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Abstract: We propose a new modeling and estimation approach that selects an
optimal treatment regime by constructing a robust estimating equation. The
method is protected against a misspecification of the propensity score model, the
outcome regression model for the nontreated group, and the potential nonmonotonic
treatment difference model. Our method also allows residual errors to depend on
the covariates. We include a single index structure to facilitate the nonparametric
estimation of the treatment difference. We then identify the optimal treatment
by maximizing the value function. We also establish the theoretical properties of
the treatment assignment strategy. Lastly, we demonstrate the performance and
effectiveness of our proposed estimators using extensive simulation studies and an
analysis of a real data set from a study on the effect of maternal smoking on baby
birth weight.
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1. Introduction

Individuals sometimes respond differently to the same treatment, owing to
between-person heterogeneity. Factors that contribute to such heterogeneity
include genetic risk factors, age, and individual-specific environmental exposures.
Thus, when different treatment options are available, we need to be able to
select the best treatment regime specific to a particular individual, which is
one of the goals of precision medicine. Precision medicine aims to determine
a strategic assignment of treatments to patients according to their characteristics
and medical history. This goal can be achieved by using an individualized
treatment rule (ITR), that is, a deterministic function of subject-specific factors
that are responsible for patients’ heterogeneous responses to a treatment. The
optimal ITR maximizes the expected clinical outcome of interest under the ITR.
Furthermore, an optimal dynamic treatment regime usually consists of a set of
sequential decision rules applied at a set of decision points. There have recently
been significant research developments on estimating optimal treatment regimes.
In this work, we focus on estimating an individualized treatment regime at a
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single decision time point.

Two popular model-based methods used to derive optimal dynamic treatment
regimes are quality learning (Q-learning) and advantage learning (A-learning). Q-
learning (Watkins| (1989); Watkins and Dayan| (1992); Nahum-Shani et al.| (2012);
Zhao, Kosorok and Zeng (2009)); |Zhao et al.| (2011)); Murphy| (2005); Qian and|
Murphy| (2011); [Song et al.| (2015)); |Goldberg and Kosorok! (2012)); (Chakraborty,|
Murphy and Strecher| (2010)) is built on a postulated regression outcome model
for the outcome of interest, and is implemented using a backward induction
fitting procedure. This approach was initially proposed by , with a
detailed proof of convergence later provided by Watkins and Dayan| (1992)). The
performance of the optimal treatment decision rule obtained using Q-learning
depends on the outcome model being specified correctly. A-learning
(2003)); Blatt, Murphy and Zhul (2004)); Robins (2004); Orellana, Rotnitzky and|
Robins| (2010)); [Liang, Lu and Song| (2018)) maximizes estimating equations to

estimate the contrast functions, using the estimated probability of an observed
treatment assignment, given patient information, at each decision point (i.e.,
treatment propensity scores). Thus, the performance of the optimal treatment
decision rule obtained using A-learning relies on having a suitable treatment
assignment model.

Another approach, known as the model-free or policy (value) search method
(Zhang et al.| (2012alJb); Zhao et al. (2012);|[Jiang et al|(2017a]b))), directly derives
and maximizes a consistent estimator for the value function over a prespecified
class of treatment regimes indexed by a finite-dimensional parameter, or over a
class of nonparametric treatment regimes. For example, |Zhang et al.| (2012b)
formulated an inverse propensity score weighted (IPW) estimator and a doubly

robust augmented IPW estimator for a value function with a single decision

time point. Later, Zhang et al. (2013) extended this idea to value functions
with more than one decision point. Zhang et al.| (2012a)) and |Zhao et al. (2012)
recast the original problem of finding the optimal treatment regime as a weighted
classification problem. The former obtains the optimal treatment regime by
minimizing the expected weighted misclassification error, whereas latter uses an

outcome-weighted support vector machine. Other relevant works include those of
Robins| (2004)), |[Foster, Taylor and Ruberg| (2011)), Zhao et al. (2013), Matsouaka,|
Li and Cai (2014), Song et al| (2017), Bai et al.| (2017)), Fan et al.| (2017,
(2018)), and [Huang and Yang]| (2020).

Here, we propose a new modeling and estimation method that can be used to

determine the optimal treatment regime at a decision time point, combining the
advantages of Q-learning, A-learning, and the model-free approach. In addition,
our model has the advantage that it assumes only that the treatment difference
is a smooth function of an index of the covariates, without requiring the smooth
function to be monotonic. This is practically important. For example, for a
patient with heart disease, low blood pressure and high blood pressure can both
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increase the risk of a heart attack, resulting in a possible nonmonotonic treatment
difference model. Another example is the relationship between BMI and health
risks, where underweight and obese individuals both have increased risks of a
range of health measures. Our model also allows the model error to be dependent
on the covariates, which is important in practice. Furthermore, we consider a
multi-robust estimating equation to protect against a misspecified propensity
score function, treatment difference model, or outcome regression model for the
nontreated group. Benefiting from the smoothness of the treatment difference
function, our treatment regime identification rate is O,(n~?/®), which is faster
than the existing rate of O,(n~/?) (Fan et al| (2017)), where the treatment
difference function is assumed to be monotonic.

The remainder of the paper is organized as follows. In Section 2, we introduce
the estimation procedure and the algorithm for our proposed method. Section
3 provides the asymptotic properties of the proposed estimators for 8 and the
treatment difference function Q(-). In Section 4, we summarize the finite-sample
performance of the estimators for different designs, including well-specified and
misspecified models. In Section 5, we demonstrate our method by analyzing a
data set on baby birth weight, where the research interest is to investigate whether
maternal smoking during pregnancy affects birth weight. Section 6 concludes the

paper.

2. Model and Estimation

We consider the following treatment difference model :
Vi — Yio = Q(BX;) + ¢, (2.1)

where Y;; is the potential outcome for individual 7 if a treatment is received, Yjq is
the potential outcome for individual 7 if no treatment is received, X; € R% is the
set of covariates, the treatment difference function Q(-) is an unknown smooth
function, and E(e | X) = 0, where € is the model error. Here, 3 € R% is a vector
of unknown parameters and dg is the dimension of 8. Let A; be the treatment
indicator. Our estimation is performed under the following two assumptions,
commonly assumed in the literature.

Assumption 1. (Stable unit treatment value assumption) Y; = Y A; + Yio(1 —
A;).

Assumption 2. (No-unmeasured-confounders assumption) A; L (Yi1,Yio) | Xi.

For the identifiability of 3, we require 3 to have the form 8 = (1,87)7,
where the lower sub-vector is an arbitrary vector of length dg — 1. If Y}; and Y
are both available, we can estimate 3 by simultaneously solving Y7 {Yi; — Yio —

QB X )HX i — E(Xp: | B7Xi)} =0and 37, Ky (87X, — B'X;) (Vi1 — Yo —
¢;) =0, for i =1,...,n. Here, X, represents the sub-vector of X formed by its
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lower dg — 1 components and @(HTXZ) = ¢;. Note that we use @(BTXZ) instead
of ¢; in the first equation to emphasize that it is an estimate of the function
Q(-) evaluated at BTX;, for i = 1,...,n. Note that K,(-) = K(-/h)/h, where
K(-) is a kernel function and h is a bandwidth. However, because we observe
only Y;, we can consider an IPW-based estimator (Robins, Rotnitzky and Zhao
(1994)) and modify the above equations to Y ., [A;Y;/m(X;) — (1 — A;)Y; /{1 —
(X))} = Q(BTXy)] x{Xp — E(Xyp | B7X;)} =0 and 37, Ki(B'X; — B7X))
[A,Y;/n(X;)—(1-A4)Y;/{1-7(X;)} —¢;] =0, for j =1,...,n, where 7(X;) is a
known propensity score model. To protect against a misspecified 7(X;), we adopt
the models pu(X;,a) = E(Y; | X;) and 7(X;,v) = P(A; = 1| X;), and estimate
B by modifying the above equations to the following doubly robust augmented
version (Robins, Rotnitzky and Zhao| (1994)):

= [{A; — (X, ) HY: — w(Xi, @)} A; =~ AT
Z[ (X A1~ 7(X03)} +{1‘w<xiﬁ>}‘m X”] (22)

X {XLi - E(Xy; | BTXz)} =0,

and
- {4 — (X, Y HY: — u(Xi, a)} A;
K, (B™X, - 8"X, [ — = — = ¢j| =0,
2K IR A X)) A&
for j = 1,...,n. This relation can be equivalently written as
©<BTXJ'7167&7:)\1) = (23)

2 i K (B X — BT XA — (X, ¥) HY: — (X, @) }/ [ (X, ) {1 —7(X4, 4) }]
2 Kn(BTX —BTX) A /m(Xi,7)
The B estimator based on is doubly robust with respect to m(X,y) and

u(X, a). Following the literature, we consider the parametric models 7 (X, )
and u(X, ), for simplicity.

Proposition 1. Under the model in (2.1), as long as one of m(x,v) and p(x, )
is correct, then the estimator for B is consistent. In addition, to estimate (3,
we can use a working model for the Q(-) function that may differ from the true
treatment difference function if both w(x,~) and p(x, ) are specified correctly.

Note that in Proposition 1, we do not require the values of v and a to be
known. Instead, v and « are unknown parameters. As long as one of the models
in m(x,7) and u(x, a) is specified correctly, the conclusion of Proposition 1 holds.
Note too that 4 can be obtained based on the data (X;, A;), fori = 1,...,n, using,
for example, a maximum likelihood estimator (MLE). Similarly, (X, a) = E(Y; |
X, A; = 0), and hence & can be obtained based on the data (X;,Y;) for i where
A; = 0, by, for example, solving generalized estimating equations (GEEs). When
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solving to obtain ,3, the choice of bandwidth A is flexible and can be any
positive number, as long as n~%/? << h << n~Y% However, once we obtain
B, we estimate Q(-) using an optimal bandwidth of order n~'/?, which can be
obtained using cross-validation. We now describe the algorithm of the estimation
procedure in detail.

Algorithm 1
Step 1. Obtain the estimate of «, 4, using MLE based on the data (X;, A;), for

1=1,...,n.
Step 2. Extract the observations with A; = 0. Denote the subset of observations
corresponding to A4; = 0 as (X;,Y), for i = 1,...,ng. Use this subset to compute

the estimator of a, @, by solving the GEEs > 1°, W(X;, a){Y;" — u(X;, )} = 0,
where W (X, ) is an arbitrary do x 1 matrix of functions of covariates X;, the
parameter o € R% | and dg_is the dimension of a.

Step 3. Plug 4 and & into and obtain Q(B8YX;, 8, a,7).

Step 4. Plug ¥4, &, and @(ﬁTXi7ﬂ,&,'§) into and solve to obtain Br.

Step 5. Select a bandwidth Agpt.

Step 6. Obtain @(-,3, a,¥) from 1) while plugging in 7, &, ﬁ, and hops.-

In step 5, to estimate Q(-), we need a suitable bandwidth, which we select
using leave-one-out cross-validation method. Specifically, we estimate Q(-) by

@—j(B\Tvaa7a7:)\/)
_ z”: Kn(B'X; — BTX;){4; — m(Xi, ) HY: — p(Xi, &)}

i=1,i#j [W(Xwa\/){l o W(sza\/)}]
i Kn(B™X; — BTX,) A;
i=1,i#j ﬂ-(Xia 7)

where @,j(~) denotes the estimator with the jth observation left out. Then,
we calculate the leave-one-out cross-validated prediction MSE as CV(}\L) =
S A — 7 (X ) MY — (X, @)} (X, )1 - (X0 7))~ AQ-(BTX,
B,a,7)/7(X;,7)]?, and choose h as the minimizer of CV(h).

Considering that Q(3"X) may be a nonmonotonic function, we denote all
regions where Q(BTX) > 0 as the treatment region; that is, we assign treatment
1 to an individual if and only if Q(B8TX) > 0. Obviously, this maximizes the
value function, leading to the optimal treatment regime. Specifically, the value
function V{Q(-),8} = E[YaI{Q(B*X;) > 0} + YiI{Q(B8*X;) < 0}] under our
identification strategy. Therefore, even if Q(87X) has multiple roots, we can
still identify the optimal treatment regimes. Note that Q(8TX) > 0 simplifies
to BTX > 0 if Q(BTX) is monotone. Therefore, our strategy Q(B7X) > 0
accommodates both monotone and nonmonotone functions. Thus, once we obtain
@(-, ,3, a,7) and ,@, we directly identify the optimal treatment regime by assigning
treatment 1 if and only if @(BTX) > 0. We can further estimate the subsequent
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maximum value function as
V{Q0).B.6.3) =
3 ATQ(BX.,5.8.5)> 01+ (1-4)[Q(B™X,,B.6.7) O},
(X, ) IH{Q(BTX;, B, &, 7) > 0}+{1-7(X,,7) H{Q(B" Xz,ﬁ a,v) <0}
i QX

- Z{w e A}[< ”gf”f“ﬁM)I{@@Txiﬁ,aﬁ)>0}

>||

M(Xiv a)

—mI{Q(BTXi,ﬁ,&ﬁ) < 0}

N [A+(1—-24)I{Q(B"X,, B,&,7) <0}]Y, XA A
S\ (X0, 7)+H{1-21(X,, 3)H{Q(B™X,, B, &,7) <0} K '

+@(BTX ﬁ & A)}I{@(ﬁTx“a Aﬁ) < 0}]
1

, (2.4)

which is a consistent estimator of the true value function V{Q(-), 8}.

3. Theoretical Properties

We now study the theoretical properties of the proposed estimators. For no-
tational simplicity, define W (v) = E (0?log[r(X,v)*{1 — n(X,~)}}~4]/0vd~v7),
By(Xis Aiy) = W) 0log [r(xi, %) {1 — m(x 7)) /07, and (X
A Y o) = [E{W(X,a)D(X,a)}] ' W(X;,a)(1 — A){Y; — u(X;, )}, where
W(X;,a) is an arbitrary weight matrix and D(X,a) = u(X,a)/0a’.
Throughout this paper, a®? = aa®.

Proposition 2. Write the conditional distribution of A given X as w(x,7y)*
{1—m(x,v)}* . Regardless of whether w(X,~) is the true propensity score model,
there exists o such that the MLE 7 satisfies /n(y — o) = n~ 23" ¢,(X
A, y) +0,(1). Hence, /(5 —~0) = N{0, W (~0) 'B(v)W () '} in distribu-
tion when n — oo, where B(yo) = E{¢~ (X, Ai, v0)¥?}.

Specifically, when the model w(x,7y) is correct, 7y, is the true parameter value
that yields mo(x) = m(x,70), and the covariance matrixz simplifies to the inverse of
Fisher’s information matriz I(~o), which is (o) = =W (y) ™. When the model
m(x,7) is incorrect, vy is the parameter vector that minimizes the Kullback—

Leibler distance E{log([mo(X)*{1 — mo(X)}1=4]/[n(X, 7)) {1 — n(X,y)}' 4] }.

Proposition 3. Regardless of whether u(X, a) is the true model, let a be the
estimator that solves the estimating equation > >, W(X;, a){Y"—u(X;, )} = 0.
Then, \/ig(@— o) = ng "> 310 da(Xi, 41, Vi a0) +0,(1) = ng 1, a(X
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A;Y;, o) + o,(1). Hence, \/ng(a — ag) = N(0,Vy) in distribution when n —
oo, where Vo = [E{W (X, aq)D(X,ag)}] ! x E{W (X, ap)v(X)W (X, )"}
([E{W (X, ao)D(X, o)} )T, and v(X) is the conditional variance of Y given
X. When the model (X, ) is specified correctly, o satisfies po(X) = u(X, ay),
where po(x) is the true mean outcome under A = 0. However, when the model
(X, a) is specified incorrectly, o satisfies E[W (X;, a){Y? — u(Xi, a0)}] = 0.

The results in Propositions 2 and 3 follow directly from the findings of White
(1982) and |Yi and Reid| (2010); hence, we omit detailed proofs. We develop
the asymptotic properties of the estimators ,@ and @(-,B,&,’Ay), the root of
@(-,B, a,¥), and ‘7{@(),,@, a,~} under the following conditions.

Regularity Conditions:
(C1) The true parameter value 3, belongs to a compact set (2.

(C2) The univariate kernel K(-) is symmetric, has compact support, and is
Lipschitz-continuous on its support. It satisfies [ K(u)du =1, [uK (u)du =
0, 0# [u’K(u)du < .

(C3) The probability density function of BTX, denoted by f(37x), is bounded
away from zero and oo.

(C4) E(X | BTx)f(B"x) and Q(B"x) are twice differentiable, and their second
derivatives and f(3"x) are locally Lipschitz-continuous and bounded.

(C5) The bandwidth h = O(n™"), for 1/8 < k < 1/2.

(C6) The treatment assignment probability satisfies ¢ < my(x) < 1 — ¢, where ¢
is a small positive constant.

(C7) The true treatment responses, fio(x) for the nontreated group and i, (x) for
the treated group are bounded by a constant C.

(C8) The true treatment effect function Q (B x) has roots rq, ..., rx, for K < oo.
In addition, Q'(ry) #0, forall k =1,... K.

Conditions (C1)-(C5) are standard conditions that ensure a sufficient
convergence rate of the nonparametric estimators. Condition (C6) is also
routinely assumed to exclude weights near zero and one. Condition (C7) is very
mild, and is usually satisfied in practice. Condition (C8) allows roots for the
function Q(-), and is also very mild.

Lemma 1. Under Conditions (C2), (C3), and (C4), at any B € Q and for any
function H(X;, A;,Y;) such that E{H(X;, A;,Y;) | BYX;} is twice differentiable,

Jr =7
we have
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E{H(X;,A;,Y;))Ky(8"X; — B"x)} — E{H(X;,A;,Y;) | B7x} f(B"x)

o h?
= g E X, 4,.) | B} £(8™0] / 2K (2)dz + o(h?),

var{n ZH (X, A;, ;) KL(B"X; —,@TX)}
— (0h)VB{HA(X,, A,.;) | 875} (8"%) [ K (2)dz + O(n ).

Lemma 2. Assume the regularity Conditions (C1)—(C5) hold. Then, at any B €

Q, the kernel estimator Q(Bx, B, g, vo) satisfies Q(Bx, B, g, ¥o) — Q(BTx) =
O, {2 + (nh)~12).

Note that the convergence rate of @(ﬁTx,ﬁ, a,7o) is slower than /n,
whereas 4 and & have a y/n convergence rate. Thus, estimating @(ﬁTX, B, a,7),
which is based on & and 7 instead of o and =, respectively does not change
the results in Lemma 2.

Theorem 1. Assume BL solves . Then, under the regularity conditions
(C1)«(C5), By satisfies /n(Br — Bro) — N{0,B-1V(B 1)} in distribution
as n — oo, where Vi = E[{¢s(X;,Y;, Ai, Bo, @0, Y0) + By (Xi, Ai,vo) +
Bo¢a(Xi, Ai,Y:, ) }#2]. Detailed expressions for B, B, Ba, and ¢5(X;,Y;,
A;, Bo, g, o) are provided in Section S1 of the Supplementary Material.

The first term in the variance expression V; captures the variability of
estimating different functions, the second term captures the variability in
estimating 3 due to the estimation of «, and the third term captures the same
induced by a.

Lemma 3. Assume the regularity Conditions (C1)~(C5) hold. Then, the kernel
estimator obtained from Step 6, Q(,@ X ,@, ,Y), satisfies

bias{@(BTX, B\a a’ :7\/)}

2 {Q’(ﬂEX)d[E{Wo(Xj)/W(Xm'Yo) | Box}/(Box)l/d(Byx) Q“(BOTX)}
o F(Box) E{mo(X;)/m(X;,70) | By x} 2

X / K(z)dz 4 o(hl,, + n_l/zho;t/z),

and
UGT{@(BTX7B7a7A)}
_ 1 <E [WWO(X ) {}/h - ,U(ijao)}Q | IB(")FX:|

nhopt 2(X5,7%)
1 —m(X;) o a2 | 3Tx
+E [{1 _ W(Xj’,yo)}g {}/OJ :U’(X]? 0)} ‘ ﬁ() :|
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—QZ(ﬁEx)E{m o)

- 20850 |82 2 (X))~ n(X,.a0)} | Bx] )

SCrldteen 'ﬂEXH_Q [ K@)z + 0.

Here, for a generic function r(-), v'(-) and r"(-) are its first and second
derivatives, respectively.

Theorem 2. Let Q(zp) = 0 and @(2, ﬁ,a,fy) = 0. Then, as n — oo, under
the regularity Conditions (C1)~(C5), Z — 2y at the rate n=%/°. Specifically, the
leading term of the bias of Z is

d[E{TrO(X)/Tr(X,’)’o) ‘ ,BOTX = Zo}f(zo)]/d(zo) Q//(ZO) ,
{ E{mo(X)/7(X,v) | BaX = 20} f(20) T 2Q’ (zo) } /Z K(z)dz,

and the leading term of the variance of Z is

—h?

opt

(£ g~ oxcor 6%

8 [ e o K ) A5X = 5]

S ETTERE B {w&(?) 8% =} / KA ()dz.

Theorem 2 indicates that our treatment region identification rate is
O,(n=%/°), which is better than the classical rate O,(n"'/3) (Fan et al,| (2017)).
This is because of the smoothness assumption made in Condition (C4).

Theorem 3. Under the regularity Conditions (C1)—(C8), the optimal value
function estimator given in satisfies n'2[V{Q(-), B, 6,3} —V{Q(-), Bo}] —
N(0,0?) in distribution when n — oo, where 0> = E[-UZB™{¢(X,;,Y;, A;, Bo,
,%) + B¢, (Xi, Aisv0) + Bada(Xi, A, Y, 00)} + Ulda(Xi, ALY, ) +
U$¢),,,(Xi, A o) +vo{Xi, Ai, Yy, Bo, o, Y0, Q() } + v (X, Ay, Y;)]?. Detailed ex-
pressions for B, B, Bo, Ua, U,, ¢5(X;, Y, Ai, Bo, oo, Y0), vo{Xi, A;, Y, Bo, a,
Yo, Q(+)}, and vo(X;, A;,Y;) are provided in Section S1 of the Supplementary
Material.

We can understand the first term in o2 as the variability in the value function
due to 8. The second term is related to the variability induced by «. The third
term captures the variability due to the « estimation. The fourth term measures
the variability in the value function induced by estimating the treatment effect
function. Lastly, the fifth term captures the variability in the value function
inherited from the variability of the covariates.
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4. Simulations

We conduct simulation studies to compare the performance of the estimators
discussed in Section 2. To demonstrate the robustness of the proposed estimators,
we consider scenarios in which either 7(X,~) or u(X, ar) is misspecified. We use
a sample size of n = 500, with 1,000 replicates.

4.1. Simulation 1

Our first simulation follows similar designs to those in [Fan et al.| (2017,
which require the monotonicity of Q(-). We set dg = 4 and generate the covariate
vector X; from a multivariate normal distribution with zero mean and identity
covariance matrix. We generate the treatment indicator A; from a Bernoulli
distribution with probability mo(X;) = 0.5. The response variables are formed
from Y; = po(X;)+AiQo(B5 Xi)+e€;, where ¢; is generated from a centered normal
distribution with variance 0.25. Here, Qo(81x) = 28¢x and po(x) = 1 + oy x,
where ap = (1,-1,1,1)" and By = (1,1,-1,1)".

To illustrate the robustness of our method, we consider four cases for the
estimation. In Case I, we use the constant treatment probability model and
a linear model for u(x,a) in the implementation, both of which are specified
correctly. In Case II, we use a constant model for u(x, a), which is a misspecified
model, while keeping the treatment probability = unchanged. In Case III, we fix
m at 0.4, and use the same p model as in Case I. Thus, p is specified correctly,
whereas 7 is misspecified. Lastly, in Case IV, both models are misspecified by
using the same model for p as in Case II and setting 7 as in Case III.

We follow the algorithm described in Section 2, where we use the Epanech-
nikov kernel in the nonparametric implementation, and use the bandwidth
con~ Y3 to estimate B, where o2 is the estimated variance of 8Tx and ¢ is a
constant between 7 and 7.5 in step 3.

From the results summarized in Table 1, in the first three cases, our
estimation for 3 yields a small bias. In contrast, for Case IV, when both 7(x) and
p(x, o) are misspecified, the estimation for 3 is biased. In terms of inference, the
estimated standard deviations based on the asymptotic properties match closely
with the empirical variability of the estimators, and the 95% confidence intervals
have coverage close to the nominal level in the first three cases. Interestingly, the
value function estimator and the root of Q(-) perform well in all cases. Figure 1
further shows that the 95% confidence interval for Q(+) includes the true function

Qo(")-
4.2. Simulation 2

In our second simulation study, we examine the performance of our estimators
in the presence of nonmonotonic function Qu(-) and heteroscedastic error
variance. When generating the data, the true treatment difference function is
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Table 1. Simulation 1. Qo(Bfx) = 28¢x and uo(x) = 1 + afx. Case I: u(-) and 7(-)
are specified correctly; Case II: u(-) is misspecified; Case III: 7(-) is misspecified; Case
IV: both models are misspecified. For the different cases, we also compute the mean
of the estimated sd based on asymptotics (sAd)7 empirical coverage obtained with 95%
confidence intervals based on these estimated sd (cvg), and mean squared error (mse).

Results for 8 and value function V'

Case parameters  True Estimate sd sd cvg MSE
Ba 1 0.9960 0.0567 0.0563 95.1% 0.0032

I B3 -1 -0.9953 0.0563 0.0559 95.3% 0.0032
Ba 1 0.9941 0.0559 0.0549 94.4% 0.0032

\Y 2.5958 2.5955 0.1453 0.1458 97.2% 0.0211

Ba 1 1.0256  0.1598 0.2033 93.4% 0.0262

I B3 -1 -1.0252  0.1561 0.1982 93.7% 0.0250
Ba 1 1.0068 0.1361 0.1913 94.6% 0.0186

\Y 2.5958 2.6083 0.1926 0.1702 96.2% 0.0373

Ba 1 1.0049 0.0468 0.0470 95.3% 0.0022

I B3 -1 -1.0044 0.0470 0.0473 95.2% 0.0022
Ba 1 1.0032 0.0482 0.0464 94.7% 0.0023

A% 2.5958 2.6176 0.1476 0.1471 96.9% 0.0223

Ba 1 0.7494 0.1106 0.0940 41.3% 0.0751

v B3 -1 -0.7485 0.1073 0.0919 42.1% 0.0748
B4 1 1.0243 0.0901 0.0939 95.8% 0.0087

\Y 2.5958 2.6401 0.1665 0.1655 96.4% 0.0297

Results for the root of Qo(t) = 2t
Case true mean bias bias sd sd cvg MSE
I 0 0.0023  0.0023 -0.0013 0.0641 0.0663 96.6% 0.0041
II 0  -0.0004 -0.0004 -0.0001 0.1703 0.1693 93.7% 0.0290
I11 0 0.0015 0.0015 -0.0004 0.0589 0.0594 95.7% 0.0035
v 0  -0.0080 -0.0080 0.0044 0.1242 0.1225 93.2% 0.0155

Qo(B5x:) = (B3 x:)?—2, po(x) = 1+sin(afyx)+0.5(az,x)?, and the errors satisfy
€ ~ N(0,log{(Bx;)* + 1}). Here, Bp = (1,1,-1, )T, ayo = (1,-1,1,1)", and
as = (1,0,—1,0)*. All other aspects of the simulation setting are identical to
those in Simulation 1.

Despite the heteroscedasticity and nonmonotone treatment difference func-
tion, similar to Simulation 1, we consider four cases to demonstrate the robustness
of our estimator. In Case I, we use correctly specified models for both 7 and
p(x, ). In Case II, we misspecify the p(x,a) model as a linear model. In
Case III, we misspecify 7 as 0.4. Finally, in Case IV, both u(x,a) and 7 are
misspecified.
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Figure 1. Simulation 1. Mean, median, and 95% confidence band of the estimators of
Qo(t) = 2t, when (I) u(-) and 7 (-) are both correct (top-left), (II) wu(-) is misspecified
and 7(-) is correct (top-right), (IIT) 7(-) is misspecified and w(-) is correct (bottom-left),
and (IV) both () and 7(-) are misspecified (bottom-right).

We use the same nonparametric estimation procedures as we did in Simula-
tion 1 to implement the algorithm in Section 2. The results in Table 2 show that
despite the nonmonotonic function Qy(+) and a heteroscedastic error variance, the
estimations for the parameters 3, the value function, and the two roots of Qq(+)
yield very small bias in the first three cases. In addition, the estimated standard
deviations are close to the empirical standard deviations, and the confidence
intervals are close to the nominal coverage levels. As expected, the estimation
of B in Case IV does not perform well, although the performance of the value
function and the two roots of Q(-) show a certain robustness, even in Case IV. In
Figure 2, note that the 95% confidence interval for Q(-) includes the true Q(-)
function in all four cases.

4.3. Simulation 3

In the previous simulation settings, we considered a constant true propensity
score. We now consider a nonconstant propensity score, which better reflects the
situation in observational studies. Specifically, we let 7(X;) = exp(ys Xi)/{1 +
exp(vg X;)}, where 49 = (0.1,0,—0.1,0)". Furthermore consider Q,(3;x;) =
(B3 x;) + sin(B; x;) and generate the other data as in Simulation 2.

To show the robustness of our method, we consider four cases, similar to
Simulation 2. In Case I, we use correctly specified models for both 7(x,~) and
wu(x, ). In Case II, we misspecify the u(x,a) model as a linear model, while
keeping the treatment probability model 7(X,-) unchanged. In Case III, we use
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Table 2. Simulation 2. Qo(Bix) = (Bix)? — 2 and po(x) = 1 + sin(ayx) + 0.5(adyx)?,
when the error variance is heteroscedastic. See also the caption of Table 1.

Results for 3 and value function V'

Case parameters  True Estimate sd sd cvg MSE

Ba 1 1.0364 0.0646 0.0911 93.5% 0.0055

1 B3 -1 -1.0368 0.0653 0.0911 93.1% 0.0056

B4 1 1.0330 0.0646 0.0893 92.9% 0.0053

A% 4.7166 4.6415 0.2843 0.2970 94.9% 0.0864

Ba 1 1.0398 0.1124 0.1384 92.8% 0.0142

I B3 -1 -1.0341 0.1062 0.1320 94.0% 0.0124

B4 1 1.0411 0.1166 0.1385 93.2% 0.0153

A% 4.7166 4.6160 0.3095 0.3053 94.4% 0.1059

Ba 1 1.0295 0.0618 0.0833 92.6% 0.0047

I B3 -1 -1.0300 0.0640 0.0830 93.6% 0.0050

B4 1 1.0262 0.0629 0.0826 94.2% 0.0046

v 4.7166 4.7024 0.2967 0.3052 95.9% 0.0882

Ba 1 0.9549 0.0894 0.0990 86.4% 0.0100

v B3 -1 -1.0283 0.0865 0.1020 92.0% 0.0083

B4 1 0.9563 0.0910 0.1007 89.4% 0.0102

A% 4.7166 4.7518 0.3122 0.3174 96.1% 0.0987

Results for the two roots of Qo(t) = t? — 2

Case true mean bias bias sd sd cvg MSE
-1.4142  -1.4469 -0.0327 -0.0109 0.1498 0.1120 93.2% 0.0235
1.4142  1.4480 0.0338 0.0047 0.1259 0.1108 93.7% 0.0170
I -1.4142  -1.4482 -0.0340 -0.0144 0.2096 0.1943 94.7% 0.0451
1.4142 14408 0.0266 0.1191 0.1854 0.1830 95.2% 0.0351
I -1.4142  -1.4423 -0.0281 -0.0170 0.1104 0.1033 93.1% 0.0130
1.4142 14436 0.0294 0.0113 0.1112 0.1019 93.3% 0.0132
v -1.4142  -1.4087  0.0056 -0.0180 0.1585 0.1745 97.4% 0.0252
1.4142 14363 0.0221 -0.0145 0.1497 0.1662 97.5% 0.0229

a constant model for m(x,-y), which is misspecified, and use the same model for
u(X, ) as in Case I. Finally, in Case IV, both models are misspecified by using
the same model for u(X, ) as in Case II and considering 7(X, ) as in Case III.

We follow the algorithm described in Section 2 and summarize the results in
Table 3. Despite the heteroscedastic error and nonconstant propensity score
model, in the first three cases, the estimations for the parameters 3, value
function V', and the root of the treatment difference function yield a small bias.
In addition, the estimated standard deviations are still close to the empirical
version of the estimators, and the confidence intervals have coverage close to the
nominal levels. Interestingly, the estimator of the root of Q(-) performs well, even
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Figure 2. Simulation 2. Mean, median, and 95% confidence band of the estimators of
Qo(t) = t? — 2 with heteroscedastic error variance. See also the caption of Figure 1.
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Figure 3. Simulation 3. Mean, median, and 95% confidence band of the estimators of
Qo(t) =t + sin(t) with a nonconstant propensity score model and heteroscedastic error
variance. See also the caption of Figure 1.

in Case IV. In Figure 3, note that the 95% confidence interval for Q(-) includes
the true Qo(+) function in all four cases.
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Table 3. Simulation 3. Qo(Bix) = (Bfx) + sin(Bfx), m(x) = exp(v4X)/{1 +
exp(va X)}, and po(x) = 1+ sin(afyx) + 0.5(adyx)?. See also the caption of Table
1.

Results for 3 and value function V'

Case parameters True Estimate sd sd cvg MSE
B 1 1.0100 0.1197 0.1603 93.2% 0.0144

1 Bs -1 -1.0093 0.1177 0.1625 93.5% 0.0139
B4 1 1.0120 0.1227 0.1640 93.3% 0.0152

A% 3.0533 3.0345 0.1254 0.1287 95.7% 0.0161

Ba 1 1.0418 0.1742 0.1896 93.9% 0.0321

I Bs -1 -0.9983 0.1696 0.2087 93.0% 0.0287
B4 1 1.0467 0.1749 0.1866 93.1% 0.0327

A% 3.0533 2.9907 0.1157 0.1359 95.5% 0.0173

Ba 1 1.0220 0.1278 0.1757 92.4% 0.0168

I B3 -1 -1.0170 0.1243 0.1755 93.2% 0.0157
B4 1 1.0168 0.1276 0.1765 93.7% 0.0165

A% 3.0533 3.0440 0.1440 0.1203 95.0% 0.0208

B2 1 1.0512 0.2019 0.1727 80.5% 0.0434

v B3 -1 -1.0083 0.1976 0.1929 82.7% 0.0391
Ba 1 1.0575 0.2094 0.1837 82.6% 0.0472

A% 3.0533 2.9647 0.1402 0.1406 90.6% 0.0275

Results for the root of Qo(t) =t + sin(t)

Case true mean bias bias sd sd cvg MSE
I 0 0.0271 0.0271 0.0147 0.0795 0.0767 93.8% 0.0070
II 0 0.0105 0.0105 0.0179 0.1564 0.1669 97.2% 0.0245
I11 0 0.0078 0.0078 -0.0013 0.0769 0.0823 96.2% 0.0059
I\Y 0 0.0089 0.0089 0.0186 0.1726 0.1650 97.3% 0.0299

4.4. Simulation 4

Here, we consider a nonconstant propensity score model similar to that in
Simulation 3, and generate the other data as in Simulation 2. Thus, we consider
a nonconstant propensity score model with a nonmonotonic treatment difference
function and a heteroscedastic error variance in this simulation.

Similarly to Simulation 3, we consider four cases and demonstrate the
robustness of our estimators. The results summarized in Table 4 show that
the estimations for the parameters @, value function, V, and root of the
treatment difference function result in a small bias in the first three cases,
as expected. Furthermore, the estimated standard deviations are close to the
empirical standard deviations, and the confidence intervals are close to the
nominal coverage levels. Interestingly, the estimation and inference of 3, V', and
the two roots perform well in Case IV. In Figure 4, the 95% confidence interval
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Table 4. Simulation 4. Qo(8x) = (BEx)? — 2, mo(x) = exp(va X)/{1 +exp(y2 X)} and
po(x) = 1 +sin(afyx) + 0.5(adyx)?. See also the caption of Table 1.

Results for 3 and value function V'

Case parameters True Estimate sd sd cvg MSE

B 1 1.0316  0.0659 0.0870 92.7% 0.0053

1 B3 -1 -1.0346  0.0644 0.0890 92.8% 0.0053

B4 1 1.0346 0.0635 0.0874 93.9% 0.0052

A% 4.7166 4.6549 0.3035 0.3294 96.3% 0.0959

Bo 1 1.0236 0.1117 0.1377 93.4% 0.0130

I 03 -1 -1.0186 0.1111 0.1362 93.6% 0.0127

B4 1 1.0173 0.1143 0.1349 92.9% 0.0133

A% 4.7166 4.6134 0.2952 0.3269 96.3% 0.0977

Ba 1 1.0361 0.0637 0.0889 93.0% 0.0054

I B3 -1 -1.0343 0.0637 0.0895 95.0% 0.0052

B4 1 1.0327 0.0642 0.0877 94.0% 0.0052

A% 4.7166 4.6381 0.2930 0.3020 95.8% 0.0920

B 1 1.0396 0.1219 0.1368 93.5% 0.0164

v 3 -1 -1.0245 0.1103 0.1321 94.0% 0.0128

B4 1 1.0343 0.1215 0.1371 92.3% 0.0159

A% 4.7166 4.6004 0.2905 0.3056 94.2% 0.0979

Results for the two roots of Qo(t) = t? — 2
Case true mean bias bias sd sd cvg MSE
-1.4142  -1.4268 -0.0126 -0.0199 0.1201 0.1085 95.3% 0.0146
1.4142  1.4556 0.0414 0.0238 0.1115 0.1172 94.8% 0.0142
1 -1.4142 -1.3810 0.0331 0.0368 0.1811 0.1885 94.4% 0.0339
1.4142  1.4553 0.0411 0.0086 0.1792 0.1835 93.2% 0.0338
I -1.4142 -1.4410 -0.0268 -0.0159 0.1221 0.1169 93.2% 0.0156
1.4142  1.4554 0.0412 0.0137 0.1160 0.1206 93.6% 0.0151
v -1.4142  -1.3941  0.0201 -0.0065 0.1905 0.1950 94.9% 0.0367
1.4142  1.4508 0.0366 -0.0080 0.1769 0.1885 95.9% 0.0326
for Q(-) includes the true Qy(-) function in all four cases.
For comparison, we also implement the methods in Fan et al.| (2017)

for all simulations.

The results are summarized in Tables S.3 to
Supplementary Material, and show that when the monotonicity assumption is
violated, the methods of [Fan et al.| (2017) deteriorate and perform worse than
our proposed method. We also provide additional simulation studies in the
Supplementary Material, and implement two machine learning methods (Zhang
et al.| (2015); Zhao et al.|(2012)); the results are reported in Tables S.9 and S.10
in the Supplementary Material.

S.8 in the
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Figure 4. Simulation 4. Mean, median, and 95% confidence band of the estimators of
Qo(t) = t? — 2 with a nonconstant propensity score model and heteroscedastic error
variance. See also the caption of Figure 1.

5. Real-Data Application

In this section, we apply our proposed method to data from a study of
the effect of smoking during pregnancy on a baby’s birth weight. The primary
outcome is birth weight (in grams) of singleton births in Pennsylvania, USA
(Almond, Chay and Lee| (2005)). This study aims to determine whether pregnant
women should stop smoking to ensure a healthy birth in terms of the baby’s
birth-weight. We consider a subset of 1,394 unmarried mothers. The data
set contains data on the maternal smoking habit during pregnancy, which is
treated as treatment A; (1 =Non-smoking, 0 =Smoking). The covariates observed
are mother’s age (mage), an indicator variable for alcohol consumption during
pregnancy (alcohol), an indicator variable of previous birth in which the infant
died (deadkids), mother’s education (medu), father’s education (fedu), number
of prenatal care visits (nprenatal), months since last birth (monthslb), mother’s
race (mrace), and an indicator variable for the first born child (fbaby).

To estimate the propensity score, mean outcome model for the nontreated
group, and treatment difference function, we first normalize all the continuous
covariates. We use the expit model 7(X,~) to describe the propensity score, and
use an MLE to estimate ~. In addition, we consider a linear model for the mean
outcome model for the nontreatment group p(X, ), and solve GEE to obtain a.
Lastly, we estimate the treatment difference model Q(B7X) using the proposed
method.
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Table 5. Birth-weight study analysis: Results for 8 and value function V' with 95% CI.

parameters Estimate sd Confidence interval
B2 (alcohol) 0.2965  0.4842 (—0.6525,1.2455)
B3 (deadkids) 0.3406  0.0233 (0.2950, 0.3862)
B4 (medu) -0.1972  0.0073 (—0.2116,—0.1828)
Bs (fedu) -0.0947  0.0005 (—0.0957,—0.0938)
ﬂe (nprenatal) 0.2822  0.0061 (0.2703,0.2941)
B7 (monthslb) 0.0183  0.0002 (0.0178,0.0188)
Bs (mrace) 3.0882  0.3753 (2.3527,3.8237)
By (fbaby) -1.8505  0.4267 (—2.6868,—1.0143)
Value function 3274.9 25.439 (3225.1,3324.8)

To implement the algorithm described in Section 2, we use the quartic kernel
in the nonparametric implementation to estimate 3 with bandwidth con='/3,
where o2 is the estimated variance of 37X and ¢ = 0.05.

For identifiability purposes, we fix the coefficient of the first covariate (here,
mage) to be one and estimate the remaining eight coefficients. The estimated
parameters in 3, their standard errors, and the value function are summarized in
Table 5. From the 95% confidence interval for 3, we conclude that all covariates
are significant, except for the indicator variable for alcohol consumption. We
provide the estimated treatment difference model, @(,@TX), in Figure 5. Here,
the covariate alcohol is included when estimating @(,@TX) The results show a
higher baby birth weight for mothers who did not smoke during pregnancy, once
@(BTX) is greater than zero. We further construct the 95% confidence band
for the difference function Q(t), based on 500 bootstrap samples, by resampling
the residuals. The results from the CAL and CAL-DR methods of [Fan et al.
(2017) are summarized in Table 6. Here, neither CAL nor CAL-DR detect any
significant covariates. Furthermore, the variability when estimating the value
function using CAL or CAL-DR is higher than when using the proposed method.
In addition, the 95% confidence intervals computed by the CAL and CAL-DR

methods include the estimated value function obtained by our method.

Remark 1. We also performed an analysis after excluding the covariate alcohol,
and observed that the estimated function @(,@TX) does not change much.
However, excluding alcohol influences the estimated confidence band. This
suggests that we need to be more careful with variable selection and when
performing inference post variable selection. This is beyond the scope of this
study, and so is left to future research.
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Figure 5. Data analysis. The estimated treatment difference model, @(ETX), its median,
and 95% confidence bands based on the data set of low baby birth weights.

Table 6. Application to birth-weight study using the CAL and CAL-DR methods.

parameters

Estimate sAd

Confidence interval

CAL estimates for 8 and value function V for the real data analysis.

B (alcohol) 0.0223  7.0207 (—13.783,13.738)
B3 (deadkids) 0.2088  5.9428 (—11.439,11.857)
B4 (medu) -0.1998  0.6850 (—1.5424,1.1428)
Bs (fedu) -0.0902  0.2929 (—0.6643, 0.4838)
Be (nprenatal) 0.2066  0.5499 (—0.7812,1.3743)
B7 (monthslb) 0.0192  0.1653 (—0.3048, 0.3431)
Bs (mrace) 3.1975  7.1149 (—10.747,17.142)
Bo (fbaby) 2.0682  3.8728 (—9.6587, 5.5222)
Value function 3244.4 30.345 (3185.0, 3303.9)

CAL-DR estimates for 3 and value function V for the real data analysis.

B (alcohol) 01111 1.7382 (—3.5179, 3.2958)
B3 (deadkids) 0.2580  0.9554 (—1.6136,2.1314)
B4 (medu) -0.2058  0.3147 (—0.8226, 0.4109)
Bs (fedu) 0.0815  0.1545 (—0.3843,0.2213)
Be (nprenatal) 0.2759  0.2782 (—0.2693,0.8212)
B7 (monthslb) 0.0183  0.0383 (—0.0568,0.0933)
Bs (mrace) 3.2234  2.4674 (—1.6127,8.0594)
By (fbaby) -2.0459 1.7858 (—5.5460, 1.4542)
Value function 3241.9 30.243 (3182.6,3301.2)

6. Discussion

We have proposed a robust method for estimating the optimal treatment
regimes for a single decision time point under weak conditions; that is, our
treatment difference model Q(-) does not need to be monotonic and we require
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only that E(e | X) = 0. Our method enjoys protection against a misspecification
of either the propensity score model or the outcome regression model for the
nontreated group or the nonmonotonic treatment difference model. We use a
nonparametric kernel-based estimator to obtain the treatment difference model,
and show that the treatment identification rate is O,(n~%/°). Our simulation
studies demonstrate the superior performance of the proposed method under
various scenarios.

Regardless of whether the true treatment difference function Q(-) has single
or multiple roots, our procedure always identifies the region {x : @(BTX) >
0} as the treatment region. When @() has multiple roots, the corresponding
treatment region is the union of several intervals for ,@TX. In practice, this does
not cause problem, because when new patients enter with a covariate xu, we
simply evaluate @(BTXO) to determine whether they should receive the treatment.
We consider parametric models for the propensity score function and the mean
outcome model for the nontreated group. One can also use semiparametric or
nonparametric methods to obtain these two functions. For example, one can use
the semiparametric estimation procedure of Ma and Zhu (2013) to estimate the
propensity score and the mean outcome model for the nontreated group to obtain
n'/2-consistent estimators for 4 and . The treatment identification rate remains
unchanged.

Many extensions of this work are interesting and worth pursuing. For
example, we may consider multiple treatment decision times, while incorporating
the usual backward induction to obtain the optimal dynamic treatment regimes.
We may also consider multiple treatment choices sharing the same index. These
topics are left to future research.

Supplementary Material

The online Supplementary Material contains proofs for Proposition 1, Lemma
1-3, and Theorems 1-3.
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