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Abstract: The goal of comparative effectiveness research (CER) is to support

evidence-based choices of treatments. Currently the majority of randomized trials

for CER are designed to demonstrate superiority, which often require large sample

size because the effect sizes between treatments in current use are typically small

to moderate and there are usually more than two treatments to be compared. We

propose an alternative group sequential design for such setting. Instead of testing

superiority, we aim to select high quality treatments that are within a small distance

from the best treatment. The basic idea is to eliminate non-promising treatments

at interim analyses that cannot be much better than the currently observed best

treatment, based on generalized likelihood ratio tests. This approach can also be

used for guideline implementation and for phase II selection trials.
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1. Introduction

Comparative Effectiveness Research (CER) involves the comparison of med-

ical, surgical, and other treatments on their ability to benefit patients. The word

‘effectiveness’ conveys the sense that the treatments are to be compared on their

effects as they are actually used by clinicians and received by patients, in pa-

tient populations selected by diagnosis and other relevant considerations, but

otherwise not restricted by race, sex, economic condition, insurance coverage,

likelihood of successful adherence to treatment, and the like. Effectiveness con-

trasts with ‘efficacy’, a term usually denoting the presence or absence of a desired

effect in somewhat ideal circumstances of adherence to treatment and often in

more highly selected populations (those without serious co-morbid conditions, in

a restricted range of severity, or otherwise selected for homogeneity). CER is

often approached by observational methods, including analysis of claims data or

registry data. For example, Stukel et al. (2007) describe several attempts to use
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statistical analysis of large Medicare claims databases to compare survival rates

after medical and surgical treatments for acute cardiovascular disease. The key

problem with observational approaches involves ‘confounding by indication’, the

tendency for freely choosing clinicians and patients to choose treatments with

their anticipated effects in mind. Such ‘non-ignorable’ treatment assignment

(Rubin (1974, 1978)) creates the possibility of bias in the estimation of effective-

ness, which is dealt with by statistical adjustment and modeling techniques, or

instrumental variables methods, or some combination.

Randomization offers another way to remove confounding by indication, lead-

ing to experimental CER (E-CER). The cost and complexity of randomized trials

compares unfavorably with the apparent ease of analysis of observational data,

so E-CER represents a small fraction of the totality of CER. A criticism of the

traditional randomized clinical trial approach to CER is that it takes too long,

and by the time its results are available, they are out of date. Recent advances

in the infrastructure of clinical experiments in natural clinical settings, such as

Point of Care Clinical Trials (POC-CT) (Fiore et al. (2011)), offer the possibility

of using E-CER more easily and at lower cost, obtaining more reliable informa-

tion to guide clinical decision-making. In this article, we assume wider use of

such advances in informatics and decision support for trials, which we believe

will enable a new generation of rapid E-CER with fewer cost constraints. We

propose a novel framework for design of such trials that takes into account some

design goals and constraints of E-CER that we describe below.

The usual ‘superiority’ design used in traditional E-CER is somewhat con-

founded by the fact that CER compares (by definition) treatments in current

use, with no strong basis for preferring one over the others. In contrast to the

strong hopes that attach to new treatments during their development, large ef-

fect sizes may be implausible in E-CER. Such prior limits on the plausible size of

anticipated treatment effects drive sample sizes up in the usual inverse-quadratic

way. So-called non-inferiority designs offer an alternative, but have their own

limitations, some having to do with the asymmetry of the typical design be-

cause non-inferiority is usually stated relative to a specified standard treatment

of known effectiveness. A more practical and useful goal in E-CER than hy-

pothesis testing of superiority or non-inferiority is to select a treatment that is

non-inferior to the unknown best treatment.

Recent discussions of the need for healthcare systems to ‘learn’ more ef-

fectively reveal a new arena for clinical trials designs motivated by treatment

selection. In a large accountable care organization (ACO), there may be little

incentive to pay the price for testing superiority, but a great deal of interest in en-

suring that substantially inferior treatments are systematically weeded out. The

control of type I error in superiority testing is of primary value to regulators such
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as the U.S. Food and Drug Administration (FDA), while ACO administrators

may not need to demonstrate superiority of the best among the treatments in

use.

Decision-theoretic approaches to design of trials take into account the finite

number of future patients for whom the trial results will be definitive. There are

two contributions to the loss function: the patients treated during the trial with

the inferior treatment, and the patients in the future who are treated with the

inferior treatment because the trial comes to an incorrect decision. The tradeoff

between getting the right answer in the trial and capitalizing on that answer in the

remaining patient population is known as the ‘patient horizon problem’. Along

with the usual desire to limit patient exposure in trials to relatively ineffective

treatments, the decision-theoretic point-of-view motivates designs that adapt the

randomization to sequential estimates of treatment differences. The Bayesian

designs of Berry (2010, 2012), Berry et al. (2011), Huang et al. (2009), various

‘play the winner’ methods, and others provide designs that are attractive from

an ethical point of view. These designs may ignore the operating characteristics

as irrelevant, or seek to evaluate them by simulation (which involves a data

generation model).

Most Bayesian and frequentist methods for E-CER are based on the com-

parison of two competing treatments, which sharply pits the statistical efficiency

of balanced designs against the ethical mandate to limit exposure to ‘losing’

treatments. Several recent critiques of adaptive Bayesian or frequentist designs

demonstrate that in order to get substantial benefits from adaptive randomiza-

tion one must pay a high price in operating characteristics, since the efficiency of

the comparison between two treatments drops sharply once the imbalance exceeds

2:1 (e.g., Korn and Freidlin (2011)). In contrast, little has been written about

the use of adaptive randomization in three (or more) group comparisons, with

the notable exception of Berry (2010), who notes ‘... the adaptive randomization

light shines brightest in complicated multiarm settings...’.

In fact, many comparative clinical questions involve more than two compet-

ing alternatives. For example, Geriatric Evaluation and Management (GEM)

investigators compared four versions of tandem inpatient/outpatient geriatric

specialty services for hospitalized older patients (Cohen et al. (2002)). Many be-

havioral interventions are studied in a standard three-group comparison of usual

care, a novel specific intervention, and some kind of ‘non-specific’ enriched version

of usual care. For example, Wilson et al. (BOAT study, 2010) compared ‘shared

decision-making’, ‘usual care’, and an active control called ‘clinician decision-

making’, which involved guideline-based care but without the specific component

of shared decision making with the patient. Biomarker-guided strategy studies

of the ‘enriched’ type may involve comparisons of several standard treatments
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in multiple strata defined by the biomarkers. Sequential multiple-assignment

randomized trials (SMART) often suffer from a ‘combinatorial explosion’ of in-

dividual treatment strategies. Even the comparatively simple two-stage study

of rituximab for induction and maintenance in diffuse large B-cell Lymphoma

(Habermann et al. (2006); Lunceford, Davidian, and Tsiatis (2002)) has four

distinct adaptive treatment strategies to compare, and just adding in options for

two rescue treatments increases the number to eight.

Taking these points into consideration, we conjectured that with K ≥ 3 the

benefits of sequential adaptive reallocation of resources away from losing treat-

ments would come without the sharp efficiency penalty associated with adaptive

assignment in the K=2 context. We also considered the premise that most of the

pairwise treatment effects would be null or nearly so. Finally, we posed the prob-

lem as a ‘negative selection’ task, where pruning unsatisfactory options would be

as valuable as declaring superiority of one treatment over another.

2. Treatment Selection

Here we consider the problem of identifying a ‘good enough’ treatment among

available treatments that is not much worse than any other treatment for a pre-

specified indifference margin. This implies that the selected treatment is not

much worse than the unknown best treatment. We propose a group sequential

design that modifies the design of Follmann, Proschan, and Geller (1994), that

has the goal of selecting the best treatment via monitoring all pairwise compar-

isons at interim analyses, to the current setting of identifying a ‘good enough’

treatment. The basic idea, given in more detail below, is to drop a treatment

group at interim analysis if there is sufficient evidence that it cannot be much

better than the currently observed best treatment.

2.1. Notation

Consider a one-parameter exponential family fθ(x) = eθx−ψ(θ) of densities

with respect to some measure on the real line. Sufficient statistics for θ are

the sample means which are maximum likelihood estimators of ψ′(θ), and the

Kullback-Leibler information number is

I(θ, λ) = Eθ

[
log

{fθ(X)

fλ(X)

}]
= (θ − λ)ψ′(θ)− {ψ(θ)− ψ(λ)}. (2.1)

We assume that for treatment k = 1, . . . ,K, independent and identically dis-

tributed observations Xk1, Xk2, . . . are taken from fθk . Let θ[1] ≤ · · · ≤ θ[K] = θ∗

be the ordered values of θ1, . . . , θK , and assume that the treatment with the

largest θ is the best treatment. Let δ denote the pre-specified indifference mar-

gin between any two treatments.
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Consider a group sequential design with R − 1 interim analyses at sample

sizes N1, . . . , NR−1 and final analysis at sample size NR. The maximum total

sample size NR is chosen so that a conventional fixed sample size trial that ran-

domizes patients equally to the K treatments and conducts pairwise comparisons

of treatments at the end of trial using the Tukey correction (1953), has a desired

power (say, 90% power) to detect at least one significant pairwise comparison

when the true means are (δ, 0, . . . , 0). Let n
(r)
i denote the sample size in treat-

ment group i at look r, r = 1, . . . , R. Let S
(r)
i =

∑n
(r)
i
u=1Xiu denote the sum of

observations in group i at look r, which is the sufficient statistic for θi at look r.

The maximum likelihood estimate (MLE) of θi at look r is θ̂
(r)
i = S

(r)
i /n

(r)
i .

2.2. Non-superiority test

The basic idea of the proposed treatment selection procedure is to drop a

treatment at interim analysis if there is sufficient evidence that it cannot be

much better than the currently observed best treatment. The determination

of ‘sufficient evidence’ can be formulated as a non-superiority test as follows.

Let H
(0)
ij denote the null hypothesis that treatment i is at least δ-better than

treatment j for an indifference margin δ > 0, for i ̸= j:

H
(0)
ij : θi − θj ≥ δ. (2.2)

When H
(0)
ij is rejected, treatment i cannot be δ-better than treatment j (with

high confidence) and therefore can be dropped. Suppose there are ni observations

Xi1, . . . , Xini ∼ fθi from treatment group i and nj observations Xj1, . . . , Xjnj ∼
fθj from treatment group j. We can test this hypothesis by using a generalized

likelihood ratio test that rejects H
(0)
ij if

θ̂i < θ̂j + δ and Λij(δ) ≥ b, (2.3)

where θ̂i =
∑ni

u=1Xiu/ni and θ̂j =
∑nj

v=1Xjv/nj are the MLE of θi and θj ,

Λij(δ) = sup
θi,θj

lij(θi, θj)− sup
θi=θj+δ

lij(θi, θj) = niI(θ̂i, θ̃i) + njI(θ̂j , θ̃j), (2.4)

lij(θi, θj) =

ni∑
u=1

log fθi(Xiu) +

nj∑
v=1

log fθj (Xjv),

θ̃i and θ̃j are the values of θi and θj that maximize lij(θi, θj) under the constraint

θi = θj + δ, and the threshold b is chosen according to the given type I error

probability using the fact that asymptotically 2Λij(δ) follows a χ2
1 distribution

under θi = θj + δ.
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2.3. Proposed design

Let I1 = {1, . . . ,K} and Ir denote the set of treatment groups that have not

been eliminated after the (r−1)-th analysis for r ≥ 2. The initial randomization

assigns patients equally among all K > 2 treatment groups. After the (r − 1)-

th interim analysis, for 2 ≤ r ≤ R, if the study is not stopped at that time,

we randomize the next Nr − Nr−1 patients equally to the treatments in Ir, the

treatments that have not been dropped.

The group sequential treatment selection proceeds as follows. At each interim

analysis, we drop treatments that (with high confidence) cannot be δ-better than

the current observed best treatment. The study is stopped if all treatments

other than the currently best treatment are eliminated, and the currently best

treatment is selected. After the (R − 1)-th interim analysis, if two or more

treatments remain, the best two treatments are advanced to the last analysis (so

|Ir| = 2) while other treatments are dropped. At the final analysis, we perform a

test of these two treatments with nominal type I error probability. If the test is

significant, the treatment with larger θ is selected. If the test is not significant,

both treatments are selected.

More specifically, at interim analysis r, 1 ≤ r ≤ R−1, let k∗r = arg maxi∈Ir θ̂
(r)
i

denote the currently observed best treatment. Following (2.3) for testing

H
(0)
ik∗r

: θi − θk∗r ≥ δ, (2.5)

we drop treatment group i ∈ Ir\{k∗r} if

θ̂
(r)
i < θ̂

(r)
k∗r

+ δ and Λ
(r)
ik∗r

(δ) ≥ b, (2.6)

where Λ
(r)
ik∗r

(δ) is the GLR test statistic for the null hypothesis H
(0)
ik∗r

based on data

observed so far. Since, by definition of k∗r , θ̂
(r)
i < θ̂

(r)
k∗r

for every i ∈ Ir\{k∗r}, (2.6)
reduces to

Λ
(r)
ik∗r

(δ) ≥ b.

Note that instead of performing all pairwise comparisons among the remaining

treatments in Ir, we compare treatment i ∈ Ir\{k∗r} to the currently observed

best treatment k∗r . Further, we test the null hypotheses (2.5), i ∈ Ir\{k∗r}, by the

reverse order of θ̂
(r)
i , starting from the worst treatment (that is, the group with

the smallest θ̂(r)), and stopping the pairwise testings when we reach a treatment

j ∈ Ir\{k∗r} that H
(0)
jk∗r

cannot be rejected. Therefore we perform at most |Ir| − 1

pairwise comparisons at interim look r.

The constant b in (2.6) can be chosen such that the probability of a winning

treatment that is at least δ better than other treatments has a small chance of

being eliminated. For the numerical studies in Section 2.6, we select b using the
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futility stopping method in Lai and Shih (2004) and Bonferroni correction for

M = K(K−1)/2 pairwise comparisons. Specifically, for a given i ̸= j, we choose

b such that the probability of rejecting H
(0)
ij at the R− 1 interim analyses under

H
(0)
ij is less than or equal to ϵα̃/M for a small ϵ > 0 (we use ϵ = 1/3 in the

examples), where 1− α̃ is the power of the conventional fixed sample size design

with the maximum total sample size.

2.4. Relation to other selection procedures

The proposed design is related in its general goal to the sequential multiple

comparisons with the best (SMCB) procedures of Paulson (1964), Kao and Lai

(1980), and Hsu and Edwards (1983) for selecting the population with the largest

mean (or with a ‘good enough’ mean, within δ of the largest mean) among

K normal populations with a common variance. Here we consider the setting

of group sequential designs that is more relevant to clinical trials, while the

SMCB procedures consider sequential testing in which one observation is added

to each remaining group at each stage. The treatment elimination rule and

study stopping rule also differ. In SMCB procedures, treatment i is eliminated

at stage n when the one-sided test statistic comparing treatment j to treatment

i is large for some treatment j that has not yet been eliminated, where ‘large’ for

Paulson’s (1964) procedure is derived using bounds on the error probabilities of

one-sided sequential probability ratio tests and Bonferroni’s corrections to ensure

the procedure satisfies the probability of correct selection (PCS) constraint

Pθ1,...,θK{θD = θ∗} ≥ P ∗ whenever θ∗ ≥ θ[K−1] + δ (2.7)

for a given P ∗, where D denotes the selected treatment group, whereas ‘large’

for the procedures of Kao and Lai (1980) and Hsu and Edwards (1983) is defined

to guarantee simultaneous coverage of the confidence intervals at each stage,

including when the study is stopped, for all K treatments versus the best ; both

procedures satisfy a stronger PCS constraint

Pθ1,...,θK{θD > θ∗ − δ} ≥ P ∗ for all θ1, . . . , θK . (2.8)

The SMCB procedures stop the study when the population with the largest mean

(or a ‘good enough’ mean) has been found or when it reaches maximum sample

size. Our approach eliminates treatments when they are unlikely to be δ-better

than the currently observed best treatment. The study is stopped when there is

only one treatment left or when it reaches the maximum sample size.
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2.5. Nuisance parameters

Nuisance parameters can be easily incorporated into the above procedure.

Suppose θi is a d×1 vector andXi1,Xi2, . . . are i.i.d. d×1 vectors from treatment

group i having density function fθi(x) = eθ
T
i x−ψ(θi) with respect to a measure

ν on Rd. Suppose the first component θi1 of θi is of primary interest, with the

corresponding non-superiority null hypothesis

H
(0)
ij : θi1 − θj1 ≥ δ.

Then the treatment selection procedure can be carried out by replacing the GLR

statistic in (2.4) with

Λij(δ) = sup
θi,θj

lij(θi,θj)− sup
θi1=θj1+δ

lij(θi,θj) = niI(θ̂i, θ̃i) + njI(θ̂j , θ̃j),

where θ̂i and θ̂j are the MLE of θi and θj , θ̃i and θ̃j are the values of θi and θj
that maximize lij(θi,θj) under the constraint θi1 = θj1+δ. One application is to

the family of normal distributions with unknown means and variances, which can

be expressed as a two-dimensional exponential family for (X,X2); see Example

1 of Chan and Lai (2000).

2.6. Numerical studies

We conducted two numerical studies to assess the performance of the pro-

posed design for selecting a ‘good enough’ treatment among K = 3 or K = 4

treatments. We generated observations from N(θ, 1) distributions. For normal

X with known variance 1, I(θ, λ) = (θ − λ)2/2. It follows that the GLR test

statistic for testing H
(0)
ij at interim look r is

Λ
(r)
ij (δ) =

n
(r)
i

2
(θ̂

(r)
i − θ̃i)

2 +
n
(r)
j

2
(θ̂

(r)
j − θ̃j)

2, (2.9)

where

θ̂
(r)
i =

S
(r)
i

n
(r)
i

, θ̂
(r)
j =

S
(r)
j

n
(r)
j

, θ̃i =
S
(r)
i + n

(r)
j δ + S

(r)
j

n
(r)
i + n

(r)
j

, θ̃j =
S
(r)
i − n

(r)
i δ + S

(r)
j

n
(r)
i + n

(r)
j

.

At the end of the trial, one or more treatments may be selected. We de-

scribe the selection as full success, partial success, or failure, depending on the

true means. When all the treatments that are within δ of the best treatment

are selected by the procedure, we call this full success. Partial success refers to

the case that each of the selected treatments is within δ of the best treatment,

but not all of the treatments within δ of the best treatment are selected. All
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other cases are considered failures. Note that the probability of correct selection

Pθ1,...,θK{θD = θ∗} considered by Paulson (1964) is the probability of fully correct

selection when the best treatment is at least δ-better than the next best treat-

ment, and the probability of correct selection Pθ1,...,θK{θD > θ∗ − δ} considered

by Kao and Lai (1980) and Hsu and Edwards (1983) is one minus the probabil-

ity of incorrect selection. We also report other important performance measures

including the probability of choosing a particular treatment, the probability of

selecting exactly r treatments, for 1 ≤ r ≤ K, the expected value of the number

of the looks T , and the expected final sample size.

The first numerical study considered treatment selection amongK = 3 treat-

ments with a common δ = 0.3 for all pairwise comparisons, for six scenarios (see

also Table 1). In Scenario 1, all treatment means are the same, and any selection

of r < K treatments is ‘partially correct’; to be fully correct all K treatments

must be selected. In Scenario 2 there is a single treatment that is at least δ

better than all the other treatments, and only that selection is (fully) correct.

In Scenario 3, one treatment is better by < δ than all the others, and any se-

lection of r < K is (partially) correct, with r = K fully correct, as in Scenario

1. In Scenario 4, there are two treatments both at least δ better than the other

treatment but within δ of each other. Selecting one of them is partially correct,

all of them, fully correct. In Scenario 5, there is a ‘winning’ treatment at least δ

better than some other ‘losing’ treatment, but there is one ‘middling’ treatment

within δ of all the others. A selection of some but not all the ‘winning and mid-

dling’ treatments is partially correct, and selecting them all (but excluding the

‘losing’ treatment) is fully correct. Scenario 6 is similar to Scenario 5 except the

‘middling’ treatment is closer to the losing treatment.

A fixed sample size design with equal randomization to the K = 3 treat-

ments, and using Tukey’s method to adjust for all pairwise comparisons with 5%

family-wise error rate, requires 164 subjects per arm (total 492 subjects) to have

80% power to detect at least one significant pairwise comparison when the true

means are (0.3, 0, 0). Table 1 shows the characteristics of the proposed group

sequential design with R = 3 looks: two interim looks at sample sizes N1 = 165

and N2 = 330, and final analysis at N3 = 492. Treatments are dropped at in-

terim analyses according to (2.6) with δ = 0.3, b = 2.478. Each result is based

on 5,000 simulations. The proposed design has at least 97% probability of being

fully or partially correct in selecting a ‘winning’ treatment. When there are more

than one equally winning treatments (Scenarios 1 and 4), these treatments have

roughly equal probability of being selected. When there are winning treatments

that are at least δ-better than the next best treatment (Scenarios 2 and 4), the

probability of correctly selecting one of the winning treatments is at least 97%.

Even when the winning treatment is not δ-better than the next best treatment
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Table 1. Treatment selection and expected sample size for Simulation Study 1.

Case True means Correct selection Incorrect Pr(trt k is selected) Pr(select r trts)

full partial total selection k =1 2 3 r =1 2 E(T ) E(N)

1 (0.0, 0.0, 0.0) 0.000 1.000 1.000 0.000 0.344 0.334 0.323 0.999 0.001 1.62 267.2

2 (0.3, 0.0, 0.0) 0.970 0.000 0.970 0.030 0.970 0.017 0.013 1.000 0.000 1.26 207.2

3 (0.2, 0.0, 0.0) 0.000 1.000 1.000 0.000 0.873 0.064 0.063 1.000 0.000 1.43 236.5

4 (0.3, 0.3, 0.0) 0.000 0.998 0.998 0.002 0.511 0.487 0.002 1.000 0.000 1.51 249.8

5 (0.3, 0.2, 0.0) 0.000 0.992 0.993 0.007 0.764 0.229 0.007 1.000 0.000 1.46 241.6

6 (0.3, 0.1, 0.0) 0.000 0.989 0.989 0.011 0.918 0.070 0.011 1.000 0.000 1.36 223.7

(Scenarios 3, 5 and 6, with differences ranging from 0.1 to 0.2), the best treatment

is correctly selected for over 75% of the times. Compared to the fixed sample

size design with sample size 492, the proposed design has substantial savings in

expected sample size (ranging from 207.2 to 267.2), with expected number of

looks ranging from 1.26 to 1.62.

Table 2(a) shows the results for treatment selection among K = 4 treatments

with a common δ = 0.3 for all pairwise comparisons. A fixed sample size design

with equal randomization to the K = 4 treatments, and using Tukey’s method to

adjust for all pairwise comparisons with 5% family-wise error rate, requires 163

subjects per arm (total 656 subjects) to have 80% power to detect at least one

significant pairwise comparison when the true means are (0.3, 0, 0, 0). Table 2(a)

shows the characteristics of the proposed group sequential design with R = 3

looks: two interim looks at sample sizes N1 = 220 and N2 = 440, and final

analysis at N3 = 656. Treatments are dropped at interim analyses using (2.6)

with δ = 0.3, b = 3.107. Each result is based on 5,000 simulations. The proposed

design has over 96% probability of fully or partially correctly select a ‘winning’

treatment for all the scenarios considered, with substantial savings in expected

sample size (ranging from 275.6 to 433.7) as compared to the conventional fixed

sample size design. When there are winning treatments that are within δ of

each other and are at least δ-better than the losing treatments without middling

treatments (Scenarios 2-7 and 10), the proposed design has over 97% probability

of (fully or partially) correctly selecting one of the winning treatments.

Table 2(b) shows the results under a similar setting to Table 2(a) except that

the magnitude of the indifference margin depends on the pair of treatments being

compared. This is motivated by the GEM study (Cohen et al. (2002)), in which

the better treatments are also more expensive. Therefore for cost-effectiveness

purposes one may choose the indifference margin between two treatments accord-

ing to the difference in their cost. To test the null hypothesis that treatment i is

at least δij-better than treatment j,

H̃
(0)
ij : θi − θj ≥ δij , (2.10)
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Table 2. Treatment selection and expected sample size for Simulation Study 2.

(a) Equal indifference margins

Case True means Correct selection Incorrect Pr(trt k is selected) Pr(select r trts)

full partial total selection k =1 2 3 4 r =1 2 E(T ) E(N)

1 (0.0,0.0,0.0,0.0) 0.000 1.000 1.000 0.000 0.285 0.281 0.285 0.289 0.860 0.140 1.97 433.7

2 (0.4,0.0,0.0,0.0) 0.997 0.000 0.997 0.003 1.000 0.001 0.001 0.001 1.000 0.000 1.25 275.6

3 (0.3,0.0,0.0,0.0) 0.969 0.000 0.969 0.031 0.975 0.009 0.014 0.009 0.993 0.007 1.47 324.1

4 (0.4,0.4,0.0,0.0) 0.005 0.994 1.000 0.000 0.496 0.510 0.000 0.000 0.994 0.006 1.64 361.7

5 (0.4,0.3,0.0,0.0) 0.007 0.992 1.000 0.000 0.794 0.213 0.000 0.000 0.993 0.007 1.61 355.1

6 (0.4,0.4,0.4,0.0) 0.000 1.000 1.000 0.000 0.350 0.356 0.344 0.000 0.950 0.050 1.83 401.5

7 (0.4,0.3,0.3,0.0) 0.000 1.000 1.000 0.000 0.684 0.172 0.185 0.000 0.960 0.040 1.78 390.7

8 (0.4,0.3,0.2,0.0) 0.000 1.000 1.000 0.000 0.766 0.220 0.041 0.000 0.972 0.028 1.71 376.0

9 (0.4,0.2,0.2,0.0) 0.000 0.999 0.999 0.001 0.911 0.054 0.054 0.001 0.980 0.020 1.61 355.1

10 (0.4,0.1,0.1,0.0) 0.975 0.000 0.975 0.025 0.979 0.011 0.014 0.001 0.995 0.005 1.42 311.3

(b) Unequal indifference margins

Case True means Correct selection Incorrect Pr(trt k is selected) Pr(select r trts)

full partial total selection k =1 2 3 4 r =1 2 E(T ) E(N)

1 (0.0,0.0,0.0,0.0) 0.000 1.000 1.000 0.000 0.230 0.241 0.303 0.412 0.814 0.186 2.00 439.1

2 (0.4,0.0,0.0,0.0) 0.988 0.000 0.988 0.012 0.991 0.002 0.004 0.007 0.996 0.004 1.38 302.9

3 (0.3,0.0,0.0,0.0) 0.933 0.000 0.933 0.067 0.959 0.013 0.020 0.035 0.973 0.027 1.63 358.0

4 (0.4,0.4,0.0,0.0) 0.006 0.994 0.999 0.001 0.474 0.531 0.000 0.000 0.994 0.006 1.60 351.2

5 (0.4,0.3,0.0,0.0) 0.008 0.990 0.998 0.002 0.774 0.232 0.001 0.001 0.992 0.008 1.60 352.4

6 (0.4,0.4,0.4,0.0) 0.000 1.000 1.000 0.000 0.315 0.343 0.418 0.000 0.923 0.078 1.81 398.9

7 (0.4,0.3,0.3,0.0) 0.000 0.999 0.999 0.001 0.630 0.182 0.264 0.001 0.923 0.077 1.82 399.0

8 (0.4,0.3,0.2,0.0) 0.000 0.999 0.999 0.001 0.733 0.239 0.063 0.001 0.964 0.036 1.72 378.8

9 (0.4,0.2,0.2,0.0) 0.000 0.998 0.998 0.002 0.862 0.069 0.100 0.002 0.967 0.033 1.69 372.0

10 (0.4,0.1,0.1,0.0) 0.961 0.000 0.961 0.039 0.968 0.016 0.018 0.005 0.992 0.008 1.53 336.0

we can use a generalized likelihood ratio test that rejects H̃
(0)
ij if

θ̂i < θ̂j + δij and Λij(δij) ≥ b, (2.11)

where Λij(·) is as defined in (2.4). For this simulation study, we assumed that

treatments 1-4 are in order of cost (treatment 1 more expensive than treatment

2, and so on); and we set δij = 0.35 for i < j, δ21 = δ32 = δ43 = 0.3, δ31 =

δ42 = 0.25, δ41 = 0.2. Each result of Table 2(b) is based on 5,000 simulations.

As expected, when there are multiple treatments with the same mean, the less

expensive treatment is selected more often. The proposed design has over 93%

probability of fully or partially correctly selecting a ‘winning’ treatment for the

scenarios considered, with large savings in the expected sample size.

3. A Local CER Approach to Guideline Implementation

E-CER has its own peculiar complexities. It usually involves multiple sites

(either for accrual or to increase the generalizability of findings) and calls for
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a relatively permissive implementation to accommodate local site variations in

the delivery of care. For example, in extending the original VA POC example

(comparing different methods for insulin dosing) from the first site to others,

investigators had to deal with the variety of ways that different VA health care

centers deliver diabetes care. In one site, the prescribing physician is typically

a trainee, working under a chief resident during a short-term rotation, while in

another site it is a hospitalist, with a permanent position. Patient populations

differ across sites, in race, social class, income, and rate of co-morbid conditions,

even within the VA system. The local experience may reflect long experience

with one method over another, leading to local variations in ‘comfort’ with each

treatment. Readers of the trials literature often question whether the average

effects studied in clinical trials accurately reflect the possible heterogeneity of

true effects across subpopulations. For example, clinicians who treat a large

number of complex cases (with a great deal of comorbidity) may worry that

the trials underlying the guidelines have been done in less challenging patients,

a worry that can become a barrier to implementation if it is reinforced with

a few bad experiences. That causes some skepticism in local decision-making,

where clinicians ask ‘Do the results of these trials reflect what will happen if

we implement the recommendations here at home?’ When that question is not

answered satisfactorily, there can be principled opposition to attempts to impose

‘evidence-based guidelines’ (as opposed to somewhat less well-founded general

opposition to new ideas.) Furthermore, many such guidelines are not based on

high-quality E-CER, but rather on opinion or observational work, inducing even

more informed skepticism. Failure to implement guidelines has been identified

as a major impediment to improving cost-effectiveness of care in the US and

elsewhere (which in turn is a critical and urgent need to avoid bankruptcy of

even the most advanced nations).

One way to recognize and deal with such concerns is to think of an attempt

at guideline implementation as an example of local CER. When guidelines are

implemented in large systems of providers (such as the VA or other networks) it

may prove helpful to perform a randomized CER study as a form of implementa-

tion. For example, sites subject to implementation would be queried about their

possible preferred alternatives to the proposed guideline, and the results assem-

bled into K > 2 possible treatments with some existing support in the collection

of sites. Then the K treatments would be ranked according to the number of

sites that have the treatment on its preferred list (say, the ‘unpopularity’ score,

ranging from 0, all sites prefer a treatment, to 1, no site prefers the treatment).

By using the setup in the previous section, replacing cost by unpopularity score,

one would assure sites that dropping a popular treatment requires stronger ev-

idence than dropping an unpopular treatment. Furthermore, if the guideline
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treatment is truly a sufficient improvement over alternatives, implementation is

almost automatic in the course of the trial, in the sense that losing alternatives

are shed along the way. Of course, using a trial as a locally acceptable method

of implementation of a guideline requires the kind of infrastructure that is being

developed in the POC-CT project, because it will enable sites to quickly mount

a joint multi-site trial without having to go through the funding and approval

hoops of a typical CER trial done under the aegis of a research organization,

such as the NIH.

4. A Short-cut for Survival Studies with an Early Response Indicator

In other work we have proposed a seamless Phase II-III design (Lai, Lavori,

and Shih (2012)) for exploiting an early response indicator that is a sensitive

indicator for the effect of treatment on a time to clinical event (such as sur-

vival). That is, it is accepted that two treatments that do not differ on an early

response rate will not differ appreciably in longer-term definitive outcomes (but

not necessarily conversely). The connection to the current work is that one might

imagine conducting a trial such as we propose here, with the binary outcome (re-

sponse) used during the interim looks, because it would allow investigators to

discard treatments that have no chance of being contenders on the basis of poor

response. Then the surviving treatments at the end would be continued to study

the time-to-event difference. Such a design takes advantage of the timeliness of

the response outcome, and may be a way to circumvent the usual problem of

sequential survival studies that, unless accrual is slow relative to mortality, there

is little chance of stopping early for futility or effect. Furthermore, the method

anticipates the development of increasingly sensitive early markers of failure of

treatment, and could be adapted to handle the large number of treatment policies

that result from a two-stage (or more) adaptive treatment strategy trial such as

described by Lunceford, Davidian, and Tsiatis (2002), Wahed and Tsiatis (2004),

and Ko and Wahed (2012).

5. Discussion

Most discussions of clinical trial designs for CER emphasize the ‘research’

aim, which is to create new knowledge by showing that one treatment is superior

to others. This aim leads directly to the traditional significance testing frame-

work, because the assertion of superiority requires rejection of a null hypothesis.

But the practical goal of CER is to support evidence-based choices of treatment.

That goal can be approached by several paths, including some that do not require

statistical proof of superiority. The popular imagination is seized of the notion

of a ‘breakthrough treatment’ that dominates its competitors in head-to-head

trials, leading to steadily advancing success. But reality is messier, with many
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choices of treatments in wide use for a given condition, most of them unsupported

by reliable evidence, with new treatments being marketed without the need for

demonstrations of superiority to existing treatments. Under the circumstances,

the best that can be done may be to whittle away the worst choices, leaving a

generally higher quality of otherwise indistinguishable competitors.

In contrast to the ‘generalizable knowledge’ aspect of research, which is in-

tended to apply across health care organizations, regions, and even continents,

implementation of such knowledge is inherently local, requiring the participation

of individual clinicians and the infrastructure that supports their work. Because

of the considerable independence of individual clinicians and the flexibility they

are allowed in their practices, the spread of scientific conclusions into practice is

by no means automatic. This motivates some novel approaches to CER, such as

POC-CT, that integrate the evidence-gathering and implementation phases so

that the same clinicians who must implement the results are the generators of

the data in the first place. Such approaches are in stark contrast to the stan-

dard CER model, in which a professional class of researchers pluck subjects from

the usual care stream and conduct highly structured studies designed to pro-

duce knowledge that will be handed off for dissemination and implementation by

others.

In this paper we explore some possible alternatives to the standard designs,

that may facilitate novel approaches to CER. By removing the test of a null

hypothesis from its central role in a conventional trial, we can realize consid-

erable reductions in sample size and therefore cost and time, while preserving

other desirable operating characteristics that may be better suited to the goals

of pragmatic CER.

As one referee pointed out, the scope of the model for our approach can

be broadened to semiparametric models such as linear regression with unspeci-

fied error distributions, logrank tests, and Cox proportional hazards models, as

long as the sequential test statistics, after appropriate normalization, are asymp-

totically multivariate normal with independent increments. Caution should be

made, however, in using the proposed approach for treatment selection based on

time to event endpoints. At the interim analysis one only observes the survival

curves up to a certain timepoint and therefore could miss late treatment benefit

or late treatment harm. Also, unless the events occur relatively quickly as com-

pared to accrual, the chance to detect non-superiority at interim analyses may

be small and thus the proposed elimination scheme may not be useful to drop

treatments and allocate more patients to the remaining treatment groups. For

such scenarios, the procedure described in Section 4 may be more appropriate;

it uses an early response indicator to select treatments to be compared on time

to events, when there is an early response indicator that is a sensitive indicator

for the effect of treatment on the time to event.
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One area of future research is the quantification of probabilities of correct

selection such as those in (2.7)−(2.8). These probabilities clearly depend on

the maximum sample size, the number and timing of interim analyses, and the

treatment elimination and selection scheme. In our numerical examples the max-

imum sample size NR was chosen such that a fixed sample size trial with equal

randomization has 80% power to detect at least one significant pairwise compar-

ison when the true parameters are (δ, 0, . . . , 0). We suspect this is the maximum

sample size that would be feasible in practice. For simplicity we assumed two in-

terim analyses and one final analysis with roughly equal group sizes. In practice,

one may choose the number and timing of interim analyses as in conventional

group sequential clinical trials, where multiple factors contribute to the selection

of group sizes at interim analyses, such as accrual rate, rate of accumulated in-

formation, schedule of DMC meetings, and time needed to clean the data and

conduct interim analysis. This is typically determined on a case-by-case basis

according to study specifics. Adaptive choice of the group sizes can be considered

as well.

In contrast to the SMCB procedures of Paulson (1964), Kao and Lai (1980),

and Hsu and Edwards (1983), in which there is no upper bound on the sample

size and one can choose the stopping rules to achieve a desired lower bound on

the specific probability of correct selection, our procedure with a given maximum

sample size and given group sizes at interim analysis does not have this property.

However, simulations show that the probabilities of correct selection are greater

than 95% for the parameter configurations considered in the numerical examples.

We note that the PCS parameter configuration (2.7) may not be particularly

plausible or relevant in the E-CER setting, where there may well be two or more

‘good enough’ treatments and one or more inferior treatments, and the salient

goal is to deselect the latter, as quickly as possible. As in the conventional setting,

it will require developmental work and practical experience to understand how

the context of the trial defines the target operating characteristics for the design.
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