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Abstract: We develop directional tests to compare incomplete undirected graphs

in the general context of covariance selection for Gaussian graphical models. The

exactness of the underlying saddlepoint approximation is proved for chordal graphs,

and leads to exact control of the size of the tests, given that the only approximation

error involved is from the numerical calculation of two scalar integrals. Although

exactness is not guaranteed for non-chordal graphs, the ability of the saddlepoint

approximation to control the relative error means the proposed method outperforms

its competitors even in these cases. The accuracy of our proposal is verified using

simulation experiments under challenging scenarios in which inference via standard

asymptotic approximations to the likelihood ratio test and some of its higher-order

modifications fails. The directional approach is used to illustrate the assessment of

Markovian dependencies in a data set from a veterinary trial on cattle. A second

example with microarray data shows how to select the graph structure related to

genetic anomalies due to acute lymphocytic leukemia.

Key words and phrases: Covariance selection, exponential family, higher-order

asymptotics, likelihood ratio test, saddlepoint approximation, undirected graph.

1. Introduction

Undirected graphical models have gained considerable success in a variety of

fields, including medicine, social sciences, and physics, owing to their flexibility

and easy interpretation. Typically, these probabilistic graphs describe complex

multivariate distributions of variables (nodes) using the product of simpler sub-

models, each referred to a low-dimensional subset of the graph (clique). Book-

length expositions on the topic can be found in Lauritzen (1996), Borgelt and

Kruse (2002), and Whittaker (2009).

Today, applications of graphical models are challenged by the growth in

size and sophistication of modern data. An important question is inferring the

structure of large graphs, that is the underlying connections (edges) between

the variables under examination. This task is well known in the literature as

covariance selection. A popular class of graphical models is that of decomposable

models, which describe graphs that contain no chordless cycles of length greater

than three. These are called chordal, decomposable, or triangulated graphs
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(Lauritzen, 1996, Sec. 2.1).

For convenience, a graphical model is often expressed using the exponential

family form. The Gaussian distribution is particularly suitable for continuous

responses, because conditional independence in the graph can be characterized

easily in terms of assumptions on model parameters (see Section 3.1).

Likelihood-based inference for covariance selection is discussed in Salgueiro,

Smith and McDonald (2005) in the context of testing exclusion of single edges in

complete graphs, that is fully saturated models. Córdoba, Bielza and Larrañaga

(2020, Sec. 7) review general edge exclusion tests, acknowledging the poor quality

of the usual chi-squared approximation to the distribution of the likelihood

ratio statistic. They mention that, when testing the removal of r edges, the

exact distribution is the product of r Beta random variables (Lauritzen, 1996,

Prop. 5.14). However, this result has not received much attention in the literature

and seems of limited practical utility. Another strategy is to iteratively perform

exclusion tests for single edges based on partial correlation coefficients, with some

adjustment needed to account for multiple comparisons.

In this paper, we develop likelihood-based directional tests for covariance

selection in Gaussian graphical models, possibly incorporating a priori restric-

tions on the graph structure. Specifically, our method allows one to test hy-

potheses that involve removing sub-graphs with multiple edges from complete

or incomplete graphs. We prove the exactness of the underlying saddlepoint

approximation for chordal graphs, and run extensive Monte Carlo simulations

to show the null uniform distribution of the directional p-value in challenging

scenarios, even when the number of nodes is larger than the sample size. In

those settings, the classical approach based on the likelihood ratio statistic or

some of its higher-order modifications (Skovgaard, 2001) breaks down. We also

show results for a non-chordal graph, where the directional inference is confirmed

to be more accurate than that of its competitors. A much simpler problem in

covariance selection, limited to testing an incomplete graph versus the saturated

model, is studied by Davison et al. (2014, Sec. 5.3), and is shown to be exact in

Huang, Di Caterina and Sartori (2022). Our extension involves both theoretical

and computational innovations.

Directional inference on a vector-valued parameter of interest was introduced

by Fraser and Massam (1985) in nonnormal linear regression models, and then

generalized in Skovgaard (1988). Substantial progress from both a methodological

and computational perspective was made by Davison et al. (2014), where the

computation of the directional p-value by one-dimensional numerical integration

proved especially accurate in several settings. The procedure was extended

from linear exponential families to nonlinear parameters of interest in general

continuous models by Fraser, Reid and Sartori (2016). In addition to its accuracy,

the directional approach has been found to coincide with exact results in several

classical situations (McCormack et al., 2019).
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Section 2 reviews the technique of directional inference for exponential family

models. Section 3 presents the new directional testing method for covariance

selection. Here, we prove the exactness of the saddlepoint approximation for

decomposable Gaussian graphical models in chordal graphs, and develop specific

notation also valid in the non-chordal case. A number of computational innova-

tions are presented in Section 4. Simulation results comparing the accuracy of the

various methods are shown in Section 5, and Section 6 reports applications to data

from a veterinary trial and from a microarray study of altered gene expressions

in acute lymphocytic leukemia. Section 7 concludes the paper.

2. Background

2.1. Likelihood ratio tests

Assume that y follows a parametric distribution f(y; θ), with θ ∈ Rp. The

log-likelihood function ℓ(θ) = ℓ(θ; y) = log f(y; θ) is maximized by the maximum

likelihood (ML) estimator θ̂ = θ̂(y). Possibly after a reparameterization, the

model parameter can be typically expressed as θ = (ψ, λ), where ψ(θ) is the d-

dimensional component of interest involved in the hypothesis Hψ : ψ(θ) = ψ. We

write θ̂ψ = (ψ, λ̂ψ) to denote the constrained ML estimator of θ when the null

Hψ is true.

Under usual regularity conditions (see, e.g., Cox and Hinkley, 1974, Sec. 9.3),

the first-order approximation to the distribution of θ̂ is normal with mean θ and

estimated covariance matrix j(θ̂)−1, with j(θ) = −∂2ℓ(θ)/∂θ∂θ⊤ the observed

Fisher information matrix. The hypothesis Hψ can be tested using the likelihood

ratio statistic

w(ψ) = 2{ℓ(θ̂)− ℓ(θ̂ψ)} , (2.1)

which is invariant to reparameterizations, and has an approximate χ2
d distribution

under the null hypothesis Hψ, where d is the dimension of the parameter of

interest ψ.

Skovgaard (2001) introduced two modifications to (2.1),

w∗(ψ) = w(ψ)

{
1− log γ(ψ)

w(ψ)

}2

and w∗∗(ψ) = w(ψ)− 2 log γ(ψ) , (2.2)

and showed that the limiting distribution of both test statistics based on the

correction factor γ(ψ) is also χ2
d. These modifications were obtained by analogy

with the derivation for scalar parameters of interest of modifications to the square

root of w(ψ), the so-called r∗ approximation of Barndorff-Nielsen (1986), further

discussed in Fraser, Reid and Wu (1999). Skovgaard (2001) emphasized not only

the simplicity of computation of the adjustment, especially when compared with

Bartlett (1937) correction using moments, but also its large-deviation properties.
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Tests based on w(ψ), including w∗(ψ), w∗∗(ψ), and the Bartlett-corrected

w(ψ), provide omnibus measures of departure of the data from Hψ: the resulting

p-value averages the deviations from the null hypothesis in all potential directions

of the parameter space. In the next section, we review the approach of Davison

et al. (2014, Sec. 3) for measuring the departure from Hψ only in the direction

indicated by the observed data. For a more complete exposition of the difference

between omnibus and directional tests, see Fraser and Reid (2006).

2.2. Directional tests in linear exponential families

Focusing on hypotheses that are linear in the canonical parameter θ of an

exponential family model, we summarize here the procedure detailed in Davison

et al. (2014, Sec. 3), which involves two steps of dimensionality reduction.

Denoting by u = u(y) the sufficient statistic for the p-dimensional vector

parameter θ, we can consider the marginal density of u and the corresponding

log-likelihood function ℓ(θ;u) = θ⊤u−K(θ), which takes the standard exponential

family form. Consistent with the notation established by Davison et al. (2014)

and Fraser, Reid and Sartori (2016), we define the observed data y0 = (y01, . . . , y
0
n)

and the corresponding observed value of the sufficient statistic u0 = u(y0). Given

the centered statistic s = u− u0 with observed value s0 = u0 − u0 = 0, the tilted

log-likelihood function is

ℓ(θ; s) = θ⊤s+ ℓ0(θ) , (2.3)

where ℓ0(θ) = ℓ(θ;u = u0).

When the linearity in θ applies to both the interest and the nuisance param-

eters, meaning θ = (ψ, λ), expression (2.3) can be written as

ℓ(θ; s) = ψ⊤s1 + λ⊤s2 + ℓ0(ψ, λ) , (2.4)

where ψ and s1 have dimension d. The first dimensionality reduction from p to

d follows directly from conditioning on the component of the statistic sufficient

for λ. Indeed, the conditional distribution of s1 given s2 depends on ψ only, and

is still of exponential family form (cf., Lehmann and Romano, 2005, Lem. 2.7.2).

Such a conditioning translates into fixing θ̂ψ = (ψ, λ̂ψ) at the observed value

θ̂0ψ = (ψ, λ̂0
ψ).

The saddlepoint approximation for this conditional distribution is typically

very accurate (Barndorff-Nielsen and Cox, 1979). Following, for instance, Pace

and Salvan (1997, Sec. 10.10.2), we can illustrate how the saddlepoint approx-

imation is obtained as the ratio of the saddlepoint approximation for the joint

density of s = (s1, s2) and the saddlepoint approximation for the marginal density

of s2. Indeed, the former can be expressed as

exp[{θ − θ̂(s)}⊤s+ ℓ0(θ)− ℓ0{θ̂(s)}]
(2π)p/2| − ℓ0θθ{θ̂(s)}|1/2

=
exp[ℓ(θ; s)− ℓ{θ̂(s); s}]
(2π)p/2|jθθ{θ̂(s)}|1/2

, (2.5)
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where θ̂(s) solves in θ the score equation from the log-likelihood (2.4), s =

−ℓ0θ(θ) = −∂ℓ0(θ)/∂θ, jθθ(θ) = −∂2ℓ(θ; s)/∂θ∂θ⊤ = −∂2ℓ0(θ)/∂θ∂θ⊤ = −ℓ0θθ(θ),
and |A| denotes the determinant of the square matrix A. Similarly, the saddle-

point approximation for the marginal distribution of s2 is

exp[{λ− λ̂ψ(s2)}⊤s2 + ℓ0(θ)− ℓ0{θ̂ψ(s2)}]
(2π)(p−d)/2| − ℓ0λλ{θ̂ψ(s2)}|1/2

=
exp[ℓ(θ; s)− ℓ{θ̂ψ(s2); s}]
(2π)(p−d)/2|jλλ{θ̂ψ(s2)}|1/2

, (2.6)

where θ̂ψ(s2) = (ψ, λ̂ψ(s2)) is the solution to the score equation from the log-

likelihood (2.4), seen as a function of λ for fixed ψ, s2 = −ℓ0λ(θ) = −∂ℓ0(θ)/∂λ,
and jλλ(θ) = −∂2ℓ(θ; s)/∂λ∂λ⊤ = −∂2ℓ0(θ)/∂λ∂λ⊤ = −ℓ0λλ(θ). The ratio of

(2.5) and (2.6) when s2 = 0 gives the following saddlepoint approximation for

the density of s1 given s2 = 0, also called double saddlepoint approximation, for

the reduced model in Rd:

h(s;ψ) = c exp[ℓ(θ̂0ψ; s)− ℓ{θ̂(s); s}] |jθθ{θ̂(s)}|
−1/2

, s ∈ L0 , (2.7)

where the normalizing constant c includes all factors not depending on s1, and L0

is the d-dimensional plane described by setting s2 = 0, or equivalently θ̂ψ = θ̂0ψ.

The relative error of the approximation (2.7) is typically of order O(n−1), with n

denoting the number of independent observations, but it reduces to O(n−3/2) after

re-normalization. For a comprehensive review of saddlepoint approximations and

their statistical applications, see Butler (2007). The following example with a

scalar parameter of interest (d = 1) illustrates the use of the tilted log-likelihood

function (2.4) in the derivation of the saddlepoint approximation (2.7).

Example 1 (Univariate normal distribution). Let y1, . . . , yn be a random

sample from a N(µ, σ2) distribution. The log-likelihood function in exponential

family form is

ℓ(θ) = ℓ(ψ, λ) = ψu1 + λu2 +
n

2
log (−2ψ) +

nλ2

4ψ
,

where θ = (ψ, λ) = (−1/2σ2, µ/σ2) is the canonical parameter and u = (u1, u2) =

(
∑

i y
2
i ,
∑

i yi) is the minimal sufficient statistic with observed value u0 = (u0
1, u

0
2).

The tilted log-likelihood (2.4), expressed as a function of the centered sufficient

statistic s = u− u0, is

ℓ(θ; s) = ℓ(ψ, λ; s) = ψ(s1 + u0
1) + λ(s2 + u0

2) +
n

2
log (−2ψ) +

nλ2

4ψ
.

After some algebra, the unnormalized saddlepoint approximation (2.7) in L0 =

{(s1, s2) : s1 > −u0
1 + (u0

2)
2/n, s2 = 0} can be written as
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h(s;ψ) ∝ exp

[
ψ

{
s1 + u0

1 −
(u0

2)
2

n

}]{
s1 + u0

1 −
(u0

2)
2

n

}(n−1)/2−1

, (2.8)

where u0
1 − (u0

2)
2/n is n times the unadjusted sample variance. In this simple

case, the saddlepoint approximation is exact: (2.8) coincides with the kernel of

a χ2
n−1/(−2ψ) distribution, which is the exact conditional distribution of s1 =

u1 − u0
1 given s2 = u2 − u0

2 = 0. This is consistent with the more general result

in McCormack et al. (2019).

The second dimensionality reduction from d to one, not needed in the previ-

ous example, consists of constructing a one-dimensional conditional distribution

for s along the direction indicated by the data. With this aim, denote by sψ the

expectation of s under model (2.7) if Hψ holds, that is, the value of s for which

θ = θ̂0ψ is the constrained ML estimate

sψ = −ℓ0θ(θ̂0ψ) =
(
−ℓ0ψ(θ̂0ψ)

0

)
, (2.9)

depending on the observed data point y0. The line L∗ in L0, which joins the

observed value s0 = 0 and the expected value sψ, can be parameterized by a

scalar t ∈ R as follows:

s(t) = sψ + t(s0 − sψ) = (1− t)sψ ,

and, consequently, the ML estimate θ̂(s) in (2.7) can vary with s(t). The

approximation (2.7) constrained to L∗ is used to compute the p-value, the

probability that s(t) is as far or farther from sψ than is the observed value s0 = 0.

The directional p-value, which measures the deviation from Hψ along the line L∗,

is thus

p(ψ) =

∫ tsup

1
td−1h{s(t);ψ} dt∫ tsup

0
td−1h{s(t);ψ} dt

, (2.10)

where t = 0 and t = 1 correspond respectively to s = sψ and to the observed

value s0 = 0. The factor td−1 results from the Jacobian of the transformation

from the variable s ∈ L0 to polar coordinates (∥s∥, s/∥s∥) (Davison et al., 2014,

Sec. 3.2). The upper limit of the integrals in (2.10) is the largest value of t for

which the ML estimator corresponding to s(t) exists, and in some situations can

be determined analytically. The directional p-value in one dimension gives the

probability to the right of the observed value, conditional on the observed value

being to the right of the expected value under Hψ, that is, the probability in the

right tail of the distribution. In higher dimensions the p-value is the probability

of being “further out” on the line connecting the expected value under Hψ to the

observed value, conditional on being on that line (Davison et al., 2014, Sec. 2).
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As in Davison et al. (2014, Sec. 3.2), the relative error of formula (2.10)

inherits that of the saddlepoint approximation (2.7) after re-normalization, so is

typically O(n−3/2) in continuous models. When the re-normalized saddlepoint

approximation is exact, then the directional test is also exact, because the re-

normalization is automatically incorporated in (2.10). McCormack et al. (2019)

established this exactness for a number of tests for multivariate normal models,

and Huang, Di Caterina and Sartori (2022) were able to prove exactness for the

case of testing a saturated Gaussian graphical model in Davison et al. (2014,

Sec. 5.3). The exactness in our setting is shown in Section 3.3 for chordal graphs.

In addition, numerical results in the last simulation scenario of Section 5 illustrate

the extreme accuracy of the directional approach, even when the alternative graph

is non-chordal.

Using the notation established in this section, we also give the form of the

term γ(ψ) appearing in (2.2) under exponential family models. Specifically,

equation (13) in Skovgaard (2001) is

γ(ψ) =
{(s− sψ)

⊤j−1
θθ (θ̂ψ)(s− sψ)}d/2

wd/2−1(θ̂ − θ̂ψ)⊤(s− sψ)

{
|jθθ(θ̂ψ)|
|jθθ(θ̂)|

}1/2

, (2.11)

evaluated at s = 0 when computing the corresponding observed p-value.

3. Directional tests for Gaussian graphical models

3.1. Notation and setup

Gaussian graphical models are very useful for describing normal multivariate

distributions using the nodes and edges of a related graph. The nodes correspond

to variables, and the lack of an edge between two nodes models the conditional

independence of the two variables, given the remaining ones. This corresponds to

a zero entry in the concentration (inverse covariance) matrix (Lauritzen, 1996),

and covariance selection involves identifying these conditional independencies.

Let y1, . . . , yn be a random sample from the q-variate normal distribution

Nq(µ,Ω
−1), where the mean is µ ∈ Rq and the q × q concentration matrix Ω is

positive definite. The log-likelihood function for (µ,Ω) is

ℓ(µ,Ω; y) =
n

2
log |Ω| − 1

2
tr(Ωy⊤y) + 1⊤n yΩµ− n

2
µ⊤Ωµ , (3.1)

where y denotes the n× q matrix with lth row vector y⊤l , and 1n is a n×1 vector

of ones. The ML estimates of µ and Ω are

µ̂ =
y⊤1n
n

, Ω̂ =

(
y⊤y

n
− y⊤1n1

⊤
n y

n2

)−1

.
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For covariance selection, the mean parameter is not of direct interest, so we

focus instead on the marginal distribution of the ML estimator for the covariance

matrix Ω̂−1 ∼Wq(n− 1,Ω−1/n), where Wq denotes the Wishart random variable

of order q. The marginal log-likelihood function for Ω

ℓ(Ω; y) =
n− 1

2
log |Ω| − n

2
tr(ΩΩ̂−1) ,

sometimes referred to as restricted log-likelihood or REML, can then be used to

carry out inference just on the concentration matrix. The directional p-value for

testing constraints on Ω in Section 3.3 is equal to that obtained from the full log-

likelihood function (3.1), because of the independence between µ̂ and Ω̂. It is also

convenient to exploit the symmetry of the concentration matrix, and express the

restricted log-likelihood as

ℓ(ω;u) =
n− 1

2
log |Ω| − n− 1

2
ω⊤Ju , (3.2)

where ω = vechΩ, u = n/(n− 1)vech Ω̂−1, and the matrix J = G⊤G is diagonal

with elements equal to either one or two. If A is a q× q symmetric matrix, vecA

is the q2×1 vector that stacks the columns of A, whereas vechA retains only the

q∗ = q(q + 1)/2 entries in the lower triangle of A. The two vectors are linked by

the relationship vecA = G vechA, which also gives the q2×q∗ duplication matrix

G (see, e.g., Abadir and Magnus, 2005, Sec. 11.3).

In the saturated case addressed by Davison et al. (2014, Sec. 5.3), that is,

a complete graph in which Ω has no particular a priori structure, the condition

n > q is required for the existence of Ω̂ Lauritzen (1996, Thm. 5.1). On the

other hand, if the graph is incomplete, with some zero off-diagonal entries in

Ω, the ML estimate exists if n is larger than the maximal clique size of the

hypothesized graph or its decomposable version (Buhl, 1993; Lauritzen, 1996,

Sec. 5.3.2). In what follows, we focus on comparing nested unsaturated models

corresponding to nested incomplete graphs. Therefore, we allow the sample size

n to be smaller than the number of nodes q, but large enough for the ML estimate

of the concentration matrix to exist under the alternative model under study (cf.,

Sec. 3.2).

3.2. Likelihood quantities for unsaturated models

Suppose some off-diagonal elements Ωij, for 1 ≤ i < j ≤ q, in the con-

centration matrix are known to be zero, meaning that the underlying graph is

known to be incomplete. As in Roverato and Whittaker (1996), we can rearrange

the elements of ω, u and the leading diagonal of J to simplify the calculations.

Specifically, defining the edge sets

k = {(i, j) : Ωij ̸= 0, i ≤ j} and h = {(i, j) : Ωij = 0, i < j} , (3.3)
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and giving any ordering to k and h such that

k = {k1, k2, . . . , kp} and h = {h1, h2, . . . , hw} ,

it is possible to define

ω =

(
ωk
ωh

)
, u =

(
uk
uh

)
, J =

(
Jkk 0

0 Jhh

)
.

Because in unsaturated models ωh = 0, we can write Ω = Ωk = Ω(ωk). Thus, the

log-likelihood (3.2) becomes

ℓ(ωk;uk) =
n− 1

2
log |Ωk| −

n− 1

2
ω⊤
k Jkkuk , (3.4)

which is a function of the p-dimensional canonical parameter θ = ωk only, with

p > q. Differentiation of (3.4) with respect to ωk leads to the score function

ℓωk
(ωk) =

n− 1

2
Jkk(σk − uk) ,

where σk is the partition of σ = vechΩ−1
k obtained from (3.3). Solving the score

equation leads to σ̂k = uk and to the corresponding ML estimate ω̂k, usually

derived numerically (see Davison et al., 2014, Sec. 5.3).

Because the observed and expected information matrices are equal in canoni-

cal exponential families, from the results in Roverato andWhittaker (1996, Sec. 3)

it follows that

jωkωk
(ωk) =

n− 1

4
JkkIss(Ω

−1
k )kkJkk , (3.5)

where Iss(Ω−1
k )kk is a p×p partition of the Isserlis matrix of the covariance matrix

Σ = Ω−1
k (Isserlis, 1918). The entries of Iss(Σ)kk are

Cov(uij, urs) = ΣirΣjs +ΣisΣjr ,

with (i, j), (r, s) ∈ k.

3.3. Comparison of nested unsaturated models

Consider now the partition ωk = (ψ, λ) of the canonical parameter, where

ψ is the component of interest with dimension d ≤ p − q. The null hypothesis

H0 : ψ = ψ0 = 0 tests whether d additional off-diagonal entries Ωij, for i < j,

are zero. Hence, the reduced null model is nested in the alternative unsaturated

model of Section 3.2. Starting from (3.4), the log-likelihood ratio statistic for

testing H0 is

w(ψ0) = −(n− 1) log |Ω̂−1
k Ω̂0| , (3.6)
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where Ω̂k = Ω(ω̂k) is the ML estimate of Ω obtained from (3.4), and Ω̂0 = Ω(ω̂k0)

is its constrained ML estimate under H0, with ω̂k0 = (0, λ̂0). The null asymptotic

distribution of w(ψ0) is χ
2
d, assuming p and d fixed with n that goes to infinity.

For the directional p-value that discriminates between two nested Gaussian

graphical models, as specified in (2.9), we first find the expected value of s under

H0:

sψ0
= −ℓωk

(ω̂k0) =
n− 1

2
Jkk(uk − σ̂k0) ,

where σ̂k0 = vech Ω̂−1
0 . Then, the log-likelihood function (2.3) along the line

s(t) = (1− t)sψ0
follows from (3.4):

ℓ{ωk; s(t)} =
n− 1

2
log |Ωk| −

n− 1

2
ω⊤
k Jkk{σ̂k0 + t(uk − σ̂k0)} . (3.7)

The maximization of (3.7) entails that σ̂k{s(t)} = σ̂k(t) = σ̂k0 + t(uk − σ̂k0) or,

equivalently,

Ω̂−1
k {s(t)} = Ω̂−1

k (t) = tΩ̂−1
k + (1− t)Ω̂−1

0 . (3.8)

Given that Ω̂k(t) = Ω{ω̂k(t)}, by taking the inverse of the matrix from the left-

hand side of (3.8), the value of ω̂k(t) is obtained accordingly. The replacement of

ωk in (3.7) with ω̂k(t) and ω̂k0, respectively, delivers the result

exp[ℓ{ω̂k0; s(t)} − ℓ{ω̂k(t); s(t)}]

∝ |Ω̂k(t)|−(n−1)/2 exp

[
n− 1

2
{ω̂k(t)− ω̂k0}⊤Jkkσ̂k(t)

]
∝ |Ω̂k(t)|−(n−1)/2 ,

because the function {ω̂k(t)− ω̂k0}⊤Jkkσ̂k(t) is zero (see proof in Appendix A.2).

By (3.5), we obtain |jωkωk
(ωk)| ∝ |Iss(Ω−1

k )kk| and, consequently,

|jωkωk
{ω̂k(t)}|−1/2 ∝ |Iss{Ω̂−1

k (t)}kk|−1/2 .

Thus, following expression (2.7), the directional test is based on p(ψ0) in (2.10),

with

h{s(t);ψ0} ∝ |Ω̂−1
k (t)|(n−1)/2|Iss{Ω̂−1

k (t)}kk|−1/2 , (3.9)

and the analytical value of tsup is calculated as in Section 4.2. If the alternative

model were saturated, with q∗-vector ωk = ω, then

|Iss{Ω̂−1
k (t)}kk| = |Iss{Ω̂−1

k (t)}| = 2q|Ω̂−1
k (t)|q+1 ,

according to the general expression for computing the determinant of the Isserlis

matrix (Roverato and Whittaker, 1998, Sec. 2). In this case, (3.9) reduces to

h{s(t);ψ0} ∝ |Ω̂−1
k (t)|(n−1)/2|Ω̂−1

k (t)|−(q+1)/2 = |Ω̂−1
k (t)|(n−q−2)/2 ,
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which agrees with the simpler result obtained by Davison et al. (2014, Sec. 5.3)

for testing the absence of some connections in a complete graph.

Expression (3.9) gives the unnormalized saddlepoint approximation to the

distribution of s(t) in L∗. The following theorem, the proof of which is deferred

to Appendix A.1, states when (3.9) is also the unnormalized exact null conditional

density of s(t) in L∗.

Theorem 1. Let Y ∼ Nq(µ,Ω
−1) denote a Gaussian graphical model with log-

likelihood (3.4). If the induced incomplete graph is chordal, then (3.9) gives the

unnormalized exact conditional density of s(t) in L∗ under H0 : ψ = ψ0 = 0.

The normalizing constant simplifies in the ratio of integrals in (2.10), so the

approximation error when calculating the directional p-value stems only from the

one-dimensional numerical integrations. Thus, in Gaussian graphical models that

describe chordal graphs, the saddlepoint approximation to the null conditional

density of the sufficient statistic is exact. Consequently, when we test for a

reduced graph, the resulting directional p-value is exactly uniformly distributed

under the null hypothesis H0 : ψ = ψ0 = 0.

Monte Carlo experiments in Section 5 support this theoretical result, and

empirically show that the directional p-value stays remarkably accurate in the

last simulation scenario based on non-chordal graphs. When the exactness does

not hold, the relative error of the saddlepoint approximation is still of order

O(n−3/2), as opposed to the absolute error of order O(n−1) of the chi-squared

approximation to the distribution of w(ψ0).

Finally, we give the term γ(ψ) in (2.11) from Skovgaard’s (2001) modified

likelihood ratio statistics (2.2):

γ(ψ0) =
2{(σ̂k0 − σ̂k)

⊤Iss(Ω̂−1
0 )−1

kk (σ̂k0 − σ̂k)}d/2

{− log |Ω̂−1
k Ω̂0|}d/2−1(ω̂k − ω̂k0)⊤Jkk(σ̂k0 − σ̂k)

{
|Iss(Ω̂−1

0 )kk|
|Iss(Ω̂−1

k )kk|

}1/2

.

(3.10)

4. Computational Aspects

4.1. Calculation of the determinant of the Isserlis matrix

When the dimension p of the canonical parameter ωk under the alternative

model is smaller than q∗, but still relatively large, calculating the determinant

of the matrix Iss{Ω̂−1
k (t)}kk in (3.9) can be computationally quite demanding. It

is then advisable to exploit some useful results on the Isserlis matrix in order to

speed up the computing time for the directional p-value.

Let A be a q×q symmetric invertible matrix. Roverato and Whittaker (1998,

(15)), for any partition (k′, k′′) of the edge set k in (3.3) such that k′ ∪ k′′ = k

and k′ ∩ k′′ = k̄, show that
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|Iss(A)kk| =
|Iss(A)k′k′ ||Iss(A)k′′k′′ |

|Iss(A)k̄k̄|
,

which gives a convenient way to reduce the dimensions of the matrices. If,

moreover, the graph induced by k is chordal with a vertex set decomposable

into cliques C1, . . . , CK and separators S2, . . . , SK , according to the definitions in

Lauritzen (1996, Sec. 2.1), this can be further simplified to

|Iss(A)kk| = 2q
∏K
i=1 |ACi

|nCi
+1∏K

i=2 |ASi
|nSi

+1
, (4.1)

where nCi
and nSi

denote the number of nodes in the ith clique and ith separator,

respectively, and ACi
and ASi

are submatrices of A with rows and columns

corresponding to the relative nodes (Roverato and Whittaker, 1998, Eq. 17).

4.2. Numerical integration

The upper bound tsup in (2.10) is the largest value of t such that the

ML estimate Ω̂k(t) is positive definite. By the same arguments as in Huang,

Di Caterina and Sartori (2022, Lemma 4.1), this upper bound can be obtained

explicitly as tsup = 1/(1− ν(1)), where ν(1) is the smallest of the q eigenvalues of

Ω̂0Ω̂
−1
k .

Moreover, writing the integrand in (2.10) as exp{ḡ(t;ψ)}, where ḡ(t;ψ) =

(d − 1) log t + log h{s(t);ψ}, we can improve the numerical stability of the

calculations using the equivalent formula

p(ψ) =

∫ tsup

1
exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt∫ tsup

0
exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt

, where t̂ = arg sup
t∈[0, tsup]

ḡ(t;ψ) .

We have also found that the integrand function can be concentrated around

its mode, taking nonzero values in a shorter interval [tmin, tmax] ⊆ [0, tsup]. To

address this, and deliver more stable numerical results, we use the Gauss–Hermite

quadrature (Liu and Pierce, 1994) and integrate over [tmin, tmax] only. As a result,

we compute the directional p-value as

p(ψ)
.
=

∫ tmax

1
exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt∫ tmax

tmin
exp{ḡ(t;ψ)− ḡ(t̂;ψ)}dt

. (4.2)

The choice tmin = max{0, t̂− c/q(t̂;ψ)} and tmax = min{t̂+ c/q(t̂;ψ), tsup}, where
q(t;ψ) = −∂2ḡ(t;ψ)/∂t2 and c is a constant to be chosen, is reliable (cf., Huang,

Di Caterina and Sartori, 2022, Sec. S1.3). The second derivative of the Isserlis

determinant in the last factor of the integrand in (3.9) cannot be derived explicitly,

and its numerical approximation may be unstable. In order to choose the width

of the integration interval [tmin, tmax], we then set the function q(t;ψ) equal only



DIRECTIONAL TESTS IN GAUSSIAN GRAPHICAL MODELS 373

A B

C

D

E F A B

C

D

E F

Figure 1. Graphs for the first simulation scenario, where the dimension of the parameter
of interest is equal to d = 3. The alternative model for the chordal graph on the left is
compared against the null model on the right.

to the second derivative of the first factor in (3.9), that is,

q(t;ψ) = −∂
2|Ω̂−1

k (t)|(n−1)/2

∂t2
=
d− 1

t2
+
n− 1

2

q∑
i=1

(1− νi)
2

(1− t+ tνi)2
.

In our numerical experiments, the value of c is chosen for each pair (n, q) by

performing preliminary checks to ensure that the integration from tmin to tmax

is equal to that over [0, tsup], and then fixed for further simulations. This

simplification was found useful only in settings when n > q, and cannot be

applied if ḡ(t;ψ) is monotonic in [0, tsup]. The directional p-value in that case has

to be calculated directly using formula (2.10), but this happened only 21 times

in the Monte Carlo experiments discussed below.

5. Simulation Studies

The performance of the directional approach in terms of covariance selection

for Gaussian graphical models is examined here using simulation-based experi-

ments. In the first scenario, the focus is on a small chordal graph with q = 6

nodes, similar to that in Dawid and Lauritzen (1993, Ex. 7.3). The two models

under comparison, differing only by d = 3 edges, are presented in Figure 1.

Monte Carlo simulations use 100,000 samples of size n = 8, generated under the

null hypothesis. The empirical p-value distribution of the tests based on w(ψ0),

w∗(ψ0), w
∗∗(ψ0), and the directional procedure is shown in the left plot of Figure

2 with respect to the reference uniform distribution, focusing on the interval

(0, 0.1). The right plot compares the relative errors of the three most accurate

methods. Despite the simplicity of the example, the likelihood ratio statistic

leads to too many rejections of the null hypothesis, because n is relatively small.

The higher-order modifications remedy this, but the directional approach allows

an exact control of the size of the test, up to numerical and Monte Carlo errors.

The inferential benefits of our proposal over the omnibus likelihood-based

competitors are particularly evident with high magnitudes of q and d. The

second scenario is based on the data of Kenward (1987, Tab. 1), from a study on

intestinal parasites of 60 calves, where the weight in kilograms of each bovine was
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Figure 2. Results based on 100,000 samples simulated under the null model displayed on
the right side of Figure 1, with n = 8 and q = 6. On the left, ordered empirical p-values
p̂(i) (i = 1, . . . , 100000) smaller than 0.1 are compared with the uniform distribution on
the diagonal for w (dot-dashed), w∗ (dashed), w∗∗ (long-dashed), and the directional test
(solid). On the right, the corresponding relative errors {p̂(i) − (i/n)}/(i/n) are plotted
in a similar fashion only for w∗, w∗∗, and the directional method.

recorded on 11 occasions during the grazing season. To enable a comparison with

the findings of Davison et al. (2014, Sec. 5.3), who could only test the saturated

model, we draw 100,000 samples of size n = 60 from a q-variate Gaussian random

variable under the hypothesis of first-order Markovian dependence MD(1), with

a tridiagonal concentration matrix. For each q ∈ {11, 30, 50}, the null hypothesis
H0 : MD(1) is tested against four alternative unsaturated structures, also using

w(ψ0), w
∗(ψ0), and w∗∗(ψ0). These Markovian dependence models of order

m under H1 : MD(m) with 1 < m < q − 1 correspond to so-called band

concentration matrices, the nonzero entries of which are confined to m diagonals

on either side of the main one. The orders m are chosen to check the behavior

of the various methods for a wide range of dimensions d of the parameter of

interest, and consequently of the nuisance component. Because the Markovian

structure induces a chordal graph, the simplification (4.1) is particularly useful

for computing the directional p-values with such a high-dimensional parameter

of interest.

Table 1 reports our experimental results obtained when q = 11, as in the

original data set, and Tables 2 and 3 refer to cases with data simulated using

a larger covariance matrix, q = 30 and q = 50, respectively. In line with

our theoretical findings, the empirical distribution of the directional p-values is

essentially uniform in all settings, and almost unaffected by the size of q and d.

The usual likelihood ratio statistic w(ψ0) is highly sensitive to the dimension

of both ψ and λ; its adjustments w∗(ψ0) and, particularly, w∗∗(ψ0) seem to

suffer from the increasing dimension d of the parameter of interest. Tables 2

and 3 clearly indicate that, as d grows, the test based on w(ψ0) becomes too

liberal, and those based on w∗(ψ0) and w∗∗(ψ0) become too conservative. For



DIRECTIONAL TESTS IN GAUSSIAN GRAPHICAL MODELS 375

Table 1. Empirical p-value distributions (%) based on 100,000 replications. The first-
order Markovian model under H0 : MD(1) is tested against different Markovian models
of orders m ∈ {2, 3, 6, 9} under H1 : MD(m), when n = 60 observations of a graph with
q = 11 nodes are available.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

vs MD(2), d = 9

Likelihood ratio, (3.6) 1.4 3.3 6.3 12.0 28.4 53.7 77.5 91.2 95.6 97.8 99.1

Skovgaard’s w∗, (3.10) 1.0 2.5 5.1 10.0 25.1 50.2 75.1 89.9 94.9 97.4 99.0

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.1 10.0 25.1 50.2 75.1 89.9 94.9 97.4 99.0

Directional, (4.2) 1.0 2.5 5.1 10.0 25.2 50.3 75.2 90.1 95.0 97.5 99.0

vs MD(3), d = 17

Likelihood ratio, (3.6) 1.8 3.9 7.2 13.5 30.4 56.1 79.3 92.0 96.0 98.1 99.2

Skovgaard’s w∗, (3.10) 1.1 2.6 5.0 10.0 24.6 49.6 74.6 89.6 94.7 97.3 98.9

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.0 9.9 24.5 49.5 74.5 89.5 94.7 97.2 98.9

Directional, (4.2) 1.0 2.6 5.1 10.1 25.0 50.3 75.4 90.2 95.0 97.5 99.0

vs MD(6), d = 35

Likelihood ratio, (3.6) 2.5 5.5 9.8 17.4 36.2 62.2 83.3 94.0 97.2 98.6 99.5

Skovgaard’s w∗, (3.10) 0.8 2.1 4.3 8.8 22.4 46.4 71.7 87.8 93.6 96.6 98.5

Skovgaard’s w∗∗, (3.10) 0.8 2.1 4.2 8.6 22.0 45.9 71.2 87.5 93.4 96.4 98.5

Directional, (4.2) 1.0 2.5 4.9 10.0 25.0 50.3 75.3 90.2 95.1 97.5 99.0

vs MD(9), d = 44

Likelihood ratio, (3.6) 3.3 6.9 12.0 20.6 40.8 66.2 85.9 95.2 97.8 99.0 99.6

Skovgaard’s w∗, (3.10) 0.7 1.8 3.7 7.8 20.7 43.7 69.1 86.3 92.6 96.1 98.2

Skovgaard’s w∗∗, (3.10) 0.7 1.8 3.6 7.5 20.1 42.8 68.2 85.7 92.2 95.8 98.1

Directional, (4.2) 1.0 2.4 4.9 9.9 25.2 50.0 75.0 90.1 95.1 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

the intermediate case q = 30, the leftmost panels of Figure 3 compare the null

empirical distribution of the directional p-values with those from w(ψ0), w
∗(ψ0),

and w∗∗(ψ0). The almost perfect agreement of our proposal with the benchmark

uniform distribution given by the diagonal of the panels is apparent.

Before proceeding, we focus on the implementation of formula (4.1) to obtain

the determinant of the Isserlis matrix of Ω−1
k , estimated under the alternative

hypothesis. When multiplying the determinants of many square matrices of mod-

erate order, some propagation of numerical errors can occur. In our experiments,

this is visible, to a certain extent, in the intermediate sections of Tables 2 and

3, when the performance of the directional tests seems slightly worse than in

the remaining sections. Indeed, when the null is tested against more extreme

Markovian models, the matrices in (4.1) are either many, but small (top section)

or large, but few (bottom section). Thus, the final product of their determinants

is not overly affected by numerical errors. That being said, note that in all settings

the directional approach remains remarkably accurate, significantly improving on

the competing testing procedures.
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Table 2. Empirical p-value distributions (%) based on 100,000 replications. The first-
order Markovian model under H0 : MD(1) is tested against different Markovian models
of orders m ∈ {2, 9, 18, 28} under H1 : MD(m), when n = 60 observations of a graph
with q = 30 nodes are available.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

vs MD(2), d = 28

Likelihood ratio, (3.6) 1.6 3.8 7.2 13.4 30.5 56.4 79.4 92.2 96.2 98.1 99.3

Skovgaard’s w∗, (3.10) 1.0 2.5 5.0 10.0 24.9 50.0 75.1 90.1 95.0 97.5 99.0

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.0 10.0 24.9 50.0 75.0 90.0 95.0 97.5 99.0

Directional, (4.2) 1.0 2.4 4.9 10.0 24.9 50.1 75.2 90.2 95.1 97.5 99.0

vs MD(9), d = 196

Likelihood ratio, (3.6) 11.1 19.1 28.4 41.5 64.6 84.6 95.3 98.7 99.5 99.8 99.9

Skovgaard’s w∗, (3.10) 0.3 0.9 2.0 4.4 13.3 32.3 57.9 78.5 87.1 92.5 96.4

Skovgaard’s w∗∗, (3.10) 0.3 0.8 1.7 3.9 12.1 30.2 55.4 76.5 85.7 91.4 95.7

Directional, (4.2) 0.9 2.3 4.8 9.7 24.7 50.3 75.8 90.5 95.4 97.7 99.1

vs MD(18), d = 340

Likelihood ratio, (3.6) 53.8 66.9 76.9 86.0 95.0 98.8 99.8 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.1 0.3 0.7 3.0 10.7 27.4 48.8 62.1 72.8 82.9

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.1 0.4 1.7 6.9 19.5 38.2 51.2 62.5 74.3

Directional, (4.2) 0.8 2.2 4.6 9.5 24.7 50.2 76.0 90.8 95.6 97.8 99.2

vs MD(28), d = 405

Likelihood ratio, (3.6) 86.2 92.3 95.6 97.9 99.5 99.9 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.0 0.2 0.9 4.3 13.8 30.0 42.5 53.9 67.0

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.0 0.2 1.4 5.9 15.5 24.5 33.9 46.4

Directional, (4.2) 1.0 2.4 5.1 10.1 25.2 50.1 75.1 90.1 95.1 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

The third simulation scenario considers a block-diagonal configuration of

the concentration matrix under the null hypothesis. Here, 100,000 samples of

size n ∈ {40, 60, 90, 120} were drawn from a normal distribution with q = 50

components and covariance matrix Σ0 = diag{Σ01,Σ01}, with Σ01 a 25 × 25

sub-matrix with diagonal entries equal to one, and off-diagonal entries equal to

0.5. This condition clearly implies that Ω0 = Σ−1
0 is also block diagonal, so

that the first 25 nodes are conditionally (as well as unconditionally) independent

of the last 25 nodes in the graph. On the other hand, our alternative model

admits the existence of some conditional dependence between the two subsets of

nodes. Specifically, in addition to the nonzero elements defined in Ω0, we also

suppose Ωij = Ωji ̸= 0, for i = 16, . . . , 25 and j = 26, . . . , 50. It follows that

the dimension of the parameter of interest is d = 250, and (4.1) can be used to

speed up calculations of the Isserlis matrix associated with the chordal alternative

incomplete graph.

Simulation results in this framework are presented in Table 4. Given the no-

table size of d, the relative performance of the approximations under comparison,

in terms of the empirical p-value distribution, is analogous to that in the previous

experiment, with the only exception that here the version w∗∗(ψ0) appears to
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Figure 3. Results based on 100,000 simulated samples. In all eight panels, the empirical p-
values obtained via w (dot-dashed), w∗ (dashed), w∗∗ (long-dashed), and the directional
test (solid) are compared with the uniform distribution given by the diagonal. Leftmost
panels: the model under H0 : MD(1) assumes first-order Markovian dependence, with
n = 60 and q = 30. The four panels correspond to different Markovian models under
the alternative hypothesis H1 and related dimensions of ψ: MD(2) and d = 28 (top left),
MD(9) and d = 196 (top right), MD(18) and d = 340 (bottom left), and MD(28) and
d = 405 (bottom right). Rightmost panels: the null model assuming a block-diagonal
concentration matrix with q = 50 is tested against the same alternative hypothesis
implying d = 250. The four panels correspond to different sample sizes: n = 40 (top
left), n = 60 (top right), n = 90 (bottom left), and n = 120 (bottom right).

be, in general, more reliable than w∗(ψ0). Although the increase in sample

size generates some accuracy improvements for all the competitors, as expected,

the empirical directional p-value guarantees an almost perfect agreement with

its theoretical uniform distribution for all values of n considered. The extreme

liberality of the standard likelihood ratio test persists, Skovgaard’s w∗(ψ0) does

not correct it enough, and the version w∗∗(ψ0) overcorrects it. As before, the

rightmost panels of Figure 3 show the p-values obtained using the likelihood

ratio statistic, its modified versions, and the directional procedure.

As an empirical check of the accuracy of our proposal for non-decomposable

models, in the fourth simulation scenario, we consider a small non-chordal graph

with q = 4 nodes, as in Eriksen (1996, Sec. 4). Figure 4 displays the two models

under comparison, which differ only by d = 2 edges. Setting the sample size

to n = 7, 100000 artificial samples are simulated under the null hypothesis. As

for the first scenario, the results are presented in the two panels of Figure 5.

Because n is small with respect to q and d, the chi-squared approximation to the
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Table 3. Empirical p-value distributions (%) based on 100,000 replications. The first-
order Markovian model under H0 : MD(1) is tested against different Markovian models
of orders m ∈ {2, 16, 32, 48} under H1 : MD(m), when n = 60 observations of a graph
with q = 50 nodes are available.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

vs MD(2), d = 48

Likelihood ratio, (3.6) 1.8 4.2 7.8 14.5 32.4 58.2 80.9 93.0 96.7 98.4 99.4

Skovgaard’s w∗, (3.10) 1.0 2.5 5.0 9.9 25.1 50.1 74.9 90.0 95.1 97.5 99.0

Skovgaard’s w∗∗, (3.10) 1.0 2.5 5.0 9.9 25.0 50.0 74.9 89.9 95.1 97.5 99.0

Directional, (4.2) 1.0 2.5 4.9 9.9 25.0 50.1 75.1 90.1 95.2 97.6 99.1

vs MD(16), d = 615

Likelihood ratio, (3.6) 77.9 86.7 92.1 96.0 99.0 99.8 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.1 0.2 1.1 5.1 15.9 33.3 46.2 57.9 70.6

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.1 0.5 2.6 9.3 22.2 33.2 44.2 57.4

Directional, (4.2) 0.8 2.0 4.3 9.1 24.4 50.4 76.3 91.4 96.1 98.1 99.3

vs MD(32), d = 1023

Likelihood ratio, (3.6) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.7 3.4 6.7

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2

Directional, (4.2) 0.5 1.4 3.4 8.0 23.5 51.7 78.6 92.8 96.9 98.7 99.5

vs MD(48), d = 1175

Likelihood ratio, (3.6) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.0 2.0 4.0

Skovgaard’s w∗∗, (3.10) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Directional, (4.2) 0.8 2.2 4.7 9.8 25.4 51.1 76.2 90.9 95.5 97.8 99.2

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

A

B D

C

A

B D

C

Figure 4. Graphs for the fourth simulation scenario, where the dimension of the
parameter of interest is equal to d = 2. The alternative model for the non-chordal
graph on the left is compared against the null model on the right.

distribution of the likelihood ratio statistic is misleading. The improved versions

of w, especially w∗ here, are more reliable. However, even in this application

to a non-chordal graph, the superiority of the directional approach based on the

accurate saddlepoint approximation is evident in terms of the relative error.

6. Applications

First, we examine the data set introduced in the second simulation scenario

of Section 5 from the experiment about the control of intestinal parasites in cattle

(Kenward, 1987, Tab. 1). However, here we focus separately on the two treatment
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Table 4. Empirical p-value distributions (%) based on 100,000 replications. The two-
block diagonal structure of the concentration matrix for a graph with q = 50 nodes is
tested against a more complex structure including d = 250 additional edges.

Nominal (%) 1.0 2.5 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0

n = 40

Likelihood ratio, (3.6) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 27.1 39.1 50.6 63.5 81.7 93.7 98.5 99.7 99.9 100.0 100.0

Skovgaard’s w∗∗, (3.10) 0.7 1.7 3.4 7.2 19.3 42.0 68.0 85.9 92.5 96.1 98.3

Directional, (4.2) 1.0 2.5 5.0 10.1 25.2 50.2 75.2 90.0 94.9 97.4 98.9

n = 60

Likelihood ratio, (3.6) 98.4 99.3 99.7 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 2.4 5.3 9.6 17.3 36.6 62.9 84.2 94.6 97.6 98.9 99.6

Skovgaard’s w∗∗, (3.10) 0.6 1.7 3.5 7.5 20.4 43.9 70.3 87.4 93.5 96.7 98.6

Directional, (4.2) 1.0 2.5 5.0 10.0 25.1 50.1 75.2 90.2 95.1 97.6 99.0

n = 90

Likelihood ratio, (3.6) 65.9 77.1 85.0 91.5 97.3 99.4 99.9 100.0 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 1.3 3.2 6.1 12.0 28.5 54.2 78.2 91.7 96.0 98.1 99.2

Skovgaard’s w∗∗, (3.10) 0.8 2.1 4.3 8.9 23.0 47.6 73.2 89.0 94.5 97.2 98.8

Directional, (4.2) 0.9 2.5 5.0 10.1 25.0 50.1 75.1 90.1 95.1 97.6 99.0

n = 120

Likelihood ratio, (3.6) 36.6 50.0 61.6 73.6 88.6 96.7 99.3 99.9 100.0 100.0 100.0

Skovgaard’s w∗, (3.10) 1.1 2.9 5.6 11.0 26.8 52.2 76.5 90.9 95.5 97.8 99.1

Skovgaard’s w∗∗, (3.10) 0.9 2.3 4.6 9.4 24.0 48.7 73.9 89.4 94.6 97.3 98.9

Directional, (4.2) 1.0 2.5 5.0 10.1 25.1 50.1 75.0 90.0 95.0 97.5 99.0

Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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Figure 5. Results based on 100,000 samples simulated under the null model represented
by the right graph of Figure 4 with n = 7 and q = 4. On the left, ordered empirical
p-values p̂(i) (i = 1, . . . , 100000) smaller than 0.1 are compared with the uniform
distribution on the diagonal for w (dot-dashed), w∗ (dashed), w∗∗ (long-dashed), and the
directional test (solid). On the right, the corresponding relative errors {p̂(i)−(i/n)}/(i/n)
are plotted in a similar fashion only for w∗, w∗∗, and the directional method.

groups with equal size n = 30 to investigate differences in the underlying temporal

dynamics of growth. Recalling that each animal was weighed q = 11 consecutive

times, we start by assuming a Markovian dependence of orderm = 3, the simplest

model accepted in a test against the saturated one by all the procedures under
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analysis and in both groups. This model is then compared against the null

hypothesis of first-order dependence, implying d = 17. For the calves randomly

assigned to the first treatment, the likelihood ratio statistic is w(ψ0) = 28.384

with p-value = 0.041, Skovgaard’s modifications are w∗(ψ0) = 22.977 with p-

value = 0.150 and w∗∗(ψ0) = 22.691 with p-value = 0.160 and the directional

p-value is 0.111. For the second group, we get instead w(ψ0) = 31.895 with p-

value = 0.016, w∗(ψ0) = 30.055 with p-value = 0.026, w∗∗(ψ0) = 30.028 with

p-value = 0.026 and directional p-value = 0.029. The standard likelihood ratio

test is the only one to reject the MD(1) model at a 5% significance level for both

treatments. Conversely, the other statistics recognize a different time pattern

and indicate a more complex dependence of the weights in the second group.

We now consider microarray data from the biostatistical literature (see, e.g.,

Massa, Chiogna and Romualdi, 2010) that characterize gene expression signatures

in acute lymphocytic leukemia cells associated with genotypic abnormalities in

adult patients. The normalized version of such data, available in the package

topologyGSA (Massa and Sales, 2016) of the R software (R Core Team, 2020),

is especially useful for analyzing the B-cell receptor (BCR) signaling pathway,

composed of q = 35 gene products. The observed samples are classified according

to the presence of molecular rearrangements in their genetic profile.

The conversion of biological pathways into graphical models has become

standard practice in biostatistics to separate and compare specific portions of

the genetic process under examination. Based on the findings of Massa, Chiogna

and Romualdi (2010), it is of interest to investigate whether the graph resulting

from the well-known BCR signaling pathway in Figure 6 can be simplified

further. The restricted graphical model under the null hypothesis in our analysis

corresponds to the identified path starting from nodes CD22 and CD72 and

ending at AP1, going through RasGRP3, Ras, Raf, MEK1/2, and ERK enzymes.

This comparison implies testing the lack of d = 12 edges, and can be carried out

on the subset of patients not suffering from so-called BCR/ABL rearrangements.

With n = 41, we obtain w(ψ0) = 33.520 with p-value = 8.028 × 10−4, w∗(ψ0) =

32.172 with p-value = 13.018 × 10−4, w∗∗(ψ0) = 32.158 with p-value = 13.083 ×
10−4, and directional p-value = 13.941×10−4. Although all four methods indicate

that the data are not consistent with the shorter biological path, the p-value

from the usual likelihood ratio test w(ψ0) is relatively much smaller than the

other three, and in these types of problems very small p-values are relevant.

The agreement of Skovgaard’s approximations with the directional p-value is

consistent with our simulation results for small values of d with respect to n.

7. Discussion

We have provided theoretical and computational considerations for a

likelihood-based approach to covariance selection in unsaturated Gaussian
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Figure 6. BCR signaling pathway involving q = 35 gene products. The interest is in
testing whether a simpler path without the d = 12 gray edges can be identified.
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graphical models. The directional test is based on the saddlepoint approximation

to the conditional distribution of sufficient statistics in exponential family models.

The saddlepoint approximation to the conditional density was derived explicitly,

and proved to be exact within the important class of decomposable models for

chordal graphs. Moreover, the computation of the directional p-value using

one-dimensional numerical integration is made especially fast, as discussed in

Section 4. Simulations in several scenarios, including situations with a high-

dimensional parameter of interest and a large number of nuisance parameters,

illustrate that the p-values from the directional test are uniformly distributed,

up to the approximation error from the one-dimensional numerical integrations.

These results confirm the theoretical exactness of the saddlepoint-type method

with chordal graphs, even if the number of nodes is greater than the sample size.

Our empirical findings suggest also that the saddlepoint approximation, despite

not being exact, retains at least the usual accuracy for continuous models when

non-chordal graphs are tested.

The likelihood ratio test and its improvements considered here (Skovgaard,

2001) are omnibus tests: the implicit alternative hypothesis is multidimensional.

In contrast, the directional test uses information in the data to simplify the testing

problem to one dimension. The saddlepoint approximation to this distribution

incorporates an adjustment for the estimation of the nuisance parameters that

has been found to be very effective in simpler problems (Pierce and Peters, 1992;

Tang and Reid, 2020).

A natural question about directional tests is whether they entail a loss of

power (Jensen, 2021). This is difficult to assess in simulations, because the

alternative hypotheses are very high dimensional. We have concentrated on

evaluating the size of the test, which Tables 1–4 show is very well controlled

at conventional 0.05 and 0.01 levels, and well into the tails (Figures 2–3). We are

not aware of other detailed discussions on the power of the likelihood ratio test

for these complex Gaussian graphical models with high-dimensional alternatives.

For high-dimensional normal distributions with q/n→ (0, 1], Huang, Di Caterina

and Sartori (2022, Sec. 5.3) evaluate the unconditional power of the directional

test under a few settings. The performance strongly depends on the specific

alternative hypothesis under analysis, so it is impossible to draw generally valid

conclusions. Still, in those settings, the directional test proved to be uniformly

more powerful than the likelihood ratio test and its modifications considered

here. Note too that for simpler testing problems in the multivariate normal

model, McCormack et al. (2019) showed that the directional test is equivalent to

the uniformly most powerful invariant test based on the F -statistic or Hotelling’s

T 2-statistic.

The directional approach detailed here can be extended to graphical models

for discrete data, such as those in Roverato (2017). However, because discreteness

prevents the saddlepoint approximation from being exact, even upon normaliza-
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tion, one might reasonably not expect the same accuracy of directional p-values

observed in this work, at least in the most challenging testing problems.

The present methodology applies only to situations in which the number

of observations is such that the ML estimate exists with probability one under

the alternative hypothesis. In particular, the sample size must be greater than

the maximal clique size of the hypothesized graph or its decomposable version

(Buhl, 1993). The development of reliable likelihood-based testing procedures,

omnibus or directional, in circumstances where the number of nodes is much

larger than the number of observations is still an open problem, and thus left to

future research.

Supplementary Material

Supplementary materials available at https://github.com/cdicaterina/

DirTestGGM.git provide the data and the R code to reproduce all numerical

results in the paper.
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Appendices

A.1. Proof of Theorem 1

We want to show that the saddlepoint approximation equals the exact

conditional distribution of the sufficient statistic under H0, up to some constant.

The sufficient statistic in our setting is s = uk, i.e. the partition corresponding

to the non-zero elements in Ωk of u = n/(n− 1)vech Ω̂−1 where Ω̂−1 = y⊤y/n−
y⊤1n1

⊤
n y/n

2 is the sample covariance matrix.

Substituting in the log-likelihood (3.4) the ML and constrained ML estimates

of the canonical parameter ωk obtained in Section 3, we get

exp{ℓ(ω̂0; s)− ℓ(ω̂k; s)} =

(
|Ω̂0|
|Ω̂k|

)(n−1)/2

exp

{
n− 1

2
(ω̂k − ω̂k0)

⊤Jkkσ̂k

}

=

(
|Ω̂0|
|Ω̂k|

)(n−1)/2

,

since the exponential equals 1 (see Appendix A.2). Given equation (3.5) in

Section 3.2 for jωkωk
(ωk), we can then write the expression for the saddlepoint

https://github.com/cdicaterina/DirTestGGM.git
https://github.com/cdicaterina/DirTestGGM.git
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approximation (2.7) in our setting as

h(s;ψ0) ∝
(
|Ω̂0|
|Ω̂k|

)(n−1)/2

|Iss(Ω̂−1
k )kk|−1/2 . (A.1)

Consider now the density of s = uk. This is the marginal density of p entries

in Ω̂−1, the sample covariance matrix with joint Wishart distribution Wq(n −
1,Ω−1/n). Solving the likelihood equation in Section 3.2 implies that σ̂k = uk = s,

hence these entries are the same as those in the corresponding entries of the

matrix Ω̂−1
k . We can obtain such a density for chordal graphs with vertex set

decomposable into cliques C1, . . . , CK and separators S2, . . . , SK with cardinality

nCi
and nSi

, respectively. Combining the results on the factorization of the

joint density of Ω̂−1 (Lauritzen, 1996, Eq. 5.45) and on the marginal Wishart

distributions for the sub-matrices Ω̂−1
kCi

= (Ω̂−1
k )Ci

and Ω̂−1
kSi

= (Ω̂−1
k )Si

(Dawid and

Lauritzen, 1993, Sec. 7.3.1), under the null hypothesis H0 : ωk = (ψ, λ) = (0, λ)

the true concentration matrix is Ω0 and so we have:

f(s; Ω−1
0 ) =

2{−(n−1)/2}(
∑K

i=1 nCi
−
∑K

i=2 nSi
)

∏K
i=1 ΓnCi

{(n− 1)/2} |Ω−1
0Ci

|−(n−1)/2|Ω̂−1
kCi

|(n−2−nCi
)/2∏K

i=2 ΓnSi
{(n− 1)/2} |Ω−1

0Si
|−(n−1)/2|Ω̂−1

kSi
|(n−2−nSi

)/2

· exp
[
−n
2

{
K∑
i=1

tr
(
Ω̂−1
kCi

Ω0Ci

)
−

K∑
i=2

tr
(
Ω̂−1
kSi

Ω0Si

)}]
.

Rearranging the factors in the previous formula and neglecting the constants, we

can write

f(s; Ω−1
0 ) ∝

(∏K
i=1 |Ω

−1
0Ci

|∏K
i=2 |Ω

−1
0Si

|

)−(n−1)/2(∏K
i=1 |Ω̂

−1
kCi

|∏K
i=2 |Ω̂

−1
kSi

|

)(n−1)/2 ∏K
i=1 |Ω̂

−1
kCi

|−(nCi
+1)/2∏K

i=2 |Ω̂
−1
kSi

|−(nSi
+1)/2

· exp
{
−n
2

[
K∑
i=1

tr
(
Ω̂−1
kCi

Ω0Ci

)
−

K∑
i=2

tr
(
Ω̂−1
kSi

Ω0Si

)]}
.

We now use the decomposition of the graph (Lauritzen, 1996, p.145) to re-express

the first two factors as a ratio of determinants, the result by Roverato and

Whittaker (1998) mentioned in Section 4.1 to re-express the third factor as the

determinant of the Isserlis matrix, and finally the property of the trace operator

to re-express the fourth factor. Hence we have

f(s; Ω−1
0 ) ∝

(
|Ω0|
|Ω̂k|

)(n−1)/2

|Iss(Ω̂−1
k )kk|−1/2

· exp
{
−n
2

[
K∑
i=1

tr
(
Ω0Ci

Ω̂−1
kCi

)
−

K∑
i=2

tr
(
Ω0Si

Ω̂−1
kSi

)]}
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∝
(
|Ω0|
|Ω̂k|

)(n−1)/2

|Iss(Ω̂−1
k )kk|−1/2 exp

{
−n
2

[
tr
(
Ω0Ω̂

−1
k

)]}
,

where in the last step we have applied again the decomposition property based on

the factorization of the density in chordal graphs (Lauritzen, 1996, Eq. 5.45) to

find the final expression in the exponential of the last factor. The null conditional

density of the sufficient statistic in L0 is given by setting ωk = ω̂k0 = (0, λ̂0), or

equivalently by fixing the concentration matrix under the null hypothesis Ω0 at

its constrained ML estimate Ω̂0, i.e.

f(s; Ω̂−1
0 ) ∝

(
|Ω̂0|
|Ω̂k|

)(n−1)/2

|Iss(Ω̂−1
k )kk|−1/2 exp

{
−n
2

[
tr
(
Ω̂0Ω̂

−1
k

)]}

∝
(
|Ω̂0|
|Ω̂k|

)(n−1)/2

|Iss(Ω̂−1
k )kk|−1/2 . (A.2)

In the last step we have used tr(Ω̂0Ω̂
−1
k ) = tr(Ω̂0Ω̂

−1
0 ) = tr(Iq) = q (see Appendix,

Section A.2).

Equation (A.2) is equal to equation (A.1), up to a constant. The normalizing

constant of f(s; Ω̂−1
0 ) simplifies in the ratio of integrals in (2.10) for computing

the directional p-value. The one-dimensional integration is allowed by further

restricting on the line L∗ in L0, identified by Ω̂−1
k (t) = tΩ̂−1

k + (1− t)Ω̂−1
0 . As the

observed value Ω̂0 of the concentration matrix under H0 does not depend on t,

we can integrate in the numerator and denominator of (2.10) the function

h(s(t);ψ0) ∝ |Ω̂−1
k (t)|(n−1)/2|Iss{Ω̂−1

k (t)}kk|−1/2 ,

which was given in (3.9).

A.2. Proof of tr[{ω̂(t) − ω̂0}⊤Jσ̂(t)] = 0

We show that the scalar function

f(t) = {ω̂k(t)− ω̂k0}⊤Jkkσ̂k(t)

equals zero. Since f(t) = tr{f(t)} and the two models under comparison are

nested, it is equivalent to prove that tr[{ω̂(t)− ω̂0}⊤Jσ̂(t)] is constant in t, where

ω̂(t) =

(
ω̂k(t)

0

)
, ω̂0 =

(
ω̂k0
0

)
, σ̂(t) =

(
σ̂k(t)

σ̂h(t)

)
,

are all vectors of dimension q∗. Letting Ω̂−1
k (t) = Σ{σ̂(t)}, we have:
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tr[{ω̂(t)− ω̂0}⊤Jσ̂(t)] = tr[vech {Ω̂k(t)− Ω̂0}⊤G⊤G vech Ω̂−1
k (t)]

= tr[{Ω̂k(t)− Ω̂0}⊤Ω̂−1
k (t)]

= tr[Iq − Ω̂0{tΩ̂−1
k + (1− t)Ω̂−1

0 }]
= tr(Iq)− ttr(Ω̂0Ω̂

−1
k )− (1− t)tr(Iq)

= q − tq − (1− t)q = 0 .

This uses basic matrix algebra (see, e.g., Abadir and Magnus, 2005) and the

equality tr(Ω̂0Ω̂
−1
k ) = tr(Ω̂0Ω̂

−1
0 ) = tr(Iq) = q. The latter is due to the fact that

the trace of the product of two symmetric matrices is the sum of the element-

wise products and, by the ML equation, Ω̂−1
k differs from Ω̂−1

0 only when the

corresponding entries of Ω̂0 are zero (cf. Eriksen, 1996, p.278).

In order to derive the same result for the scalar f(1) = (ω̂k− ω̂k0)⊤Jkkσ̂k, the
above calculations can be carried out imposing t = 1.

References

Abadir, K. M. and Magnus, J. R. (2005). Matrix Algebra. Cambridge University press.

Barndorff-Nielsen, O. E. (1986). Inference on full or partial parameters based on the standardized

signed log likelihood ratio. Biometrika 73, 307–322.

Barndorff-Nielsen, O. E. and Cox, D. R. (1979). Edgeworth and saddle-point approximations

with statistical applications (with Discussion). Journal of the Royal Statistical Society.

Series B (Methodological) 41, 279–312.

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal

Society of London. Series A, Mathematical and Physical Sciences 160, 268–282.

Borgelt, C. and Kruse, R. (2002). Graphical Models: Methods for Data Analysis and Mining.

John Wiley & Sons.

Buhl, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian

models. Scandinavian Journal of Statistics 20, 263–270.

Butler, R. W. (2007). Saddlepoint Approximations with Applications. Cambridge University

press.
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