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Abstract: The rank-tracking probability (RTP) is a useful statistical index for

measuring the “tracking ability” of longitudinal disease risk factors in biomedical

studies. A flexible nonparametric method for estimating the RTP is the two-step

unstructured kernel smoothing estimator, which can be applied when there are

time-invariant and categorical covariates. We propose a dynamic copula-based

smoothing method for estimating the RTP, and show that it is both theoretically

and practically superior to the unstructured smoothing method. We derive the

asymptotic mean squared errors of the copula-based kernel smoothing estimators,

and use a simulation study to show that the proposed method has smaller empirical

mean squared errors than those of the unstructured smoothing method. We apply

the proposed estimation method to a longitudinal epidemiological study and show

that it leads to clinically meaningful findings in biomedical applications.
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probability, risk factor, two-step smoothing, unstructured smoothing.

1. Introduction

An important objective of a longitudinal analysis in biomedical studies

is to investigate the effect of covariates on the response variables over time.

Existing methods focus on regression models based on the conditional mean and

correlations. Examples of such methods can be found in Hoover et al. (1998),

Rice and Wu (2001), Fan, Huang and Li (2007), and Wu and Tian (2018),

among others. These methods, although popular in practice, lack the ability

to quantitatively track the persistence of disease risk factors over a time range of

interest.

The need for longitudinal methods beyond conditional means and correla-

tions can be demonstrated by the National Heart, Lung, and Blood Institute

Growth and Health Study (NGHS), for example, NGHSRG (1992), NHBPEP

(2004), and Obarzanek et al. (2010), in which many scientific questions are

answered by evaluating the conditional distributions rather than the conditional

means or correlations. Designed as a prospective epidemiological study, the
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NGHS contains up to 10 annual follow-up observations from 1,213 African

American girls and 1,166 Caucasian girls who enrolled in the study at age 9

or 10 years. An important objective of the study is to determine whether a girl’s

cardiovascular disease risk factor has any tracking ability over an age range.

A class of longitudinal methods in the literature for evaluating tracking is

based on modeling serial correlations. However, a serial correlation may be an

inadequate measure of tracking ability when the conditional distribution function

of the outcome variable is unknown. A practical approach to evaluating tracking

ability is to use the conditional distribution functions of the outcome variables,

as in Hall, Wolff and Yao (1999) and Hall, Racine and Li (2004). Wu and Tian

(2013) studied a class of conditional distributions known as the “rank-tracking

probability” (RTP) to quantify the tracking ability of a longitudinal outcome

variable, and developed an unstructured kernel smoothing method to estimate

the RTPs.

However, the unstructured smoothing estimation proposed by Wu and Tian

(2013) is sometimes impractical, because the RTPs involve joint probabilities at

two time points that might not be estimated appropriately, owing to a lack of

sufficient observations at these time points. This motivates using the copula-

based method to estimate the RTPs because, by Sklar’s theorem (Sklar (1959)),

any multivariate distribution can be expressed by its marginal distributions

and a copula function. Based on a given copula model, we can estimate a

multivariate distribution by separately estimating the marginal distributions

and the copula function. However, if both the marginal distributions and the

copula function are estimated using nonparametric estimators, such as the kernel

estimators (Scaillet and Fermanian (2002); Chen and Huang (2007)) we may

encounter “curse of dimensionality.” On the other hand, imposing a parametric

structure on both the copula function and the marginal distributions may lead

to excessive bias, owing to the potential model misspecification (Härdle et al.

(2004)). As a useful compromise, Genest, Ghoudi and Rivest (1995) proposed a

flexible semiparametric copula approach in which the copula function is modeled

parametrically, but the marginal distributions are estimated nonparametrically

by their corresponding empirical distributions. To reduce the potential of a model

misspecification, Joe (2014) suggested using a data-driven method that selects

the copula function from a set of copula models based on a given model selection

criterion.

We develop a dynamic copula-based smoothing method to estimate the

RTPs of a longitudinal outcome variable, comprising two estimation steps.

First, we estimate the raw joint probabilities at a set of distinct design time

points using a copula model selected from a set of candidate copula models by

maximizing the likelihood functions. Second, we estimate the dynamic RTPs at

any time points by smoothing the raw estimates using a kernel smoothing method

(Härdle et al. (2004, Chap. 4)). We compare our copula-based smoothing
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method with the unstructured smoothing method of Wu and Tian (2013) using

a simulation study. Our simulation results suggest that the proposed method is

superior to the unstructured method, because the former has smaller empirical

mean squared errors. We apply the proposed estimation method to NGHS blood

pressure data, and show that it leads to clinically meaningful results for the

tracking patterns of blood pressure levels of adolescent girls.

In Section 2, we introduce the longitudinal data structure and the RTPs. In

Section 3, we present the two-step copula-based smoothing estimation procedure,

and derive the asymptotic properties of the raw and smoothing estimators. We

conduct a simulation study in Section 4, and apply our estimation method to

NGHS blood pressure data in Section 5. Section 6 concludes the paper.

2. Data Structure and RTPs

2.1. Longitudinal observations at design time points

We consider stochastic processes indexed by the time point t ∈ T , where

T is a bounded subset of [0,∞). At any given t ∈ T , Y (t) ∈ R is the real-

valued outcome variable. For simplicity, our longitudinal sample of {Y (t); t ∈
T } is assumed to contain n independent subjects, and each subject is observed

at a randomly selected subset of K > 1 distinct “design time points” K =

{t(1), . . . , t(K)}, where t(k) ∈ T . For the ith subject, for 1 ≤ i ≤ n, the outcome

Yi(tij) = Yij is collected at time points t = tij ∈ K ⊂ T , for j = 1, . . . , ni, where

ni is the number of observations for the ith subject andN =
∑n

i=1 ni. At each t(k),

Fk is the set of subjects with observations when {Yi(t(k)) : i ∈ Fk, k = 1, . . . ,K}
is a sample of {Y (t); t ∈ T }, where Yi(t(k)) is the outcome for the ith subject.

Let nk = ♯{i ∈ Fk} be the number of subjects in Fk, and ng, h = ♯{i ∈ Fg

⋂
Fh}

be the number of subjects in the intersection of Fg and Fh.

This formulation of longitudinal samples is common in biomedical studies.

In an epidemiological study, a subject’s follow-up time is often chosen from a set

of “design time points,” which may lead to a large K and ng, h ≪ min{ng, nh}.
When the observed time points are not exactly contained in K , it is common to

pool adjacent observed time points into K using a clinically meaningful criterion.

2.2. The RTPs

Suppose that, for t ∈ T , the health status of a subject at time t is determined

by whether Y (t) ∈ A(t) for a prespecified subset A(·) ⊆ R, which may change

with t. The tracking ability of {Y (t); t ∈ K} at any two time points t1 < t2 can

be measured using the conditional probability of {Y (t2) ∈ A(t2)} given {Y (t1) ∈
A(t1)}}, which Wu and Tian (2013) refer to as the RTP based on A(·) at t1 < t2,

RTPA(t1, t2) = P{Y (t2) ∈ A(t2) | Y (t1) ∈ A(t1)}, (2.1)
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where the choice of A(·) depends on the study questions and scientific objectives.

As noted in Wu and Tian (2013), the “rank” in (2.1) does not necessarily refer

to a statistical ranking, but is used more generally to characterize the ordinal

“health status” of a subject in a biomedical study. A direct extension of (2.1) is

to evaluate the probability that the subject’s health status develops from status

A1(·) at time t1 to status A2(·) at time t2. The RTP based on A1(·) and A2(·) at
t1 < t2 is then

RTPA1, A2
(t1, t2) = P{Y (t2) ∈ A2(t2) | Y (t1) ∈ A1(t1)}. (2.2)

In biomedical studies, it is common to define Ak(·), for k = 1, 2, using certain

threshold values yk(t). A natural choice of Ak(t) is Ak(t) = (yk(t),∞), for k =

1, 2, and a threshold-based RTP for (2.2) is

RTPA1, A2
(t1, t2) =

PA1, A2
(t1, t2)

PA1
(t1)

, (2.3)

where PA1, A2
(t1, t2) = P{Y (t1) > y1(t1), Y (t2) > y2(t2)} and PA1

(t1) = P{Y (t1)

> y1(t1)} are the joint and marginal probabilities, respectively, of Y (t2) and

Y (t1). Furthermore, when yk(t) are certain quantile values, Wu and Tian (2013)

refer to the corresponding RTP as the “quantile-based RTP.” Let yαi
(t) be the

(100× αi) quantile of Y (t). Then, the quantile-based RTP is

RTPα1, α2
(t1, t2) = P{Y (t2) > yα2

(t2) | Y (t1) > yα1
(t1)}. (2.4)

Because thresholds are widely used to define the status of a disease, we focus on

estimating the threshold-based RTP (2.3) and the quantile-based RTP (2.4).

3. Copula-based Smoothing Estimation

We develop the following two-step estimation procedure for the dynamic

RTPs in (2.3) and (2.4) as functions of any two time points t1 < t2 ∈ T : (a)

obtain the raw estimates for the joint probabilities at the design time points under

a copula family; (b) compute the smoothing estimates of the joint probabilities

and RTPs at any two time points in T .

3.1. Dynamic copulas for the joint probabilities

Let St(y) = P{Y (t) > y} be the “survival function” of Y (t) at time point t.

For any time points t1 < t2 ∈ T , the joint “survival function” of Y (t1) and Y (t2)

has the copula expression

P (y1, y2|t1, t2) = P{Y (t1) > y1, Y (t2) > y2} = Cθ(t1,t2)

(
St1(y1), St2(y2)

)
, (3.1)
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where Cθ(t1, t2)(s1, s2) is the “copula function” and θ(t1, t2) is the unknown time-

varying copula parameter at time points t1 and t2. We assume that the copula

model of Cθ(t1, t2)(s1, s2) is either known or unknown. In the latter case, we

assume that it is close to one of the candidate copula models in terms of the

Kullback–Leibler distance. This assumption is practical in biomedical studies,

because a suitable copula can beselected by evaluating how well the copula model

fits the available data. Our objective is to estimate the RTPs as functions of

(t1, t2), defined in (2.3) and (2.4), based on the time-varying copula (3.1) and a

smoothing method.

At any given design time points t(g) ̸=t(h) ∈ K , by (3.1), we have

that PA1, A2
(t(g), t(h)) = Cθ(t(g), t(h))(St(g)

(
y1(t(g))

)
, St(h)

(
y2(t(h))

)
), which can be

estimated by replacing St(·)(y) and Cθ(t(g), t(h))(·, ·) with their corresponding

consistent estimates. For the functional copula parameter θ(t(g), t(h)), we consider

two scenarios for its estimation: (a) Cθ(s1, s2) belongs to a known copula model

that is specified by the unknown θ = θ(·); (b) both the copula model and the

functional copula parameter are unknown, but an appropriate model for Cθ(s1, s2)

can be selected from a set of candidate copula models.

3.2. Estimation with a known copula model

When Cθ(s1, s2) belongs to a known copula model, we first estimate

the univariate survival functions St(·)(y) using the following empirical survival

distribution of Y (t(j)) > y, for any design time t(j) and y:

S̃t(j)(y) =
1

nj

∑
i∈Fj

1[Yi(t(j))>y], j = g, h, (3.2)

where 1[ · ] is an indicator function. For the copula parameter θ(t(g), t(h)), we

assume that Cθ(s1, s2) is differentiable with respect to s1 and s2, and define

the derivative cθ(s1, s2) = ∂2Cθ(s1, s2)/∂s1∂s2, where θ = θ(t(g), t(h)), s1 =

St(g)

(
y(t(g))

)
, and s2 = St(h)

(
y(t(h))

)
. From (3.1), we can define the following

pseudo log-likelihood function for θ:

lg, h(θ | C) =
1

ng, h

∑
k∈
(

Fg∩Fh

) log cθ(Ŝkt(g) , Ŝkt(h)

)
, (3.3)

where Ŝkt(j) is the nj/(nj +1) rescaled version of the empirical marginal survival

function S̃t(j)(y) at y = Yk(t(j)) within the set Fj, for j = g, h. The rescaling is

necessary to avoid the potential unboundedness of log cθ(s1, s2) as s1 or s2 tend

to one. Maximizing the pseudo log-likelihood lg, h(θ | C) of (3.3) with respect to

θ, the maximum likelihood estimator of θ(t(g), t(h)) is

θ̂C(t(g), t(h)) = argmax
θ

lg, h(θ | C). (3.4)
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A numerical computation of (3.4) can be performed using the procedure described

in Genest, Ghoudi and Rivest (1995).

Substituting St(g)

(
y1(t(g))

)
, St(h)

(
y2(t(h))

)
and θ(t(g), t(h)) in (3.1) with their

corresponding estimators (3.2) and (3.4), respectively, we obtain the following

raw estimator of PA1,A2
(t(g), t(h)) at any design time points (t(g), t(h)):

P̃A1, A2

(
t(g), t(h)

)
= Cθ̂C(t(g), t(h))

(
S̃t(g),1, S̃t(h),2

)
, (3.5)

where S̃t(g),1 = S̃t(g)

(
y1
(
t(g)

))
and S̃t(h),2 = S̃t(h)

(
y2
(
t(h)

))
.

Specifically, when y1
(
t(g)

)
= yα1

(t(g)) and y2
(
t(h)

)
= yα2

(t(h)), we have

St(g)

(
y1
(
t(g)

))
= 1 − α1 and St(h)

(
y2
(
t(h)

))
= 1 − α2. Thus, the joint probability

PA1, A2

(
t(g), t(h)

)
= P{Y (t(g)) > yα1

(t(g)), Y (t(h)) > yα2
(t(h))}, denoted by

Pα1, α2

(
t(g), t(h)

)
, can be estimated by

P̃α1, α2

(
t(g), t(h)

)
= Cθ̂C(t(g), t(h))

(1− α1, 1− α2), (3.6)

where α1 and α2 are given in (2.4).

Remark 1. Note that Ŝkt(g) , Ŝkt(h)
, and θ̂C are calculated from data sets at

different design time points Fg, Fh, and Fg ∩ Fh, respectively. Thus, the

proposed copula estimator of PA1, A2
(t(g), t(h)) is less affected by an “unbalanced

design” of the data, as in Wu and Tian (2018), and outperforms the unstructured

nonparametric estimator

P̃N
A1, A2

(t(g), t(h)) =
1

ng, h

∑
i∈
(

Fg∩Fh

) 1[Yi(t(h))>y1(t(g)), Yi(t(g))>y2(t(h))], (3.7)

which is calculated without using the copula structure (3.1) and relies only on

the observations in Fg∩Fh. The advantage of (3.5) and (3.6) over (3.7) becomes

obvious when ng, h is much smaller than min{ng, nh}. In addition, for the quantile-

based estimation of Pα1, α2

(
t(g), t(h)

)
, the true percentile curves yα1

(t) and yα2
(t)

in (3.7) are often unknown and need to be estimated, whereas the copula-based

estimator (3.6) does not rely on estimated quantile curves. In the simulation

study, we use the true percentile curves for the nonparametric estimators, and we

estimate the percentile curves from the corresponding samples in the application

to NGHS blood pressure data.

3.3. Selection of copula models

In most biomedical studies, the exact copula model Cθ(t(g), t(h))(·, ·) is

unknown, but may be selected from a set of copula models. A reasonable

procedure for doing so is to maximize a pseudo-likelihood function among all

the candidate copula models; see Joe (2014).
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If M is the set of copula models, then the selected copula model is

C∗(·) = argmax
C∈M

lg, h(θ̂C |C) = argmax
C∈M

{
max

θ
lg, h(θ|C)

}
, (3.8)

where lg, h(θ|C) is defined by (3.3). Let θ̂C∗(t(g), t(h)) be the corresponding

estimator derived from (3.4) under the selected copula model C∗(·). The

approximated estimator of PA1, A2

(
t(g), t(h)

)
based on C∗(·) is

P̃ ∗
A1, A2

(
t(g), t(h)

)
= C∗

θ̂C∗ (t(g),t(h))

(
S̃t(g),1, S̃t(h),2

)
. (3.9)

Furthermore, the corresponding estimator of Pα1, α2
(t(g), t(h)) is

P̃ ∗
α1, α2

(t(g), t(h)) = C∗
θ̂C∗ (t(g), t(h))

(1− α1, 1− α2) . (3.10)

Because the true joint probabilities may not necessarily belong to the selected

copula model, we refer to (3.10) as an “approximated estimator ”, because

the selected copula model may only be a reasonable approximation of the true

copula model. The following remarks clarify some implications of relying on an

approximated copula model in (3.10).

Remark 2. It follows from Joe (2014) that if the Kullback–Leibler distance

between the true and selected copula model is small, then so is the difference

between the joint probabilities derived from the true copula and the selected

copula. Thus, a good choice of candidate copula models M can lead to

an appropriate estimator P̃ ∗
A1, A2

(t(g), t(h)) or P̃ ∗
α1, α2

(t(g), t(h)) that is close to

P̃A1, A2
(t(g), t(h)) or P̃α1, α2

(t(g), t(h)), respectively, under the true copula.

Remark 3. As discussed in Joe (2014), the similarity of copulas depends on the

closeness of the dependence in the tails. This suggests that the tail properties

are useful for identifying distribution functions in copula model selection. In

particular, the Frank copula is symmetric and has no tail dependence, whereas

the Clayton and Gumbel copulas have strong lower and upper tail dependence,

respectively. Because these three copula models capture most of the dependence

structures seen in real applications, they are widely used as candidate copula

models in the literature. We demonstrate in our simulation study, discussed in

Section 4, that the estimators based on the selected copula from these three

candidate copula models give satisfactory performance in practice.

3.4. Smoothing estimators

For the smoothing step of the procedure, we use the raw estimates P̃A1, A2
(t(g),

t(h)) at t(g) ̸= t(h) ∈ K in (3.9) to estimate PA1, A2
(t1, t2) at any time points

t1 < t2 ∈ T using a kernel smoothing method. The smoothing estimator of

PA1, A2
(t1, t2) is then given by
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P̂A1, A2
(t1, t2) =

J∑
g ̸=h

Wg, h(t1, t2)P̃A1, A2
(t(g), t(h)), (3.11)

where Wg, h(t1, t2) is kernel-based weight function,

Wg, h(t1, t2) =
ng, hK

(
(t1 − t(g))/h1, (t2 − t(h))/h2

)∑
g ̸=h ng, hK

(
(t1 − t(g))/h1, (t2 − t(h))/h2)

) , (3.12)

K(·, ·) is a bivariate nonnegative kernel function, and h1 and h2 are the

corresponding bandwidths.

Similarly, the kernel smoothing estimator of PA1, A2
(t1, t2) based on the

selected copula C∗(·) is given by

P̂ ∗
A1, A2

(t1, t2) =
J∑

g ̸=h

Wg, h(t1, t2)P̃
∗
A1, A2

(t(g), t(h)). (3.13)

The smoothing estimator of the marginal probability PA1
(t1) = St1(y1(t1)), based

on S̃t(k)
(y1(t(k))), for k = 1, . . . ,K, is given by

Ŝt1(y1(t1)) =
K∑

k=1

Wk(t1)S̃t(k)
(y1(t(k))), (3.14)

where Wk(t1) = nkK
(
(t1 − t(k))/h0

)
/
∑K

j=1 njK
(
(t1 − t(j))/h0

)
, K(·) is a

nonnegative kernel function, and h0 is the corresponding bandwidth.

It follows from (3.11) and (3.14) that the kernel smoothing estimator of

RTPA1, A2
(t1, t2) in (2.3) is

R̂TPA1, A2
(t1, t2) =

P̂A1, A2
(t1, t2)

Ŝt1(y1(t1))
(3.15)

when the true copula model C(·) is known, and

R̂TP
∗
A1, A2

(t1, t2) =
P̂ ∗

A1, A2
(t1, t2)

Ŝt1(y1(t1))
(3.16)

when the copula model C∗(·) is selected from the set of copula models M. For

the quantile-based RTP (2.4), because Pαi
(ti) = P (Y (ti) > yαi

(ti)) = 1 − αi for

each ti ∈ T , for i = 1, 2, the kernel smoothing estimators (3.15) and (3.16) can

be simplified as

R̂TPα1, α2
(t1, t2) =

P̂α1, α2
(t1, t2)

1− αi

(3.17)

and

R̂TP
∗
α1, α2

(t1, t2) =
P̂ ∗

α1, α2
(t1, t2)

1− αi

, (3.18)
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respectively, where

P̂α1, α2
(t1, t2) =

J∑
g ̸=h

Wg, h(t1, t2)P̃α1, α2
(t(g), t(h)), (3.19)

and

P̂ ∗
α1, α2

(t1, t2) =
J∑

g ̸=h

Wg, h(t1, t2)P̃
∗
α1, α2

(t(g), t(h)). (3.20)

Remark 4. It is well known in the literature that, in practice, the appro-

priateness of kernel smoothing estimators is affected most by the bandwidth

choices, whereas the kernel functions are relatively less important. Thus, several

kernel functions may be used to compute (3.17) and (3.18). For simplicity, we

use the product kernels K(u1, u2) = K1(u1)K2(u2) with the same bandwidth

h1 = h2 = h in all numerical computations in this paper. Specifically, we use

the Gaussian kernelK1(u1) = (2π)−1/2 exp{−(u2
1/2)} for P̂α1

(t1), and the product

Gaussian kernelK(u1, u2) = (2π)−1 exp{−(u2
1+u2

2)/2} for P̃ ∗
α1, α2

(t1, t2). For data-

driven bandwidth choices of h, we use the “leave-one-subject-out cross-validation”

(LSCV) approach described in Wu and Tian (2018, Sec. 12.3.5).

3.5. Asymptotic Properties

In this section, we present the consistency and asymptotic normality of the

raw estimators, the consistency of the dynamic copula function estimators, and

the asymptotic mean squared risks of the kernel smoothing RTP estimators.

3.5.1. Asymptotic properties of raw probability estimators

We first consider the asymptotic properties of the raw estimators (3.5) and

(3.6) when the copula model is known. Assume that the joint survival distribution

function of Y (t1) and Y (t2), for any t1 < t2 ∈ T , belongs to a known copula model

that satisfies the following assumptions:

C1. For l = 1, 2, the partial derivatives ∂ log cθ(s1, s2)/∂θ, ∂ log cθ(s1, s2)/∂sl,

∂2 log cθ(s1, s2)/∂θ
2, and ∂2 log cθ(s1, s2)/∂θ∂sl are all continuous and can

be bounded by dCθ integrable functions for any (s1, s2) ∈ (0, 1)2.

C2. For any fixed t1 < t2 ∈ T , the functional Fisher information I(θ|t1, t2) =

−Eθ {∂ log cθ [St1(Y (t1)), St2(Y (t2))]/∂θ}2 is finite and bounded away from

zero, that is, 0 < I(θ|t1, t2) < ∞.

The following theorem shows that the raw estimator P̃A1,A2

(
t(g), t(h)

)
of (3.5)

is consistent and that P̃α1, α2

(
t(g), t(h)

)
of (3.6) is asymptotically normal when

there are many subjects with observations at the design time points (t(g), t(h)).

Theorem 1. If C1–C2 hold, then, for any two design time points t(g) < t(h) ∈
K , we have that, as ng, h → ∞, P̃A1,A2

(t(g), t(h))
P−→ PA1,A2

(t(g), t(h)) and
√
ng, h
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{P̃α1, α2
(t(g), t(h)) − Pα1, α2

(t(g), t(h))}
L−→ N

(
0, σ2(t(g), t(h))

)
, where σ2(t(g), t(h)) is

the asymptotical variance.

A proof for this theorem and an explicit expression of σg, h are given in the

online Supplemental Material.

3.5.2. Consistency of dynamic copula estimators

When the copula model C(·) is unknown, we show that, under the best

copula model C∗(·) from the collection of copula models M, the approximated

raw estimator (3.10) is consistent when there are many subjects with observations

at the design time points (t(g), t(h)).

First, by the derivations in Joe (2014), we have the following lemma, which

shows that, when the selected copula C∗(·) is “close” to the true copula C(·),
the estimated functional copula parameter converges to the functional copula

parameter under C∗(·).

Lemma 1. If cθ(s1, s2) and c∗θ∗(s1, s2) are the densities of the true copula C(·)
and the selected copula C∗(·), respectively, at time points (t(g), t(h)), then θ̂C∗(t(g),

t(h))
P−→ θC∗(t(g), t(h)) in probability as n → ∞, where θC∗(t(g), t(h)) = argmaxθ∗∫∫

cθ(s1, s2) log c
∗
θ∗(s1, s2) ds1 ds2; that is, θC∗(t(g), t(h)) is the copula parameter

such that c∗θC∗ (t(g), t(h))
(s1, s2) is the closest copula density to cθ(s1, s2) among all

copula densities of the form c∗θ∗(s1, s2) in the Kullback–Leibler divergence.

Let P ∗
A1,A2

(t(g), t(h))=C∗
θC∗ (St(g)(y1(t(g))), St(h)

(y2(t(h)))) and P ∗
α1, α2

(t(g), t(h))

= C∗
θC∗ (t(g), t(h))

(1− α1, 1− α2). Using the continuous mapping theorem, the

following theorem shows that, under the selected copula model, the raw

approximated estimator (3.10) is a consistent estimator of P ∗
α1, α2

(t(g), t(h)) at

the design time points (t(g), t(h)).

Theorem 2. If the selected copula model C∗(·) satisfies the assumptions C1–C2,

then, for any two design time points t(g) < t(h) ∈ K , as ng, h → ∞, P̃ ∗
A1,A2

(t(g),

t(h))
P−→ P ∗

A1,A2
(t(g), t(h)) and

√
ng,h

{
P̃ ∗

α1,α2
(t(g), t(h))− P ∗

α1,α2
(t(g), t(h))

}
L−→ N(0, σ2(t(g), t(h))).

This asymptotic result suggests that even if the true copula model is

unknown, the raw approximated estimator (3.9) ( or (3.10)) could still be close

to the target probability P ∗
A1,A2

(
t(g), t(h)

)
(or P ∗

α1, α2
(t(g), t(h))) when the number

of observations in K is large.

3.5.3. Asymptotic risk of the smoothing RTP estimators

We now derive the asymptotic mean squared errors of the kernel smoothing

RTP estimators (3.17) and (3.18), under the following assumptions:

C3. For all t ∈ T , St(y) is twice continuously differentiable with respect to t.
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C4. For all t1, t2 ∈ T , the positive density function f(t1, t2) is continuously

differentiable with respect to t1 and t2.

C5. Let u = (u1, u2). The bivariate kernel K(u1, u2) = K1(u1)K2(u2) is a

symmetric probability density on a bounded set, assumed to be [−1, 1]2,

and satisfies
∫
uK(u)du = 0, R (K) =

∫
K2(u)du,

∫
u2
1K1(u1)du1 = µ(21)

and
∫
u2
2K2(u2)du2 = µ(22), for some positive constants µ(21) and µ(22).

C6. h satisfies that h → 0 and nh2 → ∞ as n → ∞.

C7. For all i = 1, . . . , n and j1 ̸= j2, |tij1 − tij2 | > h.

The following theorem shows the consistency of the proposed estimator

(3.15), and provides asymptotic expressions for the bias and variance of the

estimator (3.17).

Theorem 3. If the number of subjects n is large, t1 < t2 are interior points

within the support of f(·, ·), and assumptions C1–C7 are satisfied, then

R̂TPA1,A2
(t1, t2)

P−→ RTPA1,A2
(t1, t2) as n → ∞. (3.21)

Specifically, R̂TPα1,α2
(t1, t2)

P−→ RTPα1,α2
(t1, t2) as n → ∞, and the asymptotic

bias and variance of R̂TPα1, α2
(t1, t2) in (3.17) are, respectively,

Bias
[
R̂TPα1, α2

(t1, t2)
]

=

[
µ(21)

(
∂Pα1, α2

(t1, t2)

∂t1

∂f(t1, t2)

∂t1
+

1

2

∂2Pα1, α2
(t1, t2)

∂t21
f(t1, t2)

)
+µ(22)

(
∂Pα1, α2

(t1, t2)

∂t2

∂f(t1, t2)

∂t2
+

1

2

∂2Pα1, α2
(t1, t2)

∂t22
f(t1, t2)

)]
×(1− α1)

−1 f(t1, t2)
−1 h2 + o(h2)

and

V ar
[
R̂TPα1,α2

(t1, t2)
]
= (1− α1)

−2
(
N h2f(t1, t2)

)−1
σ2(t1, t2)R(K)

+o

(
1

N h2

)
,

where R(K) =
∫
K2(u)du.

The next theorem shows the convergence of the proposed estimator (3.16),

and provides asymptotic expressions for the bias and variance of the proposed

estimator (3.18) under the selected copula model.

Theorem 4. If the selected copula model C∗(·) satisfies assumptions C1–C2 and

assumptions C3–C7 hold, then

R̂TP
∗
A1,A2

(t1, t2)
P−→ RTP ∗

A1,A2
(t1, t2) as n → ∞.
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Specifically, R̂TP
∗
α1,α2

(t1, t2)
P−→ RTP ∗

α1,α2
(t1, t2) as n → ∞, and the asymptotic

bias and variance of R̂TP
∗
α1, α2

(t1, t2) in (3.18) are, respectively,

Bias
[
R̂TP

∗
α1, α2

(t1, t2)
]

=

[
µ(21)

(
∂P ∗

α1, α2
(t1, t2)

∂t1

∂f(t1, t2)

∂t1
+

1

2

∂2P ∗
α1, α2

(t1, t2)

∂t21
f(t1, t2)

)
+µ(22)

(
∂P ∗

α1, α2
(t1, t2)

∂t2

∂f(t1, t2)

∂t2
+

1

2

∂2P ∗
α1, α2

(t1, t2)

∂t22
f(t1, t2)

)]
×(1− α1)

−1 f(t1, t2)
−1 h2 + o(h2) + (1− α1)

−1b(t1, t2)

and V ar[R̂TP
∗
α1, α2

(t1, t2)] = (1 − α1)
−2 {N h2 f(t1, t2)}

−1
σ2(t1, t2)R(K) +

o(1/(N h2)), where b(t1, t2) = P ∗
α1, α2

(t1, t2)− Pα1, α2
(t1, t2).

Remark 5. It follows from Theorems 3 and 4 that if the true copula model is

known or P ∗
A1, A2

(t1, t2) = PA1, A2
(t1, t2), then the copula-based kernel smoothing

estimator (3.15) or (3.16) of the RTP is asymptotically unbiased. In fact, the

proposed estimator (3.16) can be close to RTPA1,A2
(t1, t2) only if the Kull-

back–Leibler distance between the true copula model and one of the candidate

copula models is small. In addition, R̂TPα1, α2
(t1, t2) and R̂TP

∗
α1, α2

(t1, t2) have

the same asymptotic variance, whereas the asymptotic biases of (3.17) and (3.18)

differ by a fraction of b(t1, t2) that depends on the difference between P ∗
α1, α2

(t1, t2)

and Pα1, α2
(t1, t2).

4. Simulation Study

We conduct a simulation study to investigate the finite-sample properties of

the proposed copula-based smoothing estimators, and then compare them with

those of the unstructured nonparametric smoothing estimators proposed by Wu

and Tian (2013). Let {t(1), . . . , t(40)} = {0.25, 0.5, . . . , 10} be the design time

points. We generate 1,000 subjects with 10 visits per subject in each sample.

The jth visit time of the ith subject tij corresponds to t(kij) in the set of design

time points. For each subject i = 1, . . . , 1000 at the jth time point tij, we generate

the observation Yij = Yi(tij) from

Yij = 21.5 + 0.7
(
tij − 5

)
− 0.05

(
tij − 5

)2
+ ϵij, j = 1, . . . , 40, (4.1)

where ϵij = zikij
is the kijth element of (zi1, . . . , zi40), which are generated from

the 40-dimensional t-copula Ct
R, v(u1, . . . , u40) with the dispersion structure
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Table 1. Empirical biases and RMSEs of the copula-based smoothing estimates and
the unstructured nonparametric smoothing estimates obtained from 1,000 simulation
replications based on A1(t1) = (yα1(t1),∞) and A2(t2) = (yα2(t2),∞), with α1 = α2 =
0.8.

RTP t2 True
Copula Smoothing Unstructured Smoothing

Bias RMSE Bias RMSE

RTP0.8, 0.8(t2 − 3, t2) 5 0.352 0.003 0.014 0.009 0.038

6 0.352 0.003 0.014 0.008 0.038

7 0.352 0.003 0.015 0.009 0.039

8 0.352 0.003 0.015 0.007 0.040

9 0.352 0.010 0.018 0.007 0.040

RTP0.8, 0.8(3, t2) 5 0.424 -0.005 0.015 0.011 0.043

6 0.352 0.003 0.014 0.008 0.038

7 0.309 -0.001 0.014 0.004 0.035

8 0.283 -0.005 0.015 0.003 0.036

9 0.266 -0.006 0.015 0.003 0.034

R =


1 ρ · · · ρ39
ρ 1 · · · ρ38
...

...
...

ρ39 ρ38 · · · 1

 ,

where ρ = 0.9, and v = 4 degrees of freedom, and kij is generated by the

ceiling of a random number from the uniform distribution U [4(j − 1), 4j], for

j = 1, 2, . . . , 10.

We consider the three most commonly used Archimedean copulas, namely,

the Frank, Clayton, and Gumbel copulas, as our candidate copula models. In our

simulation, the copula model used in the smoothing estimators is not necessarily

from the true t-copula model, but is an Archimedean copula that is “closest” to

the true t-copula from which the data are generated. The simulation has 1,000

replications.

We first consider the quantile-based RTPs. Let A1(t1) = (yα1
(t1),∞) and

A2(t2) = (yα2
(t2),∞), with α1 = α2 = 0.8. We calculate the empirical bias and

root mean squared error (RMSE) for each estimator (3.18) of RTP0.8, 0.8(t2 −
3, t2) and RTP0.8, 0.8(3, t2) at a sequence of t2 values, t1 = t2 − 3 and t1 = 3.

Here, RTP0.8, 0.8(t2−3, t2) and RTP0.8, 0.8(3, t2) represent the “three-year tracking

ability” and the “first (t2−3)-year tracking ability,” respectively, for the simulated

samples. For comparison, we also present the true RTP values and compute the

empirical biases and RMSEs from the unstructured smoothing estimates.

Table 1 shows the true RTP values and the empirical biases and RMSEs

obtained from the copula-based and unstructured smoothing estimates at several

selected time points. Table 1 shows that both smoothing estimates have small
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Figure 1. The true RTP curves, the averages of the estimated RTPα1, α2
(t1, t2) with α1 =

α2 = 0.8 using the copula-based smoothing estimator and the unstructured smoothing
estimator, and the lower and upper 2.5th percentiles computed from 1,000 simulated
samples generated from (4.1).

biases. However, the copula-based smoothing estimates are superior to the

unstructured smoothing estimates in the sense that they have smaller RMSEs

for all the time points shown in Table 1. This superiority holds even when the

candidate Archimedean copula models do not include the true t-copula model,

and when the unstructured smoothing estimates are calculated using the true

percentile curve y0.8(t).

Figure 1 shows the averages of the estimated RTP0.8, 0.8(t2 − 3, t2) in Figure

1(a) and RTP0.8, 0.8(3, t2) in Figure 1(b), as well as their corresponding lower

and upper 2.5th percentiles computed from 1,000 simulated samples using the

copula-based smoothing estimator and the unstructured smoothing estimator.

The figure shows that the averages of the estimated curves from both estimators

are close to the true RTP curves. However, the gaps between the lower and

upper 2.5th percentile curves of the copula-based smoothing estimates are much

smaller than those of the unstructured smoothing estimates, suggesting that the

copula-based smoothing estimator exhibits less variability than does the unstruc-

tured smoothing estimator. This result is consistent with the empirical RMSE

results in Table 1.

We next consider the threshold-based RTPs. Let A1(t1) = (28,∞) and

A2(t2) = (28,∞). The corresponding empirical biases, RMSEs, averages, and

percentiles of the estimator (3.16) and the unstructured smoothing estimator are

summarized in Table 2 and Figure 2. These results again suggest that the copula-

based estimator (3.16) leads to similar empirical biases, but smaller RMSEs and

less variability compared with those of the corresponding unstructured smoothing

estimator.
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Table 2. Empirical biases and RMSEs of the copula-based smoothing estimates and
the unstructured nonparametric smoothing estimates obtained from 1,000 simulation
replications based on A1(t1) = (28,∞) and A2(t2) = (28,∞).

RTP t2 True
Copula Smoothing Unstructured Smoothing

Bias RMSE Bias RMSE

RTPA1, A2
(t2 − 3, t2) 5 0.430 -0.005 0.032 0.005 0.043

6 0.442 -0.001 0.031 0.005 0.039

7 0.452 0.001 0.029 0.002 0.038

8 0.460 0.003 0.028 0.003 0.035

9 0.466 0.004 0.027 0.005 0.033

RTPA1, A2
(3, t2) 5 0.495 -0.001 0.032 0.010 0.041

6 0.442 -0.001 0.031 0.005 0.039

7 0.412 -0.001 0.031 0.003 0.038

8 0.396 -0.004 0.032 0.003 0.039

9 0.388 -0.006 0.032 0.001 0.037
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Figure 2. The true RTP curves, the averages of the estimated RTPA1, A2
(t1, t2) with

A1(t) = (28,∞), A2(t) = (28,∞) using the copula-based smoothing estimator and the
unstructured smoothing estimator, and the lower and upper 2.5th percentiles computed
from 1,000 simulated samples generated from (4.1).

Tables 1 and 2 and Figures 1 and 2 demonstrate that the copula-based

smoothing estimator is superior to the unstructured smoothing estimator, both

when estimating quantile-based RTPs and when estimating threshold-based

RTPs. The only difference between these two scenarios is that the marginal

probabilities S(t1) and S(t2) are equal to 1 − α1 and 1 − α2, respectively, in

(3.18), whereas they need to be estimated in (3.16).
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5. Application to NGHS Blood Pressure Data

We apply our estimation method to NGHS blood pressure (BP) data. This

data set is described and analyzed by Wu and Tian (2013) and Wu and Tian

(2018, Chap. 12) using the unstructured nonparametric smoothing estimator.

Given that an important objective of the NGHS is to evaluate the racial

differences of BP distributions, we estimate the RTPs for Caucasian girls and

African American girls separately.

Because age (in years) in the data set is rounded up to six decimal places,

there are many distinct time points, but few subjects observed at each distinct

time point. A practical approach that is clinically meaningful and has been used

in the literature is “data binning,” which pools observations at adjacent time

points to create a set K of design time points that are clinically interpretable,

see Wu and Tian (2018, Sec. 12.2). We consider the age range T = [9.00, 19.00)

and specify four design time points at each age, yielding K = 40 equally spaced

age bins [9.00, 9.25), . . . , [18.75, 19.00) corresponding to the design time points

K = {9.00, 9.25, . . . , 18.75}. If the ith girl is observed within age bin [t(j), t(j+1)),

her corresponding design time point is t(j). This age binning has adequate clinical

interpretation for pre-teens and adolescents, because two girls born within three

months of each other have approximately the same age.

Let Y (t) be a girl’s systolic blood pressure (SBP) at time point t years

of age, and let A1(t1) = (y0.8(t1),∞) and A2(t2) = (y0.8(t2),∞) be the 80th

percentile SBP ranges at ages t1 and t2 years, respectively. We estimate the RTPs

RTPA1, A2
(t2−3, t2) and RTPA1, A2

(t1, t2) at a sequence of t2 values with t1 = t2−3

and t1 = 10, respectively, using both the copula-based smoothing method and

the unstructured smoothing method for Caucasian and African American girls.

These RTPs give quantitative measures for the probability of a girl’s SBP being

above the 80th percentile at age t2 years, given that her SBP is known to

be above the 80th percentile at age t1 years. Further details about clinical

interpretations of RTP·, ·(t2−3, t2) and RTP·, ·(t1, t2) for epidemiology studies can

be found in Wu and Tian (2018, Chap. 12). We compute both the copula-based

and the unstructured smoothing estimates and their corresponding bootstrap

95% empirical quantile point-wise confidence intervals using a resampling-subject

bootstrap with 500 replications, following Wu and Tian (2018, Sec. 12.3.6).

Figure 3 shows the estimates of RTP0.8, 0.8(t1, t2) and their bootstrap 95%

point-wise confidence intervals for Caucasian and African American girls over

different age ranges. The top panels of Figure 3 show the estimated probabilitiy

that, given that a Caucasian (Figure 3a) or an African American (Figure 3b)

girl’s SBP was higher than the age-specific 80th percentile at ages 9 to 14.5

years, her SBP is also higher than the age-specific 80th percentile three years

later. The bottom panels of Figure 3 show the estimated probability that a

Caucasian (Figure 3c) or an African American (Figure 3d) girl’s SBP is higher
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(c) Caucasian Girls
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(d) African American Girls

Figure 3. The estimated RTPα1, α2(t1, t2) curves with α1 = α2 = 0.8 using the
copula-based smoothing estimator and the unstructured smoothing estimator, and the
corresponding bootstrap 95% empirical quantile point-wise confidence intervals.

than the age-specific 80th percentile at ages 13 to 17.5 years, given that her SBP

was already higher than the 80th percentile at age 10 years. All four panels of

Figure 3 suggest that the RTPs for both Caucasian and African American girls

vary between approximately 40% and 45% for different age ranges, which are

much higher than the anticipated value of 20% if there were no tracking ability

for the SBP of this population. These results, which are consistent with the

findings reported in Wu and Tian (2013), indicate that the percentile SBP values

for a girl at different ages have positive tracking ability, and hence are positively

correlated.
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Figure 4. The estimated RTPA1, A2(10, t2) curves with A1(t) = A2(t) = (115,∞) using
the copula-based smoothing estimator and the unstructured smoothing estimator, and
the corresponding bootstrap 95% empirical quantile point-wise confidence intervals.

Figure 4 shows the estimated RTPA1, A2
(t1, t2) with A1(t1) = (115,∞) and

A2(t2) = (115,∞) at a sequence of t2 values with t1 = t2 − 3 and t1 = 10,

respectively, using the copula-based smoothing method and the unstructured

smoothing method. Because A1(t1) and A2(t2) depend on the fixed SBP level of

115 mmHg, the estimated RTP curves in Figure 4a to Figure 4d are all increasing

with age, suggesting that girls’ SBP levels are increasing with age. These findings

are consistent with those observed in Figure 3.

Comparing the bootstrap 95% point-wise confidence intervals in Figures 3

and 4, we observe that, for all the panels in Figure 3a to Figure 3d and Figure 4a to

Figure 4d, the widths of the confidence intervals for the copula-based smoothing



COPULA-BASED ESTIMATION OF RTP 907

estimates are narrower than those for the unstructured smoothing estimates.

These results are similar to the simulation results summarized in Tables 1 and 2

and Figures 1 and 2, where we found that the copula-based smoothing estimator

has smaller standard errors, in general, than those of the unstructured smoothing

estimator.

6. Discussion

The RTP has been shown to be a useful measure of the tracking abilities

of time-varying disease status and risk factors in longitudinal studies. We have

proposed a copula-based smoothing method for estimating RTPs in longitudinal

studies, either without covariates or with time-invariant categorical covariates.

Our theoretical and simulation results demonstrate that the proposed method

has major advantages over the current unstructured smoothing method. The

proposed smoothing method consists of two steps: (a) computing the raw

estimates at “design time points” based on a known copula model or a set of

candidate copula models; (b) obtaining the functional RTP estimates at any

time point by smoothing the raw estimates using a kernel smoothing method.

We provide theoretical justifications for the proposed method by deriving the

asymptotic mean squared errors of the estimators, and using a simulation study

to demonstrate its finite-sample superiority over the unstructured smoothing

method under the robust scenario that the copula model is not known, but is

selected from a set of candidate copula models. Futhermore, our application to

NGHS SBP data demonstrates that this copula-based smoothing method leads

to clinically meaningful results in epidemiological studies.

A limitation of the proposed estimation method is that it applies only when

there is no covariate. When including time-varying or continuous covariates,

we require additional modeling assumptions for the copula models so that we

can specify their dependence structures on the covariates. Further research is

warranted to establish a flexible and clinically meaningful copula model that

includes time-varying and continuous covariates. In addition, because the RTPs

are often sensitive to the tail dependence structures, the copula models considered

here may not be sufficient to handle all possible situations in practice. Therefore,

it is preferable to extend our method to include more flexible models for the

distribution functions. Examples of such an extension may include mixtures of

copulas and vine copulas. Finally, the RTPs considered both here and by Wu and

Tian (2013, 2018) are defined at two different time points. Given that there is

practical interest in studying pediatric blood pressure distributions at more than

three time points (NHBPEP (2004)), other statistical models for RTPs at three

or more time points deserve future research.
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Supplementary Material

The online Supplementary Material provides detailed proofs for Theorems

1–4.
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