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Abstract: We consider the classical problem of testing "HSZ) : AEI") > /\((1’_121 = .. =

A where ,\5”), e /\,(g”) are the ordered latent roots of covariance matrices X,
We show that the usual Gaussian procedure, ¢("), for this problem essentially shows
no power against alternatives of weaker signals of the form 7—[(13) A = )\f;jr)l =
s = )\;"), which is problematic if it is used to perform inference on the true
dimension of the signal. We show that the same test ¢™ enjoys some local and
asymptotic optimality properties for detecting alternatives to the equality of the p—q

smallest roots of 2(”), provided that /\S,”) and )\;1)1 are sufficiently separated. We

obtain tests, qbg;\)m for the problem that retain the local and asymptotic optimality
properties of (;5(”) when ,\E,"> and )\((11)1 are sufficiently separated and properly detect
alternatives of the form 7—[52)‘ We illustrate the performances of our tests using
simulations and on a gene expression data set, where we also discuss the problem
of estimating the dimension of the signal.
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1. Introduction

Principal component analysis (PCA) is a popular technique for performing
unsupervised dimension reduction. The main objective of a PCA is to extract a
low-dimensional signal from the data. This can be achieved by first identifying a
spiked structure in the underlying p x p positive-definite covariance matrix ¥ using
the data at hand. In the very popular spiked covariance models, the underlying
covariance matrix X has eigenvalues \; > -+ > A\, > o2 = --- = ¢% > (;
see, for instance, |[Johnstone| (2001). In the spiked covariance model, the ¢
largest eigenvalues of X are well separated from the rest, and the data at
hand can therefore be seen as g-dimensional data contaminated with noise.
Inference within spiked covariance models has been considered by |Li, Han and
Yao (2020)), [Paindaveine, Remy and Verdebout| (2020aljb), and |Bao et al.| (2022,
among others. In the context of spiked models, and in a PCA in general,
an important problem is testing the equality of the p — ¢ smallest eigenvalues
Hog 1 Ag > Agp1 = -+ = A, of 8. Under Hy,, the smallest p — ¢ eigenvalues
are equal so that they correspond to some noise. As a result, selecting more
than ¢ principal components is useless. Tests for Ho, are typically used before
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selecting the number of components to keep. The problem is not new. Bartlett
(1950) used tests for Ho, to determine the number of significant factors in a
data set of measurements of the reading speed, reading power, arithmetic speed
and arithmetic power for 140 children. Tests for Ho, can also be used to check
the suitability of a data set for factor analysis, as [Sahan, Baydur and Demiral
(2019), who assessed wether a psychological questionnaire is consistent. In the
same spirit, Chakraborty et al. (2020) used tests for Hg, to ensure that every
PCA-based sub-indicator is relevant when constructing a socioeconomic index.
Finally, as mentioned in Kritchman and Nadler| (2009), getting rid of the noise is
a critical preliminary step when treating the output of a collection of sensors.

The (full) sphericity problem (¢ = 0 with Ay arbitrarily large) has been
studied by |Ledoit and Wolf (2002), Onatski, Moreira and Hallin (2014), Tian, Lu
and Li (2015), [Li and Yao (2016)), and Paindaveine and Verdebout| (2016) in the
high-dimensional case, while |Hallin and Paindaveine| (2006]) proposed locally and
asymptotically optimal tests based on signed ranks. [Cuesta-Albertos, Cuevas
and Fraiman| (2009) proposed tests based on random projections, Henze, Hlavka
and Meintanis| (2014)) provided tests based on the characteristic function, and
Francq, Jiménez-Gamero and Meintanis (2017)) considered the problem in a time
series context. Fixing ¢ < p — 1, the problem of testing the equality of the
smallest p — ¢ eigenvalues Hoq : Ay > Ag41 = -+ = A, has also been investigated
thoroughly in the multivariate statistics literature. Methods for determining the
dimension of a signal can be traced back to the work of Lawley| (1956), who
developed Gaussian likelihood ratio tests to check the equality of the smallest
eigenvalues. A pseudo-Gaussian test that is valid under elliptical assumptions has
been proposed in Waternaux| (1984)). The local asymptotic powers of robust tests
have been obtained in Tyler| (1983]), and other procedures have been investigated
by [Nadler| (2010)), Luo and Li (2016), and Nordhausen, Oja and Tyler (2022)
among others. High-dimensional tests have been studied in Schott| (2006) and,
more recently, in Virtal (2021)).

In the present study, our objective is to provide tests for Ho, : Ay > Agy1 =
.-+ = )\, that can detect alternatives of stronger signals, under which A\j41,..., A,
are not equal, and alternatives of weaker signals, under which A\, and A\,; are
“too close to each other.” Note that our tests for Ho, can be adapted easily to tests
for other restrictions, such as A\, > Ag,41 = -+ = Ay, > Ag, 41, for some ¢; and
q2- To properly formalize the problem, we consider a triangular array context, in
which the nth line of the array consists of independent and identically distributed
(ii.d.) p-variate Gaussian vectors Xy, ..., X,, with common covariance matrix
™ = BA™B’, where B is orthogonal and A™ := diag()\gn),...,)\;")) is a
diagonal matrix of positive ordered eigenvalues that may change with n. Within
such sequences of experiments, we consider the (sequence of) hypotheses testing
problems characterized by null hypothesis of the form
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7—[(()2) : {/\511)1 == )\1(,")} N {nl/Q()\fI") - )\éi)l) — 00 asn — 0o} (1.1)

Under ”H(()Z), the smallest p—q underlying latent roots are equal, and )\((1") and )\51?1
are sufficiently separated in the sense that n'/ 2()\((1") —)\fﬁr)l) — oo asn — oo. Here,
we adapt the aforementioned sequence of hypotheses testing problems to detect
the signal dimension. Indeed, a rejection of ’H(()Z) indicates that the smallest roots
are not equal, in which case the signal is stronger, or that Ag") and )\((;jr)l are too
close to each other, in which case the signal is weaker. Note that the consistency of
an empirical projection on the first ¢ principal axes holds only if n'/2(A{" — )\((11)1)
diverges to oo as n — oo; this makes the testing problem associated with ’H(()Z) in
a natural problem to tackle in the context. Alternatives to ’Héz) (for g > 1)
are of two different types:

(i) Type I: under which the smallest p — ¢ eigenvalues are not equal and
n'2(AM — )\fffl) — 00 as M — 00;

(ii) Type II: under which A" and )\EIZ)I are too close to each other in the sense
that
(A = Afh) = O '7%)

asn—)ooand)\gfl:--~:)\é”).

We begin by examining the asymptotic behavior of the classical test ¢(™
for the problem studied in Schott| (2006) and |Virta (2021). We show that the
test ¢, which is asymptotically equivalent to the Gaussian likelihood ratio test
(LRT) for the equality of the smallest eigenvalues, behaves quite well against
type I alternatives but behaves poorly against alternatives of type II. Indeed, if
n'2(AM — )\,(;21) = O(1) as n — oo, the limiting power lim,, ., E(¢™) of the
test is far below the asymptotic nominal level a. It follows directly that ¢(™
is unable to detect alternatives of weaker signals (alternatives of type II). The
two main contributions of this study are as follows. First, we show that the
test (™ enjoys some local and asymptotic optimality properties when detecting
type I alternatives within a triangular array context. Second, we obtain tests for
the problem that retain the aforementioned optimality properties, but can also
detect alternatives of type II. The idea underpinning our new tests lies in the
concept of preliminary test estimators studied by [Saleh! (2006) and [Paindaveine,
Rasoafaraniaina and Verdebout| (2021). Our tests can be viewed as preliminary
test tests, guided by the power enhancement principle studied recently in a high-
dimensional setup by [Fan, Liao and Yao (2015) and Kock and Preinerstorfer
(2019). We show using simulations that the estimator of the signal dimension
based on ¢ studied in Nordhausen, Oja and Tyler| (2022) can be improved using
an estimator based on our new test.

The rest of the paper is organized as follows. In Section 2, we present
notation used in the rest of the paper and discuss the asymptotic equivalence
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between ¢(™ and the LRT for the equality of eigenvalues. In Sections 3 and 4,
we study the asymptotic properties of ¢ against alternatives of type II and
type I, respectively. In Section 5, we propose new tests for the problem, and
show that the latter procedures enjoy many attractive properties. In Section 6,
we demonstrate our method using a gene expression data set and discuss the
problem of estimating the signal dimension. Additional Monte Carlo simulation
results and technical details are contained in the Supplementary Material.

2. Testing the Equality of Eigenvalues

We consider triangular arrays of observations where the nth line of the
array consists of i.i.d. observations X,,1, ..., X,, that follow a common Gaussian
distribution with mean zero (without loss of generality, because in the Gaussian
case, location and scatter parameters are “orthogonal”; e.g., see |Hallin, Paindav-
eine and Verdebout| (2010)) and covariance matrix £ that admits the spectral
decomposition

p
2™ = BAME =S AB B! (2.1)
j=1

where 8 = (B,,...,B,) is an orthogonal matrix and A" = diag(\{", ... ,Al)
is a diagonal matrix of finite positive (well-ordered) eigenvalues. Throughout,
diag(A,...,A,,) denotes a block-diagonal matrix with blocks A;,..., A,,. We

é"/)\(n) for this Gaussian triangular array hypothesis, parametrized by
)

and A" = (A LAy

Fixing 0 < ¢ < p — 1, we consider the testing problem characterized by
sequences of null hypotheses of the form H(()Z) in , where for ¢ = 0, )\é") can
be defined arbitrarily in such a way that n1/2()\( —A") 5 00 as n — oo so
that, still for ¢ = 0, the sequence of problems coincides with the full sphericity
problem. We therefore tacitly assume that )\é") = )\5") + 1 throughout. When
testing the equality of the smallest roots of a covariance matrix, the classical
Gaussian LRT gZ)LRT rejects the null hypothesis at the asymptotic level a when

write P

DY
L™ = —nlog J— q+1 > x> (2.2)
g — d(p,q);1—a
{(p - Q) ! _] =q+1 )\ }

where d(p,q) == (p — q+2)(p — ¢ — 1)/2, x5 is the quantile of order ¢ of a chi-
squared distribution with v degrees of freedom, and )\1, .. )\ are the ordered
eigenvalues of the empirical covariance matrix S := n~! Z:L 1 X X

' see, for

instance, Muirhead (1982). Another classical test ¢ for the same problem
rejects the null hypothesis at the asymptotic level a when
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n{Z.?:Q'i‘l 5\3 B (p B q)_l( §24+1 5\])2} > X2 (2 3)
_ R d(p,q);l—a- :
2{p— ) X A o
The test statistic 7™ is well known; [Schott| (2006) and [Virta (2021) recently

studied its high-dimensional properties. We have the following result. The proof
follows directly from the proof of Theorem 5.1 in Tyler| (1983).

(n) —
"=

Lemma 1. Let 1,:= (1,...,1) € R” and

A = (A, A A Y (2.4)
where )\(1”) > > Afl”) > Agi)q. Then Lg”) — Tq(”) = op(1) as n — oo under
ngi(n) asn — 0o.

Lemma 1 shows that the Gaussian LRT gb(LTgT and the test ("™ enjoy a similar
asymptotic behavior under ng‘(n), with A as in ([2.4). 1t follows directly from
the definition of contiguity that their asymptotic behaviors also coincide under
contiguous sequences. In particular, their local and asymptotic power coincide
under contiguous alternatives of type I. Moreover, because the result obtained
in Lemma 1 does not depend on the asymptotic behavior of ()\SI") — Agi)q), the
asymptotic behaviors of qS(Lr;ZT and ¢ also coincide under alternatives of type
II. In the rest of the paper, all asymptotic results for ¢ therefore also hold for
-

Our objective in the next two sections is to derive the asymptotic behavior of
¢™ against both types of alternatives. We need the following notation: as usual,
vec(A) stands for the vector obtained by stacking the columns of a matrix A.
Letting A ® B stand for the Kronecker product between two matrices A and B
(A®%:= A®A), the commutation matriz Ky, ¢, such that Ky o(vec A) = vec(A’)
for any k x ¢ matrix A, satisfies K, (A ® B) = (B ® A)K,, for any k x {
matrix A and p X ¢ matrix B; see, for example |[Magnus and Neudecker (2007)).
In the sequel we write Ky, := Kj ;.

3. Asymptotic Behavior Against Type II Alternatives

We now discuss the limiting behavior of 7™ (and therefore of L{™) under
alternatives of type II. To do so, we consider sequences of models Pfa";(n) such that

the sequence A provides alternatives of type II. Accordingly, the covariance
matrix £ in (2.1) has eigenvalues A™ = (A", . .. , Al)” of the form

>\§”> =1+ rgn)vl > )\én) =1+ Tén)Ug > > )\EI")
=1+ ré")vq > )\((;jr)l == )‘1()”) =1, (3.1)
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block 1: r(") =1

block 3: r =1/yn (n)
/ block 2: r(n) =o(1)
with r "/n — oo

block 4: r§n) = o(1)and r](m\/ﬁ -0

Figure 1. TIllustration of how the eigenvalues are separated in blocks in the data-
generating process.

for some rates vector r(™ := (r&")

e rf]"))’ and some positive localization
parameters v := (vy,...,v,)’, such that holds for all n. More precisely, 7"](»")
(j =1,...,q) can be such that r§-") = 1 for all n, or such that rj(-n) — 0asn — co.
Alternatives to 7{(") of type II are such that n*/27{" is O(1) (and potentially o(1))
as n — oo. Note that the various tests compared here are clearly invariant with
respect to scale transformations of the form (X,,1,...,X,,) = (sX,1,. .., X)),
for s € R. Thus, when we study the asymptotic behavior of Tq("), or any other
invariant test statistic, we can safely assume in our asymptotic analysis that the
eigenvalues )\q == )\1(,”) in are equal to one without loss of generality.
As shown below, the asymptotic behavior of 7™ under p) g With A" as in
depends on the rates in r(™. We assume that the rates vector

r<")=(r§") ) () pm P 7’(”)), (3.2)

sy lgy 81+17"’7 EP 52+17---7 53 7 Sg+17'--7 q

block 1 block 2 block 3 block 4

contains four blocks: in block 1, r; () are all equal to one; in block 2 r](.n) are o(1)

and n'/?r ( ) 5 o0; in block 3, 1"( " = =12 and in block 4, 7‘ are o(n~1/?).
Of course, the blocks can be empty, for instance, s; = 0 mdlcates that the first
block is empty, and block 2 is empty if s, —s; = 0, and so on. Under Hoq , blocks
3 and 4 are empty. The setup is illustrated in Figure 1 above and we have the
following result.

Proposition 1. Let r™ and v be such that (3.1) holds and such that for 0 <
s1 < 89 < s3 < q, (i) r;n) =1 for each 1 < j < sy, (i1) Tﬁ»") = o(1) with

nl/2p (n) 1/2

— 00, for each s1 < j < sq, (iii) rﬁ") =n"""2, for each sy < j < s3 and
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(iv) TJ(»") = o(n~Y2), for each s3 < j < q. Furthermore, let

Z,,Z
Z(vi, ... v,) = (Zi Zj;)

be a p X p matriz, where Zy; is the sy X sy upper-left block of Z(vy, ..., vs,), Zos
is the (p — s2) X (p — s2) lower-right block of Z(vy,...,vs,), etc, such that
vec{Z(vy,...,vs,)} ~ N,2[0, (L: + K,){diag(1 + vy,..., 1+ v, 1, )}

pP—s1

Then, as n — oo under P with A" as in (3.1)), Tq(”) converges weakly to

BA(M)

A s a-o-0( 34} 33

J=q+1 J=q+1

where (Uy41,.-..,¢,) are the p — q smallest roots of
Zyy + diag(ve, 1, - -+, 05,0, ;00 ).

See the Supplementary Material for a proof. Proposition 1 states that the
asymptotic behavior of Tq(") depends crucially on the content of the various blocks
in . In particular, under H(()Z), that is, if s; < s3 = ¢ (s3 — s2 = 0), and thus
the blocks 3 and 4 in are empty (and therefore nl/Qr((I") — 00 as N — 00),
£,y == (Lys1,...,L,) are the p — ¢ eigenvalues of the (p — ¢) X (p — ¢) matrix
Z,, in Proposition 1. It is then easy to see that the resulting weak limit of Tq(")
is chi-squared with d(p,q) degrees of freedom. It follows that the test ¢ is
asymptotically valid for sequences of testing problems with null hypotheses H(()Z).
If nt/ 27“((]") does not diverge to oo, that is, under alternatives of type II, the test
statistic Tq(") does not converge weakly to a chi-squared random variable with
d(p,q) degrees of freedom. Its asymptotic behavior is nevertheless completely
characterized by Proposition 1. In Figure 2, we provide approximations of

lim B(¢™) = Tim P(T;" > X300-0);
for oo = 0.05, p = 8 and various values of ¢ under triangular arrays of observations
with covariance 2(")(17) = diag{(1 + n"")1,,1,_,}, for b = 0,1/4,1/2,1. For
b < 1/2, the corresponding sequences of models belong to H(()Z), whereas for
b > 1/2, the sequences of models are alternatives of type II. The approximations of
lim,, o E(¢™) are based on 100,000 replications of the random variable in .
Figure 2 clearly shows that the test ¢(™ is asymptotically valid for the problem
at hand, but is blind to alternatives of type II. For b > 1/2, lim,_,., E(¢™) is
far below the nominal level o = 0.05. The results of Monte Carlo simulations,
provided in the “Further simulations” section of the Supplementary Material
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Figure 2. Approximations of lim, E(¢(”)) for p = 8 and various values of ¢ under
triangular arrays of observations with covariance £ (b) = diag{(1 +n7"1,,1,_4}. The
test ¢(™) is performed at the nominal level & = 0.05. The approximation is based on
100,000 replications of the random variable in .

clearly confirm the asymptotic behavior of Tq(”) obtained in Proposition 1. Two
natural questions then arise. First, does the test ¢ enjoy some asymptotic
optimality properties against local alternatives of type I (for any r,, such that
n'/2r{" — oo, not only in the classical 7" = 1 case)? Second, the test ¢
clearly does not properly detect alternatives of type II; Figure 2 shows that the
limiting power of ¢(™ against such alternatives can be almost zero. Thus, can we
obtain tests that detect alternatives of type II, without losing too much power
with respect to ¢ against local alternatives of type I?

4. Asymptotic Behavior Against Type I Alternatives

In this section, we address the first of the two aforementioned questions by
determining wether the test ¢ (and therefore ¢(LT;{T) enjoys some optimality
properties against alternatives of type I. Consider the (p — ¢)-dimensional obser-
vations

Yni = (ﬂq+17"'7.3p)/Xni7 i:1,...,n,

obtained by selecting the last p — ¢ components of the rotated sample 8'X,,1, .. .,
B'X,.,, and define

SV =0t Y Yl = By B)S™ (Byins- 1By,
i=1
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where S™ (defined above (2.3)) is the empirical covariance matrix associated
with the original sample. The Y,,; are i.i.d. with covariance matrix

2”(5?) = (:Bq+17"'7ﬂp)lz(n)(ﬁq+1a"'7ﬂp)' (41)

An asymptotically maximin test for the null hypothesis of sphericity Hg :
2%? )= oL, —q,
proposed by Hallin and Paindaveine (2006). A test ¢* is called maximin in the
class C, of level-a tests for a problem of testing some null hypothesis H, against
H, if (i) ¢* has level «, and (ii) the power of ¢* is such that

with & > 0, against contiguous local alternatives of type I has been

inf Ep(¢*) > inf E .
Jnf Ep(¢7) 2 sup inf p ()
Note that if A" belongs to ’H(()Z), A" 4+ n=1/2¢ can only be an alternative of type
I (and not of type II). The asymptotically maximin test against local alternatives
of type I in [Hallin and Paindaveine, (2006), denoted here by qﬁgl), rejects the null
hypothesis at the asymptotic level o when

2
n n pb—q n — n
Tq( )(IB) = 5Y7 S~ [tr{(S(Y))Z} - (p - Q) 1{1]1'2(8(\())}] > Xi(p,q);lfa' (42)
2 (n)
tr(Sy”)

Of course, in practice, the eigenvectors B, ,,,...,B, are rarely specified and,
in general, need to be estimated. The most natural estimators of 8,,,,...,8,
in the present Gaussian context are the eigenvectors 8., ..., Bp associated with

the p — ¢ smallest eigenvalues of

p /
S™ =" \,B,8;.
j=1

Below, B = (,31, e ,Bp) stands for the p x p orthogonal matrix collecting the
eigenvectors of S(™. Plugging these estimators into Tq(") (B) yields the test statis-
tic Tq(") in (2.3). Thus, to study the potential asymptotic equivalence between
Tq(") and Tq(") (B), we need to control the asymptotic cost of the substitution of

Byi1s- - B, with BqH, . ,Bp. Still in the same model, letting

E(") E(n) N
(n) _ 11 12 o

where E{? and E{? are the ¢ x ¢ upper-diagonal and (p — q) X (p — q) lower-
diagonal blocks, respectively, of E(™, we have the following result.

Proposition 2. As n — oo under ng‘(n) with A" as in (3.1)),

(i) if n'?r{ — oo as n — oo, n'/2diag{(r™)}E'% = Op(1) as n — oo and
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ES (BES)) =1, , + op(1) as n — oo;
(i) if n'/?r{™ — ¢ < 00 as n — oo, we have that E\% is not op(1) as n — oo.

See the Supplementary Material for a proof. Proposition 2 shows that the
consistency of the underlying eigenvectors can only hold when n'/2(Al") —
)\q +1) diverges to infinity as n — oo with rates depending on r(n), r(”)
This fact naturally yields to the following question: are the tests qb(")

™ asymptotically equivalent under ’H(") (and therefore also under contlguous
alternatives of type I)? The following result provides a positive answer.

Proposition 3. Assume that A" as in 18 such that nl/zrfl") — 00 as
n — co. Then, T\") — T™(B) is op(1) under P( BA(m @S TL— 00,

See the Supplementary Material for a proof. Proposition 3 states that
the test ¢ and the test qbé") are asymptotically equivalent under the null
hypothesis H(()Z), and therefore also under contiguous alternatives. This shows
directly that the three tests ¢, gZ)LRT, and ¢/(3n) enjoy the same asymptotic local
power properties against the same contiguous alternatives of type I. In particular
they are locally and asymptotically maximin for the sphericity of Eg" ) in ,
and therefore enjoy some local and asymptotic optimality property for detecting
alternatives of type I. The results of Monte our Carlo simulations, provided in the
“Further simulations” section of the Supplementary Material confirm the results
presented in this section.

5. New Tests

As shown in the previous sections, the test ¢(™ (and therefore quf;{T) enjoys
some local and asymptotic optimality properties against alternatives of type I,
but is blind to alternatives of type II. This is often problematic, because, in
general, the purpose of this test is to provide information on the dimension of the
underlying signal. Here, we propose tests that combine the properties of (i) being
asymptotically equivalent to ¢ under H(n) (and therefore also under contiguous
alternatives of type I) and (ii) being able to detect alternatives of type II. More
precisely, we consider tests of the form

¢E}Telziv = I[(T () > Xd (p,q); )H(Tq(jtlz)Jrl > Xg;lf'y) + H(Tq q+1 < X§;177)7 (51)
for « € (0,1) and v € (0,1), where

N - (/2555 A
q,q+1 - (1/2 ( a+1 ;\j)Q

J=q

(5.2)
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is a natural test statistic to test the equality of )\((1") and )\((11)1. Note that in (5.1),
we take the convention Téﬁ) = +o00 so that, for testing 7—[88), the tests ¢(") and

(

ne
#™ do coincide. The test ¢(") can be viewed as a “preliminary test” test that
rejects H((JZ) for large values of T q("), provided that T(I(Z)Jrl is large enough, and
also rejects when T;Z)Jrl is too small. The idea underpinning this test lies in the
concept of “preliminary test estimators” studied in |Saleh| (2006) and Paindaveine,
Rasoafaraniaina and Verdebout| (2021)). We have the following result, obtained,
without loss of generality, under sequences of models ng(n), with A™ as in .

sps (n) : : 1/2,.(n
Proposition 4. Assume that A" as in (3.1)) is such that n'/ rfl ) — 00 as
n — oo. Then, under ng;mw ¢ — ¢ s op(1) as n — oo.

new

See the Supplementary Material for a proof. It follows directly from Propo-
sition 4 that ¢(™) is asymptotically valid, because under H(()Z), lim,, o E(¢(™) ) =

new new

a. Moreover, ¢{") inherits the local and asymptotic properties of ¢(™ under
contiguous alternatives of type I. As shown below using simulations and as
expected, the test ¢ shows far better power properties than ¢ against

alternatives of type II. Indeed, assume that A™ in (3.1) is such that it belongs to

alternatives of type II with n'/ 2r§”) — 0 as n — oo. Following the same rationale

as in Section 3, because lim,, ., ngi(n) (T, > X3a_y) < 7, for v € (0,1),

lim P™ (¢(n) — 1) Zgi_{gopén) (T(n) < Xg;lfy)

n— 00 ﬂ,A(n) new A q,q+1

> 1 lim PG (T > 33 )

oo BAM

21_77

so that small values of ¥ necessarily result in large asymptotic power of ¢(").
against type II alternatives.

To illustrate the properties of the new tests, we perform Monte Carlo
simulations. We generate M = 2,000 independent samples of i.i.d. observations

XP L X G

n )

for 7 = 0,1,2,4,6,8 and b = 0,1/8,1/4,1/2,1,2. The X" are i.i.d. with a
common (p =)5-dimensional Gaussian distribution with mean zero and covariance
matrix

(b, 7) = diag (3, I1+n b 1+n"b 1,1~ an/2>
We compare the classical test ¢(™ performed at the asymptotic nominal level
a = 0.05 with three versions of the ¢("). test (all with a = 0.05 in ) based
on vy = 0.9, v =05, and v = 0.05. All tests are performed for Hys' (¢ = 3).
The couples (7,b) = (0,0),(7,b) = (0,1/8), and (7,b) = (0,1/4) provide data-
generating processes under H((]g), while all other couples provide data-generating



2172 BERNARD AND VERDEBOUT

b=0 b=1/8 b=1/4
< < <
— ||—T_q — — K/
o0 New(0.1) 0 .
S New(0.5) e P
—— New(0.95)
© © ©
S S S
< < < '
= = =
N N N
= S S
< S 47 < -
S T T T T T S T T T T T S T T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
T T T
b=1/2 b=1 b=2
< < <
0 0 0
S S| Sl
© © ©°
S S S
= < = |
= = =
N N N
S S S
< < | < ]
Sl T T T T S T T T T Sl T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
T T T

Figure 3. Empirical rejection frequencies of the classical ¢(™ performed at the asymptotic
nominal level 0.05 and three versions of the (;5,(12‘)” test (all with o = 0.05 in ), based
on three choices of v: 7 = 0.9 (denoted as new(0.1)), v = 0.5 (denoted as new(0.5)), and
~v = 0.05 (denoted as new(0.95)). The sample size is n = 500.

processes under the alternative. In particular, the values (7,b) = (0,1/2), (1,b) =
(0,1), and (7,b) = (0,2) provide alternatives that are purely of type II, and the
couples (7,b) with 7 > 0 and b < 1/2 provide alternatives that are purely of type
I. In Figures 3 and 4, we provide the empirical rejection frequencies (out of the
2,000 replications) of the four tests as functions of 7 for sample sizes n = 500 and
n = 10,000, respectively. The two figures show that the new tests ¢(") behave as
predicted by the asymptotic theory. They enjoy the same empirical power curves
as ¢ when )\((1”) is not too close to /\((11)1. Of course, there is some “continuity
phenomenon” that implies that for finite samples, the nominal level constraint
holds essentially for (7,b) = (0,0) and (7,b) = (0,1/8) only. The situation
improves as n becomes larger, as shown in Figure 4. This is a finite-sample effect
since, because, as explained below Proposition 4, ¢{") is asymptotically valid.
For large values of 7, the same “continuity phenomenon” is more pronounced,
with a larger power enhancement. The new tests ¢ outperform ¢ in terms

of detecting alternatives of type II, as expected.



POWER ENHANCEMENT FOR DIMENSION DETECTION OF GAUSSIAN SIGNALS 2173

b=0 b=1/8 b=1/4
< 4 < < A
— ||— Tq — —
o0 New(0.1) o0 0
=) New(0.5) =8 =
— New(0.95)
o o e
= = =
3 A < <
= =} =}
N N N
= =} =
< 4 < < 4
S T T T T T S T T T T T S T T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
T T T
b=1/2 b=1 b=2
< < <
00 0 )
= *\/ O*\// 07V
° ° o
(=3 S =
< | < ] < |
= = =3
N N N
S ] S (=
< ] < | < |
< T T T T T < T T T T T < T T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
T T T

Figure 4. Empirical rejection frequencies of the classical ¢(™ performed at the asymptotic
nominal level 0.05 and three versions of the ¢1(1Z1V test (all with @ = 0.05 in ), based on
three different choices of v: v = 0.9 (denoted as new(.1)), v = 0.5 (denoted as new(0.5)),
and v = 0.05 (denoted as new(0.95)). The sample size is n = 10,000.

6. Estimation of the Signal Dimension and a Real-Data Application

In this Section, we demonstrate the usefulness of our method by applying it to
the data used in|Cho et al.| (1998]) on gene expressions. The data set contains data
on n = 384 gene expressions, measured at p = 17 time points, and is available
online at http://faculty.washington.edu/kayee/pca/ . As explained in [Cho
et al.| (1998), expression levels peak at different time points, corresponding to the
five phases of cell cycles. The gene expressions are partitioned into five classes,
corresponding to each phase of the cycle. Following Yeung and Ruzzo| (2001), it
is important to provide methods that cluster such data sets in order to recover
the cell cycles, furthermore, a PCA is performed before clustering to reduce the
noise level in the data. Then, the clustering is based on the noise-free data set.
Deleting the noise is crucial in the Yeung and Ruzzo| (2001)) procedure.

We show how our tests can be used to construct an estimator of the signal
dimension. The signal dimension k is the value ¢ € {0,...,p — 2} for which
’H(()Z) holds. Note that if ’H((]Z) does not hold for any ¢ € {0,...,p — 2}, we then
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put &k = p — 1; in such a case, the signal does not contain noise. As shown in
Nordhausen, Oja and Tyler| (2022), a consistent estimator &k of k can be obtained
as follows: letting bg"), q=0,...,p— 2 be positive sequences such that bg") — 00

and b = o(n) as n — oo for all ¢, the estimator k is defined as
k :=min{q € {0,...,p— 2}, T < blM}, (6.1)

with k = p — 1 if the minimum above is not achieved. Using the test ¢(") | we

new’

define a new estimator of k as

knew — (6'2)
Hlil’l{q € {07'”7]7_2}7}1( (m) b(n ) ( qz)+1 > C )+H(qu+1 = C(n)) = 0}7

for some positive sequence c¢™ — oo such that ¢™ = o(n) as n — oo, and as
l%new := p — 1 if the minimum is not achieved. A consistency result for lAcneW is
provided in the Supplementary Material. Here, we compare the small-sample
properties of the estimators k and ke using Monte Carlo simulations, before
using them on the real data. We generate M = 2,000 independent samples
of i.i.d. observations ng’T(n)), e ,Xg’”(m) from a common (p =)3-dimensional
Gaussian distribution with mean zero and covariance matrix (b, 7)) = diag(1+
n7" 1,1 — 7). We simulate observations with 7" = 0,n7'/2,0.99 and b =
0,1/2,1. At each replication, we compute three versions of the estimator k in
(6.1): one for each b" € {log(n), xd(pq)o%,n 2}, ¢ =0,...,p—2. We also
compute 12 versions of the estimator kyey in (6.2): one for each couple (b (n) e(n))y,

with bf;”) < {log(n)7Xi(p,q),0.957n1/2} and ¢ € {Xz;o.osvX2;0.17X2;0.957”/ ;. We
compare the estimators with the true value of k, given by

E=(p—DI(r™ >0) + {]I(b < ;) +(p — 1)11(5 > ;) }H(T(n) =0).

In Figures 5, 6, and 7, we provide the frequencies (among the 2,000 replications)
of good selection of k for the various estimators. More explicitly, we compute
the proportion of replications for which k =k and kpew = k. The figures show
that the new selectors perform equivalently to k when b = 0 (the two largest
eigenvalues are sufficiently separated), and outperform k when b > 0. This is
in line with the result that the tests associated with the selectors l;:new perform
better in terms of detecting alternatives of type II. When 7 = 0.99, the two
smallest eigenvalues are strongly separated, and all estimators select the signal
dimension perfectly.

In practice, the selection of ¢™ and bg”) remains problematic. [Virta and
Nordhausen| (2019) encountered a similar problem when selecting the bg”) used
to compute the classical estimator k. Our recommendation is similar to theirs:
use b{" = XZ(p, 0i1—a and ¢ = x3.,_, as default choices, for some reasonable a.
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This choice is in line with the discussion in Section 5 about the asymptotic power
of (™) under type II alternatives.

The simulation results show that our estimator ey performs quite well.
We therefore use it to estimate the signal dimension of the log-transformed data
set described earlier, comprising n = 384 gene expressions measured at p = 17
time points. Because we can question the Gaussianity in this practical example,
we use estimators based on robustified versions of our test statistics, namely,
the pseudo-Gaussian test statistics, in the sense of Waternaux| (1984)) (see also
Hallin, Paindaveine and Verdebout| (2010)). The pseudo-Gaussian test statistics
use estimated kurtosis coefficients to extend the asymptotic validity of parametric
Gaussian procedures to the class of elliptical distributions (with finite moments of
order four). They furthermore keep the local and asymptotic power properties of
the same parametric Gaussian procedures in the Gaussian case. Letting #(™ be a
consistent estimator of the underlying kurtosis parameter (see Waternaux| (1984)
for details), the pseudo-Gaussian test statistics are Tq(”) = (1+ &)™ and
T = (14 &™), . We compute pseudo-Gaussian versions of &
with bq”) S {log(n),xd (p:a) ’0.90,711/2}, for ¢ = 0,...,p — 2, and 12 pseudo-
Gaussian versions of estimators knew, one for each couple (bg”), ™), with
b(n) € {log(n), Xdpq) 0.0/} and ™ € {X3:0.050 X3:0.1- X3:0.05: 7 n'/?}. In Figure
8 we provide the values taken by the various estimators. Figure 8 reveals that,
although the small eigenvalues look close to each other, the data set does not
contain much noise; the classical estimator k estimates the dimension of the
signal at 13 or 14. Our new estimators with ¢™ € {x3 45, n'/?} indicate that
the data contain no noise. Given the performance of the various estimators
on simulated examples, we suggest that every principal component should be
considered significant and kept in the data set if the goal is to explain the
maximal amount of variance possible. Because the data set is noiseless, any
dimension reduction based on a PCA will come at a cost of relevant information.
There is no denoising step to conduct here, and any further dimension reduction
technique should be performed on the full data set.

7. Conclusion

We have studied procedures for testing problems characterized by null
hypotheses of the form

’H(") : ()\qi)l == AN nPAM - )\q+1) — 00 asmn — 00).

We have shown that ¢™ (or, equivalently, qbggT) enjoys some local and asymptotic
optimality properties against alternatives of type I, but is blind to alternatives of
type II. Our proposed tests for the problem, that retain the local and asymptotic
optimality properties of ¢(™ against alternatives of type I, are able to detect
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alternatives of type II. In Proposition 2, we show that the consistency of an
empirical projection on the first ¢ principal axes can hold only if n'/2(A{"™ — )\((]1)1)
diverges to oo as n — oo. This makes H,SZ) a natural sequence of null hypotheses
to test in order to perform an inference on the signal dimension. We then used
our tests to build a new estimator of the signal dimension, which performs quite
well, as shown in a simulation study.

Note that our asymptotic analysis concerns classical Gaussian estimators
and tests. However, the same type of analysis will hold for robust tests
built, for instance, on the eigenvalues of empirical robust scatter matrices
R™ in setups in which the distribution of U™ .= (Z)=1/2p1/2RM —
£™)(2™)=1/2 is spherically symmetric, and the weak limit of vec(U™) is
Gaussian. As explained in the real-data illustration, we can correct Gaussian
LRTs using empirical kurtosis coefficients to obtain tests that are asymptotically
valid under elliptical distributions with finite fourth-order moments; see, for
instance, the pseudo-Gaussian tests in Waternaux| (1984) and |Hallin, Paindaveine
and Verdebout| (2010). Simulations illustrating the properties of these pseudo-
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Gaussian procedures in non-Gaussian settings are provided in the Supplementary
Material.

Finally, in our study, the dimension p is fixed. It would be natural to extend
our results to the high-dimensional case considered, for instance, in|[Forzani, Gieco
and Carlos| (2017) and |Virtal (2021). This is left to future research.

Supplementary Material

The supplement contains various simulation studies to illustrate our results,
all the technical proofs and a consistency result for the new estimator of the
dimension of the signal.
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