the other by row permutations and column sign

switches. Thus, equivalent designs must be isomorphic. The following lemma is

obvious.

Lemma 1. If D1 and D2 are isomorphic, there exists a column permutation to

make them equivalent.

Then, we have the following result, which is taken from Wang and Mee

(2021).

Proposition 1. If A1 = A2, then D1 and D2 are equivalent if and only if C1 and

C2 belong to the same group. Therein, the group of Ci is

GCi
= {Cij ◦Ci : j = 1, 2, . . . , f}, with Cij ◦Ci = {Cij ∗Ci1, . . . , Cij ∗Cif}, (3.1)

where Cij represents the jth column of Ci, for i = 1, 2 and j = 1, . . . , f, and

α ∗ β = (α1β1, . . . , αfβf )
T , for any two column vectors α = (α1, . . . , αf )

T and

β = (β1, . . . , βf )
T .

In Proposition 1, the two f -PFDs are assumed to have the same A matrix.

However, two equivalent designs can have different Amatrices, because the (A,C)

pair representing a PFD is not unique. Now, we propose a general theory for

checking the equivalence of two f -PFDs.

Theorem 1. Let D1, D2 be two f -PFDs with N runs and n factors, where Di is

determined by (Ai, Ci), both of minimal form, with N = f × 2n−p, for i = 1, 2.

Then, D1 and D2 are equivalent if and only if (i) the row spaces of A1 and A2

are equal, and (ii) when (A2, C2) is re-expressed as (A′
2, C

′
2), so that A′

2 = A1,

the corresponding C ′
2 belongs to the same group as C1.

Proof. We first consider the sufficiency of the conditions. If the row spaces of

A1 and A2 are the same, then D01 and D02 are equal up to row permutations,

and hence are equivalent. Thus, we can choose A′
2 to equal A1. By condition (ii),

C ′
2 is in the same group as C1, so by Wang and Mee (2021, Thm. 1), D1 and D2

are equivalent.

Next, we prove the necessity, in two parts. First, if (i) does not hold, then

D01 and D02 are nonequivalent 2n−p designs. They are based on at least one

different generator, and thus must have at least 2p−1 different defining words.
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Let W1 be the defining words for D01, and W2 be the set of defining words for

D02. Denote the set of words in W1 but not in W2 as W1 \ W2, and the set of

words in W2 but not in W1 as W2 \W1. The cardinality of each of these sets is at

least 2p−1. Suppose D1 and D2 are equivalent. Then, the words in W1 \W2 can

be removed in D1, and the words in W2 \ W1 can be removed in D2. Consider

the words in W1 \ W2. There exist 2p−1 words in W1 \ W2, corresponding to p

independent words of W1 and all the odd-order interactions of these p words.

Let W̄1 be this set of 2p−1 words. We have W̄1 ⊂ W1 \ W2. Because all words

in W1 \W2 are removed from D1, for each of the 2p−1 words in W̄1, the sum of

the values of the word in all f flats of D1 should be zero. This indicates that

each row of K(C1) sums to zero, where K(C1) is the 2p−1 × f matrix generated

by the p rows of C1 and all its odd-order interaction rows. Design CT
1 must be a

foldover design, and thus D1 can be reduced to a (f/2)-PFD. Similarly, D2 can

be reduced to a (f/2)-PFD by considering the words of W2 \W1. Thus, if D1 and

D2, based on nonequivalent single flats D01 and D02, respectively, are equivalent,

then both can be reduced. This contradicts our assumption that both (A1, C1)

and (A2, C2) are of minimal form.

Now, we consider the second part of the necessity proof. If (i) holds, then

D01 and D02 are equivalent, and so D01 = D02 up to row permutation. Then,

by Wang and Mee (2021, Thm. 1), if (ii) does not hold, then D1 and D2 are not

equivalent.

Moreover, we obtain the detailed form of C ′
2 when (i) holds. Let Λ be the

binary 0-1 matrix denoting a full 2p factorial, sorted by columns from right to left,

omitting the first row of all zeroes. Thus, the row number of λi = [λi1, . . . , λin],

the ith row of Λ, is given by [1, 2, 4, . . . , 2p−1]λT
i , (i = 1, . . . , 2p − 1). If the row

spaces of A1 and A2 are equal, then the rows of A1 are a subset of the rows of ΛA2.

Let I = [i1, . . . , ip] such that A1 = [λi1 ; . . . ;λip ]A2 = A′
2. Now, we determine the

C matrix, say C ′
2, under A

′
2 for design D2. According to the definition of (A,C)

of an f -PFD, the p rows of A correspond to p independent words, and the p rows

of C indicate the values of these words in f flats. Let Γ(C2) be a (2p − 1) × f

matrix with the ith row defined as
∏p

j=1(1 − 2λij)c2j, for C2 = (cT21, . . . , a
T
2p)

T ,

and let the product of two row vectors α = (α1, . . . , αf ) and β = (β1, . . . , βf ) be

defined as α × β = (α1β1, . . . , αfβf ). Then, the jth row of Γ(C2) indicates the

values of the word λjA2 in the f flats, for j = 1, . . . , 2p − 1. Thus, C ′
2 can be

obtained by concatenating the p rows of Γ(C2) by index I, where I = [i1, . . . , ip],

such that A1 = [λi1 ; . . . ;λip ]A2 = A′
2.

Based on Lemma 1 and Theorem 1, a new necessary and sufficient condition

for identifying isomorphism can be obtained, as shown in the following theorem.

Theorem 2. Let D1, D2 be two f -PFDs with N runs and n factors, where Di is

determined by (Ai, Ci), both of minimal form, with N = f × 2n−p, for i = 1, 2.

Then, they are isomorphic if and only if there exists a permutation τ of integers
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{1, . . . , n} such that (i) the row spaces of A1 and A
{c.τ}
2 are equal, and (ii) when

(A2, C2) is re-expressed as (A′
2, C

′
2), so that A′

2 = A1, the corresponding C
′
2 belongs

to the same group as C1. Therein, A
{c.τ}
2 reorders the n columns of A2 with index

τ . We call τ the isomorphic map from D2 to D1.

The proof of Theorem 2 is provided in Appendix B. By a similar proof to that

for Theorem 1, we can obtain the form of C ′
2 when (i) holds. That is, C ′

2 can be

obtained by concatenating the p rows of Γ(C2) by index I∗, where I∗ = [i∗1, . . . , i
∗
p],

such that A1 = [λi∗1
; . . . ;λi∗p

]A
{c.τ}
2 = A′

2 and A
{c.τ}
2 reorders the n columns of A2

with index τ .

A full search of the n! possible permutations of τ is very time consuming, and

can be avoided by using the parallel flats structure. First, we have the following

results.

Proposition 2. Row spaces of A1 and A
{c·τ}
2 are equal for some permutation τ

if and only if D01 and D
{c·τ}
02 are equivalent for permutation τ . That is, τ is an

isomorphic map from single flat D02 to D01.

Both D01 and D02 are 2n−p designs. From Theorem 2 and Proposition 2, an

isomorphic map from D2 to D1 must be an isomorphic map from D02 to D01.

This reduces the number of permutations we need to search from n! to n!/p!,

because all n columns in the regular designs can be generated by any n − p

independent columns. The number can be reduced further by using the row

coincidence distributions of the delete-one-factor projections. See Appendix A

for details about row coincidence distributions.

For any permutation τ of integers {1, . . . , n}, if τ is an isomorphic map

from D02 to D01, D01(−i) and D02(−τ(i)) must be isomorphic, and thus must

have the same row coincidence distribution, where D(−i) is obtained from D by

deleting the ith factor for any design D. Thus, τ cannot be an isomorphic map

if D01(−i) and D02(−τ(i)) do not have the same row coincidence distribution,

for some i. For convenience, we call a permutation τ feasible if D01(−i) and

D02(−τ(i)) have the same row coincidence distribution for every i. The key idea

of this insight is to entertain only feasible maps by matching the factors using

the row coincidence distributions of the delete-one-factor projections (delete-one

row coincidence distributions, for short). An analogous technique was previously

used by Xu (2009), demonstrating significant computational advantages.

Thus, all we need to do is search from all feasible maps. Note that such an

isomorphic map may not be unique; however, we care only about the existence

of such a map, not its uniqueness. An algorithm for identifying isomorphism in

two-level fractional factorial designs is proposed in the next section.
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4. An Algorithm for Isomorphism Check

In this section, we propose a new algorithm for testing for isomorphism in

two-level fractional factorial designs, based on Theorem 2. Consider two 2-level

designs, with N runs and n factors being compared. The isomorphism check

method is given in the following algorithm.

Step 0. Multiply the N rows of each design by its first row, and denote the

resulting designs as D1 and D2, respectively. Thus, the first rows of D1 and

D2 have entries of +1.

Step 1. Compute the row coincidence distributions for D1 and D2. If the

row coincidence distributions do not coincide, then the designs are not

isomorphic. Otherwise, go to Step 2.

Step 2. For i = 1 and 2, obtain (Ai, Ci) from Di using the algorithm of Edwards

and Mee (2023), in which N = fi × 2n−pi , Ai and Ci are matrices of size

pi × n and fi × pi, respectively, and Ci has di distinct columns, for i = 1, 2.

If f1 ̸= f2 or d1 ̸= d2, D1 and D2 are non-isomorphic. If f1 = f2 = N , go

to Step 4⋆. Otherwise, let f = f1 = f2 and p = p1 = p2, obtain the single

flats of D1 and D2, denoted as D01 and D02, respectively, containing the

row (1, . . . , 1), and go to Step 3.

Step 3. Compute the row coincidence distributions for D01 and D02. If these

differ, thenD1 andD2 are not isomorphic. Otherwise, compute the n delete-

one row coincidence distributions for D01 and D02. If the sets of delete-

one row coincidence distributions do not coincide, then D1 and D2 are not

isomorphic. Otherwise, go to Step 4.

Step 4. For each column of D01, count the frequency for each distinct delete-

one row coincidence distribution that appears. Let ki be the frequency

for the ith column. Relabel the columns of D01 by selecting q = n −
p new independent columns so that their frequency numbers ki are as

small as possible sequentially, and denote the resulting design as D′
01.

Select q independent columns from D02 that have the same delete-one row

coincidence distributions as those of the q independent columns from D′
01,

and relabel the columns. If D01 and D02 do not match after relabeling the

independent columns, consider another choice of relabeling and/or another

choice of independent columns from the feasible maps. IfD01 andD02 match

after relabeling the independent columns under the choice of independent

columns, obtain the permutation τ and check whether C1 and Γ(C2)
{r.I∗}

belong to the same group, where Γ(C2)
{r.I∗} consists of the p rows of Γ(C2)

with index I∗. I∗ = [i∗1, . . . , i
∗
p], such that A1 = [λi∗1

; . . . ;λi∗p
]A

{c.τ}
2 . If so, the

algorithm stops, D1 and D2 are isomorphic, and it outputs the isomorphic

map τ . If not, consider another choice of relabeling and/or another choice
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of independent columns. If no such isomorphic map τ can be found after

an exhaustive search, the two designs are non-isomorphic.

Step 4⋆. With f = N , both A1 and A2 can be identity matrices of order n; then,

C1 = D′
1 and C2 = D′

2. For each permutation τ of integers {1, . . . , n}, check
whether C1 and C

{r.τ}
2 belong to the same group, where C

{r.τ}
2 reorders

the n rows of C2 with index τ . If so, the algorithm stops, D1 and D2 are

isomorphic, and it outputs the isomorphic map τ . If not, consider another

choice. If no such isomorphic map τ can be found after an exhaustive search,

the two designs are non-isomorphic.

In theory, our Step 4 requires O(nf3
(
n
q

)
q!) operations for the worst case,

because there are at most
(
n
q

)
q! feasible maps for relabeling the n columns, and

each permutation requires nf3 operations. In most instances, far fewer feasible

maps need to be considered, owing to mismatched delete-one row coincidence

distributions.

Remark 1. Note that, theoretically, in Step 3, we can only detect non-

isomorphism betweenD01 andD02. In most instances, however, we can also verify

whether two designs are isomorphic, because the row coincidence distribution (or,

equivalently, the word length pattern) uniquely determines a regular design for

the vast majority of cases; see the catalog of all regular designs for n ≤ 11

of size 4 and 8 in Wang and Mee (2021, Supplement) and H. Xu’s website

http://www.stat.ucla.edu/∼hqxu/pub/ffd2r/ for all resolution III designs of

size 16 and 32.

An efficient Matlab implementation of the proposed algorithm is given in the

Supplementary Material.

We can easily see that the new algorithm presents a considerable time saving

over the isomorphism checking procedures of Clark and Dean (2001), Ye (2003),

and Pang and Liu (2011), as summarized in Table 1. In particular, rather than

considering all 2n sign switches, in Step 4⋆, we consider only N possible sign

switches, because we always have the treatment combination (1, . . . , 1). Thus,

even when there is an f -PFD structure with f = N , our algorithm is more

efficient. However, the greatest gains in efficiency occur when there is an f -PFD

structure with f < N , because then much of the computation depends on the

isomorphism of a regular design of size N/f ≥ 2.

Remark 2. Our proposed isomorphism checking method generalizes the method

of Xu (2009), which corresponds to the special case of f = 1, and thus allows

isomorphism checking for general two-level designs.

We now consider two examples: (1) confirming isomorphism for all strength-

two designs with 10 factors and 16 runs; (2) determining the number of non-

isomorphic designs among a set of 80-run, 10-factor 5-PFDs.

http://www.stat.ucla.edu/~hqxu/pub/ffd2r/
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Table 1. Computational efficiency of the proposed algorithm and related algorithms.

Source of the algorithm The number of operations

Clark and Dean (2001) O(N !n(n!)2)

Ye (2003) O(n(n!)22n)

Pang and Liu (2011) O(N2n!2n)

The new algorithm - Step 4 O(nf3
(
n
q

)
q!)

The new algorithm - Step 4⋆ O(N3n!)

N = f × 2n−p holds for any (f, p) pair in the new algorithm.

Table 2. Ten row coincidence distributions for the 78 designs of 16 runs and 10 factors.

Row coincidence moments
M = (M3,M4) Frequency f Corresponding design
M1=(48, 712) 7 1 {4}

4 {13, 16, 20}
8 {48, 54, 57}

M2=(51, 688) 6 4 {15}
8 {40, 45, 49, 77}
16 {65}

M3 =(54, 664) 24 1 {3}
4 {8, 9, 12, 18, 21}
8 {24, 26, 29, 32, 39, 41, 42

46, 50, 51, 53, 68, 72, 76, 78}
16 {60, 63, 64}

M4 =(54, 676) 3 8 {31, 71}
16 {62}

M5 =(54, 688) 3 4 {7}
8 {25, 27}

M6 =(55.5, 658) 8 4 {6}
8 {23, 36, 56, 69, 75}
16 {61, 66}

M7 =(57, 664) 9 4 {14}
8 {30, 34, 38, 47, 70, 74}
16 {58, 67}

M8 =(58.5, 658) 5 4 {19}
8 {35, 52, 73}
16 {59}

M9 =(60, 640) 4 1 {2}
4 {11}
8 {37, 44}

M10 =(60, 664) 9 1 {1}
4 {5, 10, 17}
8 {22, 28, 33, 43, 55}

The rth row coincidence moment Mr is defined as Mr =
∑N

i=1

∑N
j=1 t

r
ij/N

2, where tij is the (i, j)th

element of T = DD′. See Appendix A for more details.



2192 WANG AND MEE

Table 3. The parallel flats structure of the 78 designs of 16 runs and 10 factors.

D is an f -PFD with row coincidence moment M,

where D0 has row coincidence moment M0

D M f M0 D M f M0

D4 M1 1 (0, 10, 48, 712) D62 M4 16 (10, 100, 1000, 10000)

D20 4 (0, 36, 192, 2832) D7 M5 4 (3, 26, 252, 2504)

D16 (1, 34, 196, 2824) D27 8 (5, 50, 500, 5000)

D13 (2, 28, 248, 2512) D25 (6, 52, 504, 5008)

D57 8 (2, 68, 392, 5648) D6 M6 4 (3, 28, 252, 2512)

D54 (3, 58, 468, 5128) D56 8 (3, 58, 468, 5128)

D48 (4, 52, 496, 5008) D36 (4, 52, 496, 5008)

D15 M2 4 (2, 26, 248, 2504) D75

D40 8 (4, 52, 496, 5008) D23 (6, 52, 504, 5008)

D49 D69

D77 D61 16 (10, 100, 1000, 10000)

D45 (5, 50, 500, 5000) D66

D65 16 (10, 100, 1000, 10000) D14 M7 4 (2, 26, 248, 2504)

D3 M3 1 (0, 10, 54, 664) D34 8 (4, 52, 496, 5008)

D21 4 (0, 34, 216, 2632) D38

D18 (1, 30, 232, 2568) D74

D12 (2, 28, 248, 2512) D30 (5, 50, 500, 5000)

D9 (2, 30, 236, 2568) D47

D8 (3, 26, 252, 2504) D70

D41 8 (3, 58, 468, 5128) D58 16 (10, 100, 1000, 10000)

D78 D67

D39 (4, 52, 496, 5008) D19 M8 4 (1, 28, 244, 2512)

D50 D35 8 (4, 52, 496, 5008)

D51 D52

D53 D73

D76 D59 16 (10, 100, 1000, 10000)

D46 (5, 50, 500, 5000) D2 M9 1 (0, 10, 60, 640)

D29 D11 4 (2, 28, 248, 2512)

D32 D37 8 (4, 52, 496, 5008)

D72 D44 (6, 52, 504, 5008)

D24 (6, 52, 504, 5008) D1 M10 1 (0, 10, 60, 664)

D26 D17 4 (1, 30, 232, 2568)

D42 D10 (2, 28, 248, 2512)

D68 D5 (3, 30, 264, 2568)

D60 16 (10, 100, 1000, 10000) D55 8 (3, 58, 468, 5128)

D63 D33 (4, 52, 496, 5008)

D64 D28 (5, 50, 500, 5000)

D31 M4 8 (5, 50, 500, 5000) D43 (6, 52, 504, 5008)

D71 D22 (7, 58, 532, 5128)

M denotes the row coincidence moments (M3,M4) for D listed in Table 2.; M0 denotes the row
coincidence moments (M1,M2,M3,M4) of the single flat D0; the design in boldface means that the
single flat of the corresponding design is not unique among those of all non-isomorphic 78 designs.
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Example 1. Sun (1993) obtained all 78 non-isomorphic strength-two designs

with 16 runs and 10 factors by checking the corresponding projections of all

non-isomorphic Hadamard matrices of order 16. The 78 non-isomorphic designs

are listed in Appendix B of Sun (1993), and we denote them in order as

D1, . . . , D78. This can also be achieved using our algorithm, with greatly reduced

computational effort spent on testing isomorphism, because many design pairs

correspond to different row coincidence distributions, different numbers of flats,

or non-isomorphic single flats. Accordingly, in general, our algorithm terminates

before steps 4 or 4⋆.

Details on all non-isomorphic 78 nonregular designs with 16 runs and 10

factors are summarized in Tables 2 and 3. In step 1, we found 10 different row

coincidence distributions. In step 2, these designs were found to be regular designs

or 4-PFDs, 8-PFDs, or 16-PFDs. In step 3, we discovered 22 non-isomorphic D0,

four of resolution II and 18 of resolution I. With 78 designs, there are 3,003 pairs

of designs. For 98.57% (2,960) of these pairs, non-isomorphism is determined

before steps 4 or 4⋆. Of the remaining 43 pairs, 38 are distinguished in step 4,

and five pairs are examined in Step 4⋆, where f = 16.

Example 2. The variable neighborhood search algorithm in Edwards and Mee

(2023) can be employed to generate D-efficient PFDs for estimating the two-

factor interaction model. Nearly 1200 5-PFDs with 80 runs were constructed.

Thirty-four of these 5-PFDs had D-efficiency of 88.8%, and the remainder all had

lower D-efficiency. We are interested in how many non-isomorphic designs appear

in this set of 34 designs. All have the same A-efficiency (74%) and maximum

variance inflation factor (2.1875) for the two-factor interaction model. However,

they are not all isomorphic. In step 1, we found three different row coincidence

distributions. In step 2, all designs were found to be 5-PFDs, with no repeated

flats. In step 3, we discovered two non-isomorphic D0, one of resolution II and

one of resolution I. In step 4, it was confirmed that there are exactly eight non-

isomorphic designs, which occurred with frequencies between 1 and 13 times each.

In Table 4, we list the characteristics of these eight designs in terms of their

generalized resolution, GWLP, frequency among the 34 designs, and trace(A′A),

where A is the 56 × 120 alias matrix with columns corresponding to the 120

possible three-factor interactions. For more details, see Appendix A.

5. Conclusion

Checking for isomorphism is vital for design construction, because, in general,

we can ignore designs from the same isomorphism class. Clark and Dean (2001)

provided the initial necessary conditions for checking isomorphism of nonregular

two-level designs. Ye (2003) and Pang and Liu (2011) made subsequent improve-

ments. In this paper, we propose new necessary and sufficient conditions, as well

as a new algorithm for identifying isomorphism in two-level fractional factorial
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Table 4. Eight non-isomorphic 5-PFDs with 80 runs and 10 factors, with D-efficiency =
88.8%.

D0 = (t@1n0
, D′

0)‡
Design Frequency R ♯ GWLP=(B1, B2, B3, B4, B5) tr(A′A)† t D′

0

D1 1 2.8 (0.00, 0.04, 0.32, 1.16, 5.84) 101.20 0 10-6.7

D2 5 2.8 (0.00, 0.04, 0.32, 1.16, 5.84) 105.74 0 10-6.7

D3 3 2.8 (0.00, 0.04, 0.32, 1.16, 5.84) 110.28 0 10-6.7

D4 13 2.8 (0.00, 0.04, 0.64, 0.84, 4.56) 107.52 0 10-6.7

D5 3 2.8 (0.00, 0.04, 0.64, 0.84, 4.56) 112.21 0 10-6.7

D6 2 2.8 (0.00, 0.04, 0.64, 0.84, 4.56) 116.71 0 10-6.7

D7 6 1.8 (0.04, 0.00, 0.56, 0.92, 4.56) 105.45 1 9-5.2

D8 1 1.8 (0.04, 0.00, 0.56, 0.92, 4.56) 109.64 1 9-5.2

♯ R represents generalized resolution; †A represents the alias matrix (X′
1X1)−1X′

1X2, where X1

consists of the intercept, main effects, and two-factor interaction effects, and X2 consists of three-
factor interaction effects; ‡ Designs D1–D8 are 5-PFDs based on single flat D0 = (t@1n0 , D

′
0); Design

10-6.7 is a resolution-II design that consists of columns of indices {1, 2, 4, 8, 1, 3, 5, 10, 12, 15} of H16, and
design 9-5.2 is a resolution-III design that consists of columns of indices {1, 2, 4, 8, 3, 5, 10, 12, 15} of H16,
where H16 is the Sylvester Hadamard matrix of order 16 (with columns labeled from 0 to 15).

designs, using a parallel flats structure. The proposed algorithm is simple and

general. In addition, by checking for and exploiting any parallel flats structure,

the proposed algorithm is much faster than competing methods in the literature.

Supplementary Material

In the online Supplementary Material, we provide an efficient Matlab im-

plementation of the proposed algorithm for checking the isomorphism of two-

level designs, called “isocheck”. All 78 non-isomorphic strength-two designs with

16 runs and 10 factors in Example 1 are provided in the MATLAB .mat file

“N16p10designs.mat”. The eight non-isomorphic D-efficient 5-PFDs with 80 runs

and 10 factors in Example 2 for a two-factor interaction model are provided in

the MATLAB .mat file “N80p10f5PFDs.mat”.
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Appendix

A. Details for Generalized Word Length Pattern and Row Coincidence

Distributions

For a regular two-level design with levels ±1, the word length pattern is the

vector WLP = (A3, A4, . . . , An), where Ar is the number of r-factor interaction

columns that sum to ±N . For nonregular designs, Tang and Deng (1999)

defined the generalized word length pattern GWLP = (B3, B4, . . . , Bn), where

Br is the sum of the squares of all r-factor interaction columns, divided by N .

Note that for a regular design, Ar = Br. The G2-aberration criterion ranks

designs based on GWLP. The G2-aberration criterion is very cheap to compute,

due to its connection to the moments of the row coincidence distribution, or

equivalently, the moments of Hamming distances. For a two-level design D,

T = DD′ gives the row coincidence distribution. The rth moment of the row

coincidence distribution, also called as the rth row coincidence moment, is defined

as Mr =
∑N

i=1

∑N
j=1 t

r
ij/N

2; therein tij is the (i, j)-th element of T . Butler (2003)

proved that ranking designs in terms of G2-aberration is equivalent to sorting on

the moments of their row coincidence distributions. Furthermore, Butler (2003)

gave explicit formulae for the Br’s in terms of Mr’s (see Mee (2009, App. J)).

B. Proof of Theorem 2

Proof. The sufficiency of the conditions is obvious. Next we prove the necessity

by showing that two f -PFDs of minimal form, say D1 and D2, based on non-

isomorphic single flats D01 and D02, respectively, must be non-isomorphic.

As D01 and D02 are non-isomorphic 2n−p designs, they must have at least

2p−1 different words for any permutation τ of D02’s columns. Let W1 be the

defining words for D01 and W τ
2 be the set of defining words for D02 after the

permutation τ . Given τ , the words in W1 but not in W τ
2 form the set W1 \W τ

2 ,

while the words in W τ
2 but not in W1 form the set W τ

2 \W1. The cardinality of

each of these sets is at least 2p−1 for any permutation τ .

Suppose D1 and D2 are isomorphic. Then there must exist a permutation

τ under which the words in W1 \ W τ
2 can be removed in D1 and the words in

W τ
2 \ W1 can be removed in D2. Consider the words in W1 \ W τ

2 . There exist

2p−1 words in W1 \W τ
2 corresponding to p independent words of W1 and all the

odd-order interactions of these p words. Let W̃1 be this set of 2p−1 words. We

have W̃1 ⊂ W1 \ W τ
2 . As all words in W1 \ W τ

2 should be removed in D1, then

for each of the 2p−1 words in W̃1, the sum of the values of the word in all f

flats of D1 should be 0. This indicates that each row of L(C1) sums to zero,

where L(C1) is the 2
p−1×f matrix generated by the p rows of C1 and all its odd-

order interaction rows. Design CT
1 must be a foldover design, and thus D1 can

be reduced to a (f/2)-PFD. Similarly, we can obtain that D2 can be reduced to
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a (f/2)-PFD by considering the words of W τ
2 \W1. Thus, if two f -PFDs based

on non-isomorphic single flat are isomorphic, then both can be reduced. This

contradicts our assumption that both (A1, C1) and (A2, C2) are of minimal form.

In summary, two f -PFDs based on non-isomorphic single flat must be non-

isomorphic. The proof is complete.
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