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Abstract: We develop directional tests to compare incomplete undirected graphs
in the general context of covariance selection for Gaussian graphical models. The
exactness of the underlying saddlepoint approximation is proved for chordal graphs,
and leads to exact control of the size of the tests, given that the only approximation
error involved is from the numerical calculation of two scalar integrals. Although
exactness is not guaranteed for non-chordal graphs, the ability of the saddlepoint
approximation to control the relative error means the proposed method outperforms
its competitors even in these cases. The accuracy of our proposal is verified using
simulation experiments under challenging scenarios in which inference via standard
asymptotic approximations to the likelihood ratio test and some of its higher-order
modifications fails. The directional approach is used to illustrate the assessment of
Markovian dependencies in a data set from a veterinary trial on cattle. A second
example with microarray data shows how to select the graph structure related to
genetic anomalies due to acute lymphocytic leukemia.

Key words and phrases: Covariance selection, exponential family, higher-order
asymptotics, likelihood ratio test, saddlepoint approximation, undirected graph.

1. Introduction

Undirected graphical models have gained considerable success in a variety of
fields, including medicine, social sciences, and physics, owing to their flexibility
and easy interpretation. Typically, these probabilistic graphs describe complex
multivariate distributions of variables (nodes) using the product of simpler sub-
models, each referred to a low-dimensional subset of the graph (clique). Book-
length expositions on the topic can be found in Lauritzen (1996)), Borgelt and
Kruse| (2002)), and Whittaker| (2009).

Today, applications of graphical models are challenged by the growth in
size and sophistication of modern data. An important question is inferring the
structure of large graphs, that is the underlying connections (edges) between
the variables under examination. This task is well known in the literature as
covariance selection. A popular class of graphical models is that of decomposable
models, which describe graphs that contain no chordless cycles of length greater
than three. These are called chordal, decomposable, or triangulated graphs
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(Lauritzen, |1996, Sec. 2.1).

For convenience, a graphical model is often expressed using the exponential
family form. The Gaussian distribution is particularly suitable for continuous
responses, because conditional independence in the graph can be characterized
easily in terms of assumptions on model parameters (see Section 3.1).

Likelihood-based inference for covariance selection is discussed in [Salgueiro,
Smith and McDonald| (2005) in the context of testing exclusion of single edges in
complete graphs, that is fully saturated models. [Cérdoba, Bielza and Larranagal
(2020} Sec. 7) review general edge exclusion tests, acknowledging the poor quality
of the usual chi-squared approximation to the distribution of the likelihood
ratio statistic. They mention that, when testing the removal of r edges, the
exact distribution is the product of r Beta random variables (Lauritzen) 1996,
Prop. 5.14). However, this result has not received much attention in the literature
and seems of limited practical utility. Another strategy is to iteratively perform
exclusion tests for single edges based on partial correlation coefficients, with some
adjustment needed to account for multiple comparisons.

In this paper, we develop likelihood-based directional tests for covariance
selection in Gaussian graphical models, possibly incorporating a priori restric-
tions on the graph structure. Specifically, our method allows one to test hy-
potheses that involve removing sub-graphs with multiple edges from complete
or incomplete graphs. We prove the exactness of the underlying saddlepoint
approximation for chordal graphs, and run extensive Monte Carlo simulations
to show the null uniform distribution of the directional p-value in challenging
scenarios, even when the number of nodes is larger than the sample size. In
those settings, the classical approach based on the likelihood ratio statistic or
some of its higher-order modifications (Skovgaard, 2001) breaks down. We also
show results for a non-chordal graph, where the directional inference is confirmed
to be more accurate than that of its competitors. A much simpler problem in
covariance selection, limited to testing an incomplete graph versus the saturated
model, is studied by Davison et al. (2014, Sec. 5.3), and is shown to be exact in
Huang, Di Caterina and Sartori| (2022). Our extension involves both theoretical
and computational innovations.

Directional inference on a vector-valued parameter of interest was introduced
by [Fraser and Massam| (1985) in nonnormal linear regression models, and then
generalized in Skovgaard| (1988)). Substantial progress from both a methodological
and computational perspective was made by |Davison et al. (2014), where the
computation of the directional p-value by one-dimensional numerical integration
proved especially accurate in several settings. The procedure was extended
from linear exponential families to nonlinear parameters of interest in general
continuous models by Fraser, Reid and Sartori (2016)). In addition to its accuracy,
the directional approach has been found to coincide with exact results in several
classical situations (McCormack et al., 2019).
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Section 2 reviews the technique of directional inference for exponential family
models. Section 3 presents the new directional testing method for covariance
selection. Here, we prove the exactness of the saddlepoint approximation for
decomposable Gaussian graphical models in chordal graphs, and develop specific
notation also valid in the non-chordal case. A number of computational innova-
tions are presented in Section 4. Simulation results comparing the accuracy of the
various methods are shown in Section 5, and Section 6 reports applications to data
from a veterinary trial and from a microarray study of altered gene expressions
in acute lymphocytic leukemia. Section 7 concludes the paper.

2. Background
2.1. Likelihood ratio tests

Assume that y follows a parametric distribution f(y;6), with § € RP. The
log-likelihood function £(6) = ¢(0;y) = log f(y;0) is maximized by the maximum
likelihood (ML) estimator & = 6(y). Possibly after a reparameterization, the
model parameter can be typically expressed as 8 = (i, ), where ¢(0) is the d-
dimensional component of interest involved in the hypothesis Hy: ¢(6) = ¢. We
write 6, = (1, \,) to denote the constrained ML estimator of # when the null
H, is true.

Under usual regularity conditions (see, e.g.,|Cox and Hinkley, 1974, Sec. 9.3),
the first-order approximation to the distribution of 0 is normal with mean 6 and
estimated covariance matrix j(6) ', with j(§) = —82¢(0)/0090" the observed
Fisher information matrix. The hypothesis H,, can be tested using the likelihood
ratio statistic

w(y) = 2{(0) — £(6,)}, (2.1)

which is invariant to reparameterizations, and has an approximate 3 distribution
under the null hypothesis H,, where d is the dimension of the parameter of
interest 1.

Skovgaard| (2001)) introduced two modifications to (2.1)),

2

w) = {1 T and 0 w) = o) - 2ogr(0), (22)
and showed that the limiting distribution of both test statistics based on the
correction factor (1)) is also x3. These modifications were obtained by analogy
with the derivation for scalar parameters of interest of modifications to the square
root of w(v)), the so-called r* approximation of Barndorff-Nielsen| (1986), further
discussed in [Fraser, Reid and Wu| (1999)). Skovgaard| (2001) emphasized not only
the simplicity of computation of the adjustment, especially when compared with
Bartlett| (1937) correction using moments, but also its large-deviation properties.
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Tests based on w(v), including w*(y), w**(¢), and the Bartlett-corrected
w(1)), provide omnibus measures of departure of the data from H,: the resulting
p-value averages the deviations from the null hypothesis in all potential directions
of the parameter space. In the next section, we review the approach of [Davison
et al. (2014, Sec. 3) for measuring the departure from H, only in the direction
indicated by the observed data. For a more complete exposition of the difference
between omnibus and directional tests, see |[Fraser and Reid| (2006)).

2.2. Directional tests in linear exponential families

Focusing on hypotheses that are linear in the canonical parameter 6 of an
exponential family model, we summarize here the procedure detailed in |Davison
et al.| (2014, Sec. 3), which involves two steps of dimensionality reduction.

Denoting by u = u(y) the sufficient statistic for the p-dimensional vector
parameter 6, we can consider the marginal density of u and the corresponding
log-likelihood function ¢(0;u) = 6" u— K (), which takes the standard exponential
family form. Consistent with the notation established by Davison et al.| (2014)
and Fraser, Reid and Sartori (2016)), we define the observed data y° = (y9,...,v°)
and the corresponding observed value of the sufficient statistic u° = u(y°). Given
the centered statistic s = u — u® with observed value s° = v — u® = 0, the tilted

log-likelihood function is
0(0;s) =0"s+£°(0), (2.3)

where £°(0) = £(0;u = u°).
When the linearity in 6 applies to both the interest and the nuisance param-
eters, meaning 6 = (1, \), expression (2.3 can be written as

00;5) = 9T 51+ Ao + (3, V), (24)

where ¥ and s; have dimension d. The first dimensionality reduction from p to
d follows directly from conditioning on the component of the statistic sufficient
for A. Indeed, the conditional distribution of s; given s, depends on % only, and
is still of exponential family form (cf., Lehmann and Romanol [2005, Lem. 2.7.2).
Such a conditioning translates into fixing éw = (w,j\w) at the observed value
02) = (¥, \)).

The saddlepoint approximation for this conditional distribution is typically
very accurate (Barndorff-Nielsen and Cox, 1979)). Following, for instance, Pace
and Salvan (1997, Sec. 10.10.2), we can illustrate how the saddlepoint approx-
imation is obtained as the ratio of the saddlepoint approximation for the joint
density of s = (s1, s2) and the saddlepoint approximation for the marginal density
of s3. Indeed, the former can be expressed as

exp[{f —0(s)} s + ) - C{0(s)}] _ expll(6;s) — {{é(s); s}l
(2m)P/2] = £5o{0(s) }'/2 (2m)7/2|joo{0(s) }[1/2

, (2.5)
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where é(s) solves in 6 the score equation from the log-likelihood (2.4), s =
—05(0) = —00°(0)/00, jee(0) = —0%L(0;5)/0000T = —d2£°(0)/9000T = —£3,(0),
and |A| denotes the determinant of the square matrix A. Similarly, the saddle-
point approximation for the marginal distribution of s, is

exp[{A — Ay (s2)} 50+ £°(6) — {0y (s2)}] _ expl€(6; 5) — {0y (s2); 8]

: = - , (2.6
(2m) =2 — £3,{0y (52) }]'/2 (2m) = 72] 33 {00y (s2) }|'/2 29

where 6, (s2) = (1, \y(s2)) is the solution to the score equation from the log-
likelihood (2.4)), seen as a function of X for fixed v, s, = —£3(0) = —9¢°(0) /A,
and jan(0) = —0%(0;5)/ONONT = —0%(°(0)/ONONT = —£8,(0). The ratio of
and when s, = 0 gives the following saddlepoint approximation for
the density of s; given s, = 0, also called double saddlepoint approximation, for
the reduced model in R%:

hlss ) = cexplt(@:5) = (100 sH i1}, se L’ (27)
where the normalizing constant ¢ includes all factors not depending on s;, and £°
is the d-dimensional plane described by setting s, = 0, or equivalently @ = é&
The relative error of the approximation is typically of order O(n~1), with n
denoting the number of independent observations, but it reduces to O(n=%/2) after
re-normalization. For a comprehensive review of saddlepoint approximations and
their statistical applications, see [Butler| (2007). The following example with a
scalar parameter of interest (d = 1) illustrates the use of the tilted log-likelihood
function in the derivation of the saddlepoint approximation .

Example 1 (Univariate normal distribution). Let y,...,y, be a random
sample from a N (u,o0?) distribution. The log-likelihood function in exponential
family form is
n ni?
00) = L(, \) = Yuy + Aug + = log (—2¢) + —,
2 49
where 0 = (1, \) = (—1/20?, u/c?) is the canonical parameter and u = (uy, uy) =
(3", y2, >, vi) is the minimal sufficient statistic with observed value u® = (uf, u3).
The tilted log-likelihood ([2.4)), expressed as a function of the centered sufficient
statistic s = u — u?, is
0 o N nA?
U(0;5) = LY, A;8) = (81 + uy) + Als2 + up) + 5 108 (—2¢) + T
After some algebra, the unnormalized saddlepoint approximation (2.7)) in £° =
{(s1,82) : 81 > —ul 4+ (u3)?*/n, so = 0} can be written as
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h(s; 1) o exp [@Z) {51 +ud — (UE)Q }] {31 +ud — (ug)z }("—1)/2—1 , (2.8)

where u? — (u$)?/n is n times the unadjusted sample variance. In this simple

case, the saddlepoint approximation is exact: coincides with the kernel of
a x2_,/(—2¢) distribution, which is the exact conditional distribution of s; =
uy — uf given sy = uy — vy = 0. This is consistent with the more general result
in McCormack et al.| (2019)).

The second dimensionality reduction from d to one, not needed in the previ-
ous example, consists of constructing a one-dimensional conditional distribution
for s along the direction indicated by the data. With this aim, denote by s, the
expectation of s under model if H, holds, that is, the value of s for which
0 = 92) is the constrained ML estimate

8%“%@%‘(4%%v, 2.9

depending on the observed data point y°. The line £* in £° which joins the

0

observed value s = 0 and the expected value s;, can be parameterized by a

scalar t € R as follows:
s(t) = sy + t(s" —sy) = (1 — t)Sy

and, consequently, the ML estimate é(s) in can vary with s(¢). The
approximation constrained to L* is used to compute the p-value, the
probability that s(t) is as far or farther from s, than is the observed value s = 0.
The directional p-value, which measures the deviation from H, along the line £*,
is thus

Ot e{s(t); v dt
PO sty o

where t = 0 and ¢ = 1 correspond respectively to s = s, and to the observed

value s° = 0. The factor t4~! results from the Jacobian of the transformation
from the variable s € LY to polar coordinates (||s||,s/||s||) (Davison et al., 2014,
Sec. 3.2). The upper limit of the integrals in is the largest value of ¢ for
which the ML estimator corresponding to s(t) exists, and in some situations can
be determined analytically. The directional p-value in one dimension gives the
probability to the right of the observed value, conditional on the observed value
being to the right of the expected value under H,, that is, the probability in the
right tail of the distribution. In higher dimensions the p-value is the probability
of being “further out” on the line connecting the expected value under H,, to the
observed value, conditional on being on that line (Davison et al., [2014, Sec. 2).
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As in |Davison et al. (2014, Sec. 3.2), the relative error of formula
inherits that of the saddlepoint approximation after re-normalization, so is
typically O(n~3/2) in continuous models. When the re-normalized saddlepoint
approximation is exact, then the directional test is also exact, because the re-
normalization is automatically incorporated in . McCormack et al.| (2019)
established this exactness for a number of tests for multivariate normal models,
and Huang, Di Caterina and Sartori| (2022]) were able to prove exactness for the
case of testing a saturated Gaussian graphical model in Davison et al. (2014,
Sec. 5.3). The exactness in our setting is shown in Section 3.3 for chordal graphs.
In addition, numerical results in the last simulation scenario of Section 5 illustrate
the extreme accuracy of the directional approach, even when the alternative graph
is non-chordal.

Using the notation established in this section, we also give the form of the
term ~y(¢)) appearing in under exponential family models. Specifically,
equation (13) in [Skovgaard| (2001)) is

Y() =

{(s — Sw)Tée_el(?w)(S —5y)}? { U?g(éf’)’ }1/2 : (2.11)
wl2=1(0 — 0,)T (s — s,) 7o (0)]

evaluated at s = 0 when computing the corresponding observed p-value.

3. Directional tests for Gaussian graphical models
3.1. Notation and setup

Gaussian graphical models are very useful for describing normal multivariate
distributions using the nodes and edges of a related graph. The nodes correspond
to variables, and the lack of an edge between two nodes models the conditional
independence of the two variables, given the remaining ones. This corresponds to
a zero entry in the concentration (inverse covariance) matrix (Lauritzen, |1996),
and covariance selection involves identifying these conditional independencies.

Let y1,...,y, be a random sample from the g-variate normal distribution
N,(11,9271), where the mean is u € R? and the ¢ x ¢ concentration matrix € is
positive definite. The log-likelihood function for (u, ) is

n 1 n
U, Qiy) = 5 log 0] = Str(Q'y) + 1,y Qu — o' Qe (3.1)

where y denotes the n X ¢ matrix with /th row vector y,", and 1,, is a n x 1 vector
of ones. The ML estimates of y and €2 are

-1
y'l, A <yTy B yT1n12y>

M: s Q: 2
n n n
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For covariance selection, the mean parameter is not of direct interest, so we
focus instead on the marginal distribution of the ML estimator for the covariance
matrix Q! ~ W,(n—1,Q7'/n), where W, denotes the Wishart random variable
of order ¢q. The marginal log-likelihood function for 2

n—1

UQiy) = "5 log|Qf — Zr(QQ7),

sometimes referred to as restricted log-likelihood or REML, can then be used to
carry out inference just on the concentration matrix. The directional p-value for
testing constraints on €2 in Section 3.3 is equal to that obtained from the full log-
likelihood function , because of the independence between i and Q. It is also
convenient to exploit the symmetry of the concentration matrix, and express the
restricted log-likelihood as

—1 —1
n2 log |0 —

lwiu) = w'Ju, (3.2)
where w = vechQ, u = n/(n — 1)vech !, and the matrix J = GTG is diagonal
with elements equal to either one or two. If A is a ¢ X ¢ symmetric matrix, vec A
is the ¢ x 1 vector that stacks the columns of A, whereas vech A retains only the
q* = q(q+ 1)/2 entries in the lower triangle of A. The two vectors are linked by
the relationship vec A = G vech A, which also gives the ¢ x ¢* duplication matrix
G (see, e.g.,|Abadir and Magnus, 2005, Sec. 11.3).

In the saturated case addressed by Davison et al.| (2014, Sec. 5.3), that is,
a complete graph in which 2 has no particular a priori structure, the condition
n > ¢ is required for the existence of Q) [Lauritzen (1996, Thm. 5.1). On the
other hand, if the graph is incomplete, with some zero off-diagonal entries in
), the ML estimate exists if n is larger than the maximal clique size of the
hypothesized graph or its decomposable version (Buhl, [1993; |Lauritzen) (1996,
Sec. 5.3.2). In what follows, we focus on comparing nested unsaturated models
corresponding to nested incomplete graphs. Therefore, we allow the sample size
n to be smaller than the number of nodes ¢, but large enough for the ML estimate
of the concentration matrix to exist under the alternative model under study (cf.,
Sec. 3.2).

3.2. Likelihood quantities for unsaturated models

Suppose some off-diagonal elements €2;;, for 1 < ¢ < j < ¢, in the con-
centration matrix are known to be zero, meaning that the underlying graph is
known to be incomplete. As in Roverato and Whittaker| (1996), we can rearrange
the elements of w,u and the leading diagonal of J to simplify the calculations.
Specifically, defining the edge sets

k={(i,j): Qy; #0,1 <j} and h={(i,j): Qi = 0,14 <j}, (3.3)
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and giving any ordering to k and h such that
k={ki,ka,....,k,} and h={hi,ha, ..., "y},

it is possible to define

w = Wi u = Uy, J = Jkk 0
_Wh’_uh’_ojhh'

Because in unsaturated models w;, = 0, we can write Q = Q; = Q(wy). Thus, the
log-likelihood ({3.2]) becomes

n—1 n—1
5 log ’Qk‘ — Tw,ijkuk N (34)

ﬁ(wk; uk) =

which is a function of the p-dimensional canonical parameter § = w;, only, with
p > q. Differentiation of (3.4)) with respect to w;, leads to the score function

n—1

ewk (Wk) = 2

Jkk(Uk - Uk) )

where o, is the partition of o = vech ;' obtained from . Solving the score
equation leads to 6, = wu; and to the corresponding ML estimate w;, usually
derived numerically (see Davison et al., [2014} Sec. 5.3).
Because the observed and expected information matrices are equal in canoni-
cal exponential families, from the results in|[Roverato and Whittaker| (1996, Sec. 3)
it follows that
n—1

jwkwk (wk) = 4 JkkISS(lel)kkak s (35)

where Iss(€2; '), is a p x p partition of the Isserlis matrix of the covariance matrix
¥ = Q" (Isserlis, [1918). The entries of Iss(X), are

COV(Uij, urs) = Z]irzjs + Eiszjr )
with (i,7), (r,s) € k.

3.3. Comparison of nested unsaturated models

Consider now the partition wy = (1, A) of the canonical parameter, where

1 is the component of interest with dimension d < p — q. The null hypothesis

Hy : ¢y = 1y = 0 tests whether d additional off-diagonal entries (};;, for ¢ < j,

are zero. Hence, the reduced null model is nested in the alternative unsaturated

model of Section 3.2. Starting from , the log-likelihood ratio statistic for
testing Hy is

w(the) = —(n — 1)log |7, (3.6)



370 DI CATERINA, REID AND SARTORI

where (), = Q(wy,) is the ML estimate of Q obtained from , and Oy = Q(Wio)
is its constrained ML estimate under Hy, with wio = (0, 5\0). The null asymptotic
distribution of w(t)y) is X2, assuming p and d fixed with n that goes to infinity.

For the directional p-value that discriminates between two nested Gaussian
graphical models, as specified in , we first find the expected value of s under
Hy:

n—1
2

where 6,90 = vech Qa !, Then, the log-likelihood function (2.3)) along the line
s(t) = (1 —t)sy, follows from ((3.4):

A

Spo = _gwk (wko) =

Jkk(uk - &ko) ,

n—1 n—1 . .
Hwi; s(t)} = log Q2| — wp Jer{Gro + t(ur — ko) } - (3.7)

The maximization of (3.7)) entails that 6,{s(t)} = 6x(t) = dro + t(ur — dxo) or,
equivalently,

O s(t)} = Q) =t + (1 — 1Oyt (3.8)

Given that Q,(t) = Q{&x(t)}, by taking the inverse of the matrix from the left-
hand side of (3.8)), the value of w(t) is obtained accordingly. The replacement of
wy, in (3.7) with @ (t) and Wy, respectively, delivers the result

expll{@ro; s(t)} — H{wi(t); s()}]
o [ (1)~ exp nT_l{d)k(t) — Qro} ! Jrbr(t)
o [Qu ()~ V72,

because the function {@y(t) — Oro ' Jrr0x(t) is zero (see proof in Appendix A.2).
By (3.5, we obtain |j.,w, (wi)| o [Iss(£2, ) x| and, consequently,

neon L0 ()} 712 o |Tss {0 1 (8) ban) /2.

Thus, following expression (2.7)), the directional test is based on p(t) in (2.10)),
with
h{s(t); o} oc [ ()1 V2 Iss {0 (1) haal 2, (3.9)

and the analytical value of ¢, is calculated as in Section 4.2. If the alternative
model were saturated, with ¢*-vector w;, = w, then

[Iss {2 (1) hal = [Iss {2 (1)} = 27190 (1) ™+

according to the general expression for computing the determinant of the Isserlis
matrix (Roverato and Whittaker, 1998, Sec. 2). In this case, (3.9) reduces to

h{s(t); 0} oc | (£)| D210 ()] 7@ = O (1) 22,
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which agrees with the simpler result obtained by Davison et al.| (2014, Sec. 5.3)
for testing the absence of some connections in a complete graph.

Expression gives the unnormalized saddlepoint approximation to the
distribution of s(¢) in £*. The following theorem, the proof of which is deferred
to Appendix A.1, states when is also the unnormalized exact null conditional
density of s(t) in £*.

Theorem 1. Let Y ~ N,(u, Q') denote a Gaussian graphical model with log-
likelihood (3.4). If the induced incomplete graph is chordal, then (3.9) gives the
unnormalized exact conditional density of s(t) in L* under Hy : ¢ = 1o = 0.

The normalizing constant simplifies in the ratio of integrals in , so the
approximation error when calculating the directional p-value stems only from the
one-dimensional numerical integrations. Thus, in Gaussian graphical models that
describe chordal graphs, the saddlepoint approximation to the null conditional
density of the sufficient statistic is exact. Consequently, when we test for a
reduced graph, the resulting directional p-value is exactly uniformly distributed
under the null hypothesis Hqy : ¥ = 1y = 0.

Monte Carlo experiments in Section 5 support this theoretical result, and
empirically show that the directional p-value stays remarkably accurate in the
last simulation scenario based on non-chordal graphs. When the exactness does
not hold, the relative error of the saddlepoint approximation is still of order
O(n=3/2), as opposed to the absolute error of order O(n~') of the chi-squared
approximation to the distribution of w(1)y).

Finally, we give the term ~(¢) in from |Skovgaards (2001) modified

likelihood ratio statistics (2.2)):
B 1/2
0 s }
k)l

(3.10)

v(tho) =

Q
Q

2{(610 — &) ()t (20 — 1)} /2 { s
{— IOg |Q;190|}d/271(d}k — (;)ko)TJkk(a'kO — 6k) |ISS(

4. Computational Aspects
4.1. Calculation of the determinant of the Isserlis matrix

When the dimension p of the canonical parameter w; under the alternative
model is smaller than ¢*, but still relatively large, calculating the determinant
of the matrix Iss{Q;l(t)} k1D can be computationally quite demanding. It
is then advisable to exploit some useful results on the Isserlis matrix in order to
speed up the computing time for the directional p-value.

Let A be a ¢ x ¢ symmetric invertible matrix. [Roverato and Whittaker| (1998,
(15)), for any partition (k’, k") of the edge set k in such that ¥ Uk" = k
and ¥’ Nk" = k, show that



372 DI CATERINA, REID AND SARTORI
’ISS(A)k/k/ ISS(A)k//k//’
[Tss(A) | ’

which gives a convenient way to reduce the dimensions of the matrices. If,
moreover, the graph induced by k is chordal with a vertex set decomposable

‘ISS(A)kk‘ =

into cliques C1, ..., Ck and separators Ss, ..., Sk, according to the definitions in
Lauritzen (1996), Sec. 2.1), this can be further simplified to
Hilil |AC1 notl

|Tss(A)| = 27 (4.1)

HiK:2 ‘AS7 ’nsiJrl ,
where n¢, and ng, denote the number of nodes in the ith clique and ith separator,
respectively, and Ac, and Ag, are submatrices of A with rows and columns
corresponding to the relative nodes (Roverato and Whittaker, (1998, Eq. 17).

4.2. Numerical integration

The upper bound ftg,, in is the largest value of ¢ such that the
ML estimate Qk(t) is positive definite. By the same arguments as in [Huang,
Di Caterina and Sartori (2022, Lemma 4.1), this upper bound can be obtained
explicitly as o, = 1/(1 — 1(1)), where vy is the smallest of the ¢ eigenvalues of
Qo2

Moreover, writing the integrand in as exp{g(t;¥)}, where g(t;v) =
(d — 1)logt + logh{s(t);v}, we can improve the numerical stability of the
calculations using the equivalent formula

S exp{g(t;9) — g ) }dt - o
e elatrse) —gtiua” TR T

We have also found that the integrand function can be concentrated around

p() =

its mode, taking nonzero values in a shorter interval [tmin, tmax] € [0, tsup]. To
address this, and deliver more stable numerical results, we use the Gauss—Hermite
quadrature (Liu and Pierce, |1994) and integrate over [t.in, tmax] Only. As a result,
we compute the directional p-value as

L explg(ti) — g(hv))dt
S exp{g(t; ) — gt ) bt

tmin

p() (4.2)

The choice tyi, = max{0,7—c/q(t;1)} and tya, = min{t + c/q(#; ), teup}, Where
q(t;1p) = —0%g(t;4) /0t and c is a constant to be chosen, is reliable (cf., Huang,
Di Caterina and Sartori, 2022, Sec. S1.3). The second derivative of the Isserlis
determinant in the last factor of the integrand in cannot be derived explicitly,
and its numerical approximation may be unstable. In order to choose the width
of the integration interval [tmin, tmax|, We then set the function ¢(t;1) equal only
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Figure 1. Graphs for the first simulation scenario, where the dimension of the parameter
of interest is equal to d = 3. The alternative model for the chordal graph on the left is
compared against the null model on the right.

to the second derivative of the first factor in (3.9), that is,

_82@;1@)‘@—1)/2 d—1 N n—1 i (1—1;)?

alt; ) = ot I 2 (1—t+t;)?

i=1

In our numerical experiments, the value of ¢ is chosen for each pair (n,q) by
performing preliminary checks to ensure that the integration from ¢, to tpax
is equal to that over [0,%,,], and then fixed for further simulations. This
simplification was found useful only in settings when n > ¢, and cannot be
applied if g(¢;¢) is monotonic in [0, ¢s,p,]. The directional p-value in that case has
to be calculated directly using formula , but this happened only 21 times
in the Monte Carlo experiments discussed below.

5. Simulation Studies

The performance of the directional approach in terms of covariance selection
for Gaussian graphical models is examined here using simulation-based experi-
ments. In the first scenario, the focus is on a small chordal graph with ¢ = 6
nodes, similar to that in Dawid and Lauritzen| (1993, Ex. 7.3). The two models
under comparison, differing only by d = 3 edges, are presented in Figure 1.
Monte Carlo simulations use 100,000 samples of size n = 8, generated under the
null hypothesis. The empirical p-value distribution of the tests based on w(1)y),
w* (), w**(1hy), and the directional procedure is shown in the left plot of Figure
2 with respect to the reference uniform distribution, focusing on the interval
(0,0.1). The right plot compares the relative errors of the three most accurate
methods. Despite the simplicity of the example, the likelihood ratio statistic
leads to too many rejections of the null hypothesis, because n is relatively small.
The higher-order modifications remedy this, but the directional approach allows
an exact control of the size of the test, up to numerical and Monte Carlo errors.

The inferential benefits of our proposal over the omnibus likelihood-based
competitors are particularly evident with high magnitudes of ¢ and d. The
second scenario is based on the data of Kenward (1987, Tab. 1), from a study on
intestinal parasites of 60 calves, where the weight in kilograms of each bovine was
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Figure 2. Results based on 100,000 samples simulated under the null model displayed on
the right side of Figure 1, with n = 8 and ¢ = 6. On the left, ordered empirical p-values
Py (1 =1,...,100000) smaller than 0.1 are compared with the uniform distribution on
the diagonal for w (dot-dashed), w* (dashed), w** (long-dashed), and the directional test
(solid). On the right, the corresponding relative errors {p(; — (i/n)}/(i/n) are plotted
in a similar fashion only for w*, w**, and the directional method.

recorded on 11 occasions during the grazing season. To enable a comparison with
the findings of Davison et al.| (2014} Sec. 5.3), who could only test the saturated
model, we draw 100,000 samples of size n = 60 from a g-variate Gaussian random
variable under the hypothesis of first-order Markovian dependence MD(1), with
a tridiagonal concentration matrix. For each ¢ € {11, 30,50}, the null hypothesis
H, : MD(1) is tested against four alternative unsaturated structures, also using
w(tho), w* (1), and w**(1hy). These Markovian dependence models of order
m under H; : MD(m) with 1 < m < g — 1 correspond to so-called band
concentration matrices, the nonzero entries of which are confined to m diagonals
on either side of the main one. The orders m are chosen to check the behavior
of the various methods for a wide range of dimensions d of the parameter of
interest, and consequently of the nuisance component. Because the Markovian
structure induces a chordal graph, the simplification is particularly useful
for computing the directional p-values with such a high-dimensional parameter
of interest.

Table 1 reports our experimental results obtained when ¢ = 11, as in the
original data set, and Tables 2 and 3 refer to cases with data simulated using
a larger covariance matrix, ¢ = 30 and ¢ = 50, respectively. In line with
our theoretical findings, the empirical distribution of the directional p-values is
essentially uniform in all settings, and almost unaffected by the size of ¢ and d.
The usual likelihood ratio statistic w(v,) is highly sensitive to the dimension
of both ¢ and A; its adjustments w*(1y) and, particularly, w**(¢y) seem to
suffer from the increasing dimension d of the parameter of interest. Tables 2
and 3 clearly indicate that, as d grows, the test based on w(ty) becomes too
liberal, and those based on w*(1)y) and w**(1)y) become too conservative. For
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Table 1. Empirical p-value dlstrlbutlons (%) based on 100,000 replications. The first-
order Markovian model under Hy : ( ) is tested against different Markovian models
of orders m € {2,3,6,9} under H; : MD(m), when n = 60 observations of a graph with
q = 11 nodes are available.

Nominal (%) 1.0 25 5.0 10.0 25.0 50.0 75.0 90.0 95.0 97.5 99.0
vs MD(2), d =9

Likelihood ratio, 14 33 6.3 12.0 284 53.7 775 91.2 956 97.8 99.1
Skovgaard’s w*, (3.1 1.0 25 5.1 10.0 25.1 50.2 75.1 89.9 949 974 99.0
Skovgaard’s w**, 1.0 2.5 5.1 10.0 25.1 50.2 75.1 89.9 949 974 99.0
Directional, 1.0 25 5.1 10.0 25.2 50.3 75.2 90.1 95.0 97.5 99.0
vs MD(3), d = 17

=g
ol

™
|
=)

Likelihood ratio, (3.6) 1.8 3.9 7.2 135 30.4 56.1 79.3 92.0 96.0 98.1 99.2
Skovgaard’s w*, (3.10) 1.1 2.6 5.0 10.0 246 49.6 74.6 89.6 94.7 97.3 98.9

Skovgaard’s w**, 1.0 25 50 99 245 495 745 89.5 94.7 97.2 98.9
Directional, 1.0 26 5.1 10.1 25.0 50.3 754 90.2 95.0 97.5 99.0
vs MD(6), d =35

Likelihood ratio, 25 55 98 174 36.2 62.2 833 94.0 97.2 98.6 99.5
Skovgaard’s w*, (3.1 08 21 43 88 224 464 71.7 87.8 93.6 96.6 98.5
Skovgaard’s w**, 08 21 42 86 220 459 71.2 875 934 96.4 985
Directional, 1.0 25 49 10.0 25.0 50.3 75.3 90.2 95.1 97.5 99.0
vs MD(9), d = 44

Likelihood ratio, (3.6) 3.3 6.9 12.0 20.6 40.8 66.2 85.9 952 97.8 99.0 99.6

Skovgaard’s w*, 0.7 1.8 37 78 20.7 43.7 69.1 86.3 92.6 96.1 98.2

=
—
=)

e
ol

=
=
=)

=
o=

Skovgaard’s w**, (3.10) 0.7 1.8 3.6 7.5 20.1 42.8 68.2 85.7 92.2 95.8 98.1
Directional, (4.2) 1.0 24 49 99 252 50.0 75.0 90.1 95.1 97.5 99.0
Standard error 00 00 01 01 01 02 01 01 0.1 0.0 0.0

the intermediate case ¢ = 30, the leftmost panels of Figure 3 compare the null
empirical distribution of the directional p-values with those from w(ty), w* (),
and w**(1)g). The almost perfect agreement of our proposal with the benchmark
uniform distribution given by the diagonal of the panels is apparent.

Before proceeding, we focus on the implementation of formula to obtain
the determinant of the Isserlis matrix of Q! estimated under the alternative
hypothesis. When multiplying the determinants of many square matrices of mod-
erate order, some propagation of numerical errors can occur. In our experiments,
this is visible, to a certain extent, in the intermediate sections of Tables 2 and
3, when the performance of the directional tests seems slightly worse than in
the remaining sections. Indeed, when the null is tested against more extreme
Markovian models, the matrices in are either many, but small (top section)
or large, but few (bottom section). Thus, the final product of their determinants
is not overly affected by numerical errors. That being said, note that in all settings
the directional approach remains remarkably accurate, significantly improving on
the competing testing procedures.
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Table 2. Empirical p-value distributions (%) based on 100,000 replications. The first-
order Markovian model under Hy : MD(1) is tested against different Markovian models
of orders m € {2,9,18,28} under H; : MD(m), when n = 60 observations of a graph
with ¢ = 30 nodes are available.

Nominal (%) 1.0 25 50 100 250 50.0 750 90.0 950 97.5 99.0

vs MD(2), d = 28

Likelihood ratio, (3.6) 1.6 3.8 7.2 134 305 564 794 922 962 981 99.3
1.0 25 50 100 249 50.0 751 90.1 950 97.5 99.0

Skovgaard’s w**, 1.0 25 50 100 249 50.0 750 90.0 950 97.5 99.0

Directional, ({-2) 1.0 24 49 100 249 50.1 752 90.2 951 975 99.0

vs MD(9), d = 196

. E

ES
i
=)

Skovgaard’s w*,

w
=
2

Likelihood ratio, (3.6) ~ 11.1 19.1 28.4 41.5 64.6 84.6 953 98.7 99.5 99.8 99.9
Skovgaard’s w*, (3.10) 0.3 0.9 2.0 4.4 133 323 579 785 87.1 925 96.4
Skovgaard’s w**, (3.10) 0.3 0.8 1.7 3.9 121 302 554 765 857 914 957
Directional, ({2} 09 23 48 97 247 503 758 905 954 97.7 99.1
vs MD(18), d = 340

Likelihood ratio, (3.6) ~ 53.8 66.9 76.9 86.0 95.0 98.8 99.8 100.0 100.0 100.0 100.0
Skovgaard’s w*, (3.10) 0.0 0.1 03 0.7 3.0 107 274 488 621 728 829
Skovgaard’s w**, (310} 0.0 00 01 04 17 69 195 382 512 625 743

Directional, (Z.2) 08 22 46 95 247 502 760 908 956 97.8 99.2
vs MD(28), d = 4
Likelihood ratio, (3.6) 86.2 92.3 95.6 97.9 99.5 99.9 100.0 100.0 100.0 100.0 100.0

o
[

. E

Skovgaard’s w*, (3.10) 0.0 00 00 02 09 43 138 30.0 425 539 67.0
Skovgaard’s w**, (3.10) 0.0 0.0 0.0 00 0.2 14 5.9 155 245 339 464
Directional, (4.2) 1.0 24 51 10.1 25.2 50.1 75.1 90.1 951 975 99.0
Standard error 00 00 01 01 01 0.2 0.1 0.1 0.1 0.0 0.0

The third simulation scenario considers a block-diagonal configuration of
the concentration matrix under the null hypothesis. Here, 100,000 samples of
size n € {40,60,90,120} were drawn from a normal distribution with ¢ = 50
components and covariance matrix 3o = diag{Xoi, Y01}, with o a 25 x 25
sub-matrix with diagonal entries equal to one, and off-diagonal entries equal to
0.5. This condition clearly implies that Q, = X' is also block diagonal, so
that the first 25 nodes are conditionally (as well as unconditionally) independent
of the last 25 nodes in the graph. On the other hand, our alternative model
admits the existence of some conditional dependence between the two subsets of
nodes. Specifically, in addition to the nonzero elements defined in €2y, we also
suppose ;; = Q;; # 0, for i = 16,...,25 and j = 26,...,50. It follows that
the dimension of the parameter of interest is d = 250, and can be used to
speed up calculations of the Isserlis matrix associated with the chordal alternative
incomplete graph.

Simulation results in this framework are presented in Table 4. Given the no-
table size of d, the relative performance of the approximations under comparison,
in terms of the empirical p-value distribution, is analogous to that in the previous
experiment, with the only exception that here the version w**(1)y) appears to
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Figure 3. Results based on 100,000 simulated samples. In all eight panels, the empirical p-
values obtained via w (dot-dashed), w* (dashed), w** (long-dashed), and the directional
test (solid) are compared with the uniform distribution given by the diagonal. Leftmost
panels: the model under Hy : MD(1) assumes first-order Markovian dependence, with
n = 60 and ¢ = 30. The four panels correspond to different Markovian models under
the alternative hypothesis Hy and related dimensions of ¢): MD(2) and d = 28 (top left),
MD(9) and d = 196 (top right), MD(18) and d = 340 (bottom left), and MD(28) and
d = 405 (bottom right). Rightmost panels: the null model assuming a block-diagonal
concentration matrix with ¢ = 50 is tested against the same alternative hypothesis
implying d = 250. The four panels correspond to different sample sizes: n = 40 (top
left), n = 60 (top right), n = 90 (bottom left), and n = 120 (bottom right).

be, in general, more reliable than w*(¢y). Although the increase in sample
size generates some accuracy improvements for all the competitors, as expected,
the empirical directional p-value guarantees an almost perfect agreement with
its theoretical uniform distribution for all values of n considered. The extreme
liberality of the standard likelihood ratio test persists, Skovgaard’s w* (1) does
not correct it enough, and the version w**(1)y) overcorrects it. As before, the
rightmost panels of Figure 3 show the p-values obtained using the likelihood
ratio statistic, its modified versions, and the directional procedure.

As an empirical check of the accuracy of our proposal for non-decomposable
models, in the fourth simulation scenario, we consider a small non-chordal graph
with ¢ = 4 nodes, as in [Eriksen (1996, Sec. 4). Figure 4 displays the two models
under comparison, which differ only by d = 2 edges. Setting the sample size
to n = 7, 100000 artificial samples are simulated under the null hypothesis. As
for the first scenario, the results are presented in the two panels of Figure 5.
Because n is small with respect to ¢ and d, the chi-squared approximation to the
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Table 3. Empirical p-value distributions (%) based on 100,000 replications. The first-
order Markovian model under Hy : MD(1) is tested against different Markovian models
of orders m € {2,16,32,48} under H; : MD(m), when n = 60 observations of a graph
with ¢ = 50 nodes are available.

Nominal (%) 10 25 50 100 250 500 750 90.0 950 97.5 99.0
vs MD(2), d = 48
Likelihood ratio, (3.6) 1.8 42 78 145 324 582 809 93.0 967 984 994

Skovgaard’s w*, (3.10] 1.0 2.5 5.0 99 251 501 749 90.0 951 97.5 99.0
Skovgaard’s w**, (3.10 1.0 2.5 5.0 9.9 250 500 749 899 951 975 99.0
Directional, 1.0 2.5 4.9 9.9 250 501 751 90.1 952 97.6 99.1
vs MD(16), d = 615

Likelihood ratio, 779 86.7 921 96.0 99.0 99.8 100.0 100.0 100.0 100.0 100.0
Skovgaard’s w*, (3.10 0.0 0.0 0.1 0.2 1.1 51 159 333 46.2 579 70.6
Skovgaard’s w**, (3. 0.0 0.0 0.0 0.1 0.5 2.6 9.3 222 332 442 574
Directional, 0.8 2.0 4.3 91 244 504 763 914 96.1 981 99.3
vs MD(32), d =
Likelihood ratio,

Skovgaard’s w*,

w
(=)

S

o —

0

R =
=S

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.7 3.4 6.7

!

Skovgaard’s w**, (3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
Directional, (4.2) 0.5 1.4 34 80 235 51.7 786 928 96.9 98.7 99.5

vs MD(48), d = 1175
Likelihood ratio, (3.6) ~ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Skovgaard’s w*, 00 00 00 00 00 00 01 04 10 20 40
Skovgaard’s w**, (310} 00 00 00 00 00 00 00 00 00 00 0.0
Directional, 08 22 47 98 254 5L1 762 909 955 97.8 99.2
Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0

@)

Figure 4. Graphs for the fourth simulation scenario, where the dimension of the
parameter of interest is equal to d = 2. The alternative model for the non-chordal
graph on the left is compared against the null model on the right.

distribution of the likelihood ratio statistic is misleading. The improved versions
of w, especially w* here, are more reliable. However, even in this application
to a non-chordal graph, the superiority of the directional approach based on the
accurate saddlepoint approximation is evident in terms of the relative error.

6. Applications

First, we examine the data set introduced in the second simulation scenario
of Section 5 from the experiment about the control of intestinal parasites in cattle
(Kenward, 1987, Tab. 1). However, here we focus separately on the two treatment
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Table 4. Empirical p-value distributions (%) based on 100,000 replications. The two-
block diagonal structure of the concentration matrix for a graph with ¢ = 50 nodes is
tested against a more complex structure including d = 250 additional edges.

Nominal (%) 10 25 50 100 250 500 75.0 90.0 950 975 99.0
n = 40

Likelihood ratio, (3:6) ~ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Skovgaard’s w*, 271 391 50.6 635 817 93.7 985 99.7 99.9 100.0 100.0
Skovgaard’s w**, 310} 0.7 17 34 72 193 420 680 859 925 961 983
Directional, (4.2 1.0 25 50 101 252 502 752 90.0 949 974 989
n = 60

Likelihood ratio, (3:6) ~ 98.4 99.3  99.7 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Skovgaard’s w*, (3.10) 24 53 9.6 173 366 629 842 946 97.6 989 99.6
Skovgaard’s w**, (310} 06 1.7 35 75 204 439 703 874 935 96.7 98.6

Directional, (4.2) 1.0 2.5 50 10.0 25.1 50.1 75.2 90.2 951 976 99.0
n =90
Likelihood m‘cio7 659 77.1 850 91.5 973 99.4 99.9 100.0 100.0 100.0 100.0
Skovgaard’s w*, (3.10 1.3 3.2 6.1 12.0 285 542 782 91.7 96.0 981 99.2
Skovgaard’s w**, (3.10 0.8 2.1 4.3 8.9 230 476 732 89.0 945 97.2 98.8
Directional, (4.2) 0.9 2.5 50 10.1 25.0 50.1 75.1 90.1 951 976 99.0
n =120
Likelihood ratio, (3.6 36.6 50.0 616 73.6 8.6 96.7 99.3 99.9 100.0 100.0 100.0
Skovgaard’s w*, (3.10 1.1 2.9 56 11.0 26.8 522 76.5 90.9 955 97.8 99.1
Skovgaard’s w**, (3.10 0.9 2.3 4.6 9.4 240 487 739 894 946 973 98.9
Directional, (4.2) 1.0 2.5 50 10.1 25.1 50.1 75.0 90.0 95.0 97.5 99.0
Standard error 0.0 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.0
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Figure 5. Results based on 100,000 samples simulated under the null model represented
by the right graph of Figure 4 with n = 7 and ¢ = 4. On the left, ordered empirical
p-values Py (i = 1,...,100000) smaller than 0.1 are compared with the uniform
distribution on the diagonal for w (dot-dashed), w* (dashed), w** (long-dashed), and the
directional test (solid). On the right, the corresponding relative errors {p«;y—(i/n)}/(i/n)
are plotted in a similar fashion only for w*, w**, and the directional method.

groups with equal size n = 30 to investigate differences in the underlying temporal
dynamics of growth. Recalling that each animal was weighed ¢ = 11 consecutive
times, we start by assuming a Markovian dependence of order m = 3, the simplest
model accepted in a test against the saturated one by all the procedures under
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analysis and in both groups. This model is then compared against the null
hypothesis of first-order dependence, implying d = 17. For the calves randomly
assigned to the first treatment, the likelihood ratio statistic is w(ty) = 28.384
with p-value = 0.041, Skovgaard’s modifications are w*(¢y) = 22.977 with p-
value = 0.150 and w** (1)) = 22.691 with p-value = 0.160 and the directional
p-value is 0.111. For the second group, we get instead w(iy) = 31.895 with p-
value = 0.016, w*(¢)y) = 30.055 with p-value = 0.026, w**(¢)y) = 30.028 with
p-value = 0.026 and directional p-value = 0.029. The standard likelihood ratio
test is the only one to reject the MD(1) model at a 5% significance level for both
treatments. Conversely, the other statistics recognize a different time pattern
and indicate a more complex dependence of the weights in the second group.

We now consider microarray data from the biostatistical literature (see, e.g.,
Massa, Chiogna and Romualdi, 2010) that characterize gene expression signatures
in acute lymphocytic leukemia cells associated with genotypic abnormalities in
adult patients. The normalized version of such data, available in the package
topologyGSA (Massa and Sales, 2016|) of the R software (R Core Team, 2020),
is especially useful for analyzing the B-cell receptor (BCR) signaling pathway,
composed of ¢ = 35 gene products. The observed samples are classified according
to the presence of molecular rearrangements in their genetic profile.

The conversion of biological pathways into graphical models has become
standard practice in biostatistics to separate and compare specific portions of
the genetic process under examination. Based on the findings of [Massa, Chiognal
and Romualdi| (2010)), it is of interest to investigate whether the graph resulting
from the well-known BCR signaling pathway in Figure 6 can be simplified
further. The restricted graphical model under the null hypothesis in our analysis
corresponds to the identified path starting from nodes CD22 and CD72 and
ending at AP1, going through RasGRP3, Ras, Raf, MEK1/2, and ERK enzymes.
This comparison implies testing the lack of d = 12 edges, and can be carried out
on the subset of patients not suffering from so-called BCR/ABL rearrangements.
With n = 41, we obtain w(t)y) = 33.520 with p-value = 8.028 x 10™%, w*(¢y) =
32.172 with p-value = 13.018 x 10™*, w**(1)y) = 32.158 with p-value = 13.083 x
1074, and directional p-value = 13.941 x 10~*. Although all four methods indicate
that the data are not consistent with the shorter biological path, the p-value
from the usual likelihood ratio test w(t)y) is relatively much smaller than the
other three, and in these types of problems very small p-values are relevant.
The agreement of Skovgaard’s approximations with the directional p-value is
consistent with our simulation results for small values of d with respect to n.

7. Discussion

We have provided theoretical and computational considerations for a
likelihood-based approach to covariance selection in unsaturated Gaussian
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Figure 6. BCR signaling pathway involving ¢ = 35 gene products. The interest is in
testing whether a simpler path without the d = 12 gray edges can be identified.
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graphical models. The directional test is based on the saddlepoint approximation
to the conditional distribution of sufficient statistics in exponential family models.
The saddlepoint approximation to the conditional density was derived explicitly,
and proved to be exact within the important class of decomposable models for
chordal graphs. Moreover, the computation of the directional p-value using
one-dimensional numerical integration is made especially fast, as discussed in
Section 4. Simulations in several scenarios, including situations with a high-
dimensional parameter of interest and a large number of nuisance parameters,
illustrate that the p-values from the directional test are uniformly distributed,
up to the approximation error from the one-dimensional numerical integrations.
These results confirm the theoretical exactness of the saddlepoint-type method
with chordal graphs, even if the number of nodes is greater than the sample size.
Our empirical findings suggest also that the saddlepoint approximation, despite
not being exact, retains at least the usual accuracy for continuous models when
non-chordal graphs are tested.

The likelihood ratio test and its improvements considered here (Skovgaard,
2001) are omnibus tests: the implicit alternative hypothesis is multidimensional.
In contrast, the directional test uses information in the data to simplify the testing
problem to one dimension. The saddlepoint approximation to this distribution
incorporates an adjustment for the estimation of the nuisance parameters that
has been found to be very effective in simpler problems (Pierce and Peters, [1992;
Tang and Reid) [2020).

A natural question about directional tests is whether they entail a loss of
power (Jensen, 2021)). This is difficult to assess in simulations, because the
alternative hypotheses are very high dimensional. We have concentrated on
evaluating the size of the test, which Tables 1-4 show is very well controlled
at conventional 0.05 and 0.01 levels, and well into the tails (Figures 2-3). We are
not aware of other detailed discussions on the power of the likelihood ratio test
for these complex Gaussian graphical models with high-dimensional alternatives.
For high-dimensional normal distributions with ¢/n — (0, 1], [Huang, Di Caterina
and Sartori| (2022, Sec. 5.3) evaluate the unconditional power of the directional
test under a few settings. The performance strongly depends on the specific
alternative hypothesis under analysis, so it is impossible to draw generally valid
conclusions. Still, in those settings, the directional test proved to be uniformly
more powerful than the likelihood ratio test and its modifications considered
here. Note too that for simpler testing problems in the multivariate normal
model, McCormack et al.| (2019)) showed that the directional test is equivalent to
the uniformly most powerful invariant test based on the F-statistic or Hotelling’s
T?-statistic.

The directional approach detailed here can be extended to graphical models
for discrete data, such as those in|Roverato| (2017)). However, because discreteness
prevents the saddlepoint approximation from being exact, even upon normaliza-
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tion, one might reasonably not expect the same accuracy of directional p-values
observed in this work, at least in the most challenging testing problems.

The present methodology applies only to situations in which the number
of observations is such that the ML estimate exists with probability one under
the alternative hypothesis. In particular, the sample size must be greater than
the maximal clique size of the hypothesized graph or its decomposable version
(Buhl, |1993)). The development of reliable likelihood-based testing procedures,
omnibus or directional, in circumstances where the number of nodes is much
larger than the number of observations is still an open problem, and thus left to
future research.

Supplementary Material

Supplementary materials available at https://github.com/cdicaterina/
DirTestGGM.git| provide the data and the R code to reproduce all numerical
results in the paper.
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Appendices
A.1. Proof of Theorem 1

We want to show that the saddlepoint approximation equals the exact
conditional distribution of the sufficient statistic under H,, up to some constant.
The sufficient statistic in our setting is s = uy, i.e. the partition corresponding
to the non-zero elements in €, of u = n/(n — 1)vech Q! where Q' = yTy/n —
y'1,17y/n? is the sample covariance matrix.

Substituting in the log-likelihood the ML and constrained ML estimates
of the canonical parameter w;, obtained in Section 3, we get

A\ (n—1)/2
R . Q n—1 N R
exp{l(@o; s) — L(wy; 8)} = (:QOD exp{ 5 (Op — ka)TJkkak}
k

R (n—1)/2
_ <|Q|>
€2 7

since the exponential equals 1 (see Appendix A.2). Given equation (3.5) in
Section 3.2 for j,, ., (wk), we can then write the expression for the saddlepoint
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approximation ([2.7) in our setting as

|Q | (n=1)/2
h(s; o) o ( = ) [Iss (2 el 72 (A1)

Consider now the density of s = wu;. This is the marginal density of p entries
in !, the sample covariance matrix with joint Wishart distribution W,(n —
1,27!/n). Solving the likelihood equation in Section 3.2 implies that 6, = uy, = s,
hence these entries are the same as those in the corresponding entries of the
matrix Q;l. We can obtain such a density for chordal graphs with vertex set
decomposable into cliques C}, ..., Cg and separators S,, ..., Sk with cardinality
ne, and ng,, respectively Combining the results on the factorization of the
joint density of Q! (Lauritzen, 1996, Eq. 5.45) and on the margmal Wishart
distributions for the sub-matrices Qké = (2 Y)¢, and ka = (0 Y)s, (Dawid and
Lauritzen, 1993, Sec. 7.3.1), under the null hypothesis Hy : wy, = (¢, A) = (0, \)

the true concentration matrix is €2, and so we have:

f(s957) =
o{~(n=1)/2}(CK, ne, - S, ns, )Hz 1 Toe, {(n —1)/2} (077 et [ Ve
[Tiss T, {(n = 1)/2} [Q5, |~ (= 0/2] Q4 | (=2 s /2

ek {iu (0580 - Yo (0ct ) ]
i=1 i=2

Rearranging the factors in the previous formula and neglecting the constants, we

L\ —(n=1)/2 . (n71>/2
. Q—l l_[Ii 1i HzKZI ‘Q 1i 1 |(2
J(5957) e o1
; [Tis |93, i:2 Qs 1~

can write

(nc;+1)/2

I 100
o {5 [ (00 - Yo (QQ)] } .
i=1 =2

We now use the decomposition of the graph (Lauritzen, |[1996| p.145) to re-express
the first two factors as a ratio of determinants, the result by |[Roverato and
Whittaker| (1998) mentioned in Section 4.1 to re-express the third factor as the
determinant of the Isserlis matrix, and finally the property of the trace operator
to re-express the fourth factor. Hence we have

™~ (n—1)/2
f(s:907) o ( = ) [Lss (€25, | 71/

|2

o3[ wnesis) et

=1 1=2
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0 (n=1)/2
() et o))
k

where in the last step we have applied again the decomposition property based on
the factorization of the density in chordal graphs (Lauritzen, 1996, Eq. 5.45) to
find the final expression in the exponential of the last factor. The null conditional
density of the sufficient statistic in Ly is given by setting wy, = wio = (0, 5\0), or
equivalently by fixing the concentration matrix under the null hypothesis €, at
its constrained ML estimate QO, ie.

F(s:9051) i (nl)/QIIss(Q_l) |71/2 ex {—E[t Qo2
L) A kk p 9 1“( 032 )]}

€2
1| (n—1)/2
x ( QO ) |Tss(Q5 ) | 72 (A.2)

In the last step we have used tr(Qo2; 1) = tr(Qu 1) = tr(I,) = ¢ (see Appendix,
Section A.2).

Equation is equal to equation , up to a constant. The normalizing
constant of f(s; Qo ) simplifies in the ratio of integrals in for computing
the directional p-value. The one-dimensional integration is allowed by further
restricting on the line £* in £°, identified by Q;'(t) = tQ;' 4+ (1 —)Q5*. As the
observed value ) of the concentration matrix under H, does not depend on ¢,
we can integrate in the numerator and denominator of the function

h(s(t);vo) oc € ()] D2 Lss {5 () bl 772,
which was given in .
A.2. Proof of tr[{&(t) — @0} T J6(t)] =0
We show that the scalar function
Ft) = {n(t) — o} " Tewow(t)

equals zero. Since f(t) = tr{f(¢)} and the two models under comparison are
nested, it is equivalent to prove that tr[{@(t) — &} " J&(t)] is constant in ¢, where

o) = (‘:”}ﬁ’f)) L= (“’O> - )

are all vectors of dimension ¢*. Letting () = 2{6(t)}, we have:

Il
P
Q>
>
—~
o~
S~—
SN——
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tr[{a(t) — o} " J5(t)]

r[vech {Q(t) — Qo} "G TG vech QL (1))

[
r[{€0(t) — 0} Q5 (8)]
o, — Qo{tQ" + (1 - )05

r(l,) — ttr(QOQ; ) — (1 —t)tr(Z,)
=q—tq—(1—1t)g=0.

t
t
t
t

This uses basic matrix algebra (see, e.g., |Abadir and Magnus, [2005) and the
equality tr(QoQ:t) = tr(QQ5 ") = tr(I,) = ¢. The latter is due to the fact that
the trace of the product of two symmetric matrices is the sum of the element-
wise products and, by the ML equation, Q,;l differs from Qa ! only when the
corresponding entries of (), are zero (cf. [Eriksen, (1996, p.278).

In order to derive the same result for the scalar f(1) = (@, — ko) " Jex0, the
above calculations can be carried out imposing ¢t = 1.
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