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Abstract: The functional linear model extends the notion of linear regression to the

case where the response and covariates are iid elements of an infinite-dimensional

Hilbert space. The unknown to be estimated is a Hilbert-Schmidt operator, whose

inverse is by definition unbounded, rendering the problem of inference ill-posed. In

this paper, we consider the more general context where the sample of response/

covariate pairs forms a weakly dependent stationary process in the respective prod-

uct Hilbert space: simply stated, the case where we have a regression between

functional time series. We consider a general framework of potentially nonlinear

processes, expoiting recent advances in the spectral analysis of functional time

series. This allows us to quantify the inherent ill-posedness, and to motivate a

Tikhonov regularisation technique in the frequency domain. Our main result is the

rate of convergence for the corresponding estimators of the regression coefficients,

the latter forming a summable sequence in the space of Hilbert-Schmidt operators.

In a sense, our main result can be seen as a generalisation of the classical functional

linear model rates to the case of time series, and rests only upon Brillinger-type

mixing conditions. It is seen that, just as the covariance operator eigenstructure

plays a central role in the independent case, so does the spectral density operator’s

eigenstructure in the dependent case. While the analysis becomes considerably

more involved in the dependent case, the rates are strikingly comparable to those

of the i.i.d. case, but at the expense of an additional factor caused by the necessity

to estimate the spectral density operator at a nonparametric rate, as opposed to

the parametric rate for covariance operator estimation.

Key words and phrases: Frequency analysis, functional linear model, spectral den-

sity operator, system identification, Tikhonov regularisation

1. Introduction

Functional regression generalises the classical linear model of multivariate

statistics to the case where the parameter, the response, and the error com-
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ponents reside in general separable Hilbert spaces, while the design matrix is

replaced by a linear operator between these spaces (Grenander (1981)). The

most studied case is that where the covariate lies in space (L2[0, 1], 〈·, ·〉, ‖ · ‖)
of square integrable real functions on the unit interval (Horváth and Kokoszka

(2012), Hsing and Eubank (2015), Ramsay and Silverman (2005)). Here one

has independent random elements X, ε ∈ L2[0, 1], and a bounded linear oper-

ator B : L2[0, 1] → H mapping into a separable Hilbert space H, yielding the

regression model

Y = BX + ε.

The random elements X and Y are assumed observable, but ε is unobservable and

B is unknown and to be estimated from i.i.d. replicates {(Xn, Yn)}n∈N of (X,Y ).

The most studied case is the so-called scalar-on-function regression where H = R,

so B reduces to a bounded linear functional Bf = 〈f, β〉, and the function β is

the parameter of interest. More general is the case in which H = L2[0, 1], and

the operator B is an integral operator with kernel β ∈ L2([0, 1]2),

Bf =

∫ 1

0
β(σ, τ)f(τ)dτ, ∀ f ∈ L2[0, 1].

In either of these cases, writing down the normal equations reveals an ill-posed

inverse problem: the equations involve the application of the inverse of the trace-

class covariance operator R of the random element X. Worse still, the operator

R is unknown, and needs to be replaced by its empirical version. Consequently,

the statistical methodology for functional regression must involve some means of

regularisation, the most popular being PCA regression (or spectral truncation),

where one replaces the empirical covariance R̂ by its best rank K approximation

in nuclear norm, for some regularisation parameter K (that is of course allowed

to grow with n; see, e.g. Ramsay and Silverman (2005, Chap. 10); Ferraty and

Vieu (2000); Cuevas, Febrero and Fraiman (2002); Cardot and Sarda (2006)).

In a landmark contribution on the functional linear model, Hall and Horowitz

(2007) demonstrated that, while the PCA estimator can achieve minimax rates

(in probability) in some cases, the ridge estimator (corresponding to Tikhonov

regularisation, and adding a multiple of the identity to the empirical covari-

ance) can have important advantages. Theoretically, the Tikhonov estimator

can achieve the minimax mean square error (MSE) rate, whereas the truncated

PCA estimators would need to undergo a nonlinear modification to achieve sim-

ilar MSE rates (see, e.g. Hall and Hosseini-Nasab (2006, Thm. 5, Appendix

A.2), and the remarks following Hall and Horowitz (2007, Thm. 1). Practically,
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Hall and Horowitz (2007) showed that the Tikhonov estimator enjoyed better

stability properties and was robust to eigenvalue ties. The results of Hall and

Horowitz (2007) apply to the scalar-on-function case, and extensions thereof have

recently been considered in the function-on-function case (Imaizumi and Kato

(2016)).

In this paper, we attack the problem of extending the Tikhonov-based method-

ology and rates of convergence of Hall and Horowitz (2007) to the case of the

function-on-function regression of time series (which can also be seen as a func-

tional linear system identification problem). Here, the observed covariates

{Xt}t∈Z are no longer i.i.d., but constitute a stationary process in L2[0, 1]. The

resulting response process {Yt}t∈Z is then also a stationary process, linearly cou-

pled to the Xt and εt via a sequence of operators {Bt}t∈Z,

Yt =
∑
s

Bt−sXs + εt, t ∈ Z.

Of interest is the estimation of the operators (or filter) {Bt}, on the basis of the

observation of a finite stretch of pairs {(Xt, Yt)}T−1
t=0 . This case is considerably

more challenging than the i.i.d. function-on-function case. The reason is that

beyond the intrinsic covariation of each regressor function Xt, encapsulated in the

covariance R, one needs to account for the temporal covariation between lagged

regressor functions Xt and Xt+s. These too contribute to the ill-posedness of

the problem, which is now doubly ill-posed: one needs to solve an operator

deconvolution problem, where the “Fourier division” step is replaced with the

solution of an integral equation. To account for these two layers of ill-posedness,

one needs to consider the frequency domain framework (Panaretos and Tavakoli

(2013a,b)), and it turns out that the operator that needs to be inverted as part

of the normal equations is now the spectral density operator of the process {Xt},

FXXω =
1

2π

∑
t

e−itωRXt ,

the Fourier transform of the lag t autocovariance operators Rt of {Xt}.
Just as estimation in the i.i.d case is based on the spectral truncation or

the ridge regularisation of the covariance operator, estimation in the time se-

ries case can be based on the spectral truncation or ridge regularisation of the

spectral density operator (achieved by harmonic or dynamic PCA, see Panaretos

and Tavakoli (2013a) and Hörmann, Kidziński and Hallin (2015)). The spectral

truncation approach was recently considered and studied by Hörmann, Kidziński

and Kokoszka (2015), and indeed this appears to be the first contribution to the

theory of time series regression without any structural assumptions past weak
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dependence (to be contrasted to the functional regression of linear processes,

which are much better understood, see Bosq (2012)). Hörmann, Kidziński and

Kokoszka (2015) show that by truncating the spectral density operator at a cer-

tain rate, one can obtain consistent estimators of the operators {Bt} under weak

dependence conditions. An elegant aspect of their approach is that the “correct”

truncation rate can in principle be deduced from the data. Still, convergence

rates have to date not been established.

Inspired by the work of Hall and Horowitz (2007), we set forth to establish

such convergence rates. In view of the technical difficulties of PCA regression in

the i.i.d. case, it seems unlikely that MSE error rates would be attainable for the

truncated harmonic PCA estimator without some nonlinear modification – after

all, the i.i.d. setup is a special case of the time series setup, and so any difficulties

encountered in the former apply to the latter, too. This motivates us to introduce

a different regularisation method than that of Hörmann, Kidziński and Kokoszka

(2015), adopting the Tikhonov perspective. In this framework, we establish the

rate of convergence under Brillinger-type weak dependence conditions (Brillinger

(2001)), and mild ill-posedness assumptions formulated in direct analogy to the

assumptions of Hall and Horowitz (2007) (and of Imaizumi and Kato (2016)).

The convergence rate turns out to be the same as in the i.i.d. case, except for

the presence of a bandwidth factor that results from the fact that one needs to

estimate the spectral density operator by smoothing the periodogram operator;

unless one knows the processes to actually be uncorrelated in t ∈ Z, this is a

term that cannot be escaped.

The paper is organised as follows. Section 2 establishes notational conven-

tions and analytic notions employed throughout Section 3 then briefly reviews

the framework of functional time series, including the key objects of frequency

domain functional time series used in the sequel. Functional time series regression

and its diagonalisation are considered in Sections 4 and 5. This motivates the

methodological contribution of the paper, the Fourier-Tikhonov estimator, pre-

sented in Section 6 and discussed in detail in comparison to PCA-based method-

ology. Our central result is given in Section 7.7, is the MSE rate of convergence

of the Fourier-Tikhonov estimator.

2. Basic Definitions and Notation

We work in the usual context of functional data analysis, that assumes that

each datum arises as the realisation of a random element of the separable Hilbert
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space L2([0, 1]) of square integrable real functions on [0, 1]. The latter is equipped

with the standard inner product and norm

〈f, g〉 =

∫ 1

0
f(τ)g(τ)dτ, ‖f‖2 =

∫ 1

0
f2(τ)dτ = 〈f, f〉.

Given a linear operator B : L2([0, 1])→ L2([0, 1]), we denote its adjoint by B∗, its

generalised inverse by B†, and its inverse by B−1, if well defined. The Schatten-∞
norm (operator norm), Schatten-2 norm (Hilbert-Schmidt norm), and Schatten-1

norm (nuclear norm) are respectively, denoted by��B��
∞ = sup

‖h‖=1
‖Bh‖,

��B��
2

=
√

trace (B∗B),
��B��

1
= trace

(√
B∗B

)
.

Occasionally, we abuse notation and apply a Schatten norm to the kernel of the

corresponding integral operator, in which case it should be understood that the

norm applies to the induced operator. For example, if f ∈ L2([0, 1]2), we may

write
��f��

1
to denote the Schatten-1 norm of the operator g 7→

∫ 1
0 f(s, t)g(t)dt.

The identity operator is denoted by I. For a pair of elements f, g ∈ L2[0, 1],

we define the tensor product (operator) as f ⊗ g : L2[0, 1]→ L2[0, 1]

(f ⊗ g)u = 〈g, u〉f, u ∈ H.

We make use of the same notation for tensor products of operators: if A, B, and

G are operators L2[0, 1]→ L2[0, 1], we write

(A⊗B)G = trace (B∗G)A.

Finally, we use ConvC
(
L2([0, 1]2,C)×L2([0, 1]2,C)

)
to denote the set of finite

convex combinations of elements of the form f×g with f, g ∈ L2([0, 1]2,C) whose

induced operators have Schattern 1-norm uniformly bounded by a constant C.

A generic element of ConvC
(
L2([0, 1]2,C)×L2([0, 1]2,C)

)
is denoted by ϑ1�ϑ2,

understood as implying that this element can be written in the form

ϑ1(a1, a2)� ϑ2(a3, a4) =

J∑
j=1

πjfj(a1, a2)hj(a3, a4),

for a probability measure {πj}Jj=1 and functions fj , hj ∈ L2([0, 1]2,C) such

that the Schatten-1 norms {
��fj��1

,
��hj��1

}Jj=1 of the operators L2([0, 1],C) →
L2([0, 1],C) with kernels fj and hj are all bounded by C. This notation is used

frequently to abbreviate cumbersome terms in Taylor expansions involving linear

combinations of products of kernels.
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3. Functional Time Series Background

A functional time series is a sequence of random elements {Xt} of L2[0, 1],

indexed by t ∈ Z (interpreted as time). The argument of each function Xt is

denoted by, τ ∈ [0, 1],

Xt(τ) : [0, 1]→ R, for t ∈ Z.

We consider only strictly stationary time series: given any finite index set I ⊂ Z,

and any s ∈ Z, it holds that

{Xt}t∈I
d
= {Xt+s}t∈I .

The mean function and lag t covariance kernel of {Xt} are given by,

µX(τ) = E{Xt(τ)},
rXt (τ, σ) = E

[{
Xt+s(τ)− µX(τ)

}{
Xs(σ)− µX(σ)

}]
, t, s ∈ Z,

and are well-defined for almost all τ ∈ [0, 1] and (τ, σ) ∈ [0, 1]2, respectively,

when E‖X0‖2 < ∞. The lag t covariance operator RXt : L2[0, 1] → L2[0, 1] is

then defined by the action

RXt h = E
{(
Xt+s − µX

)
⊗
(
Xs − µX

)
h
}

= cov (〈X0, h〉, Xt) , h ∈ L2[0, 1],

and is a nuclear integral operator with integral kernel rXt . Assuming that the

sequence RXt is nuclear-summable,∑
t

��RXt ��
1
<∞,

we can define the spectral density operator FXω at frequency ω ∈ [−π, π] as

FXXω =
1

2π

∑
t

e−itωRXt .

where i2 = −1. This is a nuclear, self-adjoint, and non-negative operator with

integral kernel

fXXω (τ, σ) =
1

2π

∑
t

e−itωrXt (τ, σ).

The corresponding spectral decompositions are

FXXω =

∞∑
i=1

λωi ϕ
ω
i ⊗ ϕωi and fXXω (τ, σ) =

∞∑
i=1

λωi ϕ
ω
i (τ)ϕωi (σ),

with {λωi } the sequence of non-negative eigenvalues, and {ϕωi } the corresponding

orthonormal eigenfunctions.

Given a second functional time series {Yt} satisfying the same (correspond-
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ing) assumptions, we can define the lag t cross-covariance kernel as

rY Xt (τ, σ) = E
[{
Xt+s(τ)− µX(τ)

}{
Ys(σ)− µY (σ)

}]
, τ, σ ∈ [0, 1] & t, s ∈ Z,

which, in turn, induces the lag t cross-covariance operator RY Xt : L2(0, 1) →
L2[0, 1] by

RY Xt h = E
{(
Xt+s − µX

)
⊗
(
Ys − µY

)}
h = cov (〈Y0, h〉, Xt) , h ∈ L2(0, 1).

The cross-spectral density operator FY Xω at frequency ω ∈ [−π, π] is then defined

as

FY Xω =
1

2π

∑
t

e−itωRY Xt

with associated integral kernel

fY Xω (τ, σ) =
1

2π

∑
t

e−itωrY Xt (τ, σ).

These can be expanded in the basis of eigenfunctions of FXXω , yielding the Fourier

representations

FY Xω =

∞∑
i,j=1

aωijϕ
ω
i ⊗ ϕωj & fY Xω (τ, σ) =

∞∑
i,j=1

aωijϕ
ω
i (τ)ϕωj (σ).

Finally, we consider cumulant kernels (and corresponding operators) as a means

of quantifying the strength of temporal dependence in {Xt} via Brillinger mixing

conditions. Given any (τ1, . . . τk) ∈ [0, 1]k, we define the order-k cumulant kernel

of {Xt} as

cum (Xt1(τ1), . . . , Xtk(τk)) =
∑

ν=(ν1,...,νp)

(−1)p−1(p− 1)!

p∏
l=1

E

∏
j∈νl

Xtj (τj)

 ,

with summation being over unordered partitions ν = (ν1, . . . , νp) of {1, . . . , k}.
The kernel exists almost everywhere on [0, 1]k provided E‖X0‖k < ∞. A cu-

mulant kernel of of order 2k gives rise to a corresponding 2k-th order cumulant

operator Rt1,...,t2k−1
: L2([0, 1]k,R) → L2([0, 1]k,R), defined by right integration.

More generally, any g ∈ L2([0, 1]2k,R) induces a corresponding operator G on

L2([0, 1]k, defined as

Gh(τ1, . . . , τk) =

∫
[0,1]k

g(τ1, . . . , τ2k)× h(τ1, . . . , τk)dτ1 · · · dτk,

provided the integral is well-defined.

4. Functional Time Series Regression

In the context of a functional time series regression, we consider a collection
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of covariates {Xt} and associated responses {Yt}, each comprising a strictly

stationary time series of random elements in L2[0, 1]. A functional linear model

for the pair (Xt, Yt) stipulates that the two time series are defined on the same

probability space and are approximately linearly coupled. That is, there exists a

sequence of Hilbert-Schmidt operators {Bt} with integral kernels {bt},

Bt : L2 → L2, bt(σ, τ) : [0, 1]2 → R, (Btf)(τ) =

∫ 1

0
bt(σ, τ)f(σ)dσ, f ∈ L2,

and a collection of centred i.i.d. perturbations in L2, {εt}t∈Z, such that

Yt =
∑
s

Bt−sXs + εt, t ∈ Z. (4.1)

Notice that the temporal convolution is the only possible linear coupling, if both

Xt and Yt are to be stationary.

Assumption 1 (Moment and Dependence Assumptions). In the context of model

(4.1), we assume,

(A1) the filter {Bt} is Hilbert-Schmidt summable,∑
t

��Bt

��
2

=
∑
t

(∫ 1

0

∫ 1

0

∣∣bt(τ, σ)
∣∣2dσdτ)1/2

<∞.

(A2) the i.i.d. perturbation process {εt} is independent of the covariate process

{Xt}, and

E‖Xt‖2 + E‖εt‖2 <∞, E(Xt) = E(εt) = 0,

(A3) the covariance operators {RXt }t∈Z are nuclear summable,∑
t

��RXt ��
1
<∞.

Whenever Assumptions (A1)–(A3) are satisfied, it holds that {Yt} is also sec-

ond order (Bosq (2012)), and possesses nuclear-summable covariance operators

{RYt }t∈Z,

E‖Yt‖2 <∞ &
∑
t

��RYt ��
1
<∞.

The statistical task at hand is to estimate the unknown sequence of operators (or

filter) {Bt}t∈Z on the basis of the observation of a finite stretch of {(Xt, Yt); t =

0, . . . , T − 1}. As usual, the εt are unobservable.

5. Diagonalising the Problem

As with iid functional regression, the key to constructing estimators is to
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establish a connection between the cross-covariance of {Xt} with {Yt}, and the

sequence of operators {Bt}. The next lemma does precisely that.

Proposition 1. In the notation of Section 2, and under Assumptions 2, it holds

that

RY Xt =
∑
u

Bt−uR
X
u ,

∑
t

��RY Xt ��
1
<∞, FY Xω = QωF

XX
ω ,

where Qω is the linear operator with kernel

fBω (τ, σ) =
∑
t

e−iωtbt(τ, σ),

and satisfies ∫ π

−π

��Qω��2

2
dω =

∑
t

��Bt

��2

2
<∞.

In passing, we note that Qω and fBω (τ, σ) also admit a Fourier representations

with respect to the eigenfunctions {ϕωn} of FXXω , and these are denoted as

Qω =

∞∑
i,j=1

bωijϕ
ω
i ⊗ ϕωj and fBω (τ, σ) =

∞∑
i,j=1

bωijϕ
ω
i (ς)ϕωj (τ).

Proof of Proposition 1. Given any f ∈ L2[0, 1], we have{(∑
u

Bt−uXu

)
⊗X0

}
f = 〈X0, f〉

∑
u

Bt−uXu =
∑
u

Bt−u〈X0, f〉Xu.

As a result, it holds that

E

(∑
u

Bt−u〈X0, f〉Xu

)
=
∑
u

Bt−uE (〈X0, f〉Xu)

using Fubini’s theorem and the fact that∑
u

E‖Bt−u〈X0, f〉Xu‖ ≤
∑
u

E
(��Bt−u

��
2

��Xu ⊗X0

��
2
‖f‖

)
≤ ‖f‖

∑
u

��Bt−u
��

2
E [‖Xu‖‖X0‖]

≤ ‖f‖2
√
E[‖Xu‖2]E[‖X0‖2]

∑
u

��Bt−u
��

2

<∞.

Consequently, since {εt} is uncorrelated with {Xt}, we have that

RY Xt f = E

(∑
u

Bt−u〈X0, f〉Xu

)
=
∑
u

Bt−uE (〈X0, f〉Xu) =
∑
u

Bt−uRuf
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which proves the first part of the proposition, since f ∈ L2[0, 1] was arbitrary.

In order to show that RY Xt is nuclear-summable, we use Hölder’s inequality for

Schatten norms, and Tonelli’s theorem to write∑
t

��RY Xt ��
1
≤
∑
t

∑
u

��Bt−uR
X
u

��
1

≤
∑
u

∑
t

��Bt−u
��

2

��RXu ��
2

≤
∑
u

��Bt−u
��

2

∑
t

��RXu ��
2

<∞.

It follows that the Fourier transform FY Xω of RY Xt is well-defined. Following the

standard manipulations leading to the convolution formula, we have

FY Xω =
1

2π

∑
t

e−itωRY Xt

=
1

2π

∑
t

e−itω
∑
u

Bt−uRu

=
1

2π

∑
t

∑
u

e−i(t−u)ωBt−ue
−iuωRu

=
∑
t

e−i(t−u)ωBt−u
1

2π

∑
u

e−iuωRu

= QωF
XX
ω .

Here, we have made use of Fubini’s theorem, noting that∑
u

∑
t

��e−itωBt−uR
X
u

��
1

=
∑
u

∑
t

��Bt−uR
X
u

��
1
<∞.

When FXXω is strictly positive uniformly over ω (so that its range is L2([0, 1],

C) itself), then the proposition implies that

Qω=FY Xω
(
FXXω

)−1
=

(∑
i,j

aωijϕ
ω
i ⊗ϕωj

)(∑
j

1

λωj
ϕωj ⊗ϕωj

)
=
∑
j

∑
i

aωij
λωj
ϕωi ⊗ϕωj .

(5.2)

It follows that the operator Bt can be deduced by inverse Fourier transforming,

Bt =

∫ π

−π
Qω exp

(
− itω

)
dω.

This allows us to formulate an estimation strategy in the Fourier domain, as

described in the next section.
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6. Methodology for Estimation

The results in the previous Section suggest the following estimation strategy,

when we have a finite stretch {(Xt, Yt)}T−1
t=0 of length T of the coupled series at

our disposal.

1. Estimate FXXω and FY Xω nonparametrically, say by F̂XXω,T and F̂Y Xω,T . This can

be done using the approach introduced in Panaretos and Tavakoli (2013b),

and described in more detail in Section 6.1.

2. Construct a regularised estimator of (FXXω )−1 based on F̂XXω,T . Regularisa-

tion is necessary, as the operator F̂XXω,T will be of finite rank and its maximal

eigenvalue diverge as T grows. We consider this problem in Section 6.2.

Once these steps have been completed, one can plug the corresponding es-

timators into 5.2 to obtain the regularised estimator of Qω, and consequently of

Bt. This is defined in Section 6.5.

6.1. Estimation of FXXω and FY Xω

Following Panaretos and Tavakoli (2013b), let W (x) : R → (0,∞) be a

positive real function such that

1. W is of bounded variation.

2. W (x) = 0 if |x| ≥ 1.

3.
∫∞
−∞W (x)dx = 1,

4.
∫∞
−∞W (x)2dx <∞.

Define a kernel of bandwidth BT as

W (T )(x) =
1

BT

∑
k∈Z

W

(
x+ 2kπ

BT

)
.

We use this kernel in order to construct estimators in the frequency domain.

Specifically, defining the discrete Fourier transforms of the two time series as

X̃ω,T =
1√
T

T−1∑
t=0

Xt exp(−iωt) & Ỹω,T =
1√
T

T−1∑
t=0

Yt exp(−iωt),

the periodogram operator of {Xt} at frequency ω (and its corresponding kernel)

are given by the empirical covariance (and its corresponding kernel) of the discrete

Fourier transform at frequency ω,

PXXω,T = X̃ω,T ⊗
(
X̃ω,T

)
& p(T )

ω (τ, σ) = X̃ω,T (τ)⊗
{
X̃ω,T (σ)

}
.
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Similarly, the empirical cross-covariance of the discrete Fourier transforms of X

and Y yields the cross-periodogram operator,

PY Xω,T = Ỹω,T ⊗
(
X̃ω,T

)
.

These can be smoothed usingW (T ), in order to yield the estimators of the spectral

density operator of X (and spectral density kernel), and of the cross-spectral

density operator of (X,Y ),

F̂XXω,T =
1

T

T−1∑
s=0

W (T )(ω − νs)PXXω,T and

f (T )
ω (τ, σ) =

1

T

T−1∑
s=0

W (T )(ω − νs)p(T )
νs (τ, σ), (6.3)

F̂Y Xω,T =
1

T

T−1∑
s=0

W (T )(ω − νs)PY Xνs,T , (6.4)

where

νs =
2πs

T
, s = 0, 1, . . . , T − 1.

6.2. Regularised estimation of (FXXω )−1

Once we have the estimators F̂XXω,T and F̂XXω,T , a naive approach to estimating

Qω is to use the estimator

F̂Y Xω,T

(
F̂XXω,T

)†
,

where
(
F̂XXω,T

)†
is the pseudoinverse of F̂XXω,T . However, as can clearly be seen

using the spectral decompositions

F̂XXω,T =

T∑
n=1

λ̂ωnϕ̂n(ω)⊗ ϕ̂n(ω),
(
F̂XXω,T

)†
=

T∑
n=1

(λ̂ωn)−1ϕ̂n(ω)⊗ ϕ̂n(ω),

the eigenvalues of (F̂XXω,T )† do not remain bounded as T diverges when F̂XXω,T is

consistent for FXXω (the latter being nuclear).

This effect is generally not annihilated by the application of the integral

operator F̂Y Xω,T from the left, when forming the naive estimator F̂Y Xω,T (F̂XXω,T )†. The

problem is that the spectrum of F̂Y Xω,T depends on Qω, which a priori has no

structural relationship with FXXω . Said differently, if F̂Y Xω,T is expanded in the

tensor product basis given by the eigenfunctions of FXXω (extended to a complete

system),
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F̂Y Xω,T =
∑
n,m

âωn,mϕ̂n(ω)⊗ ϕ̂m(ω),

there is no reason to expect that the resulting basis coefficients {âωn,m} will decay

sufficiently fast for the products âωn,m(λ̂ωn)−1 to remain bounded in n as T grows.

Thus, it is necessary to use some form of regularisation. Two classical strategies

are the following.

(i) Spectral truncation. Here, one replaces the generalised inverse (F̂XXω,T )† by

K(T )∑
n=1

(λ̂ωn)−1ϕ̂n(ω)⊗ ϕ̂n(ω),

where K(T ) < T grows sufficiently slowly in order to control the terms

aωn,m(λ̂ωn)−1.

(ii) Tikhonov regularisation. Here, one replaces the generalised inverse (F̂XXω,T )†

by a ridge-regularised inverse[
F̂XXω,T + ζT I

]−1
=

∞∑
n=1

(ζT + λ̂ωn)−1ϕ̂n(ω)⊗ ϕ̂n(ω),

where ζT decays to zero sufficiently slowly in order to control the behaviour

of the terms aωn,m(ζT + λ̂ωn)−1.

The first approach (spectral truncation) is essentially the approach described by

Hörmann, Kidziński and Kokoszka (2015, Equation 3.4). It can be seen as the

extension of functional PCA regression (e.g. Hall and Horowitz (2007), Imaizumi

and Kato (2016)) to the case of functional time series. Hörmann, Kidziński and

Kokoszka (2015) choose the value K(T ) to be dependent on the rate of decay

of supω
��F̂XXω − FXXω

��
∞ and supω

��F̂Y Xω − FY Xω
��
∞ (assumed known), in a way

that guarantees consistency of the estimator eventually constructed. In principle,

one could be more ambitious and use a a frequency-dependent truncation level

K(T, ω), but it seems unlikely to have detailed enough information on the decay

rates
��F̂XXω − FXXω

��
∞ and

��F̂Y Xω − FY Xω
��
∞ at each frequency ω.

Though spectral truncation is a very popular technique in the i.i.d. case,

it poses some challenges both in terms of theoretical study, as well as practical

performance, which might be exacerbated in the dependent case:

To this date, and to the best of our knowledge, there are no results con-

cerning the MSE convergence rates for the spectral truncation estimator, even

in the i.i.d. case. Hall and Horowitz (2007) (and Imaizumi and Kato (2016))

establish rates of convergence for small ball probabilities, but not for the MSE

itself. Hall and Horowitz (2007) explain that to upgrade to MSE results, the
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spectral truncation estimator needs to be modified to a non-linear truncated ver-

sion (see the discussion after Hall and Horowitz (2007, Thm. 1)) and also Hall

and Hosseini-Nasab (2006, Thm. 5, Appendix A.2)). It thus seems that in the

more challenging weakly dependent case, spectral truncation may not be the

most fruitful avenue to obtain MSE convergence rates.

In practical terms, a challenge that spectral truncation encounters is in the

case where eigenvalues are nearly tied, because the chosen subspace {ϕn(ω)}K(T )
j=1

makes no reference to the quantity of interest Qω. Specifically, Qω might be well

expressed in some but not other eigenfunctions of F̂XXω , and this irrespectively

of the size of the corresponding eigenvalues (according to which the truncation

is performed). Thus, if the eigenvalues {λ̂ωK±j}
J(ω)
j=1 of F̂XXω are nearly tied, the

sample variability of the estimator increases, if this is well expressed in some

but not all of the eigenfunctions of order {K ± j; j = 1, . . . , J(ω)}. Intuitively,

a certain term that is highly correlated with Qω may come in or be left out of

the truncation simply because of sample variability, leading to variance inflation.

This phenomenon was doscumented by Hall and Horowitz (2007) in the standard

functional linear model, and can be a serious issue in the time series case, since

we are considering a whole range frequencies, and thus of approximate eigenvalue

ties {λ̂ωK±j : j = 1, . . . , J(ω);ω ∈ [−π, π]}.
Hall and Horowitz (2007) introduced and studied Tikhonov regularisation as

an alternative that circumvents these issues. Indeed, they were able to deduce

convergence rates for the MSE of the Tikhonov estimator, as opposed to the small

ball probability rates for spectral truncation. For these two reasons, we follow

the Tikhonov approach here, defining
[
F̂XXω,T + ζT I

]−1
to be the (regularised)

estimator of
[
FXXω

]−1
. We put all the elements together in the next section, to

define our estimator.

6.3. The smoothed Fourier-Tikhonov estimator of {Bt}

Let BT > 0 be a bandwidth and ζT a Tikhonov parameter. The (smoothed)

Fourier-Tikhonov estimator of {Bt}t is defined to be

B̂t =

∫ π

−π
Q̂ω,T exp(−itω)dω, (6.5)

where

Q̂ω,T = F̂Y Xω,T
(
F̂XXω,T + ζT I

)−1
(6.6)

is the estimator of Qω. Here F̂Y Xω,T and F̂XXω,T are the smoothed periodogram and

smoothed cross-periodogram estimators defined in Section 6.1 (see 6.3 and 6.4).



FUNCTIONAL TIME SERIES REGRESSION 2535

In terms of series representations, Q̂ω,T and Qω can be comparatively written as

Q̂ω,T = F̂Y Xω,T
(
F̂XXω,T + ζT I

)−1

=

(∑
i,j

âωijϕ̂
ω
i ⊗ ϕ̂ωj

)(∑
j

1

λ̂ωj + ζT
ϕ̂ωj ⊗ ϕ̂ωj

)

=
∑
j

∑
i

âωij

λ̂ωj + ζT
ϕ̂ωi ⊗ ϕ̂ωj ,

Qω = FY Xω
(
FXXω

)−1

=

(∑
i,j

aωijϕ
ω
i ⊗ ϕωj

)(∑
j

1

λωj
ϕωj ⊗ ϕωj

)

=
∑
j

∑
i

aωij
λωj
ϕωi ⊗ ϕωj ,

for {ϕ̂ωj , λ̂ωj } the eigenfunctions/eigenvalues of F̂XXω,T , and {âωij} the Fourier coef-

ficients of F̂Y Xω,T with respect to the orthonormal system {ϕ̂ωj }.
The asymptotic performance of our estimator, and its dependence on the

choice of ζT is investigated in the next Section.

7. Rate of Convergence

In this section, we state our main result of this paper, concerning the rate of

convergence of the MSE of the Smoothed Fourier-Tikhonov Estimator (6.5). One

can establish consistency (without a rate of convergence) by letting BT → 0 and

TBT →∞ as T →∞, provided that the decay rate of ζT is taken to be a suitable

function of supω
��F̂XXω −FXXω

��
∞ and supω

��F̂Y Xω −FY Xω
��
∞. This follows similar

steps as Hörmann, Kidziński and Kokoszka (2015), but adapted to the case of

Tikhonov regularisation, and does not require any structural assumptions on the

rate of decay of {λωn} or indeed on the spectra of {Bt}, just as the results of

Hörmann, Kidziński and Kokoszka (2015) did not either.

We would like to be able to make more refined statements, and, in particular,

to establish convergence rates in the form of a rate of decay for the mean square

error

E

(∑
t

��Bt − B̂t

��2

2

)
= E

(∫ 2π

0

��Qω − Q̂ω,T
��2

2

)
dω,

where equality follows from Parseval’s relation. Such rates necessarily depend on

the decay rate of {λωn}, and on the spectra of {Bt}. Our goal is thus to establish a
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convergence rate that links these behaviours, and illustrates their interplay with

the tuning parameters BT and ζT .

We work in the so-called mildly ill-posed setting, where the spectra involved

exhibit a polynomial decay. Specifically, FY Xω , FXXω and FB have integral kernels

admitting series representations

fXXω (τ, σ) =

∞∑
i=1

λωi ϕ
ω
i (τ)ϕωi (σ),

fY Xω (τ, σ) =

∞∑
i,j=1

aωijϕ
ω
i (τ)ϕωj (σ),

fBω (τ, σ) =

∞∑
i,j=1

bωijϕ
ω
i (τ)ϕωj (σ).

Further assumptions are collected here.

Assumption 2 (Ill-Posedness, Spectral Smoothness, and Weak Dependence).

In the context of model (4.1), we assume the following.

(B1) For all j and ω it holds that

λωj � Cj−α,
∑
i

∣∣bωij∣∣ ≤ Cj−β.
with α > 1, β > 1/2, and α < β + 1/2 .

(B2) Whenever ϕωi is an eigenfunction of FXXω , then so is its complex conjugate

ϕωi , so {
ϕωi : i = 1, 2, . . .

}
=
{
ϕωi : i = 1, 2, . . .

}
.

Therefore, for each i, there exists unquely an index i
′

such that
〈
ϕωi , ϕ

ω
i′
〉

= 1

and
〈
ϕωi , ϕ

ω
j

〉
= 0 when j 6= i

′
.

(B3) The kernel W is uniformly bounded, compactly supported and, even on

[−1, 1],
∫
RW (α)dα = 1; there exists a positive integer p such that Bp+1

T <

T−1 and for j ≤ p− 1. ∫
R
W (α)αjdα = 0.

(B4) ∑
t∈Z
|t|p+5

��Rt��1
<∞∑

t∈Z
|t|p+5

��Bt

��
1
<∞.
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(B5) The functions rXt and bt are continuous for all t ∈ Z with respect to τ, σ ∈
[0, 1], and ∑

t∈Z
|t|p+2

∥∥rXt (τ, σ)
∥∥
∞ <∞∑

t∈Z
|t|p+2

∥∥bt(τ, σ)
∥∥
∞ <∞.

(B6) There exists constant C <∞ such that∑
t1,t2,t3∈Z

��cum(Xt1 , Xt2 , Xt3 , X0)
��

1
< C.

Condition (B1) is the direct extension of the mild ill-posedness conditions

of Hall and Horowitz (2007) to the time series context (see Hall and Horowitz

(2007, Sec. 3) for a detailed discussion; Imaizumi and Kato (2016, Sec. 3.1) also

introduce these conditions in the function-on-function regression case). Condition

(B2) has the set of eigenfunctions is closed under conjugation. We do not need

to make any assumption on the separation of the eigenvalues, since Tikhonov

regularisation is immune to eigenvalue ties. The conditions in (B5) can be seen as

weak dependence conditions that suffice for the existence of Taylor expansions of

sufficiently high order of the spectral density operator and the Fourier transform

of the filter with respect to the frequency argument. Conditions (B4) and (B6)

are also weak dependence conditions of Brillinger-type, that are sufficient for

the establishment of convergence rates of the spectral density estimator to its

estimand (as in Panaretos and Tavakoli (2013b)). Finally, (B3) is a standard

higher order kernel assumption that is often encountered in density estimation

and deconvolution.

Theorem 1 (Rate of Convergence). Let {B̂t} be the Fourier-Tikhonov estima-

tor 6.5 of the coefficients {Bt} in the functional time series regression model 4.1

satisfying Assumptions 2. Then, under conditions (B1)–(B5), there exists a se-

quence of events GT such that P
[
GT
]
→ 1, and

E

(∑
t

��Bt − B̂t

��2

2
; GT

)
=

1

BT
O
(
T−(2β−1)/(α+2β)

)
, (7.7)

provided the Tikhonov parameter satisfies ζT = T−α/(α+2β) and the bandwidth

Note, however, that we do not need to make any assumption on the separation of the eigenvalues,
since Tikhonov regularisation is immune to eigenvalue ties.
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satisfies BT = T−γ, with γ such that

α− 1

α+ 2β
< γ <

2β − α
α+ 2β

.

Remark 1. Assuming that (α− 1)/(α+ 2β) < γ < (2β − α)/(α+ 2β) is com-

patible with assumption (B1) since α < β + 1/2.

If we compare the rate (7.7) with the one obtained by Hall and Horowitz

(2007) in the i.i.d case, we see that they are identical except for the presence of

the B−1
T factor in our case. Intuitively, this is the price we have to pay for the

fact that the estimation of the spectral density operator is intrinsically harder

than the estimation of a covariance operator: for densely observed functional

data, a covariance operator can be estimated at a parametric rate (Hall, Müller

and Wang (2006)), but the spectral density operator can only be estimated at

nonparametric rates (Panaretos and Tavakoli (2013b)).

The proof of Theorem 1 is quite lengthy and technical, and is constructed via

a series of intermediate results in the Supplementary Material, available online.

Supplementary Materials

The supplement contains the proof Theorem 1, including several auxiliary

results that are required for this proof, but stated separately for tidiness.
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