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Abstract: Screening for ultrahigh-dimensional features becomes difficult in the pres-

ence of outlying observations, heterogeneous or heavy-tailed distributions, multi-

collinearity, and confounding effects. Standard correlation-based marginal screen-

ing methods may offer a weak solution to these problems. We contribute a novel

robust joint screener that safeguards against outliers and distribution misspecifi-

cation of both the response variable and the covariates, and accounts for external

variables at the screening step. Specifically, we introduce a copula-based partial

correlation (CPC) screener. We show that the empirical process of the estimated

CPC converges weakly to a Gaussian process. Furthermore, we establish the sure

screening property for the CPC screener under very mild technical conditions, which

need not require a moment condition, and are weaker than existing alternatives in

the literature. Moreover, from a theoretical perspective, our approach allows for

a diverging number of conditional variables. Extensive simulation studies and two

data applications demonstrate the effectiveness of the proposed screening method.

Key words and phrases: Copula partial correlation, outlier, sure independent screen-

ing.

1. Introduction

Ultrahigh-dimensional data have followed as a natural consequence of the

increasing availability of big data in many business and scientific research fields,

including medicine, genetics, finance, and economics. Such massive data usually

share two features: (i) the number of predictors or features can be very high,

diverging to infinity with the sample size; and (ii) the data distribution is very

likely to be heteroscedastic and heavy-tailed, for both the response and the co-

variates. These two features are observed in the two real-data sets investigated

in Section 5. A variable screener helps identify important predictors from among

numerous candidates. However, note that such large scale data still require using
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a comprehensive model to accurately predict a future outcome. Thus, the popu-

lar pure marginal screening approaches may not be adequate for model-building

purposes. Therefore, we contribute a new screening method that addresses the

above issues and complements the existing methodology.

Variable screening serves as a fast and efficient computing device. Numer-

ous feature-screening methods have been proposed, including sure independence

screening (SIS) by Fan and Lv (2008), who first established the sure screen-

ing property under a Gaussian linear model, sure independent ranking screen-

ing (SIRS, Zhu et al. (2011)), Kendall’s τ -based screening (Kendall-SIS, Li et

al. (2012)), distance correlation-based screening (DC-SIS, Li, Zhong and Zhu

(2012)), quantile-adaptive screening (QaSIS, He, Wang and Hong (2013)), empir-

ical likelihood screening (Chang, Tang and Wu (2013, 2016)), censored rank inde-

pendence screening for lifetime data (CRIS, Song et al. (2014)), screening based

on a quantile correlation (QC-SIS, Li, Li and Tsai (2015)), conditional quantile

screening (CQ-SIS, Wu and Yin (2015)), survival impaction index screening (SII,

Li et al. (2016)), and nonparametric independence screening (NIS, Fan, Feng and

Song. (2011); Cheng et al. (2014); Xia, Yang and Li (2016)), among many others.

These screening tools potentially suffer from two drawbacks. First, most eval-

uate a marginal association between the response and the predictors, without

adjusting the external variables. Therefore, jointly important predictors may be

screened out incorrectly if their marginal signal is not as strong as the spurious

predictors in the ranked list. On the other hand, marginally important vari-

ables may be jointly ineffective; hence, including them in a multivariate model

may lead to a less convincing prediction (e.g. Xia et al. (2016)). To take into

account joint effects, marginal feature screening is usually followed by an itera-

tive calculation, such as the iterative SIS (ISIS) in Fan and Lv (2008), which is

computationally expensive, and does not guarantee theoretical success. Second,

the distributions of the response and the predictors may be rather different from

the light-tailed symmetric normal distribution, and very often, outliers affect the

computed screening indices. Some of the aforementioned procedures address the

robustness of the response. However, to the best of our knowledge, none ad-

dress the robustness of the covariates, which is a harder problem, with a higher

dimension.

We aim to solve the aforementioned two problems using a new screener.

Specifically, to address the first, we develop a joint feature screening method in

which we incorporate additional information. Several conditional feature screen-

ing methods have been proposed. For instance, Liu, Li and Wu (2014) considered
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a sure independence screening procedure that uses a conditional Pearson corre-

lation coefficient and a kernel smoothing. Their method can handle ultrahigh-

dimensional varying-coefficient feature variables, which are investigated in Fan,

Ma and Dai (2014) and Cheng et al. (2014) as well. In addition, Xia, Li and

Fu (2019) considered a robust screening method based on a conditional quan-

tile correlation, as a generalized conception of Li, Li and Tsai (2015). How-

ever, these authors consider only a single conditional variable. As an exten-

sion to multivariate conditional variables, Chu, Li and Reimherr (2016) studied

several confounding variables. Barut, Fan and Verhasselt (2016) extended the

approach of Fan and Song (2010)) to allow for a portion of the predictors as

conditional variables. Our work provides a more general framework, in which all

ultrahigh-dimensional predictors and low-dimensional confounders can be con-

sidered jointly during the screening process. To address the second problem, we

incorporate a robust copula-based correlation and a partial correlation in our

screening methods. The nonparametric copula is a well-known distribution-free

summary measure that leads naturally to a screener that is robust against out-

liers and distribution misspecification. To the best of our knowledge, very few

works apply this classical dependence concept in a high-dimensional setting. Xia,

Li and Fu (2019) proposed a robust conditional feature screening approach; how-

ever, their method performs robustly against the response, but not against the

covariates. Another relevant recent work is that of Ma, Li and Tsai (2017).

This study contributes to the literature as follows. First, we propose a doubly

robust copula-based correlation (CC). Copula functions are very popular bivari-

ate functions used to model the nonlinear dependence between paired variates;

see Nelsen (2007) for an introduction to copula functions. A CC characterizes

the empirical dependence between two random variables evaluated at a level pair,

and is invariant under a monotone transformation for both variables. We study

the asymptotic process properties of the CC. A marginal variable screening ap-

proach using the CC (CC-SIS) achieves the desired sure screening consistency

(Fan and Lv (2008)). Second, by extending the copula-based correlation to a

copula-based partial correlation (CPC), we construct a more general framework

for joint screening. The importance of each predictor is evaluated in the presence

of conditional variables, providing a fast conditional feature-screening method.

The CPC is also robust, owing to its construction from a nonparametric estima-

tion, and thus may be more reliable than the similar approach of Ma, Li and

Tsai (2017), and have a broader range of application. We provide both theoreti-

cal and numerical support for the proposed screening method. Our data analysis
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indicates that the final multivariate regression models built after our screening

approach indeed predict outcomes with improved accuracy.

The rest of the paper is organized as follows. Sections 2 and 3 present the

methodologies and large-sample properties for the CC and CC-SIS and for the

CPC and CPC-SIS, respectively. Section 4 discusses further implementation

details and cases for the CPC-SIS. Simulations and two real-data applications

are presented in Section 5. Section 6 discusses choosing the parameters for the

method. Section 7 concludes the paper. All technical proofs and additional

simulations are relegated to the online Supplementary Material.

2. Copula-Based Correlation and Variable Screening

Consider two continuous random variables, X and Y . Let FX be the cumu-

lative distribution function (CDF) of X, which is assumed to be right continuous;

F−1
X (τ) = inf{x : FX(x) ≥ τ} is the τ -quantile of FX , FY,X is the joint CDF of

Y and X, and FY |X is the conditional distribution function of Y , given X, with

density fY |X . We use Fn,X , F−1
n,X , and Fn,Y,X to denote empirical versions of FX ,

F−1
X and FY,X , respectively, based on a sample of size n. Let D[a, b] be the Ba-

nach space of all càdlàg functions z : [a, b] 7→ R on an interval [a, b] ⊂ R̄ equipped

with the uniform norm, and let `∞([a, b]2) denote the collection of all bounded

functions z : [a, b]2 7→ R. We use →d to denote convergence in distribution.

2.1. Copula-based correlation

We propose the following CC

%Y,X(τ, ι) =
FY,X(F−1

Y (τ), F−1
X (ι))− τι√

τ(1− τ)ι(1− ι)
, 0 ≤ τ, ι ≤ 1, (2.1)

where the first term in the numerator is a copula function C(u, v) = FU,V (u, v),

with U = FY (Y ) and V = FX(X), evaluated at (u, v) = (τ, ι) (see Corollary 2.3.7

of (Nelsen, 2007, p.22)). From simple algebra, we have %Y,X(τ, ι) = E[ψτ (Y −
F−1
Y (τ))ψι(X−F−1

X (ι))]/
√
τ(1− τ)ι(1− ι) = cov(ψτ (Y −F−1

Y (τ)), ψι(X−F−1
X (ι)

))/
√
τ(1− τ)ι(1− ι), where ψτ (u) = τ − I(u ≤ 0) and I(·) is the indicator

function. Because var(ψι(X − F−1
X (ι))) = ι(1 − ι) and var(ψτ (Y − F−1

Y (τ))) =

τ(1−τ), %Y,X(τ, ι) given in (2.1) is indeed a legitimate correlation coefficient that

lies between −1 and 1. Like other known correlation measures, the CC is equal

to zero if X and Y are independent.

The CC can measure the nonlinear dependence between X and Y , and thus
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incorporates various kinds of bivariate joint distributions of X and Y . In addi-

tion, because the indicator function is unaffected by outliers and extreme values,

the CC is robust for certain heavy-tailed distributions for both Y and X. Note

that a monotone transformation of X and Y does not alter the value of the CC.

Given a sample of independent and identically distributed (i.i.d.) observa-

tions {(Xi, Yi), i = 1, . . . , n}, we can construct an empirical estimate of %Y,X(τ, ι)

as

%̂Y,X(τ, ι) =
Fn,Y,X(F−1

n,Y (τ), F−1
n,X(ι))− τι√

τ(1− τ)ι(1− ι)

=
n−1

∑n
i=1 ψτ (Yi − F−1

n,Y (τ))ψι(Xi − F−1
n,X(ι))√

τ(1− τ)ι(1− ι)
. (2.2)

Let σY,X(τ, ι) = FY,X(F−1
Y (τ), F−1

X (ι)), σX|Y (τ, ι) = FX|Y=F−1
Y (τ)(F

−1
X (ι)), and

σY |X(τ, ι) = FY |X=F−1
X (ι)(F

−1
Y (τ)). In the following, we fix the level at (τ, ι), and

write σY,X , σX|Y , and σY |X , respectively, for simplicity. Furthermore, define

ξ(Y,X; τ, ι) =
1√

τ(1− τ)ι(1− ι)

[
I(Y ≤ F−1

Y (τ), X ≤ F−1
X (ι))

−σX|Y (τ, ι)I(Y ≤ F−1
Y (τ))− σY |X(τ, ι)I(X ≤ F−1

X (ι))
]
.

The weak convergence result for %̂Y,X(τ, ι) is established in the next theorem.

Theorem 1. Let 0 < a < b < 1, and suppose that the marginal distributions FX
and FY are continuously differentiable on the intervals [F−1

X (a) − ε, F−1
X (b) + ε]

and [F−1
Y (a)−ε, F−1

Y (b)+ε] with positive derivatives fX and fY , respectively, for

some ε > 0. Furthermore, assume that the conditional density functions fY |X
and fX|Y are continuous on the product of these intervals. Then,

√
n{%̂Y,X(τ, ι)− %Y,X(τ, ι)} w

 GY,X(τ, ι)

in `∞([a, b]2), where
w
 denotes ”converge weakly,” and GY,X(τ, ι) is Gaussian

process with mean zero and covariance function Ω1(τ1, ι1; τ2, ι2) ≡ E{[ξ(Y,X; τ1,

ι1)− Eξ(Y,X; τ1, ι1)]× [ξ(Y,X; τ2, ι2)− Eξ(Y,X; τ2, ι2)]}.

We can write the covariance function explicitly as Ω1(τ1, ι1; τ2, ι2) = {FY,X(

F−1
Y (τ1 ∧ τ2), F−1

X (ι1 ∧ ι2)) − FY,X(F−1
Y (τ1), F−1

X (ι1))FY,X(F−1
Y (τ2), F−1

X (ι2)) −
σX|Y (τ2, ι2)[FY,X(F−1

Y (τ1∧τ2), F−1
X (ι1))−FY,X(F−1

Y (τ1), F−1
X (ι1))τ2]−σY |X(τ2, ι2)

[FY,X(F−1
Y (τ1), F−1

X (ι1∧ ι2))−FY,X(F−1
Y (τ1), F−1

X (ι1))ι2]−σX|Y (τ1, ι1)[FY,X(F−1
Y
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(τ1), F−1
X (ι2))−FY,X(F−1

Y (τ2), F−1
X (ι2))τ1]+σX|Y (τ1, ι1)σX|Y (τ2, ι2)(τ1∧τ2−τ1τ2)+

σX|Y (τ1, ι1)σY |X(τ2, ι2)[FY,X(F−1
Y (τ1), F−1

X (ι2))−τ1ι2]−σY |X(τ1, ι1)× [FY,X(F−1
Y

(τ2), F−1
X (ι1 ∧ ι2))−FY,X(F−1

Y (τ2), F−1
X (ι2))ι1] +σY |X(τ1, ι1)σX|Y (τ2, ι2)× [FY,X(

F−1
Y (τ2), F−1

X (ι1))−τ2ι1]+σY |X(τ1, ι1)σY |X(τ2, ι2)(ι1∧ι2−ι1ι2)}/[τ1(1−τ1)ι1(1−
ι1)τ2(1 − τ2)ι2(1 − ι2)]1/2. In particular, at fixed (τ, ι), if %Y,X(τ, ι) = 0, then√
n%̂Y,X(τ, ι) →d N(0,Ω1), where Ω1 ≡ Ω1(τ, ι; τ, ι) =

{
σY,X − σ2

Y,X + (τ −
τ2)σ2

X|Y +(ι− ι2)σ2
Y |X −2(1− τ)σY,XσX|Y −2(1− ι)σY,XσY |X +2[σY,X − τι]σX|Y

σY |X
}
/[τ(1 − τ)ι(1 − ι)]. If Y and X are independent, then Ω1 = 1, produc-

ing the same null distribution used in classical correlation and autocorrelation

studies. In contrast to the work of Li, Li and Tsai (2015), our result is free of

the moment conditions on X; Li, Li and Tsai (2015) require the existence of a

fourth-order moment on X to achieve the convergence in law. The justifications

for this theorem rely on empirical process techniques (Billingsley (1999); van der

Vaart and Wellner (1996); Kosorok (2008)).

In order to make a statistical inference, for example, constructing a confi-

dence interval for %Y,X(τ, ι) and testing a hypothesis such as H0 : %Y,X(τ, ι) = 0,

we need to estimate the covariance function Ω1(τ1, ι1; τ2, ι2). To this end, denote

m1(y) = E{I(X ≤ F−1
X (ι))|Y = y} and m2(x) = E{I(Y ≤ F−1

Y (τ))|X = x}. We

can use a nonparametric approach, for example, the Nadaraya–Watson (NW)

method (Nadaraya (1964) and Watson (1964)), to obtain estimates m̂1(y) and

m̂2(x) for m1(y) and m2(x), respectively, where the unknown F−1
X (ι) and F−1

Y (τ)

are replaced by F−1
n,X(ι) and F−1

n,Y (τ), respectively. Therefore, we obtain the es-

timates σ̂X|Y (τ, ι) = m̂1(F−1
n,Y (τ)) and σ̂Y |X(τ, ι) = m̂2(F−1

n,X(ι)). Next, we esti-

mate Ω1(τ1, ι1; τ2, ι2). Denote ξ̂n(Yi, Xi; τ, ι) =
[
I(Yi ≤ F−1

n,Y (τ), Xi ≤ F−1
n,X(ι))−

σ̂X|Y (τ, ι)I(Yi ≤ F−1
n,Y (τ)) − σ̂Y |X(τ, ι)I(Xi ≤ F−1

n,X(τ))
]
/
√
τ(1− τ)ι(1− ι) and

ξn(Y,X; τ, ι) = n−1
∑n

i=1 ξ̂n(Yi, Xi; τ, ι). Then, we obtain the consistent estimate

Ω1(τ1, ι1; τ2, ι2) as Ω̂1(τ1, ι1; τ2, ι2) = n−1
∑n

i=1[ξ̂n(Yi, Xi; τ1, ι1)−ξn(Y,X; τ1, ι1)]×
[ξ̂n(Yi, Xi; τ2, ι2)− ξn(Y,X; τ2, ι2)].

In practice, we usually encounter a situation where Y is univariate, but X

is multivariate. As as extension to Theorem 1, and to compare the strength of

the dependence of the two random variables X1 and X2 on Y , we examine the

difference %Y,X1
(τ, ι) − %Y,X2

(τ, ι). In particular, we can test a hypothesis using

this difference. Given a sample {(Yi, Xi1, Xi2), i = 1, . . . , n}, similarly to (2.2),

we can define %̂Y,X1
(τ, ι) and %̂Y,X2

(τ, ι). The following theorem applies.

Theorem 2. Let 0 < a < b < 1, and suppose that the marginal distributions FXk

and FY are continuously differentiable on the intervals [F−1
Xk

(a) − ε, F−1
Xk

(b) + ε]
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and [F−1
Y (a) − ε, F−1

Y (b) + ε] with positive derivatives fXk
and fY , respectively,

for some ε > 0 and k = 1, 2. Furthermore, assume that the conditional density

functions fY |Xk
and fXk|Y , for k = 1, 2, are continuous on the product of these

intervals. Then, we have

√
n{[%̂Y,X1

(τ, ι)− %̂Y,X2
(τ, ι)]− [%Y,X1

(τ, ι)− %Y,X2
(τ, ι)]} w

 GY,X1,X2
(τ, ι)

in `∞([a, b]2), where GY,X1,X2
(τ, ι) is a Gaussian process with mean zero and co-

variance function Ξ1(τ1, ι1; τ2, ι2) ≡ E{[η(Y,X1, X2; τ1, ι1)−Eη(Y,X1, X2; τ1, ι1)]×
[η(Y,X1, X2; τ2, ι2) − Eη(Y,X1, X2; τ2, ι2)]}, η(Y,X1, X2; τ, ι) = ξ(Y,X1; τ, ι) −
ξ(Y,X2; τ, ι) and ξ(Y,X; τ, ι) is given as in Theorem 1.

It follows from Theorem 2 that for a fixed pair (τ, ι), if %Y,X1
(τ, ι) = %Y,X2

(τ, ι),

then
√
n{[%̂Y,X1

(τ, ι)− %̂Y,X2
(τ, ι)]

d→ N(0,Ξ1). Here, Ξ1 ≡ Ξ1(τ, ι; τ, ι) = Ω
(1)
1 +

Ω
(2)
1 − 2A12, where Ω

(k)
1 is the same as Ω1, except that X in Ω1 is replaced by

Xk, for k = 1, 2. In addition, A12 ≡ A12(τ, ι) =
{

[σY,X1,X2
(τ, ι) − σY,X1

σY,X2
] −

(1 − τ)σX2|Y σY,X1
− σY |X2

[σY,X1,X2
(τ, ι) − ισY,X1

] − (1 − τ)σX1|Y σY,X2
+ τ(1 −

τ)σX1|Y σX2|Y + σX1|Y σY |X2
(σY,X2

− τι) − σY |X1
[σY,X1,X2

(τ, ι) − ισY,X2
] + σY |X1

σX2|Y (σY,X1
− τι) + σY |X1

σY |X2
[σX1,X2

(ι, ι) − ι2]
}
/
√
τ(1− τ)ι(1− ι), where

σY,X1,X2
(τ, ι) = FY,X1,X2

(F−1
Y (τ), F−1

X1
(ι), F−1

X2
(ι)) and σX1,X2

(ι, ι) = FX1,X2
(F−1

X1

(ι), F−1
X2

(ι)). If Y,X1, and X2 are mutually independent, then Ξ1 = 2. Next,

we estimate the covariance function Ξ1(τ1, ι1; τ2, ι2). Let η̂n(Yi, Xi1, Xi2; τ, ι) =

ξ̂n(Yi, Xi1; τ, ι) − ξ̂n(Yi, Xi2; τ, ι), where ξ̂n(Yi, Xi; τ, ι) is given as before, and

ηn(Y,X1, X2; τ, ι) = n−1
∑n

i=1 η̂n(Yi, Xi1, Xi2; τ, ι). Then, Ξ1(τ1, ι1; τ2, ι2) can be

estimated as Ξ̂1(τ1, ι1; τ2, ι2) = n−1
∑n

i=1[η̂n(Yi, Xi1, Xi2; τ1, ι1)−ηn(Y,X1, X2; τ1,

ι1)]× [η̂n(Yi, Xi1, Xi2; τ2, ι2)− ηn(Y,X1, X2; τ2, ι2)].

2.2. CC-based variable screening

Suppose we have a sample {(Yi,Xi), i = 1, . . . , n} consisting of n independent

copies of (Y,X), where Y is the response variable and X = (X1, . . . , Xp)
T is a

vector of p predictors. When the number of predictors, p, is of an exponential

order of the sample size n, that is, the so-called ultrahigh dimension, and most

of the p predictors are irrelevant, we can use the CC as a screener to identify

the sparse set of informative predictors. We write pn instead of p to emphasize

the dependence on the sample size. An empirical estimate for the CC between

Y and Xj is given by
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%̂Y,Xj
(τ, ι) =

n−1
∑n

i=1 ψτ (Yi − F−1
n,Y (τ))ψι(Xij − F−1

n,Xj
(ι))√

τ(1− τ)ι(1− ι)
. (2.3)

Then, we may select an empirical active set as

M̂a =
{
j : |%̂Y,Xj

(τ, ι)| ≥ νn, 1 ≤ j ≤ pn
}
, (2.4)

where νn is a user-specified threshold parameter that controls the size of the

final screened model. Using the CC for variable screening can lead to the sure

independence screening (SIS) property; here, we refer to this procedure as CC-

SIS.

Denote the true active set by M∗a = {j : |%Y,Xj
(τ, ι)| > 0, j = 1, . . . , pn}.

Write F−1
Y |X(τ) = inf{y : P (Y ≤ y|X) ≥ τ}, uj = |%Y,Xj

(τ, ι)|, and ûj =

|%̂Y,Xj
(τ, ι)|. To establish the screening consistency, we need the following condi-

tions.

(C1) In a neighborhood of F−1
Y (τ), the density fY (y) of Y is uniformly bounded

away from zero and infinity, and has a bounded derivative. For every 1 ≤
j ≤ pn, in a neighborhood of F−1

Xj
(ι), the density fXj

(x) of Xj is uniformly

bounded away from zero and infinity, and has a bounded derivative.

(C2) minj∈M∗
a
uj ≥ C0n

−κ, for some κ > 0 and C0 > 0.

Theorem 3. (Screening Property for CC-SIS) Suppose that condition (C1) holds.

Then:

(i) For any constant C > 0, there exists some positive constant c̃1, such that for

sufficiently large n,

P

(
max

1≤j≤pn

∣∣ûj − uj∣∣ ≥ Cn−κ) ≤ 6pn exp(−c̃1n
1−2κ).

(ii) In addition, if condition (C2) is satisfied, by choosing νn = C1n
−κ with

C1 ≤ C0/2, we have

P
(
M∗a ⊂ M̂a

)
≥ 1− 6sn exp(−c̃1n

1−2κ)

for sufficiently large n, where sn = |M∗a| is the cardinality of set M∗a.

This result implies that the CC-SIS can select all truly active predictors with

very high probability. The dimensionality can be as high as pn = o(exp(n1−2κ)),

which is similar to those of other model-free feature screening methods (e.g., Li et

al. (2012) and Wu and Yin (2015)). Moreover, its nonparametric nature means
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our result requires fewer condition on both the predictors and the response. In

reality, no moment assumption is imposed on the predictors or the response.

In practice, the threshold parameter νn plays an important role in produc-

ing a satisfactory model. A small value of νn will result in a large number

of predictors after screening, which, in turn, leads to many incorrect positives.

Here, we employ a data-driven procedure, in which we control the false dis-

covery rates (FDR) to determine the threshold for the CC-SIS. From Theo-

rem 1, for covariate j such that %Y,Xj
(τ, ι) = 0, it follows that, asymptotically,√

n[Ω̂1(τ, ι; τ, ι)]−1/2%̂Y,Xj
(τ, ι) ∼ N(0, 1). We can use high-criticism t-tests to

select the variables M̂a,δ = {j :
√
n[Ω̂1(τ, ι; τ, ι)]−1/2|%̂Y,Xj

(τ, ι)| ≥ δ}, for a small

δ > 0. This controls the FDR E{|M̂a,δ ∩ (M∗a)c|/|(M∗a)c|}, defined by Zhao and

Li (2012). The following proposition justifies this FDR procedure.

Proposition 1. (FDR Property) Assume conditions (C1)–(C2) and the condi-

tion of Theorem 1 hold. Then, if we choose δ = Φ−1(1− d̄n/(2pn)), where Φ(·) is

the CDF of the standard normal variable and d̄n is the number of false positives

that can be tolerated, then for some constant ca > 0, we have

E

{
|M̂a,δ ∩ (M∗a)c|
|(M∗a)c|

}
≤ d̄n
pn

+
ca√
n
.

3. Copula-Based Partial Correlation and Variable Screening

3.1. Copula-based partial correlation, CPC

To facilitate a joint screening procedure (Ma, Li and Tsai (2017)), we define

a CPC for Y and X, conditional on a q-dimensional random vector Z, as

%Y,X|Z(τ, ι) =
E{ψτ (Y − ZTα0)ψι(X − ZTθ0)}√

τ(1− τ)ι(1− ι)
, (3.1)

where α0 = argminαE{ρτ (Y −ZTα)} and θ0 = argminθE{ρι(X−ZTθ)}, where

ρw(u) = u[w − I(u ≤ 0)], for w = τ or ι. Note that this implies that ZTα0 =

F−1
Y |Z(τ) and ZTθ0 = F−1

X|Z(ι). The parameters α and θ can be interpreted

as the marginal increment on the conditional quantiles of Y and X, given Z,

respectively, when increasing by a unit of Z. The CPC is actually the CC between

Y and Xj , after removing the confounding effects of Z. Linear partial correlation

is widely used in regression diagnostics, and describes the association of the

response and the predictor, conditional on specific values of the other predictors.

The unconditional %Y,X(τ, ι)-value may be spurious, owing to lurking variables,
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and does not necessarily imply the same %Y,X|Z(τ, ι)-value conditional on Z. Our

copula-based version is relatively more robust for a real-data analysis. The CC

is a special case of the CPC when Z is a constant.

With sample observations {(Yi, Xi,Zi), i = 1, . . . , n}, we obtain the follow-

ing estimate of %Y,X|Z(τ, ι). Let α̂ = argminα(1/n)
∑n

i=1 ρτ (Yi − ZTi α) and

θ̂ = argminθ(1/n)
∑n

i=1 ρι(Xi − ZTi θ). Both can be obtained from a quantile

regression straightforwardly. An empirical estimator for %Y,X|Z(τ, ι) is

%̂Y,X|Z(τ, ι) =
n−1

∑n
i=1 ψτ (Yi − ZTi α̂)ψι(Xi − ZTi θ̂)√

τ(1− τ)ι(1− ι)
. (3.2)

To study the asymptotic property of %̂Y,X|Z(τ, ι), we denote

∆11 = E{fY |Z(ZTα0)ZZT }, ∆12 = E
{
FX|Z,Y=ZTα0(ZTθ0)fY |Z(ZTα0)Z

}
,

∆21 = E
{
FY |Z,X=ZTθ0(ZTα0)fX|Z(ZTθ0)Z

}
, ∆22 = E{fX|Z(ZTθ0)ZZT },

Σ11 = E{FY,X|Z(ZTα0,ZTθ0)}[1− E{FY,X|Z(ZTα0,ZTθ0)}],
Σ22 = E{ψ2

τ (Y − ZTα0)ZZT }, Σ33 = E{ψ2
ι (X − ZTθ0)ZZT },

Σ12 = E{FY,X|Z(ZTα0,ZTθ0)Z}, Σ23 = E{ψτ (Y − ZTα0)ψι(X − ZTθ0)ZZT },

where α0 and θ0 are defined in (3.1). We have the following asymptotic result.

Theorem 4. Let 0 < a < b < 1. Suppose ∆11 and ∆22 are uniformly positive-

definite matrices in τ and ι, and there exists a constant π > 0, such that

fY |Z(ZTα0 + ·), fY |Z,X(ZTα0 + ·), fX|Z,Y (ZTθ0 + ·), and fX|Z(ZTθ0 + ·) are

uniformly integrable on [−π, π], and uniformly bounded away from zero and in-

finity in τ and ι. Then,

√
n{%̂Y,X|Z(τ, ι)− %Y,X|Z(τ, ι)} w

 GY,X|Z(τ, ι)

in `∞([a, b]2), where GY,X|Z(τ, ι) is a Gaussian process with mean zero and co-

variance function Ω2(τ1, ι1; τ2, ι2) ≡ E{[ζ(Y,X,Z; τ1, ι1) − Eζ(Y,X,Z; τ1, ι1)] ×
[ζ(Y,X,Z; τ2, ι2)−Eζ(Y,X,Z; τ2, ι2)]}, and ζ(Y,X,Z; τ, ι) = [I(Y ≤ ZTα0, X ≤
ZTθ0)−∆T

12∆−1
11 I(Y ≤ ZTα0)Z−∆T

21∆−1
22 I(X ≤ ZTθ0)Z]/

√
τ(1− τ)ι(1− ι).

If Z ≡ 1 (i.e., no conditional variable is available), the asymptotic distribu-

tion in Theorem 4 reduces to that in Theorem 1. The above result implies that

for a fixed pair (τ, ι), if %Y,X|Z(τ, ι) = 0, then
√
n%̂Y,X|Z(τ, ι)→d N(0,Ω2), where

Ω2 ≡ Ω2(τ, ι; τ, ι) = E{[ζ(Y,X,Z; τ, ι) − Eζ(Y,X,Z; τ, ι)]2} = (1/(τ(1 − τ)ι(1 −
ι)))[Σ11 +∆T

12∆−1
11 Σ22∆−1

11 ∆12 +∆T
21∆−1

22 Σ33∆−1
22 ∆21−2(1−τ)∆T

12∆−1
11 Σ12−2(1−
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ι)∆T
21∆−1

22 Σ12 + 2∆T
12∆−1

11 Σ23∆−1
22 ∆21].

This theorem can be used for a statistical inference if we can find a consistent

estimate for Ω2. To this end, let e∗1 = Y −ZTα0 and e∗2 = X−ZTθ0, and assume

that the random vectors (e∗1,Z, X) and (e∗2,Z, Y ) have joint densities fe∗1 ,Z,X
and fe∗2 ,Z,Y , respectively. Denote by fe∗1 , fe∗2 , fe∗1 |Z, fe∗1 |Z,X , fe∗2 |Z, and fe∗2 |Z,Y , the

marginal densities of e∗1 and e∗2, the conditional densities of e∗1 given Z and (Z, X),

and the conditional densities of e∗2 given Z and (Z, Y ), respectively. Then, we can

verify that ∆11 = E{fe∗1 |Z(0)ZZT } = fe∗1(0)E{ZZT |e∗1 = 0} and, similarly, ∆12 =

fe∗1 (0)E{I(X ≤ ZTθ0)Z|e∗1 = 0}, ∆21 = fe∗2(0)E{I(Y ≤ ZTα0)Z|e∗2 = 0}, and

∆22 = fe∗2(0)E{ZZT |e∗2 = 0}. To estimate these quantities, we first calculate the

quantile regression estimates α̂ and θ̂, and then obtain the corresponding quantile

residuals ê∗1i = Yi−ZTi α̂ and ê∗2i = Xi−ZTi θ̂, for i = 1, . . . , n. Next, we estimate

∆12. The estimates for ∆11, ∆21, and ∆22 can be obtained similarly. We use the

nonparametric NW method used to estimate σX|Y (τ, ι) and σY |X(τ, ι) in Section

2.1, to obtain estimates for each component of m(s) = E{I(X ≤ ZTθ0)Z|e∗1 = s}
from the data {(ê∗1i, I(Xi ≤ ZTi θ̂)Zi), i = 1, . . . , n}; denote these estimates by

m̂(s). Then, we obtain ∆̂12 = f̂e∗1 (0)m̂(0), where f̂e∗1(0) is the nonparametric

kernel density estimate for fe∗1(0) in ∆12, based on {ê∗1i, i = 1, . . . , n}. It can be

shown that ∆̂12, is consistent under some regularity conditions. For the other

unknown terms in Ω2, we have Σ̂11 = n−1
∑n

i=1 I(Yi ≤ ZTi α̂, Xi ≤ ZTi θ̂) −
[n−1

∑n
i=1 I(Yi ≤ ZTi α̂, Xi ≤ ZTi θ̂)]2, Σ̂22 = n−1

∑n
i=1 ψ

2
τ (Yi−ZTi α̂)ZiZ

T
i , Σ̂33 =

n−1
∑n

i=1 ψ
2
ι (Xi − ZTi θ̂)ZiZ

T
i , Σ̂12 = n−1

∑n
i=1 I(Yi ≤ ZTi α̂, Xi ≤ ZTi θ̂)Zi, and

Σ̂23 = n−1
∑n

i=1 ψτ (Yi − ZTi α̂)ψι(Xi − ZTi θ̂)ZiZ
T
i . We use the plug-in approach

to obtain a consistent estimate of Ω2, which we denote by Ω̂2.

The next theorem tests whether %τ,ι(Y,X1|Z) = %τ,ι(Y,X2|Z) for two random

variables X1 and X2. Write θ0
k = argminθE{ρι(Xk −ZTθ)}, for k = 1, 2, and let

∆
(k)
12 be ∆12, where X and θ0 are replaced by Xk and θ0

k, respectively, for k = 1, 2.

In the same manner, define ∆
(k)
21 , ∆

(k)
22 , Σ

(k)
11 , Σ

(k)
33 , Σ

(k)
12 , Σ

(k)
23 and, accordingly,

Ω
(k)
2 , for k = 1, 2. In addition, write ∆31 = E{FY,X1,X2|Z(ZTα0,ZTθ0

1,Z
Tθ0

2)} −
E{FY,X1|Z(ZTα0,ZTθ0

1)}E{FY,X2|Z(ZTα0,ZTθ0
2)}, ∆32 = E{FY,X1,X2|Z(ZTα0,

ZTθ0
1,Z

Tθ0
2)Z}, and ∆33 = E{ψι(X1 − ZTθ0

1)ψι(X2 − ZTθ0
2)ZZT }.

Theorem 5. Let 0 < a < b < 1. Suppose that matrices ∆11 and ∆
(k)
22 , for

k = 1, 2, are uniformly positive definite in τ and ι, and there exists a constant

π > 0, such that fY |Z(ZTα0 + ·), fY |Z,Xk
(ZTα0 + ·), fXk|Z,Y (ZTθ0 + ·), and

fXk|Z(ZTθ0 + ·) are uniformly integrable on [−π, π], for k = 1, 2, and uniformly

bounded away from zero and infinity in τ and ι. Then,
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√
n{[%̂Y,X1|Z(τ, ι)−%̂Y,X2|Z(τ, ι)]−[%Y,X1|Z(τ, ι)−%Y,X2|Z(τ, ι)]} w

 GY,X1,X2|Z(τ, ι)

in `∞([a, b]2), where GY,X1,X2|Z(τ, ι) is a Gaussian process with mean zero and co-

variance function Ξ2(τ1, ι1; τ2, ι2) ≡ E{[β(Y,X1, X2,Z; τ1, ι1) − Eβ(Y,X1, X2,Z;

τ1, ι1)]×[β(Y,X1, X2,Z; τ2, ι2)−Eβ(Y,X1, X2,Z; τ2, ι2)]}, and β(Y,X1, X2,Z; τ, ι)

= ζ(Y,X1,Z; τ, ι)−ζ(Y,X2,Z; τ, ι), where ζ(Y,X1,Z; τ, ι) is given as in Theorem

4.

For fixed (τ, ι), if %τ,ι(Y,X1|Z) = %τ,ι(Y,X2|Z), then
√
n[%̂Y,X1|Z(τ, ι) −

%̂Y,X2|Z(τ, ι)]
d→ N(0,Ξ2), where Ξ2 ≡ Ξ2(τ, ι; τ, ι) = Ω

(1)
2 + Ω

(2)
2 − 2B12 and

B12 ≡ B12(τ, ι) = 1/(τ(1 − τ)ι(1 − ι))[∆31 − (1 − τ)(∆
(2)
12 )T∆−1

11 Σ
(1)
12 − (1 −

τ)(∆
(1)
12 )T∆−1

11 Σ
(2)
12 + (∆

(1)
12 )T∆−1

11 Σ22∆−1
11 ∆

(2)
12 + (∆

(1)
12 )T∆−1

11 ×Σ
(2)
23 (∆

(2)
22 )−1∆

(2)
21 +

(∆
(1)
21 )T (∆

(1)
22 )−1∆32+(∆

(1)
21 )T (∆

(1)
22 )−1Σ

(1)
23 ∆−1

11 ∆
(2)
12 +(∆

(2)
21 )T (∆

(2)
22 )−1(ιΣ

(1)
12 −∆32)

+ (∆
(1)
21 )T (∆

(1)
22 )−1∆33(∆

(2)
22 )−1∆

(2)
21 ]. Given a sample of observations {(Yi, Xi1,

Xi2,Zi), i = 1, . . . , n}, the asymptotic variance Ξ2 can be estimated as Ξ̂2 =

Ω̂
(1)
2 + Ω̂

(2)
2 − 2B̂12, where Ω̂

(1)
2 and Ω̂

(2)
2 are defined as Ω̂2 given above. To ob-

tain the estimate B̂12, we need only estimate ∆31, ∆32, and ∆33, because the

other unknown quantities in B12 can be estimated using the previous methods.

Specifically, we use the following estimates: ∆̂31 = n−1
∑n

i=1 I(Yi ≤ ZTi α̂, Xi1 ≤
ZTi θ̂1, Xi2 ≤ ZTi θ̂2) −

[
n−1

∑n
i=1 I(Yi ≤ ZTi α̂, Xi1 ≤ ZTi θ̂1)

][
n−1

∑n
i=1 I(Yi ≤

ZTi α̂, Xi2 ≤ ZTi θ̂2)
]
, ∆̂32 = n−1

∑n
i=1 I(Yi ≤ ZTi α̂, Xi1 ≤ ZTi θ̂1, Xi2 ≤ ZTi θ̂2)Zi,

and ∆̂33 = n−1
∑n

i=1 ψι(Xi1 − ZTi θ̂1)ψι(Xi2 − ZTi θ̂2)ZiZ
T
i , where θ̂k =

argminθn
−1
∑n

i=1 ρι(Xik − ZTi θ), for k = 1, 2.

3.2. CPC-based variable screening

We now propose a joint robust screening using the CPC. There are two prac-

tical scenarios that favor joint screening over marginal screening. First, we may

acquire low-dimensional variables W ∈ Rr, in addition to ultrahigh-dimensional

covariates X. For example, when studying the relationship between a disease

phenotype Y and genetic variables X, we may also have patient demographic in-

formation or environmental variables, which we include in W. Consequently, we

have the data set {(Yi,Xi,Wi), i = 1, . . . , n}. Second, even if there is no external

variable W, it may still be necessary to consider joint screening by removing the

effects from correlated components in X. For instance, some covariates, XSj ,

may be closely correlated to Xj and, thus, influence the observed correlation

between Y and Xj indirectly, where Sj is a subset of {1, . . . , pn} \ {j}. Ma,

Li and Tsai (2017) considered a set Sj that they refer to as a conditional set
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with relatively small size (< n). To account for both scenarios, we consider the

conditional variables Z = (WT ,XT
Sj )

T , which we allow to vary with j. How-

ever, for simplicity of presentation, we use Z instead of Zj , and denote by qn the

dimension of Z. In principle, we only need qn = max1≤j≤pn(r + |Sj |) for sure

screening. In practice, we can select a proper Sj as follows: Treat Xj as the

response and X−j = {Xk, k 6= j, 1 ≤ k ≤ pn} as the predictors. Then, apply any

sensible marginal screening method, such as the CC-SIS, to select the top ` most

important predictors, and set these as the conditional variables.

For ultrahigh-dimensional covariates X = (X1, . . . , Xpn)T , we can define the

CPC between Y and the jth covariate Xj , given Z, in the same way as in (3.1);

that is,

%Y,Xj |Z(τ, ι) =
E{ψτ (Y − ZTα0)ψι(Xj − ZTθ0

j )}√
τ(1− τ)ι(1− ι)

, (3.3)

where α0 = argminαE{ρτ (Y −ZTα)} and θ0
j = argminθj

E{ρι(Xj −ZTθj)}. As

in (3.2), a sample estimate for %Y,Xj |Z(τ, ι) can be given as

%̂Y,Xj |Z(τ, ι) =
n−1

∑n
i=1 ψτ (Yi − ZTi α̂)ψι(Xij − ZTi θ̂j)√

τ(1− τ)ι(1− ι)
, (3.4)

where α̂ = argminαn
−1
∑n

i=1 ρτ (Yi − ZTi α) and θ̂j = argminθj
n−1

∑n
i=1 ρι

(Xij − ZTi θj). The CPC screening yields the following empirical active set:

M̂b = {j : |%̂Y,Xj |Z(τ, ι)| ≥ vn, 1 ≤ j ≤ pn}, (3.5)

where vn is a user-specified threshold parameter. We refer to this sure indepen-

dence screening procedure as the CPC-SIS. Clearly, the CPC-SIS extends earlier

conditional sure independence screening methods, such as that of Barut, Fan and

Verhasselt (2016).

Let M∗b = {j : |%Y,Xj |Z(τ, ι)| > 0, j = 1, . . . , p} be the true active set. We

write F−1
Y |X,W(τ) = inf{y : P (Y ≤ y|X,W) ≥ τ}. For simplicity, we still use

uj = |%Y,Xj |Z(τ, ι)| and ûj = |%̂Y,Xj |Z(τ, ι)| to denote the underlying and empirical

CPC utilities, respectively. To establish the sure screening property, we need the

following conditions, which are very mild and similarly imposed in Ma, Li and

Tsai (2017).

(D1) (i) The conditional density fY |Z=z(y) of Y , given Z = z, satisfies the Lips-

chitz condition of order one, and fY |Z=z(y) > 0 for any y in a neighborhood
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of ZTα0 = zTα0. (ii) For every 1 ≤ j ≤ pn, the conditional density

fXj |Z=z(x) of Xj , given Z = z, satisfies the Lipschitz condition of order

one, and fXj |Z=z(x) > 0 for any x in a neighborhood of ZTθ0 = zTθ0.

(D2) (i) There exist some finite constants m1,m2, and m3, such that

max
i,j
|Zij | ≤ m1, max

i
|ZTi α0| ≤ m2, max

i,j
|ZTi θ0

j | ≤ m3.

(ii) There exist two positive-finite constants cmin and cmax, such that

cmin ≤ λmin(E(ZZT )) ≤ λmax(E(ZZT )) ≤ cmax,

where λmin(E(ZZT )) and λmax(E(ZZT )) denote the minimum and maxi-

mum eigenvalues of E(ZZT ), respectively.

(D3) minj∈M∗
b
uj ≥ C∗0n−κ, for some κ > 0 and C∗0 > 0.

Theorem 6. (Screening Property for CPC-SIS) Suppose conditions (D1) and

(D2) hold. Then:

(i) For any constant C > 0, there exists some positive constant c̃∗1, such that for

sufficiently large n,

P

(
max

1≤j≤pn

∣∣ûj − uj∣∣ ≥ Cn−κ) ≤ 12pn exp(−c̃∗1q−1
n n1−2κ).

(ii) In addition, if condition (D3) is satisfied, by choosing vn = C2n
−κ with

C2 ≤ C∗0/2, we have

P
(
M∗b ⊂ M̂b

)
≥ 1− 12sn exp(−c̃∗1q−1

n n1−2κ)

for sufficiently large n, where sn = |M∗b |.

When conditional variables are available, our proposed CPC-SIS method can

handle dimensionality of order pn = o(exp(q−1
n n1−2κ)). If qn = O(1), then the

dimension can be as high as o(n1−2κ), the same order as that of the CC-SIS.

Moreover, the proposed CPC-SIS can be readily used for ultrahigh-dimensional

data, as long as qn = o(n1−2κ).

As in Section 2.2, we can determine a proper vn by controlling the FDR. From

Theorem 4, for covariate j, such that %Y,Xj |Z(τ, ι) = 0, we have
√
nΩ̂
−1/2
2 %̂Y,Xj |Z(

τ, ι) ∼ N(0, 1) asymptotically. Then, we select variables M̂b,δ = {j :
√
nΩ̂
−1/2
2 |

%̂Y,Xj |Z(τ, ι)| ≥ δ} for a small δ > 0, which controls the FDR E{|M̂b,δ ∩ (M∗b)c|/
|(M∗b)c|}.
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Proposition 2. (FDR Property) Assume conditions (D1)–(D3) and the condi-

tion of Theorem 4 hold. Then, if we choose δ = Φ−1(1 − d̄n/(2pn)), where Φ(·)
and d̄n are defined in Proposition 1, then for some constant cb > 0, we have

E

{
|M̂b,δ ∩ (M∗b)c|
|(M∗b)c|

}
≤ d̄n
pn

+
cb√
n
.

4. Implementation of the CPC-SIS

For the implementation of the CPC-SIS, we consider three practical types of

conditional variables.

Case 1. If W is not available, we consider the conditional variables from X

itself for each Xj ; that is, Z = XSj , for j = 1, . . . , pn. We start with an empty

active set A(0) = ∅.

• Step 1. For j = 1, . . . , pn, select the confounding sets Sνj using the partial

correlation-based consequential test (Ma, Li and Tsai (2017)).

• Step 2. In the kth iteration, where k = 1, . . . , d∗ and d∗ = b2(n/ log n)1/2c,
for given A(k−1), update Sj = A(k−1)∪Sνj and determine the variable index

j∗, such that j∗ = argmaxj 6∈A(k−1) |%̂Y,Xj |Z(τ, ι)|. Update A(k) = A(k−1) ∪
{j∗}.

• Step 3. In the kth iteration, where k = d∗+1, . . . , dn, set Sj = A(d∗)∪Sνj and

determine j∗ = argmaxj 6∈A(k−1) |%̂Y,Xj |Z(τ, ι)|. Update A(k) = A(k−1) ∪ {j∗}.
Use A(dn) ≡ M̂b as the final set of selected covariates.

Note that the main difference between Steps 2 and 3 is that, in Step 2, the

conditional set is updated gradually by adding one selected index variable in the

first d∗ iterations; in Step 3, the conditional set remains intact in the final dn−d∗

iterations.

Case 2. If W is available, we consider the same conditional variables for

each target Xj ; that is, Z = W, for j = 1, . . . , pn.

• Step 1. For j = 1, . . . , pn, compute the CPC utility statistics ûj = |%̂Y,Xj |Z(

τ, ι)|.

• Step 2. Rank the covariates in terms of ûj in decreasing order, and then

select the top dn covariates as the final set of selected covariates.

Case 3. If W is available, we slightly modify the algorithm in Case 1. The
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steps are the same as those in Case 1, except that we consider the conditional

variables Z = (WT ,XT
Sj )

T in each iteration, for 1 ≤ k ≤ dn, for each step.

Note that Case 1 uses only confounding information from the covariates X,

whereas Case 2 incorporates exogenous conditional information, but ignores the

confounding effect from X itself. Case 3 is the most flexible version, incorporating

all types of covariate information. We implement Case 3 in the real-data analysis

in Section 5.

5. Numerical Studies

5.1. Simulation studies

In this section, we present simulation studies to illustrate the finite-sample

performance of the proposed screening procedure, CPC-SIS. Owing to space con-

straints, simulation studies related to the CC and CPC estimates and their cor-

responding asymptotic variance estimates for small, moderate, and large sample

sizes can be found in Appendix C of the online Supplementary Material. The

results from Examples S1–S4 in Appendix C reflect the effectiveness of Theorems

1, 2, 4, and 5.

Throughout this subsection, we set the sample size n = 200, the covariate

dimension pn = 1,000, and the number of simulations N = 200 for each simu-

lation setup. Moreover, for the purpose of comparison, we use three criteria for

evaluation: (i) the minimum model size (MMS), that is, the smallest number of

the selected covariates that contain all active covariates, and its robust standard

deviation (RSD); (ii) the rank for each active covariate (Rj); and (iii) the pro-

portion of all active covariates selected (P) with the screening threshold specified

as bn/ log nc over N simulations. We report the median of MMS and Rj .

In Example S5 in Appendix C, we compare our CC-SIS method with the

following existing methods: SIS (Fan and Lv (2008)), SIRS (Zhu et al. (2011)),

DC-SIS (Li, Zhong and Zhu (2012)), Kendall-SIS (Li et al. (2012)), QC-SIS (Li, Li

and Tsai (2015)), and CQC-SIS (Ma and Zhang (2016)). Moreover, in Example

S6 in Appendix C, we compare our CPC-SIS procedure with these marginal

screening methods, and with the QPC-SIS method of Ma, Li and Tsai (2017),

where confounding effects arise from the covariates X; for the latter comparison,

we employ the algorithm in Case 1, given in Section 4.

In what follows, we examine the case Z = W. Because the conditional

variables selected for each Xj are the same, we can apply the CPC-SIS with the

algorithm in Case 2, and compare the results with those from the QPC-SIS of
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Ma, Li and Tsai (2017).

Example 1. We generate the response from the model Y = 2X1 + 2X2− 4X3 +

3X4 +ε, where Xj = WTb+Uj . Here, W is distributed as N(04,Σ), where Σ =

(ρ|j−k|)1≤j,k≤4; in addition, b = (2, 4/3, 2, 4/3)T and Uj ∼ (1/3)Cauchy(0, 1), for

j = 1, . . . , pn. The model error ε is simulated as N(0, 1) or (1/3)Cauchy(0, 1).

The simulation results are given in Table 1. As expected, none of the marginal

screening procedures work, because they are unable to identify the covariate X3.

Our proposed CPC-SIS method outperforms the QPC-SIS in terms of the MMS,

and both outperform the marginal procedures.

Furthermore, following a reviewer’s suggestion, we can consider feature screen-

ing in terms of hypothesis testing. According to Chang, Tang and Wu (2013) and

Chang, Tang and Wu (2016), viewing a feature screening problem as a hypoth-

esis testing problem can efficiently avoid the effect of heteroscedasticity in the

estimators of the correlations. This is very important when the sample size n is

small. For a further comparison, we also implement the testing-based screening

procedure (T-SIS), which is given in Appendix B of the online Supplementary

Material. Because our simulation results show that the proposed CC-SIS out-

performs many existing marginal variable screening methods, we compare our

CC-SIS with the T-SIS procedure and the maximum CC-based sure indepen-

dence screening (mCC-SIS) procedure described in Section 6; see Examples S7

and S8 given in Appendix C in the online Supplementary Material. The simu-

lation results show that our proposed CC-SIS performs best at the median level

of (τ, ι) for a small sample size, and that the mCC-SIS dominates other methods

for large sample sizes.

5.2. Real-data applications

5.2.1. Rats data

We illustrate the CC-SIS and CPC-SIS using gene expression data on 120 12-

weeks-old male rats, including expression measurements from 31,099 gene probes.

This data set was analyzed in Scheetz et al. (2006) to investigate gene regulation

in mammals; the data set is available at ftp://ftp.ncbi.nlm.nih.gov/geo/

series/GSE5nnn/GSE5680/matrix. We follow Ma, Li and Tsai (2017) and con-

sider the expression of gene TRIM32 (probe 1389163 at) as the response variable

Y , because this gene has been identified as the cause of Bardet–Biedl syndrome,

which is closely associated with a human hereditary disease of the retina Chiang

et al. (2006). The other gene probes are treated as the covariates X. We first

ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE5nnn/GSE5680/matrix
ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE5nnn/GSE5680/matrix
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Table 1. Simulation results for Example 1, where Rj indicates the median of the rank
of the relevant predictors; and MMS stands for the median of the minimum model size;
robust standard deviations (RSD) are given in parentheses.

ε ∼ N(0, 1) ε ∼ (1/3)Cauchy(0, 1)

ρ Method(τ, ι) R1 R2 R3 R4 MMS (RSD) R1 R2 R3 R4 MMS (RSD)

0.5 SIS 12 12 377 4 488 (518) 14 14 396 5 532 (494)

SIRS 192 215 910 188 910 ( 96) 236 222 938 193 938 ( 98)

DC-SIS 336 305 511 320 744 (162) 305 272 546 324 746 (154)

Kendall-SIS 2 2 997 1 997 ( 15) 2 2 998 1 998 ( 10)

CC-SIS(0.25,0.25) 3 3 841 2 841 (235) 5 3 830 2 830 (263)

CC-SIS(0.5,0.5) 3 4 886 2 886 (175) 3 3 895 2 895 (207)

CC-SIS(0.75,0.75) 3 3 817 2 817 (240) 4 5 865 2 865 (184)

QC-SIS(0.25) 183 249 713 208 796 (172) 178 148 748 212 806 (170)

QC-SIS(0.5) 269 241 672 307 823 (160) 232 231 687 296 824 (172)

QC-SIS(0.75) 223 174 701 259 829 (179) 154 191 731 209 822 (174)

QPC-SIS(0.25) 6 7 3 3 107 (167) 7 9 3 4 109 (187)

QPC-SIS(0.5) 4 5 2 3 53 ( 95) 5 5 3 5 77 (118)

QPC-SIS(0.75) 5 7 3 3 75 (148) 8 6 3 4 94 (165)

CPC-SIS(0.25,0.25) 5 4 5 1 28 ( 58) 7 8 8 2 62 (110)

CPC-SIS(0.5,0.5) 5 6 1 2 14 ( 27) 6 6 1 2 19 ( 34)

CPC-SIS(0.75,0.75) 5 8 6 1 41 ( 88) 7 9 7 2 57 ( 75)

0.95 SIS 5 9 538 4 581 (378) 17 11 525 4 586 (445)

SIRS 190 231 894 199 894 ( 95) 246 220 895 186 895 (103)

DC-SIS 441 303 508 239 771 (171) 189 273 558 348 776 (174)

Kendall-SIS 2 3 991 1 991 ( 32) 2 2 990 1 990 ( 46)

CC-SIS(0.25,0.25) 3 4 806 2 806 (247) 4 3 825 2 825 (254)

CC-SIS(0.5,0.5) 3 4 831 2 831 (250) 3 4 836 2 836 (257)

CC-SIS(0.75,0.75) 3 4 804 2 804 (314) 4 5 758 2 758 (315)

QC-SIS(0.25) 326 225 624 157 795 (188) 95 202 682 252 805 (192)

QC-SIS(0.5) 400 244 597 226 804 (189) 135 235 661 318 812 (193)

QC-SIS(0.75) 312 168 650 143 785 (185) 73 154 695 272 815 (178)

QPC-SIS(0.25) 5 6 3 3 73 (165) 12 6 3 4 128 (214)

QPC-SIS(0.5) 4 5 3 3 47 (112) 4 8 3 3 78 (115)

QPC-SIS(0.75) 5 5 2 3 52 (146) 8 6 3 4 105 (182)

CPC-SIS(0.25,0.25) 6 5 6 1 31 ( 47) 6 5 7 2 55 ( 90)

CPC-SIS(0.5,0.5) 5 6 1 2 20 ( 40) 6 5 1 2 18 ( 42)

CPC-SIS(0.75,0.75) 6 6 5 1 41 ( 80) 6 7 7 2 46 ( 89)

apply the approach of Iglewicz and Hoaglin (1993) (IH) to check for outliers. IH

construct a Z-score, Zi = 0.6745(xi− x̃)/MAD, where MAD denotes the median

absolute deviation, and x̃ stands for the median. They recommend labeling any

i where Zi > 3.5 as an outlier. The IH method is popular in real applications,

such as engineering. Following the recommendation of IH, we find that more
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than 60% of the gene probes have one or more outliers. Figure 1 displays box

plots for the two selected genes and the response. Here, applying a conventional

screening method, which ignores outliers, would lead to inappropriate results.

The copula-based methods may thus be more robust in this situation. In this

data analysis, we use the sample {(Yi,Xi ∈ Rpn), 1 ≤ i ≤ n}, with n = 120 and

pn = 31,098.

We report the overlaps of the top bn/ log nc = 25 selected genes using various

methods in Table 2. We can see that different methods select quite different

genes, and such low level of agreement should not be overlooked in practice.

Robust and joint screening methods, such as that proposed here lead to entirely

different sets of genes that would otherwise be screened out by conventional non-

robust marginal screening approaches. Note that the CPC-SIS and QPC-SIS do

overlap, partly because both are conditional screening procedures and can adjust

the confounder effects.

Table 3 summarized the top 10 gene probes using different methods, and in-

cludes the p-value from a marginal Wald-test. We use these 10 genes as regressors

and build a joint statistical model to predict Y . Linear and quantile regressions

are both considered for this purpose. We provide the mean of their prediction

errors (PE1 and PE2) over 500 random partitions, where the partition ratio of

the training sample to the test sample is 4 : 1 for each partition. The PE is com-

puted as the average of {(Yi− Ŷi)2, i ∈ testing set}, and Ŷi is the predicted value

at the ith test data point, using the model constructed from the training sample

of the 10 genes in Table 3. We can see that our proposed copula-based partial

correlation screening performs best with the smallest prediction error. This may

be because the CPC selects appropriate markers for joint modeling after address-

ing the distribution heterogeneity and the conditional effects. The heterogeneity

problem typically inflates the variance, whereas a purely marginal screener could

introduce bias. The prediction error, consisting of the variance and the bias

components, is thus much smaller after employing the CPC screening method.

5.2.2. Breast cancer data

The second data set we use to illustrate our proposed method contains a

breast cancer data. Breast cancer has become the second most common cancer in

the world, and the leading cause in women. Nearly 1.7 million new cases were di-

agnosed in 2012 (cf., http://www.wcrf.org/int/cancer-facts-figures/worl-

dwide-data); see DeSantis et al. (2017) for a discussion on recent trends. Al-

though major progress has been made in terms of breast cancer treatment, our

http://www.wcrf.org/int/cancer-facts-figures/worldwide-data
http://www.wcrf.org/int/cancer-facts-figures/worldwide-data
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Figure 1. Box plots for the response and two randomly selected genes for the two data
sets. The left panel shows the rat data and the right panel shows the breast cancer data.

Table 2. The overlaps of selected genes using various approaches for the rat data, where
the screening threshold parameter is set to bn/ log nc = 25 for each method, and the
CPC-SIS applies the algorithm in Case 1.

QC-SIS(τ) QPC-SIS(τ) CC-SIS(τ, ι) CPC-SIS(τ, ι)

SIS SIRS DC-SIS Kendall-SIS 0.25 0.5 0.75 0.25 0.5 0.75 (0.25,0.25) (0.5,0.5) (0.75,0.75) (0.25,0.25) (0.5,0.5) (0.75,0.75)

SIS 25 0 1 3 1 1 0 0 0 0 1 3 3 0 0 0

SIRS 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DC-SIS 1 0 25 1 2 2 1 0 0 0 0 0 1 0 0 0

Kendall 3 0 1 25 5 12 3 0 0 0 2 5 3 0 0 0

QC-SIS(0.25) 1 0 2 5 25 5 0 0 0 0 3 2 1 0 0 0

QC-SIS(0.5) 1 0 2 12 5 25 3 0 0 0 1 7 1 0 0 0

QC-SIS(0.75) 0 0 1 3 0 3 25 0 0 0 0 1 1 0 0 0

QPC-SIS(0.25) 0 0 0 0 0 0 0 25 3 2 0 0 1 2 1 0

QPC-SIS(0.5) 0 0 0 0 0 0 0 3 25 0 0 0 0 1 1 0

QPC-SIS(0.75) 0 0 0 0 0 0 0 2 0 25 0 0 0 0 1 0

CC-SIS(0.25,0.25) 1 0 0 2 3 1 0 0 0 0 25 1 0 0 0 0

CC-SIS(0.5,0.5) 3 0 0 5 2 7 1 0 0 0 1 25 1 0 0 0

CC-SIS(0.75,0.75) 3 0 1 3 1 1 1 1 0 0 0 1 25 0 0 0

CPC-SIS(0.25,0.25) 0 0 0 0 0 0 0 2 1 0 0 0 0 25 0 0

CPC-SIS(0.5,0.5) 0 0 0 0 0 0 0 1 1 1 0 0 0 0 25 1

CPC-SIS(0.75,0.75) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 25

ability to predict the metastatic behavior of a tumor remains limited. Van’t Veer

et al. (2002) were the first to study breast cancer using expression data. Their

data involved 97 lymph node-negative breast cancer patients, 55 years old or

younger, of whom 46 developed distant metastases within five years (metastatic

outcome coded as one), and 51 remained metastasis free for at least five years

(metastatic outcome coded as zero). This expression data set with clinical vari-

ables has been well analyzed in many papers (Boulesteix, Porzelius and Daumer
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Table 3. Summary of top 10 gene probes selected by different screening methods
for the rat data. ID means the selected gene ID, and p-values are computed as

2(1 − Φ(|
√
nΩ̂

−1/2
1 %̂Y,X(0.5, 0.5)|)), where Φ is the CDF of the standard normal ran-

dom variable. PE is the mean prediction error over 500 random partitions, where the
partition ratio of the training sample to the testing sample is 4 : 1, where the prediction
error is defined as the average of {(Yi − Ŷi)2, i ∈ testing set}. PE1 and PE2 indicate

that Ŷi is the predicted value after fitting a median regression model and a linear model,
respectively, using the top 10 genes selected.

SIS SIRS DC-SIS Kendall-SIS QC-SIS(0.5) CC-SIS(0.5,0.5) QPC-SIS(0.5) CPC-SIS(0.5, 0.5)

Rank ID p-value ID p-value ID p-value ID p-value ID p-value ID p-value ID p-value ID p-value

1 14770 2.1E-05 2828 1.000 146 6.4E-04 6083 8.3E-10 22641 5.2E-11 14726 4.4E-16 18602 0.473 1621 0.469

2 21977 1.8E-05 20503 0.480 260 7.2E-04 5002 4.5E-10 14810 6.4E-12 6889 6.6E-14 4101 0.003 11288 0.001

3 6436 2.0E-08 233 0.152 30768 2.3E-06 14726 4.4E-16 22339 8.0E-13 14701 6.2E-14 12365 0.141 12480 1.000

4 4797 1.7E-08 3962 0.716 30745 1.6E-05 14810 6.4E-12 5002 4.5E-10 20898 7.2E-14 8399 1.000 4398 0.271

5 21150 2.3E-07 7656 0.063 285 1.2E-04 25297 1.5E-11 20898 7.2E-14 22339 8.0E-13 5063 0.026 29604 0.467

6 25573 4.5E-10 20453 0.468 30791 1.6E-07 5259 6.5E-12 31008 1.5E-07 23278 6.2E-13 9223 0.467 22679 1.000

7 12127 9.4E-09 22023 0.047 3849 1.1E-04 5223 2.9E-10 26828 1.8E-08 25117 8.8E-14 21746 0.716 22267 0.065

8 9235 1.6E-07 157 0.208 4626 1.1E-04 31008 1.5E-07 24529 4.2E-10 30548 6.9E-14 14019 0.717 17039 0.148

9 3682 2.5E-06 2575 0.153 4490 2.8E-10 22339 8.0E-13 14414 1.5E-07 4512 8.0E-12 30361 0.277 11796 0.720

10 8670 4.5E-11 2841 0.284 3967 2.1E-07 6021 1.7E-07 20724 2.8E-10 4712 8.4E-12 24759 0.010 20967 0.026

PE1 0.0394 0.0252 0.0290 0.0310 0.0283 0.0330 0.0269 0.0247

PE2 0.0377 0.0269 0.0349 0.0342 0.0344 0.0360 0.0307 0.0257

(2008), Yu, Li and Ma (2012), among others).

After removing genes with missing values, our sample comprises expression

levels of 24,188 gene probes. In addition to gene expression measurements, data

on several clinical factors are available as well. Our interest is to identify which

gene probes affect the tumor size, given other clinical factors (W), including

age, histological grade, angioinvasion, lymphocytic infiltration, estrogen receptor,

and progesterone receiptor status. Therefore, we have the data set {(Yi,Xi ∈
Rpn ,Wi ∈ Rr), 1 ≤ i ≤ n}, with n = 97, pn = 24, 188, and r = 6.

Using the IH method for outlier detection, we find that 18,098 gene probes

have at least one and at most 29 outliers, suggesting that approximately three-

quarters of the gene probes contain extremely large values. The right panel of

Figure 1 displays the empirical distributions of the response and the two typical

covariates. Thus, it is more suitable to apply a robust joint screening approach,

such as the proposed CPC-SIS. We consider the three cases discussed in Section 4,

and denote the methods as CPC-SISa1, CPC-SISa2, and CPC-SISa3, respectively.

The overlaps of the selected genes from the various methods can be found in

Table S13 in the online Supplementary Material. A similar conclusion to that

for the rat data analysis is apparent. Furthermore, Table 4 presents a summary

of the top 10 gene probes selected using the various methods. The results for
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Table 4. Summary of top 10 gene probes selected using different screening methods for the breast cancer

data. ID means the selected gene ID and p-values are computed as 2(1−Φ(|
√
nΩ̂

−1/2
1 %̂Y,X(0.5, 0.5)|)),

where Φ is the CDF of the standard normal random variable. PE is the mean prediction error over 500
random partitions, where the partition ratio of the training sample to the testing sample is 4 : 1, where
the prediction error is defined as the average of {(Yi− Ŷi)2, i ∈ testing set}. PE1 and PE2 indicate that

Ŷi is the predicted value after fitting a median regression model and a linear model, respectively, using
the top 10 genes selected.

SIS SIRS DC-SIS Kendall-SIS QC-SIS(0.5)

Rank ID p-value ID p-value ID p-value ID p-value ID p-value

1 24032 3.0E-06 24032 0.000 8349 3.1E-05 17679 6.2E-02 24032 3.0E-06

2 11913 1.2E-07 6841 0.000 24032 3.0E-06 20238 2.3E-02 22705 2.8E-02

3 11870 2.9E-06 9164 0.001 13025 6.7E-04 10408 1.9E-03 6841 6.8E-08

4 17439 6.9E-06 13025 0.001 23670 5.9E-03 1644 6.9E-06 14466 1.8E-03

5 6841 6.8E-08 2172 0.013 20121 1.2E-07 8339 2.6E-03 4767 1.2E-05

6 20938 2.3E-02 17439 0.000 6841 6.8E-08 14028 8.9E-05 5644 2.2E-04

7 10692 2.0E-01 20121 0.000 15674 1.2E-06 23670 5.9E-03 20121 1.2E-07

8 19897 1.5E-03 11870 0.000 1644 6.9E-06 12305 7.3E-04 23670 5.9E-03

9 9164 1.5E-03 22705 0.028 5644 2.2E-04 3929 1.8E-03 13742 1.5E-05

10 17050 2.2E-02 10408 0.002 20238 2.3E-02 14466 1.8E-03 17439 6.9E-06

PE1 1.566 1.483 1.419 1.399 1.409

PE2 1.550 1.398 1.378 1.366 1.367

CC-SIS(0.5,0.5) QPC-SIS(0.5) CPC-SISa1(0.5, 0.5) CPC-SISa2(0.5, 0.5) CPC-SISa3(0.5, 0.5)

Rank ID p-value ID p-value ID p-value ID p-value ID p-value

1 12801 1.5E-06 11696 0.001 301 0.005 20121 0.000 4132 0.136

2 13742 1.5E-05 672 0.005 18678 0.000 4356 0.001 17568 0.620

3 402 6.2E-05 21944 0.021 3524 0.603 13084 0.008 5459 0.482

4 4862 3.4E-04 6466 0.024 5422 0.021 13191 0.035 1079 0.352

5 8349 3.1E-05 518 0.758 14782 0.023 6436 0.299 23942 0.002

6 9158 1.9E-03 12635 0.022 21431 0.922 10179 0.192 14 0.922

7 12074 6.8E-06 12567 0.609 5239 0.295 20102 0.185 1847 0.169

8 14466 1.8E-03 7160 0.483 777 0.352 1299 0.179 3392 0.505

9 18903 2.5E-02 21188 0.007 20958 0.132 1830 0.381 20369 0.367

10 19774 8.1E-06 11916 0.495 4849 0.460 6025 0.467 390 0.920

PE1 1.404 1.466 1.399 1.436 1.372

PE2 1.290 1.437 1.345 1.304 1.289

PE1 and PE2 in Table 4 empirically verify that our proposed CPC-SIS method in

Case 3 demonstrates the most satisfactory performance in terms of out-of-sample

prediction.
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6. Choice of Parameters (τ, ι)

In this section, we provide guidance on the choice of the parameters (τ, ι)

in the proposed screeners. As in the existing screening literature on quantile

correlation, the parameters (τ, ι) play a crucial role in our proposed robust and

jointly independent screening procedures. In general, the specification for choos-

ing a suitable (τ, ι) is usually decided by the user, where results are interpreted

according to the chosen value. For example, in financial studies, we can choose

small or large (τ, ι) depending on whether we are interested in the high or low tail

dependence of asset prices. Usually, the median is used in a quantile regression.

From our limited simulation experience, using the median quantile level in our

CC-SIS and CPC-SIS procedures works better than using other low or high quan-

tile levels; thus, we recommend specifying a median quantile level. Moreover, for

the screeners CC-SIS or CPC-SIS, choosing different τ and ι yields different sets

of screened covariates. To combine the results from various (τ, ι), we may pursue

a global screener over a continuous range of quantiles (e.g., Zheng, Peng and He

(2015); Ma and Zhang (2016)). Specifically, we consider the maximum absolute

copula-based correlation for variable screening, as suggested by one reviewer as

well, in which we let the tuning parameters τ and ι be taken over two intervals.

Specifically, we define the following empirical utility as a new screener:

ûj = max
τ∈I1

max
ι∈I2
|%̂Y,Xj

(τ, ι)|,

where I1 = I2 = (0, 1). In the implementation, we maximize the absolute

correlation with respect to (τ, ι) over a set of discrete points {(τk, ιl)}, where

τk = k/N , for 1 ≤ k ≤ N − 1 and ιl = l/N, 1 ≤ l ≤ N − 1 using a pre-specified

integer N , rather than maximizing over a continuous range (interval). We call

this screening procedure the maximum CC-based sure independence screening

(denoted as mCC-SIS). In Examples S7 and S8 in the online supplementary

material, we set N = 10 for a simple comparison of this method.

7. Conclusion

We propose a copula-based correlation and partial correlation to facilitate ro-

bust marginal and joint screening for ultrahigh-dimensional data sets. The large

sample properties for the estimated correlation and the sure screening properties

for CC and CPC screeners are provided. Empirical studies, including simulations

and two data applications, show that our proposed CC-SIS and CPC-SIS outper-
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form existing variable screening approaches when outliers are present in both the

covariates and the response. Therefore, our current proposals are more applicable

to ultrahigh-dimensional heterogeneous data. We provide the following guideline

for performing variable screening. If the response and predictors are all normal,

without heteroscedastic variance, and the predictors have low correlation, any

marginal screening methods (SIS, SIRS, DC-SIS) can be applied. If the response

contains outliers, or follows a heavy-tail distribution and the covariates are nor-

mal, then robust screening methods (Kendall SIS, QC-SIS, CQC-SIS, CC-SIS)

can be employed. If the covariates are highly correlated and conditional variables

are available, conditional screening procedures (CSIS, QPC-SIS) can be used. If

the data are heteroscedastic for both the response and the covariates, and the

covariates may be highly correlated, then only the CPC-SIS is recommended.

The copula formulation suggests several possible extensions to our methodol-

ogy. First, we may consider a censored survival-time outcome in this framework.

See Yue and Li (2017), Hong and Li (2018), and Huang, McKeague and Qian

(2019) for recent reviews on feature selection and screening for survival analyses.

The estimations for the copula-based correlation and the partial correlation need

to incorporate random censoring for such data. In addition, we need to invoke

more complicated empirical process theories to argue the weak convergence re-

sults. Second, we may even allow the predictors to be censored; see Cheng and

Fine (2008) and Cheng and Li (2015) for an earlier discussion. Third, we may

consider more pairs of (τ, ι) over a candidate set or an interval in order to incor-

porate additional information on the quantiles of the response and the covariates.

In future work, the relevant theoretical results discussed here can be generalized

further to include ultrahigh-dimensional data.

Supplementary Material

The online Supplementary Material provides technical proofs of all theoret-

ical results stated in the manuscript, as well as extensive numerical simulations.
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