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Abstract: Air pollution is driven by non-local dynamics, in which air quality at

a site is determined by transport of pollutants from distant pollution emission

sources to the site by atmospheric processes. To understand the underlying nature

of pollution generation, it is crucial to employ physical knowledge to account for

pollution transport by wind. However, in most cases, it is not possible to utilize

physics models to obtain useful information; this would require massive calibration

and computation. In this paper, we propose a method to estimate the pollution

emission from the domain of interest by using the physical knowledge and observed

data. The proposed method uses an efficient optimization algorithm to estimate the

emission from each of the spatial locations, while incorporating physics knowledge.

We demonstrate the effectiveness of the new method through a simulation study.

Key words and phrases: Alternating direction method of multipliers, dispersion,

inverse model, penalized regression.

1. Introduction

Air pollution is produced by natural and anthropogenic emissions trans-

ported via physical processes driven by wind. The pollutant can be from a variety

of sources, including traffic, fossil fuel uses, or burning natural biomass (World

Health Organization (2005)). There has been substantial progress in environ-

mental science and engineering in developing computational models to forecast

the evolution of physical processes. Notable examples include Weather Research

and Forecasting coupled with Chemistry (WRF-Chem, Fast et al. (2006)) and

Community Multi-scale Air Quality Model (CMAQ, Byun and Schere (2006))

among many others. These models use knowledge from the physical and chemi-

cal processes to construct a system of partial differential equations that compute

the transport of pollutant particles from where they are emitted to nearby areas

under given weather conditions.

The quality of the physical model prediction depends heavily on the accuracy
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of the information as to how much pollution is emitted from each geographic loca-

tion, among many model input parameters. Such pollution emission information

is often inaccurate, incomplete, or even unavailable. For example, Fu et al. (2012)

compared smoke emission rates from wild fire estimated by two most widely used

models, finding that the difference can be a factor of five to eight. It is critical

to reduce such a large uncertainty in emission information. Conceptually, this

is an ‘inverse’ problem, as opposed to a ‘forward’ problem that generates data

using given model parameters; interest is estimating physical model parameters

using model outputs and observational data. In applied mathematics and com-

putational physics, such are often referred to as Inverse problems (e.g., Biegler

et al. (2011)).

From a statistical point of view, this is closely related to the calibration of

a physics model. In this direction, Kennedy and O’Hagan (2001) solved the cal-

ibration problem using a Bayesian framework with Gaussian process. Higdon

et al. (2008) proposed an extension of Kennedy and O’Hagan (2001) to incor-

porate the high dimensionality of the computer model outputs. Liu and West

(2009) proposed combining Bayesian multivariate dynamic linear models with

Gaussian processes for a model with time-dependent functional outputs.

Another effort solves the air pollution problem by building statistical air

quality models using measurement data. Carroll et al. (1997) built a spatial-

temporal model for hourly ozone level using a Gaussian random field. Paciorek

et al. (2009) developed a practical modeling approach to solve the epidemiolog-

ical problem. Ghosh et al. (2010) studied formation and deformation of atmo-

spheric concentrations of total nitrate using empirical chemical relationships and

dynamic statistical models. Williams, Christensen and Reese (2011) estimated

the pollution source direction using a dispersion model, treating the computer

model outputs as given. Although useful, these efforts do not incorporate enough

physical knowledge as to the pollution generation process.

In utilizing a computational model to solve the air quality problem, one

makes use of observed data from a monitoring network located over the spa-

tial domain to estimate emission source information. It is crucial to include the

knowledge from physics into the modeling framework to incorporate the contin-

uously changing dynamic nature of weather conditions and pollution emission.

Physics can introduce such components into the modeling framework, but it is

only possible when it is paired with the appropriate statistical modeling.

We propose a statistical framework to exploit physical assumptions of the

model linking the computational physics model to the prediction, while obtaining



STATISTICAL-PHYSICAL POLLUTION ESTIMATION 923

the critical information about the nature of pollution generation. This interdisci-

plinary framework can also be used for solving the challenging problem of using

both physical and statistical knowledge. The major concern of our approach is

practicality in computational and operational complexity. At a conceptual level,

our work is aligned with Malmberg et al. (2008) in that we combine the statistical

model and physical knowledge.

We introduce a reduced order physics model that pairs well with a statistical

method to estimate the emission intensity surface of the area of interest. We

then describe how our physics model can be reformulated as a regression prob-

lem. We develop as well an efficient algorithm to estimate the detailed emission

information at each location as it changes over time. Our model imposes sparsity

on the estimated coefficients so that the dimensionality of the inverse problem,

as well as prior knowledge on the emission, can be properly incorporated. Our

method brings in how much pollution emission is produced so that this can be

used for policy or administrative decision purposes.

The remainder of the paper is organized as follows. Section 2 describes

the fundamental physical process regarding the transport of a pollution on a

spatial domain. Section 3 gives our statistical model. Section 4 describes an

optimization methodology to estimate the parameters. Section 5 presents the

application of the proposed method to synthetic air-quality monitoring data, in

which the results and interpretations are presented together. We conclude with

some remarks and discussion in Section 6.

2. Physical Process

In this section, we provide a brief introduction to our physical model, and

describe how it is connected to the statistical model in Section 3.

The building block of our model is the dispersion process. It has two major

ingredients, advection and diffusion. Advection is the transfer of pollutants from

one location to another, following the streamline of wind. Diffusion characterizes

the movement of pollution from a region of high concentration to one of low

concentration due to mixing by atmospheric turbulence.

Let φ(s, t) denote the pollution concentration at location s at time t. The

dispersion process can be expressed as

∂φ(s, t)

∂t
= −∇ · (u(s, t)φ(s, t)) +∇ · {K(s, t;u) · ∇φ(s, t)}+Q(s, t), (2.1)

which implies that the temporal change of pollution concentration at a location

is determined by the advection (the first term on the right hand side) and the
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diffusion (the second term). Here, u(s, t) is the velocity of wind, which can

be obtained from a numerical weather prediction model, and K is a diffusion

coefficient matrix, defining the rate of mixing of the pollutant. The term Q(s, t)

represents the rate of newly added pollution at location s and time t.

We illustrate the model in (2.1) using a simple example. Consider a one-

dimensional computational domain of three grids, s = (s1, s2, s3). We assume

that these grids are the mid-subset of a much larger domain, so that boundary

conditions do not affect the calculation. The model output over these grids at

each time point t can be expressed as a vector of length three. Now, suppose that

the initial concentration at t = 0 is zero for all s, the wind u = (1, 1, 1), uniform

diffusion K = 1/4, the spatial grid δx = 1, and time step δt = 1. The emissions

at these three grids are the same for all t, β, so Q(s, t) = Q(s) = β = (β1, β2, β3).

Using a first order Taylor expansion with finite-difference discretization (Moin

(2010)), (2.1) at the j-th grid sj at time t+ 1 can be approximated by

φ(sj , t+ 1) u φ(sj , t) + φ(sj−1, t)− φ(sj , t)

+
1

4
{φ(sj−1, t)− 2φ(sj , t) + φ(sj+1, t)}+ βj ,

for j = 1, 2, 3. Then for t = 1, 2,
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and further calculations proceed similarly.

Now we link the calculated dispersion to monitoring observations using this

formulation. We take X̃t,ij as the dispersion at ith monitoring location, si, at

time t, originating from the jth grid computed by (2.1). In (2.2), for example,

(X̃1,11, X̃1,12, X̃1,13) = (1/2, 1/4, 0); (X̃1,21, X̃1,22, X̃1,23) = (5/4, 1/2, 1/4). The

pollution concentration observation at si at time t and the associated noise are

denoted by yt,i and εt,i, respectively, for t = 1, . . . , T and i = 1, . . . , n. Denoting

the emission from grid j by βj and assuming there are p̃ grids, we have the data

generating process

yt,i =

p̃∑
j=1

X̃t,ijβj + εt,i, for i = 1, . . . , n, and t = 1, . . . , T. (2.3)

Measurements are available as the observed concentration levels similar to φ(si, t),
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but with added noise. The physical dispersion process in (2.1) is incorporated in

X̃t,ijβj , and the inherent randomness of the measurements are modeled with εt,i.

The convenience here comes from the linearity of the emission intensity β.

When calculating the dispersion, emissions need not be known. As seen above,

the dispersion from a source at s1 can be calculated with a unit vector Q(s) =

(1, 0, 0) for the desired time interval. Once the dispersion field is obtained, the

intensity can be scaled by multiplying it by β1. Similarly, dispersion from the

other two coordinates can be calculated with (0, 1, 0) and (0, 0, 1) and scaled with

β2 and β3, which makes Q(s) linear in (β1, β2, β3).

In applications, the goal is to estimate the pollution emission surface Q(s)

over the spatial domain. Without further simplifications, estimation of the pol-

lution emission over all of the spatial domain requires solving an infinite dimen-

sional problem. Accordingly, (2.1) has been used with strong assumptions on

the sources. For example, Keats, Yee and Lien (2007) considered the problem of

finding the location and emission intensity of a source, while assuming there is

only one.

Alternatively, we approximate the emission surface by using a basis repre-

sentation

Q(s) =

p∑
j=1

βjΦ(‖s− vj‖; τ) =

p∑
j=1

βjΦj , (2.4)

where βj is the emission intensity associated with jth component, and Φ(‖s −
vj‖; τ) = exp(−‖s − vj‖2/2τ2)/2πτ2 with τ > 0, a Gaussian density kernel

centered at location vj . For a given τ , the Φ(‖s−vj‖; τ) serve as pre-determined

basis functions. Then, the emission surface is approximated by a sum of p smooth

kernels, centered at the fixed grid points covering the domain, v1, . . . ,vp. The

number of kernels is chosen to be much smaller than the number of grids, p� p̃,

so it makes the problem tractable. The amount of emission contribution from

the area around vj is estimated by βj . The computation is still conducted over p̃

grids, but the emissions from the kernels are assumed to behave jointly. Figure

1 shows two basis functions at two locations, where the entire domain is divided

into 64 cells, and each cell is represented by the basis centered at the grid in

dashed-lines.

As an illustration, Figure 2 shows a series of dispersion model outputs from

two sources in the form of (2.4) marked by the red circles, for three consecutive

hours. The arrows represent the wind field changing over time, where the color

contours depict φ(s, t) due to the emission concentration. In the following section,
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Figure 1. Illustration of our model approach. Dashed grid show the location of centers
of basis functions, eight in both horizontal and vertical direction, where two panels show
the two sites located at the two grid points of the domain.

(a) (b) (c)

Figure 2. A series of model outputs depicting the dispersion from two sources marked
by the red circles, where the snapshots are taken at hour 1 to 3 (a-c). The arrows in the
background indicate the changing wind field.

we illustrate how (2.3) and (2.4) are paired to solve our problem.

3. Model

In this section, we present our model extended from equations (2.3) and (2.4).

As illustrated in the discussion following equation (2.4), we divide the domain of

interest into p sources. We further assume that the emission rate of each source

has a diurnal pattern according to the 24-hour cycle of the day. Hence, for

j = 1, . . . , p, there is a vector of intensity parameter β(j) = (βj,1, . . . , βj,24). The

dispersion emitted from source j and located at station i at time t, calculated

using (2.1), is denoted by Xt,ij . Following these assumptions, we have

yt,i =

p∑
j=1

Xt,ijβj,h(t) + εt,i, (3.1)
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where h(t) = (t mod 24)+1. This implies that each measurement is represented

as a sum of p source location contributions, each of which is further decomposed

into sum of 24 components. A similar idea was adopted in the classical chemical

mass balance model (Christensen and Gunst (2004)), but in a simpler form. The

error terms εt,i are assumed to be mutually independent.

We stack the hourly emission coefficients for each location, β(j), in a p× 24

matrix β such that jth row of β is β(j) β = [β(1)>, . . . ,β(24)>]> = (βj,k).

Although this problem can be solved with multivariate, multi-response linear

regression, there are issues due to high dimensionality. In most practical appli-

cations, the number of possible emission locations, p, is high, and estimation of

hourly emissions requires us to fit p×24 variables. On the other hand, we expect

to have a small number of samples, n× T . Simulating pollution dispersion at a

high resolution requires substantial computational effort, and pollution sensors

are often costly, which leads to small T and n.

In a setting where the number of variables is of the same order of magnitude

as the number of samples, we have to utilize prior knowledge and enforce a spe-

cial structure on the estimated coefficients. This study was done with emphasis

on urban spaces, where two patterns stand out (Gurjar et al. (2004); Morawska

(2006); Saarikoski et al. (2008)): most locations emit negligible amounts of pol-

lution; major pollution sources are traffic (motor vehicles, airports and seaports)

and industrial areas. They produce pollution in different hourly patterns, and

we formulate our model based on them.

Based on the first pattern, β(j) should be zero for many j since most

locations to do not generate significant pollution. The rows of β should be

sparse. We enforce this assumption with the group lasso penalty (Yuan and Lin

(2006); Simon and Tibshirani (2012)), by adding a penalty term proportional to∑p
j=1 ‖β(j)‖2, where ‖·‖2 is the Euclidean norm. The sub-level sets of the group

lasso penalty function contain coefficients for which only a few of the rows are

non-zero, and hence this penalty ‘sparsifies’ the solution with respect to the rows

of β. The group lasso is commonly used in high-dimensional problems where

coefficients are expected to be active (i.e. non-zero) in groups of variables.

According to the second pattern, there are different sources of pollution, but

the same sources tend to have similar hourly patterns. Traffic pollution occurs

commonly around the main highways, usually spikes in the morning and evening

during the rush hours, and is generally constant otherwise. Industrial areas often

have emissions that peak around noon, and there are certain industrial areas (e.g.

facilities that are not shutdown during the night) that emit a constant level of
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pollution throughout the day. Ideally, locations’ hourly pollution patterns are

known in advance, and these can be enforced as conditions on the estimated

coefficients, β. In practice, it is usually difficult to know which regions might

have which patterns, especially when the number of potential emission sources

is high. We will assume that there are a few unknown daily patterns, and each

location follows one of these patterns or a combination of them (e.g. emissions

from locations that have power plants with nearby highways might be given by

the sum of two daily patterns). Unknown daily patterns can also be thought as

latent factors which generate the emission coefficients. In this setting, we expect

the rows of β to be linearly dependent and that rank(β) should be small. We

enforce this assumption with a nuclear norm penalty, which encourages sparsity

in singular values (Candès and Recht (2009)). For this, first observe that for an

p×m matrix A with (p ≥ m), its nuclear norm ‖ · ‖∗ is given by

‖A‖∗ =

m∑
l=1

σl,

where σl is the lth singular value ofA, lth element of diagonal matrix of Σ, defined

by the singular value decomposition (SVD) of A = UΣV >. Hence this penalty

controls linear dependencies among the rows of β, β(j). Example 1 demonstrates

how the penalty on singular values works in practice.

Example 1. We display sets of coefficients obtained by solving the nuclear norm

penalized regression problem:

min
β
n−1‖y −Xβ‖2F + λnuc‖β‖∗,

where ‖ · ‖F is the matrix Frobenius norm, y ∈ RT×24,X ∈ RT×p, and β ∈ Rp×24

are the response, predictor, and coefficient matrices, respectively. These variables

bear no relationship to other y,X and β used in the remainder of the paper. The

term λnuc ≥ 0 is a tuning parameter that controls the effect of the nuclear norm

penalty; as it increases, the minimizer is forced to have more linear dependency.

We created a toy example with p = 12 and T = 200 and generated observations

from (3.1). Other details, such as the choice of X and ε, are relegated to the

Supplementary Material. The true coefficients, β, and the estimates for three

different choices of λnuc are given in Figure 3. The true coefficients are given

by the set of three vectors: βType1 = (1, . . . , 1)>, βType2 is a concave quadratic

function that peaks at the 12th hour, and βType3 is a vector that contains zeroes

except for hours 6-8 and hours 15-17. For each type, four β’s were generated

which gives β with p = 12 when stacked.
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Figure 3. Effect of the nuclear norm penalty. Figure 3a displays the values of β
coefficients for each type. Figures 3b, 3c, and 3d display the fitted β obtained using
different λnuc, where each line is one row of β̂ and the colors display the type of the
coefficient. As the weight of the nuclear norm penalty increases, so does the linear
dependence between the estimates.

The effects of the nuclear norm penalty on the fitted coefficients are depicted

in Figure 3. Coefficients obtained with penalization tend to be more similar, as

we force the rows of β to be more linearly dependent. The statistical benefits of

the penalty are obvious: the estimate with no penalization has a high variance,

and a high estimation error as in Figure 3b. When we introduce the nuclear norm

penalty term, the estimates have lower matrix rank and since the true coefficients

also have a low-rank, this results in estimates with low variance and estimation

error, as in Figure 3c. We also introduce some bias: with λnuc = 0.25, Type 2

locations’ coefficients are underestimated, but the estimates are much closer to

the truth than the results obtained without any penalties. When the penalty

term is very large, λnuc = 1.00, β̂ has rank one, and all of the coefficients are

given by the same vector multiplied by a scalar, as seen in Figure 3d, where rows

of β̂ have the same shape. This is the case where we introduce massive bias by

significantly shrinking the variance of the estimates.

Remaining assumption in our model is that each source can only add emission

to the ambient air. Any decay or deposit is assumed to be negligible and hence

is absorbed in the error term. Thus we force all of the emission coefficients to be

non-negative.
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We combine these regularization penalties with a least-squares loss to obtain

the objective function

min
βjk≥0

1

nT

T∑
t=1

n∑
i=1

yt,i − p∑
j=1

Xt,ijβj,h(t)

2

+ λgl

p∑
j=1

‖β(j)‖2 + λnuc‖β‖∗, (3.2)

where λgl ≥ 0 and λnuc ≥ 0 are tuning parameters for the group lasso and nuclear

norm penalties, respectively. As before, h(t) = (t mod 24) + 1. The objective

function is a sum of convex functions, and hence is convex. The non-negativity

constraint is also convex, resulting in a convex problem.

4. Estimation

Multiple non-differentiable components in (3.2) make our problem challeng-

ing. For efficient optimization, we propose an Alternating Direction Method

of Multipliers (ADMM) based approach (Boyd et al. (2010); Parikh and Boyd

(2014)). ADMM is built to minimize objective functions with separable compo-

nents. The algorithm works in a distributed and iterative manner.

There are four main components in (3.2): sum of squared errors, group Lasso

penalty, nuclear norm penalty, nonnegative constraints. In this regard, (3.2) is

rewritten as

minimize fmse(β) + fgl(β) + fnuc(β) + fnn(β), (4.1)

where

fmse(β) = (nT )−1
T∑
t=1

n∑
i=1

yt,i − p∑
j=1

Xt,ijβj,h(t)

2

,

fgl(β) = λgl

p∑
j=1

‖β(j)‖2,

fnuc(β) = λnuc‖β‖∗,

and fnn(β) =
∑p

j=1

∑24
k=1 δR+

(βj,k), where

δR+
(z) =

{
0 if z ≥ 0,

+∞ otherwise.

Intuitively, our algorithm separately updates the solution to improve in

fmse, . . . , fnn, and then gradually pulls the solutions toward their average while

improving in each direction. The optimization is summarized in Algorithm 1.

The detailed effect of each step in Algorithm 1 is deferred to the Supplementary
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Algorithm 1 ADMM algorithm to obtain the estimator.

Set the initial estimates β
(1)
mse, β

(1)
gl , β

(1)
nuc, β

(1)
nn , β̄(1);

Set the initial differences u
(1)
mse,u

(1)
gl ,u

(1)
nuc,u

(1)
nn .

for k = 1, . . . , 24 do . Reshape data
for i = 1, . . . , n do

X(i, k)← {Xt,ij : (t mod 24) = k − 1};
y(i, k)← {yt,i : (t mod 24) = k − 1};

end for
X(k)> ← [X(1, k)>, . . . ,X(n, k)>];
y(k)> ← [y(1, k)>, . . . ,y(n, k)>] ;

end for
for m = 1, . . . ,M do . ADMM Iterations

for k = 1, . . . , 24 do

β
(m+1)
mse,(:,k) ←

(
X(k)>X(k) +

1

2ρ
Ip×p

)−1
X(k)>y(k) +

1

2ρ

(
β̄
(m)
:,k − ρu

(m)
mse(k)

)
;

. MSE
end for

β
(m+1)
gl ← sign(β̄(m) − u(m)

gl )

(
1− λgl

‖β̄(m) − u(m)
gl ‖2

)
1(β̄(m) − u(m)

gl > λglρ);

. Group Lasso

U (m),Σ(m),V (m) ← SVD(β̄(m) − u(m)
nuc );

Σ̃(m) ← (Σ(m) − ρλnucIp×p)+;

β
(m+1)
nuc ← U (m)Σ̃(m)V (m)>; . Nuclear Norm

β
(m+1)
nn ← (β̄(m) − u(m)

nn )+; . Nonnegative Projection

β̄(m+1) ←
(
β
(m+1)
mse + β

(m+1)
gl + β

(m+1)
nuc + β

(m+1)
nn

) 1

4
; . Consensus

for g = {mse, gl,nuc,nn} do

u
(m+1)
g ← u

(m)
g +

(
β
(m+1)
g − β̄(m+1)

)
. Dual Variables

end for
end for

Material.

The original problem in (3.2) is complex and requires a semidefinite program.

Decomposition by (4.1), however, makes the minimization trivial. All of the

proximal steps can be calculated in an expeditious manner, which leads to a

very efficient and fast algorithm. This is a considerable benefit because the

entire algorithm must be executed repeatedly for finding the appropriate tuning

parameters. Furthermore, the memory requirement is only linear in the number

of variables as the algorithm only tracks the parameters themselves.

ADMM algorithms do not generally have convergence guarantees (Tran-

Dinh and Cevher (2015)). By choosing a proper step size, however, those is-
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sues can be mitigated. For our problem, ρ needs to be chosen proportional to

the minimum eigenvalue of the Hessian of fmse. We can achieve that by setting

ρ ≥ (nT )−1
∑24

k=1 λmin(X(k)>X(k)) where λmin(·) is the minimum eigenvalue

and X(k) is the observations in X that correspond to hour k, whose definition

can be found in Algorithm 1.

This condition is required for convergence. However, the speed of conver-

gence with this choice of ρ can be excruciatingly slow. In our analysis, we have

observed that by adding a step-size selection procedure, we can empirically ensure

convergence and a decent speed of convergence. To avoid an extra computational

burden during the step-size selection, we first create a list of step-size candidates

from a geometric sequence. In the first 20 steps of the algorithm, all candidates

for ρ are tried and the one that gives the largest reduction for the cost function

is chosen. In the following steps, only the ρ that was chosen in the last round,

and four other ρ candidates that are the closest in value to the previously chosen

ρ are tested in the step-size search. By limiting the search, we avoid extensive

computation, which results in faster convergence.

There are two tuning parameters in the objective function, λgl and λnuc. We

employ a brute force search over a grid of possible values, and use cross validation

to estimate the sample error for each parameter choice. Choosing large values for

λgl or λnuc forces all the variables to be zero. Using Karush-Kuhn-Tucker (KKT)

conditions, it can be shown that the variables are reduced to 0 when λgl is larger

than maxk λ̄gl,k, where λ̄gl,k = ‖X(k)>y(k)‖2. Similarly, the variables are shrunk

to 0 when λnuc is larger than
√
λmax(Z>Z) where Z:,k = X(k)>y(k).

Using this, we choose sequences dλgl
,dλnuc

for λgl and λnuc, whose ranges are

exp
(
−5, log

(
maxk λ̄gl,k

))
and exp(−5, log(

√
λmax(Z>Z))), respectively. Then,

the grid for λgl, λnuc candidates is given by dλgl
×dλnuc

. When a brute force grid

search cannot be afforded due to time constraints, sequential Kriging optimiza-

tion or global Bayesian optimization methods can be used to find the best tuning

parameters (Huang et al. (2006); Snoek et al. (2012)).

5. Case Study

In this section, we illustrate our methodology and evaluate the performance

of our proposed estimator with synthetic data. We considered a spatial domain

of size 40 km by 40 km, divided into 64 potential source locations (8 × 8), which

gives each grid a 5 km × 5 km resolution. We generated 14 day-long meteo-

rological conditions by using a stochastic Fourier series to simulate atmospheric
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Figure 4. Station locations. The gridded lines indicate the location of the 64 source
locations, where × signs indicate the 16 monitoring locations.

turbulence. In a data setting, one can use a numerical weather prediction model

(e.g., Skamarock et al. (2008)). The details on simulated atmospheric turbulence

are deferred to the Supplementary Material.

The dispersion model calculates the transport from each pollution source to

monitoring stations by using the simulated wind condition. We considered 16

monitoring stations, whose locations are depicted in Figure 4, and considered 24

levels for diurnal cycle, based on the time of the day. This setup gives n×T = 16×
336 = 5376 observations, each of which is associated with 1536 = 64×24 = p×24

variables and hence β ∈ R64×24. The number of variables is comparable to the

sample size, and any method that does not employ appropriate regularization is

expected to overfit the data.

We assumed that 16 sources are active among the 64 candidates, which

resulted in the simulated β∗ ∈ R64×24, in which only 16 rows of β∗ have non-zero

elements. We divided the 64 source candidates into groups A,B, and C. Half

of the active pollution sources were classified as group A, and were assumed to

be constantly active for all 24 hours, β∗(j)> = {1, . . . , 1} for all j ∈ A. The

remaining eight active sources were assigned to group B, and were fixed to have

a diurnal cycle which steadily increases from the morning (6 AM) to noon (12

PM), then steadily decreases until 6 PM. Sites in group C, produced no pollutants,

β∗(j) = 0 for j ∈ C. The locations of active 16 pollution sources were fixed for

all simulations. They were randomly placed, and their daily average emission is

depicted in Figure 5. We also tested the robustness of our simulation studies by

changing the pollution sources, and the results were very similar.

The design matrix X and coefficients β were determined through the cal-
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Figure 5. Surface of daily average emission in the simulation.

culated weather conditions and the fixed pollution sources. We then simulated

data from the linear regression model

yi = x>i β
∗ + εi, εi ∼ N (0, IT ) ,

where x>i are computed from the dispersion model in (2.1). The design matrix

was also scaled to have average variance of 1 for its columns, this gives a signal

to noise ratio close to 1.

We compared three methods: Non-negative Group Lasso (GL), the penalized

least-squares estimator with a group L2-penalty and a non-negativity condition

on the coefficients; Non-negative Nuclear-Norm (NN), the penalized least-squares

estimator with a nuclear norm penalty and a non-negativity condition on the

coefficients; Our method (GL+NN).

The GL method is simply our estimator with λnuc = 0; similarly the estima-

tor for the NN method can be obtained by setting λgl = 0. All estimators can be

fit using ADMM. To determine the tuning parameters for λ = {λgl, λnuc}, we ran

100 separate simulations and stored the λ chosen by 10-fold cross validation. The

sequence of candidate λ were obtained from the suggested grid given in Section

3. In the simulations, λgl was fixed as the average of the 100 λgl that were chosen

in the separate simulations; we repeated the same procedure for choosing λnuc.

Two performance metrics were compared: L2 loss, ‖β∗ − β̂‖2F ; L1 loss,∑
j ‖β∗(j) − β̂(j)‖1. We also calculated these performance measures for sub-

sets of β with respect to their groups.

The design matrix used in the simulations, X, was heavily correlated. This

is common in our methodology, because dispersion from two nearby sites to

one monitoring location are driven by the similar wind field, and hence behave

similarly. Possibly as a result of this, in all 100 simulations, all estimators were
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Table 1. Performances of the Estimators Based on L1 Loss. Standard errors are given
in parentheses.

Method
∑

j |∆(j)|
∑

j∈A |∆(j)|
∑

j∈B |∆(j)|
∑

j∈C |∆(j)|
GL 36.89 (0.19) 16.41 (0.09) 9.61 (0.07) 10.86 (0.12)
NN 41.51 (0.25) 13.39 (0.11) 11.74 (0.09) 16.37 (0.14)
GL+NN 30.65 (0.19) 12.43 (0.08) 8.42 (0.06) 9.79 (0.12)

Table 2. Performances of the Estimators Based on L2 Loss. Standard errors are given
in parentheses.

Method
∑

j ∆(j)2
∑

j∈A∆(j)2
∑

j∈B∆(j)2
∑

j∈C ∆(j)2

GL 3.94 (0.03) 2.20 (0.02) 1.17 (0.01) 0.57 (0.01)
NN 3.27 (0.04) 1.21 (0.02) 1.27 (0.02) 0.79 (0.01)
GL+NN 2.43 (0.02) 1.23 (0.02) 0.81 (0.01) 0.39 (0.01)

●

●

●

●

●

●

●

●

●

All A

B C

25

30

35

40

45

50

10

12

14

16

18

7

9

11

13

8

12

16

20

GL NN GL+NN GL NN GL+NN

GL NN GL+NN GL NN GL+NN
Method

L1
 E

rr
or

Figure 6. Boxplot of L1 estimation errors of various estimators.

more conservative, smallerλ values, as these fits tended to have lower prediction

error.

For each setting, we present the average of the performance measures based

on 100 simulations in Tables 1 and 2. We denote the estimation error for source j

as ∆(j) = β∗(j)−β̂(j). A boxplot of the L1 and L2 losses for different estimators

is given in Figures 6 and 7.
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Figure 7. Boxplot of L2 estimation errors of various estimators.

The simulation results show that the proposed estimator using both nuclear

norm and group Lasso penalties overperformed other estimators that made use

of only one of them. In Tables 1 and 2, the proposed estimator had lower L1

and L2 loss uniformly across all groups of coefficients. This is an expected result

because the true coefficients were sparse and had low rank.

Considering the performances across each coefficient group, our estimators

had comparable errors in group C to that of GL. Upon further analysis, we found

that ours tended to pick extra sources since coefficients were forced to be similar

via the nuclear norm. Accordingly, it was common to see cases where a polluted

location’s coefficients “bleed onto” nearby grids. From the observation stations’

point of view, two nearby sources had similar levels of dispersion. As a result, it

became difficult to detect which one of nearby sources was the real polluter.

Comparing the nuclear norm-based estimator to GL, NN produced less-

sparse estimates and wrongly selected some of the inactive regions. This can

be seen by contrasting the proportion of estimation errors in each group over the

total error; 24% of NN’s total L2 loss is from the inactive variables (group C),
whereas that number is 14% for GL. As a side note, although these small errors

caused NN to have larger L1 loss compared to GL, since the magnitudes of these

estimates were very small, NN had less L2 loss in total.
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With regard to groups with active coefficients, GL had lower error in group

B but higher in group A, since NN can generalize what it learns from one region

to another, unlike GL.

As a consequence of the non-negativity constraint on the coefficients, the

NN estimator returned sparse solutions (Slawski and Hein (2013)). The median

number of non-zero coefficients was 56, compared to 51 for the group Lasso and

53 for our estimator. This also explains why the NN errors are not significantly

worse compared to that of GL or our estimator.

All of the active emission sources were estimated to be active; hence the

number of false negatives was zero for all methods across all simulations.

6. Discussion

We have proposed a hybrid method to integrate the physical knowledge and

statistical methodology to solve a challenging estimation problem. Rather than

incorporating more complex physics equations and parameters, we simplified the

physical assumptions to utilize available resources and data. This simplification

leads to a customized physics model to pair better pair with statistical methods.

A statistical model to incorporate the prior domain knowledge and information

was proposed, and an efficient algorithm was proposed to solve the resulting

optimization problem.

As to future research, when interest is in exploring the uncertainties asso-

ciated with the attendant physics, a natural extension of our work would be a

Bayesian methodology incorporating the prior physical knowledge and previous

emission inventory data. There exist more uncertainties related to the weather

model output and other physical parameters. Although it is known that such

uncertainties can affect the accuracy of the final inference, it is challenging to

quantify their impact. A thorough analysis to incorporate such uncertainties

can be useful and informative. An extension of our method to the case where

the independence assumption is violated can be considered. Research effort is

needed to incorporate the dependency structure through spatio-temporal meth-

ods. Such methodology needs to address the challenges arising due to estimation

of the covariance matrix of the residuals.

Supplementary Materials

The details regarding the atmospheric turbulence simulation, the simulation

setting for Figure 3, and the derivations for the ADMM algorithm can be found
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in the Supplementary Material.
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