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Abstract: The Sequential Probability Ratio Test (SPRT) has been widely applied in

quality control and clinical studies. There are two important quantities in SPRT:

[1 − E(e−αSτ+ )]/E(Sτ+ ) for calculating the p-value and E(S2
τ+

)/2E(Sτ+ ) for esti-

mating the sample size, where Sn is the i.i.d. summation of random variables and

τ+ refers to the first time that Sn becomes positive. For non-arithmetic i.i.d. ran-

dom variables, Woodroofe (1979) provided computation formulas for these two

quantities. To find the threshold for the IBD score statistics in testing genetic

linkage, Tu and Siegmund (1999) provided a computation formula to calculate

[1 − E(e−αSτ+ )]/(1 − e−αh)E(Sτ+) for arithmetic i.i.d. random variables when

α is not too small. This paper gives another computation formula to calculate

[1 − E(e−αSτ+ )]/(1 − e−αh)E(Sτ+) for arithmetic i.i.d. random variables, which

can be applied for any positive α including α ↓ 0. We also provide a computation

formula for E(S2
τ+)/2E(Sτ+) to estimate the overshoot for arithmetic i.i.d. random

variables. Furthermore, we show that these two formula reproduce Woodroofe’s

non-arithmetic formula by letting the span h go to zero, and we derive a compu-

tation formula to calculate E(Sτ+), that can be applied to estimate the number of

’new-high’ points in reaching a threshold.

Key words and phrases: Arithmetic, ladder height, overshoot, sample size, second

moment, sequential analysis.

1. Introduction

A random variable x is called arithmetic if it takes only values 0, ±h, ±2h,

. . ., and h is called its span if h is the largest number that satisfies P (x ∈

{0,±h,±2h, . . .}) = 1. Let x1, x2 . . . be i.i.d. from fω with positive mean µ,

and consider a test that terminates at n = T when T is the first time that

Sn =
∑n

i=1 xi exceeds a threshold b, T = inf{n : Sn ≥ b}. Two basic problems

encountered in sequential tests are the p-value calculation under the null hypoth-

esis, to find an appropriate threshold b, and the sample size estimation under the

alternative hypothesis, to estimate cost.

ST can be rewritten as an independent sum of positive random variables

Sτ+ . Let τ
(0)
+ = 0, τ+ = τ

(1)
+ = inf{n : Sn > 0}, τ

(2)
+ = inf{n : Sn > S

τ
(1)
+

}, . . .,

τ
(k)
+ = inf{n : Sn > S

τ
(k−1)
+

}, and observe that
∑∞

k=1 P (T = τ
(k)
+ |T < ∞) = 1,
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Figure 1. The solid red circles are examples of new-high points (τ
(i)
+ , S

τ
(i)
+

),

where i = 1, . . . , 5. The green (horizontal) lines describe the waiting time to

reach the new-high points, and the blue (vertical) lines are the jump sizes of

the new-high points. It can be observed from the figure that the first time
to exceed some positive threshold must occur at a new-high point τ

(i)
+ for

some i > 0, that is, ST = S
τ
(i)
+

for some i > 0.

and S
τ
(1)
+

, S
τ
(2)
+

−S
τ
(1)
+

, S
τ
(3)
+

−S
τ
(2)
+

, . . . are positive with probability 1 and i.i.d..

This relates ST to Sτ+ . Figure 1 gives an illustration of these ladder height

random variables. We call the points (τ
(k)
+ , S

τ
(k)
+

) ’new-high’ points.

For a negative drift process, by applying the change of measure method, one

can write

P (T < ∞) =
∞
∑

n=1

E0(I[T=n]) =
∞
∑

n=1

Eα(exp(−Snα + nϕ(α))I[T=n])

= e(−αb)Eα(e−α(ST −b)) (1.1)

where ϕ(α) is the log of the moment generating function of x1, with α referring

to the change of measure chosen by solving the equation ϕ(α) = 0 under the

constraint that the mean, ϕ′(α), is positive. In (1.1), Eα(e−α(ST −b)) can be

treated as a correction term for the contribution of the overshoot. Siegmund

(1985, Chap. 8) provided asymptotic equations for the correction term in (1.1):
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for i.i.d. non-arithmetic random variables,

lim
b→∞

Eα(e−α(ST −b)) =
1 − Eα(e−αSτ+ )

αEα(Sτ+)
; (1.2)

for i.i.d. arithmetic random variables

lim
b→∞

Eα(e−α(ST −b)) = h
1 − Eα(e−αSτ+ )

(1 − e−αh)Eα(Sτ+)
. (1.3)

Woodroofe (1979) provided a computation formula for (1.2), namely

1 − E(exp(−αSτ+))

αE(Sτ+)

= exp
{ 1

π

∫ ∞

0

[ α2

α2 + t2
ℑ(ξ(t)) − π

2

t
−

α

α2 + t2
(ℜ(ξ(t)) + log(µt))

]

dt
}

, (1.4)

while Tu and Siegmund (1999) provided a computation formula for (1.3):

h
1 − E(exp(−αSτ+))

(1−exp(−αh))E(Sτ+ )
=

1

(1−exp(−αh))
exp{

−1

2π

∫ 2π

0
dt[

ξ(t/h) exp(−αh − it)

1 − exp(−αh − it)

+
ξ(t/h) + log(µ(1 − exp(it))/h)

1 − exp(it)
]}. (1.5)

(1.5) has been applied to approximate the tail probability of IBD scores in genetic

linkage problems in Tu and Siegmund (1999), the scan statistics for arithmetic
cases on genomic sequence alignment in Storey and Siegmund (2001), and the

weighted scores of specific patterns on genomic sequence in Chan and Zhang
(2007). (1.5) is correct for α not too close to 0. However, when α ↓ 0, it may

break down. In Theorem 1, we rewrite (1.5) and show that the new formula can
reproduce (1.4) in Woodroofe (1979) by letting h ↓ 0 in Corollary 1.

Under the alternative hypothesis, where 0 < E(x1) < ∞,

E(T ) =
b

µ
+

E(ST − b)

µ
. (1.6)

In estimating the sample size, E(ST − b)/µ can be viewed as a correction term
for the overshoot. With the condition E(x2

1) < ∞, Siegmund (1985) provided the

asymptotic equations for this correction term: for i.i.d. non-arithmetic random
variables,

lim
b→∞

E(ST − b) =
E(S2

τ+
)

2E(Sτ+)
; (1.7)

for i.i.d. arithmetic random variables,

lim
b→∞

E(ST − b) =
E(S2

τ+
)

2E(Sτ+)
−

h

2
. (1.8)
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For (1.7), Woodroofe (1979) showed that

E(S2
τ+

)

2E(Sτ+)
=

E(x2
1)

4E(x1)
+

1

π

∫ ∞

0

(ℜ(ξ(t)) + log(µt))

t2
dt. (1.9)

In this paper, we provide an expression for (1.8) in Theorem 2, and prove that

it converges to (1.9) as h ↓ 0.

This paper is organized as follows. The main results are in Section 2 and are

illustrated by several examples in Section 3. Results are applied to estimate the

overshoot, the waiting time and the number of ’new-high’ points, and then com-

pared with simulations. The paper ends with a discussion section. The technical

proofs are put in an appendix that is available at (http://www3.stat.sinica.edu.tw

/statistica/).

2. Main Results

Let x1, x2, . . . be arithmetic i.i.d. random variables with span h, µ = E(x1) >

0, E(x2
1) < ∞, and τ+ = inf{n : Sn > 0}. Let φ(t) = E(exp(itx1)), ξ(t) =

∑∞
n=1 φn(t)/n = − log(1−φ(t)), ℜ(ξ(t)) = −(1/2) log((1−ℜ(φ(t)))2+(ℑ(φ(t)))2),

and ℑ(ξ(t)) = tan−1[ℑ(φ(t))/(1 − ℜ(φ(t)))]. (ℜ means real part and ℑ means

imaginary part of complex variables).

Theorem 1. In the given notation,

h
1 − E(exp(−αSτ+))

(1 − exp(−αh))E(Sτ+)

= exp
{−h

2π

∫ π

h

−π

h

dt
[(

ξ(t)+log(
µ(1−eith)

h
)
)( e−αh−iht

1−e−αh−iht
+

1

1−eiht

)]}

. (2.1)

Corollary 1. With the condition lim sup |φ(t)| < 1, (1.4) in Woodroofe (1979)

can be reproduced by taking the limit as h ↓ 0 in (2.1):

lim
h↓0

−h

2π

∫ π

h

−π

h

dt
[(

ξ(t) + log(
µ(1 − eith)

h
)
)( e−αh−iht

1 − e−αh−iht
+

1

1 − eiht

)]

=
1

π

∫ ∞

0

[ α2

α2 + t2
ℑ(ξ(t)) − π

2

t
−

α

α2 + t2
(ℜ(ξ(t)) + log(µt))

]

dt.

Theorem 2. One has

E(S2
τ+

)

2E(Sτ+)
=

E(x2
1)

4µ
+

h

4
−

h2

4π

∫ π

h

−π

h

dt
[ℜ(ξ(t)) + log(µ

h
) + log(2| sin(ht

2 )|)]

cos(ht) − 1
. (2.2)
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Corollary 2. With the condition lim sup |φ(t)| < 1, (1.9) in Woodroofe (1979)

can be reproduced by taking the limit as h ↓ 0 in (2.2):

lim
h↓0

h

4
−

h2

4π

∫ π

h

−π

h

dt
[ℜ(ξ(t)) + log(µ

h
) + log(2| sin(ht

2 )|)]

cos(ht) − 1

=
1

π

∫ ∞

0

(ℜ(ξ(t)) + log(µt))

t2
dt

Theorem 3. One has

log[
E(Sτ+)

h
] =

h

4π

∫ π

h

−π

h

dt

(

ℜ(ξ(t)) + log(
µ

h
) + log(2| sin(

ht

2
)|)

)

−
h

4π

∫ π

h

−π

h

dt

(

[ℑ(ξ(t)) −
π

2
+

ht

2
]

1

tan(ht
2 )

)

. (2.3)

3. Examples and Simulations

We give some examples to demonstrate how the theorems work.

3.1. Example 1: Bernoulli random variables

Bernoulli random variable with parameter p > 0 is a place to start be-

cause we know that Sτ+ = 1 with probability 1, which means that (2.1) should

output 1, (2.2) should output .5, and (2.3) should output 0. The character-

istic function for a Bernoulli random variable is φ(t) = (1 − p) + p exp(it),

and ξ(t) = − log(1 − φ(t)) = − log(p(1 − eit)), such that ξ(t) + log(µ(1 −

eit)) = 0 so (2.1) outputs 0 as expected. The real part of ξ(t) is ℜ(ξ(t)) =

− log(p)− log[
√

(1 − cos(t))2 + sin2 t = − log(p)− log(2| sin(t/2)|), and the imag-

inary part for ξ(t) is ℑ(ξ(t)) = tan−1(cot(t/2)) = π/2 − t/2. Because E(x1) =

E(x2
1) = p and the span h = 1, the three integrals in (2.2) and (2.3) are 0 with

E(S2
τ+

)/2E(Sτ+) = 0.5 and log[E(Sτ+)] = 0, as expected.

3.2. Example 2: Mixture of Poisson random variables

This example comes from the conditional behavior of a function of a Markov

Chain (Tu and Siegmund (1999)). Let {xi, i ≥ 1} be i.i.d. with x1 = 3y1 +

y2 − y3 − 3y4, where the yi’s are i.i.d. Poisson variables with parameters λi. We

adjust the parameters of the Poisson random variables linearly in such a way

that λi = spi, where
∑4

i=1 pi = 1, and 0 < s < ∞. When s → 0, Sτ+ will

be very similar to S
(r)
τ+ of a random walk with jump sizes 3, 1, -1, -3, and with

probabilities p1, p2, p3 and p4. S
(r)
τ+ can be solved exactly, and the solution can

provide a check.
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Table 1. Numerical calculations of [1−E(e
−αS

(r)
τ+ )]/(1− e−α)E(S

(r)
τ+ ) for the

random walk (3, 1,−1,−3) with p1 = 0.6157, p2 = 0.0269, p3 = 0.3304 and
p4 = 0.0269 are shown.

Calculations of 1−E(e
−αS

(r)
τ+ )

(1−e−α)E(S
(r)
τ+

)

α 1 0.1 0.01 0.001 0.0001 0.00001

Martingale Method 0.5571 0.9202 0.9914 0.9991 0.9999 1.0

Equation (1.5) 0.5574 0.9233 1.0232 1.3682 14.29 641.1

Theorem 1 0.5571 0.9202 0.9915 0.9992 1.0 1.0

Table 2. The parameters for this table are λi = pis where p1 = 0.6157,

p2 = 0.0269, p3 = 0.3304 and p4 = 0.0269; E[(S
(r)
τ+ )2]/2E[S

(r)
τ+ ] and E[S

(r)
τ+ ]

are calculated as a check for s ↓ 0.

Random Walk Mixture of Poisson s = 0.001 s = 0.01 s = 0.1 s = 1

E[(S(r)
τ+

)2]

2E[S
(r)
τ+

]
= 1.3632

E(S2
τ+

)

2E(Sτ+
) Theorem 2 1.3642 1.3726 1.4567 2.2785

E[S
(r)
τ+ ] = 2.5387 E(Sτ+) Theorem 3 2.5395 2.5468 2.6210 3.4338

Let Yi = exp(θS
(r)
i ), where θ is a complex root of the equation φ(θ) =

log E(exp(θS
(r)
1 )) = 0. If p1 = 0.6157, p2 = 0.0269, p3 = 0.3304 and p4 = 0.0269,

we have θ = −0.6787 + i(1.0351). It can be observed that {Yi, i > 0} is a

Martingale and that τ+ ≡ inf{n;S
(r)
n > 0} = inf{n;Yn > exp(θ)} is a stopping

time. The possible values for S
(r)
τ+ are {1, 2, 3}. We apply E(Yτ+) = E(Y1) = 1 to

solve πi = P (S
(r)
τ+ = i), and then [1−E(e−αS(r)

τ+
)]/[(1−e−α)E(S

(r)
τ+ )], E(S

(r)
τ+ ) and

E[(S
(r)
τ+ )2] can be calculated exactly. For this random walk example, we compare

(1.5) in Tu and Siegmund (1999) with (2.1) for various α in Table 1. (1.5) breaks

down for small α, while (2.1) improves substantially on it.

In Table 2, the Theorem 2 and Theorem 3 calculations for E(S2
τ+

)/2E(Sτ+)

and E(Sτ+) for the Poisson variables with λi = spi are shown. In Table 3, various

bounds on τ+ are set in simulating E(S2
τ+

)/2E(Sτ+) to show the efficiency that

the theoretical results can provide.

3.3. Example 3: A sequential test example

Consider {xi, i ≥ 1} to be i.i.d. with

x1 = a1y1 + a2y2 − b1y3 − b2y4,

where yi are independent Poisson variables with mean λi. The mean µ = E(xi) >

0 is chosen in such a way that a1 = b1 = 1, a2 = b2 = Ma1, λ1 = 1.1, λ3 = 1,
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Table 3. The Poisson parameters for this table are those of Table 2. In this
simulation, various upper bounds (K) on τ+ are set to show the values that

τ+ acquires to get a reasonable result.

E[S2
τ+

V

K
]

2E[Sτ+
V

K ]

K s = 0.001 s = 0.01 s = 0.1 s = 1

∞ 1.378 1.370 1.457 2.257

20 2.014 2.028 1.870 2.241

100 2.056 1.979 1.488 2.262

200 1.858 1.846 1.456 2.366

400 1.726 1.582 1.460 2.266

600 1.644 1.460 1.410 2.283

800 1.629 1.457 1.441 2.291

1000 1.514 1.413 1.467 2.272

1500 1.444 1.369 1.509 2.230

2000 1.383 1.384 1.460 2.176

λ2 = λ1/M , and λ4 = λ3/M , where M is a positive integer referring to the

ratio between high level and low level. These parameters are designed so that

the four terms in the model have roughly equal means. The accumulated sum is

Sn =
∑n

i=1 xi. A sequential test stops when Sn reaches 15.

In this example, T = inf{n : Sn ≥ 15}. Theorem 2 can be applied to

estimate E(T ) = E(ST )/µ by approximating the overshoot part [E(ST ) − b] as

[E(S2
τ+

)/2E(Sτ+)−1/2]. Theorem 3 can estimate the number of new-high points

during the course as E(ST )/E(Sτ+). The estimators are summarized in Table

4. In Table 5, the comparisons between the estimators and the simulations are

shown for the waiting time, new high points and the overshoot for various M.

4. Discussion

The major challenge in calculating the overshoots is to manage the diver-

gent points of the integrated function such that the orders of limit and integral

are interchangeable. Complex analysis is applied to find the functions to solve

these problems. The Theorem 1 formula for [1−E(exp(−αSτ+))]/[(1−exp(−αh))

E(Sτ+)] is more robust (over α) than that provided by Tu and Siegmund (1999).

Our modification also makes it possible to reproduce the non-arithmetic result

(Woodroofe (1979)) by letting h go to 0.

A concern in the three theorems is that the imaginary part of the log function

is not well defined. For example, with f(t)ei2π, log(f(t)ei2π) = log(f(t)) + i(2π),

which means that the log function is ambiguous at multiples of i(2π). Fortu-

nately, this does not cause problems. The ambiguity of the log functions fall on

the imaginary part, and the functions containing the imaginary parts of the log
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Table 4. The estimators for overshoot, waiting time and the number of
’new-high’ points.

Overshoot Waiting Time New High Points

Estimator
E(S2

τ+
)

2E(Sτ+
) − 0.5 [b +

E(S2
τ+

)

2E(Sτ+
) − 0.5]/µ [b +

E(S2
τ+

)

2E(Sτ+
) − 0.5]/E(Sτ+)

Table 5. The performance of the estimators in Table 4.

Overshoot Waiting Time New High Points

M Estim. Simul. Estim. Simul. Estim. Simul.

5 2.0138 1.9858 85.0692 84.7034 5.432 5.4321

6 2.3317 2.3101 86.6585 86.7464 5.1281 5.1087

7 2.6579 2.6305 88.2897 88.0976 4.8895 4.8693

8 2.9917 2.9439 89.9586 89.6466 4.6991 4.6780

9 3.3323 3.3557 91.6614 90.8089 4.5448 4.5456

10 3.6790 3.7345 93.3949 92.9253 4.4185 4.4152

functions are all periodic odd functions, which means that the ambiguous part

contributes 0 after integration.

The model in Example 3 of Section 3 can be applied to modeling accumu-

lated gain or loss in an investment course or an insurance program. To make

the applications of these results to more practical and interesting problems, the

assumptions on the random variables xi need to be more flexible. For example,

the i.i.d. assumption could be relaxed to one of equal mean and equal variance,

or to Markov random variables. The problems become more challenging, but the

reward grows.
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