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Abstract: We consider the classical problem of testing H(n)
0q : λ

(n)
q > λ

(n)
q+1 = · · · =

λ
(n)
p , where λ

(n)
1 , . . . , λ

(n)
p are the ordered latent roots of covariance matrices ΣΣΣ(n).

We show that the usual Gaussian procedure, ϕ(n), for this problem essentially shows

no power against alternatives of weaker signals of the form H(n)
1q : λ

(n)
q = λ

(n)
q+1 =

· · · = λ
(n)
p , which is problematic if it is used to perform inference on the true

dimension of the signal. We show that the same test ϕ(n) enjoys some local and

asymptotic optimality properties for detecting alternatives to the equality of the p−q

smallest roots of ΣΣΣ(n), provided that λ
(n)
q and λ

(n)
q+1 are sufficiently separated. We

obtain tests, ϕ
(n)
new, for the problem that retain the local and asymptotic optimality

properties of ϕ(n) when λ
(n)
q and λ

(n)
q+1 are sufficiently separated and properly detect

alternatives of the form H(n)
1q . We illustrate the performances of our tests using

simulations and on a gene expression data set, where we also discuss the problem

of estimating the dimension of the signal.
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1. Introduction

Principal component analysis (PCA) is a popular technique for performing

unsupervised dimension reduction. The main objective of a PCA is to extract a

low-dimensional signal from the data. This can be achieved by first identifying a

spiked structure in the underlying p×p positive-definite covariance matrix ΣΣΣ using

the data at hand. In the very popular spiked covariance models, the underlying

covariance matrix ΣΣΣ has eigenvalues λ1 ≥ · · · ≥ λq > σ2 = · · · = σ2 > 0;

see, for instance, Johnstone (2001). In the spiked covariance model, the q

largest eigenvalues of ΣΣΣ are well separated from the rest, and the data at

hand can therefore be seen as q-dimensional data contaminated with noise.

Inference within spiked covariance models has been considered by Li, Han and

Yao (2020), Paindaveine, Remy and Verdebout (2020a,b), and Bao et al. (2022),

among others. In the context of spiked models, and in a PCA in general,

an important problem is testing the equality of the p − q smallest eigenvalues

H0q : λq > λq+1 = · · · = λp of ΣΣΣ. Under H0q, the smallest p − q eigenvalues

are equal so that they correspond to some noise. As a result, selecting more

than q principal components is useless. Tests for H0q are typically used before
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selecting the number of components to keep. The problem is not new. Bartlett

(1950) used tests for H0q to determine the number of significant factors in a

data set of measurements of the reading speed, reading power, arithmetic speed

and arithmetic power for 140 children. Tests for H0q can also be used to check

the suitability of a data set for factor analysis, as Şahan, Baydur and Demiral

(2019), who assessed wether a psychological questionnaire is consistent. In the

same spirit, Chakraborty et al. (2020) used tests for H0q to ensure that every

PCA-based sub-indicator is relevant when constructing a socioeconomic index.

Finally, as mentioned in Kritchman and Nadler (2009), getting rid of the noise is

a critical preliminary step when treating the output of a collection of sensors.

The (full) sphericity problem (q = 0 with λ0 arbitrarily large) has been

studied by Ledoit and Wolf (2002), Onatski, Moreira and Hallin (2014), Tian, Lu

and Li (2015), Li and Yao (2016), and Paindaveine and Verdebout (2016) in the

high-dimensional case, while Hallin and Paindaveine (2006) proposed locally and

asymptotically optimal tests based on signed ranks. Cuesta-Albertos, Cuevas

and Fraiman (2009) proposed tests based on random projections, Henze, Hlávka

and Meintanis (2014) provided tests based on the characteristic function, and

Francq, Jiménez-Gamero and Meintanis (2017) considered the problem in a time

series context. Fixing q < p − 1, the problem of testing the equality of the

smallest p− q eigenvalues H0q : λq > λq+1 = · · · = λp has also been investigated

thoroughly in the multivariate statistics literature. Methods for determining the

dimension of a signal can be traced back to the work of Lawley (1956), who

developed Gaussian likelihood ratio tests to check the equality of the smallest

eigenvalues. A pseudo-Gaussian test that is valid under elliptical assumptions has

been proposed in Waternaux (1984). The local asymptotic powers of robust tests

have been obtained in Tyler (1983), and other procedures have been investigated

by Nadler (2010), Luo and Li (2016), and Nordhausen, Oja and Tyler (2022)

among others. High-dimensional tests have been studied in Schott (2006) and,

more recently, in Virta (2021).

In the present study, our objective is to provide tests for H0q : λq > λq+1 =

· · · = λp that can detect alternatives of stronger signals, under which λq+1, . . . , λp

are not equal, and alternatives of weaker signals, under which λq and λq+1 are

“too close to each other.” Note that our tests forH0q can be adapted easily to tests

for other restrictions, such as λq1 > λq1+1 = · · · = λq2 > λq2+1, for some q1 and

q2. To properly formalize the problem, we consider a triangular array context, in

which the nth line of the array consists of independent and identically distributed

(i.i.d.) p-variate Gaussian vectors X1n, . . . ,Xnn with common covariance matrix

ΣΣΣ(n) = βββΛΛΛ(n)βββ′, where βββ is orthogonal and ΛΛΛ(n) := diag(λ
(n)
1 , . . . , λ(n)

p ) is a

diagonal matrix of positive ordered eigenvalues that may change with n. Within

such sequences of experiments, we consider the (sequence of) hypotheses testing

problems characterized by null hypothesis of the form
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H(n)
0q : {λ(n)

q+1 = · · · = λ(n)
p } ∩ {n1/2(λ(n)

q − λ
(n)
q+1) → ∞ as n → ∞}. (1.1)

Under H(n)
0q , the smallest p−q underlying latent roots are equal, and λ(n)

q and λ
(n)
q+1

are sufficiently separated in the sense that n1/2(λ(n)
q −λ

(n)
q+1) → ∞ as n → ∞. Here,

we adapt the aforementioned sequence of hypotheses testing problems to detect

the signal dimension. Indeed, a rejection of H(n)
0q indicates that the smallest roots

are not equal, in which case the signal is stronger, or that λ(n)
q and λ

(n)
q+1 are too

close to each other, in which case the signal is weaker. Note that the consistency of

an empirical projection on the first q principal axes holds only if n1/2(λ(n)
q −λ

(n)
q+1)

diverges to ∞ as n → ∞; this makes the testing problem associated with H(n)
0q in

(1.1) a natural problem to tackle in the context. Alternatives to H(n)
0q (for q ≥ 1)

are of two different types:

(i) Type I: under which the smallest p − q eigenvalues are not equal and

n1/2(λ(n)
q − λ

(n)
q+1) → ∞ as n → ∞;

(ii) Type II: under which λ(n)
q and λ

(n)
q+1 are too close to each other in the sense

that

(λ(n)
q − λ

(n)
q+1) = O(n−1/2)

as n → ∞ and λ
(n)
q+1 = · · · = λ(n)

p .

We begin by examining the asymptotic behavior of the classical test ϕ(n)

for the problem studied in Schott (2006) and Virta (2021). We show that the

test ϕ(n), which is asymptotically equivalent to the Gaussian likelihood ratio test

(LRT) for the equality of the smallest eigenvalues, behaves quite well against

type I alternatives but behaves poorly against alternatives of type II. Indeed, if

n1/2(λ(n)
q − λ

(n)
q+1) = O(1) as n → ∞, the limiting power limn→∞ E(ϕ(n)) of the

test is far below the asymptotic nominal level α. It follows directly that ϕ(n)

is unable to detect alternatives of weaker signals (alternatives of type II). The

two main contributions of this study are as follows. First, we show that the

test ϕ(n) enjoys some local and asymptotic optimality properties when detecting

type I alternatives within a triangular array context. Second, we obtain tests for

the problem that retain the aforementioned optimality properties, but can also

detect alternatives of type II. The idea underpinning our new tests lies in the

concept of preliminary test estimators studied by Saleh (2006) and Paindaveine,

Rasoafaraniaina and Verdebout (2021). Our tests can be viewed as preliminary

test tests, guided by the power enhancement principle studied recently in a high-

dimensional setup by Fan, Liao and Yao (2015) and Kock and Preinerstorfer

(2019). We show using simulations that the estimator of the signal dimension

based on ϕ(n) studied in Nordhausen, Oja and Tyler (2022) can be improved using

an estimator based on our new test.

The rest of the paper is organized as follows. In Section 2, we present

notation used in the rest of the paper and discuss the asymptotic equivalence



2164 BERNARD AND VERDEBOUT

between ϕ(n) and the LRT for the equality of eigenvalues. In Sections 3 and 4,

we study the asymptotic properties of ϕ(n) against alternatives of type II and

type I, respectively. In Section 5, we propose new tests for the problem, and

show that the latter procedures enjoy many attractive properties. In Section 6,

we demonstrate our method using a gene expression data set and discuss the

problem of estimating the signal dimension. Additional Monte Carlo simulation

results and technical details are contained in the Supplementary Material.

2. Testing the Equality of Eigenvalues

We consider triangular arrays of observations where the nth line of the

array consists of i.i.d. observations Xn1, . . . ,Xnn that follow a common Gaussian

distribution with mean zero (without loss of generality, because in the Gaussian

case, location and scatter parameters are “orthogonal”; e.g., see Hallin, Paindav-

eine and Verdebout (2010)) and covariance matrix ΣΣΣ(n) that admits the spectral

decomposition

ΣΣΣ(n) = βββΛΛΛ(n)βββ′ =
p∑

j=1

λ
(n)
j βββjβββ

′
j, (2.1)

where βββ = (βββ1, . . . ,βββp) is an orthogonal matrix and ΛΛΛ(n) = diag(λ
(n)
1 , . . . , λ(n)

p )

is a diagonal matrix of finite positive (well-ordered) eigenvalues. Throughout,

diag(A1, . . . ,Am) denotes a block-diagonal matrix with blocks A1, . . . ,Am. We

write P
(n)

βββ,λλλ(n) for this Gaussian triangular array hypothesis, parametrized by βββ

and λλλ(n) := (λ
(n)
1 , . . . , λ(n)

p )′.

Fixing 0 ≤ q < p − 1, we consider the testing problem characterized by

sequences of null hypotheses of the form H(n)
0q in (1.1), where for q = 0, λ

(n)
0 can

be defined arbitrarily in such a way that n1/2(λ
(n)
0 − λ

(n)
1 ) → ∞ as n → ∞ so

that, still for q = 0, the sequence of problems coincides with the full sphericity

problem. We therefore tacitly assume that λ
(n)
0 = λ

(n)
1 + 1 throughout. When

testing the equality of the smallest roots of a covariance matrix, the classical

Gaussian LRT ϕ
(n)
LRT rejects the null hypothesis at the asymptotic level α when

L(n)
q := −n log

[ ∏p
j=q+1 λ̂j

{(p− q)−1
∑p

j=q+1 λ̂j}p−q

]
> χ2

d(p,q);1−α, (2.2)

where d(p, q) := (p− q + 2)(p− q − 1)/2, χ2
ν;δ is the quantile of order δ of a chi-

squared distribution with ν degrees of freedom, and λ̂1, . . . , λ̂p are the ordered

eigenvalues of the empirical covariance matrix S(n) := n−1
∑n

i=1 XniX
′
ni; see, for

instance, Muirhead (1982). Another classical test ϕ(n) for the same problem

rejects the null hypothesis at the asymptotic level α when
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T (n)
q =

n{∑p
j=q+1 λ̂

2
j − (p− q)−1(

∑p
j=q+1 λ̂j)

2}
2{(p− q)−1

∑p
j=q+1 λ̂j}2

> χ2
d(p,q);1−α. (2.3)

The test statistic T (n)
q is well known; Schott (2006) and Virta (2021) recently

studied its high-dimensional properties. We have the following result. The proof

follows directly from the proof of Theorem 5.1 in Tyler (1983).

Lemma 1. Let 1p := (1, . . . , 1)′ ∈ Rp and

λλλ(n) = (λ
(n)
1 , . . . , λ(n)

q , λ(n)
p−q1

′
p−q)

′, (2.4)

where λ
(n)
1 ≥ · · · ≥ λ(n)

q ≥ λ(n)
p−q. Then L(n)

q − T (n)
q = oP(1) as n → ∞ under

P
(n)

βββ,λλλ(n) as n → ∞.

Lemma 1 shows that the Gaussian LRT ϕ
(n)
LRT and the test ϕ(n) enjoy a similar

asymptotic behavior under P
(n)

βββ,λλλ(n) , with λλλ(n) as in (2.4). It follows directly from

the definition of contiguity that their asymptotic behaviors also coincide under

contiguous sequences. In particular, their local and asymptotic power coincide

under contiguous alternatives of type I. Moreover, because the result obtained

in Lemma 1 does not depend on the asymptotic behavior of (λ(n)
q − λ(n)

p−q), the

asymptotic behaviors of ϕ
(n)
LRT and ϕ(n) also coincide under alternatives of type

II. In the rest of the paper, all asymptotic results for ϕ(n) therefore also hold for

ϕ
(n)
LRT.

Our objective in the next two sections is to derive the asymptotic behavior of

ϕ(n) against both types of alternatives. We need the following notation: as usual,

vec(A) stands for the vector obtained by stacking the columns of a matrix A.

Letting A⊗B stand for the Kronecker product between two matrices A and B

(A⊗2 := A⊗A), the commutation matrix Kk,ℓ, such that Kk,ℓ(vecA) = vec(A′)

for any k × ℓ matrix A, satisfies Kp,k(A ⊗ B) = (B ⊗ A)Kq,ℓ, for any k × ℓ

matrix A and p × q matrix B; see, for example Magnus and Neudecker (2007).

In the sequel we write Kk := Kk,k.

3. Asymptotic Behavior Against Type II Alternatives

We now discuss the limiting behavior of T (n)
q (and therefore of L(n)

q ) under

alternatives of type II. To do so, we consider sequences of models P
(n)

βββ,λλλ(n) such that

the sequence λλλ(n) provides alternatives of type II. Accordingly, the covariance

matrix ΣΣΣ(n) in (2.1) has eigenvalues λλλ(n) = (λ
(n)
1 , . . . , λ(n)

p )′ of the form

λ
(n)
1 := 1 + r

(n)
1 v1 ≥ λ

(n)
2 := 1 + r

(n)
2 v2 ≥ · · · ≥ λ(n)

q

:= 1 + r(n)q vq > λ
(n)
q+1 = · · · = λ(n)

p = 1, (3.1)
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block 1: r
(n)
j ≡ 1

block 3: r
(n)
j ≡ 1/

√
n

block 2: r
(n)
j = o(1)

with r
(n)
j

√
n→∞

block 4: r
(n)
j = o(1)and r

(n)
j

√
n→ 0

r
(n)
j ≡ 0

r
(n)
j ≡ 1/

√
n

r
(n)
j ≡ 1

Figure 1: Illustration of how the eigenvalues are separated in blocks in the

data-generating process.

Figure 1. Illustration of how the eigenvalues are separated in blocks in the data-
generating process.

for some rates vector r(n) := (r
(n)
1 , . . . , r(n)q )′ and some positive localization

parameters v := (v1, . . . , vq)
′, such that (3.1) holds for all n. More precisely, r

(n)
j

(j = 1, . . . , q) can be such that r
(n)
j ≡ 1 for all n, or such that r

(n)
j → 0 as n → ∞.

Alternatives to H(n)
0q of type II are such that n1/2r(n)q is O(1) (and potentially o(1))

as n → ∞. Note that the various tests compared here are clearly invariant with

respect to scale transformations of the form (Xn1, . . . ,Xnn) → (sXn1, . . . , sXnn),

for s ∈ R. Thus, when we study the asymptotic behavior of T (n)
q , or any other

invariant test statistic, we can safely assume in our asymptotic analysis that the

eigenvalues λ
(n)
q+1 = · · · = λ(n)

p in (3.1) are equal to one without loss of generality.

As shown below, the asymptotic behavior of T (n)
q under P

(n)

βββ,λλλ(n) with λλλ(n) as in

(3.1) depends on the rates in r(n). We assume that the rates vector

r(n) = (r
(n)
1 , . . . , r(n)s1︸ ︷︷ ︸

block 1

, r
(n)
s1+1, . . . , r

(n)
s2︸ ︷︷ ︸

block 2

, r
(n)
s2+1, . . . , r

(n)
s3︸ ︷︷ ︸

block 3

, r
(n)
s3+1, . . . , r

(n)
q︸ ︷︷ ︸

block 4

)′ (3.2)

contains four blocks: in block 1, r
(n)
j are all equal to one; in block 2, r

(n)
j are o(1)

and n1/2r
(n)
j → ∞; in block 3, r

(n)
j ≡ n−1/2; and in block 4, r

(n)
j are o(n−1/2).

Of course, the blocks can be empty; for instance, s1 = 0 indicates that the first

block is empty, and block 2 is empty if s2−s1 = 0, and so on. Under H(n)
0q , blocks

3 and 4 are empty. The setup is illustrated in Figure 1 above and we have the

following result.

Proposition 1. Let r(n) and v be such that (3.1) holds and such that for 0 ≤
s1 ≤ s2 ≤ s3 ≤ q, (i) r

(n)
j ≡ 1 for each 1 ≤ j ≤ s1, (ii) r

(n)
j = o(1) with

n1/2r
(n)
j → ∞, for each s1 < j ≤ s2, (iii) r

(n)
j = n−1/2, for each s2 < j ≤ s3 and
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(iv) r
(n)
j = o(n−1/2), for each s3 < j ≤ q. Furthermore, let

Z(v1, . . . , vs1) =

(
Z11 Z

′
21

Z21 Z22

)

be a p× p matrix, where Z11 is the s2 × s2 upper-left block of Z(v1, . . . , vs1), Z22

is the (p− s2)× (p− s2) lower-right block of Z(v1, . . . , vs1), etc, such that

vec{Z(v1, . . . , vs1)} ∼ Np2 [0, (Ip2 +Kp){diag(1 + v1, . . . , 1 + vs1 ,1
′
p−s1

)}⊗2].

Then, as n → ∞ under P
(n)

βββ,λλλ(n) with λλλ(n) as in (3.1), T (n)
q converges weakly to

1

2

{
p∑

j=q+1

ℓ2j − (p− q)−1

(
p∑

j=q+1

ℓj

)2}
, (3.3)

where (ℓq+1, . . . , ℓp) are the p− q smallest roots of

Z22 + diag(vs2+1, . . . , vs3 ,0
′
q−s3

,0′
p−q).

See the Supplementary Material for a proof. Proposition 1 states that the

asymptotic behavior of T (n)
q depends crucially on the content of the various blocks

in (3.2). In particular, under H(n)
0q , that is, if s1 ≤ s2 = q (s3 − s2 = 0), and thus

the blocks 3 and 4 in (3.2) are empty (and therefore n1/2r(n)q → ∞ as n → ∞),

ℓℓℓp−q := (ℓq+1, . . . , ℓp) are the p − q eigenvalues of the (p − q) × (p − q) matrix

Z22 in Proposition 1. It is then easy to see that the resulting weak limit of T (n)
q

is chi-squared with d(p, q) degrees of freedom. It follows that the test ϕ(n) is

asymptotically valid for sequences of testing problems with null hypotheses H(n)
0q .

If n1/2r(n)q does not diverge to ∞, that is, under alternatives of type II, the test

statistic T (n)
q does not converge weakly to a chi-squared random variable with

d(p, q) degrees of freedom. Its asymptotic behavior is nevertheless completely

characterized by Proposition 1. In Figure 2, we provide approximations of

lim
n→∞

E(ϕ(n)) = lim
n→∞

P(T (n)
q > χ2

d(p,q);1−α),

for α = 0.05, p = 8 and various values of q under triangular arrays of observations

with covariance ΣΣΣ(n)(b) = diag{(1 + n−b)1q,1p−q}, for b = 0, 1/4, 1/2, 1. For

b < 1/2, the corresponding sequences of models belong to H(n)
0q , whereas for

b ≥ 1/2, the sequences of models are alternatives of type II. The approximations of

limn→∞ E(ϕ(n)) are based on 100,000 replications of the random variable in (3.3).

Figure 2 clearly shows that the test ϕ(n) is asymptotically valid for the problem

at hand, but is blind to alternatives of type II. For b ≥ 1/2, limn→∞ E(ϕ(n)) is

far below the nominal level α = 0.05. The results of Monte Carlo simulations,

provided in the “Further simulations” section of the Supplementary Material
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Figure 2. Approximations of limn→∞ E(ϕ(n)) for p = 8 and various values of q under

triangular arrays of observations with covariance ΣΣΣ(n)(b) = diag{(1+n−b)1q,1p−q}. The
test ϕ(n) is performed at the nominal level α = 0.05. The approximation is based on
100,000 replications of the random variable in (3.3).

clearly confirm the asymptotic behavior of T (n)
q obtained in Proposition 1. Two

natural questions then arise. First, does the test ϕ(n) enjoy some asymptotic

optimality properties against local alternatives of type I (for any rn, such that

n1/2r(n)q → ∞, not only in the classical r(n)q ≡ 1 case)? Second, the test ϕ(n)

clearly does not properly detect alternatives of type II; Figure 2 shows that the

limiting power of ϕ(n) against such alternatives can be almost zero. Thus, can we

obtain tests that detect alternatives of type II, without losing too much power

with respect to ϕ(n) against local alternatives of type I?

4. Asymptotic Behavior Against Type I Alternatives

In this section, we address the first of the two aforementioned questions by

determining wether the test ϕ(n) (and therefore ϕ
(n)
LRT) enjoys some optimality

properties against alternatives of type I. Consider the (p− q)-dimensional obser-

vations

Yni := (βββq+1, . . . ,βββp)
′Xni, i = 1, . . . , n,

obtained by selecting the last p− q components of the rotated sample βββ′Xn1, . . . ,

βββ′Xnn and define

S
(n)
Y := n−1

n∑
i=1

YniY
′
ni = (βββq+1, . . . ,βββp)

′S(n)(βββq+1, . . . ,βββp),
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where S(n) (defined above (2.3)) is the empirical covariance matrix associated

with the original sample. The Yni are i.i.d. with covariance matrix

ΣΣΣ
(n)
Y := (βββq+1, . . . ,βββp)

′ΣΣΣ(n)(βββq+1, . . . ,βββp). (4.1)

An asymptotically maximin test for the null hypothesis of sphericity H0 :

ΣΣΣ
(n)
Y = δIp−q, with δ > 0, against contiguous local alternatives of type I has been

proposed by Hallin and Paindaveine (2006). A test ϕ∗ is called maximin in the

class Cα of level-α tests for a problem of testing some null hypothesis H0 against

H1 if (i) ϕ∗ has level α, and (ii) the power of ϕ∗ is such that

inf
P∈H1

EP(ϕ
∗) ≥ sup

ϕ∈Cα

inf
P∈H1

EP(ϕ).

Note that if λλλ(n) belongs to H(n)
0q , λλλ(n) +n−1/2ℓℓℓ can only be an alternative of type

I (and not of type II). The asymptotically maximin test against local alternatives

of type I in Hallin and Paindaveine (2006), denoted here by ϕ
(n)
βββ , rejects the null

hypothesis at the asymptotic level α when

T (n)
q (βββ) =

n

2

{
p− q

tr(S
(n)
Y )

}2

[tr{(S(n)
Y )2} − (p− q)−1{tr2(S(n)

Y )}] > χ2
d(p,q);1−α. (4.2)

Of course, in practice, the eigenvectors βββq+1, . . . ,βββp are rarely specified and,

in general, need to be estimated. The most natural estimators of βββq+1, . . . ,βββp

in the present Gaussian context are the eigenvectors β̂ββq+1, . . . , β̂ββp associated with

the p− q smallest eigenvalues of

S(n) =:
p∑

j=1

λ̂jβ̂ββjβ̂ββ
′
j.

Below, β̂ββ := (β̂ββ1, . . . , β̂ββp) stands for the p × p orthogonal matrix collecting the

eigenvectors of S(n). Plugging these estimators into T (n)
q (βββ) yields the test statis-

tic T (n)
q in (2.3). Thus, to study the potential asymptotic equivalence between

T (n)
q and T (n)

q (βββ), we need to control the asymptotic cost of the substitution of

βββq+1, . . . ,βββp with β̂ββq+1, . . . , β̂ββp. Still in the same model, letting

E(n) =

(
E

(n)
11 E

(n)
12

E
(n)
21 E

(n)
22

)
:= β̂ββ

′
βββ, (4.3)

where E
(n)
11 and E

(n)
22 are the q × q upper-diagonal and (p − q) × (p − q) lower-

diagonal blocks, respectively, of E(n), we have the following result.

Proposition 2. As n → ∞ under P
(n)

βββ,λλλ(n) with λλλ(n) as in (3.1),

(i) if n1/2r(n)q → ∞ as n → ∞, n1/2diag{(r(n))′}E(n)
12 = OP(1) as n → ∞ and
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E
(n)
22 (E

(n)
22 )

′ = Ip−q + oP(1) as n → ∞;

(ii) if n1/2r(n)q → c < ∞ as n → ∞, we have that E
(n)
12 is not oP(1) as n → ∞.

See the Supplementary Material for a proof. Proposition 2 shows that the

consistency of the underlying eigenvectors can only hold when n1/2(λ(n)
q −

λ
(n)
q+1) diverges to infinity as n → ∞ with rates depending on r

(n)
1 , . . . , r(n)q .

This fact naturally yields to the following question: are the tests ϕ
(n)
βββ and

ϕ(n) asymptotically equivalent under H(n)
0q (and therefore also under contiguous

alternatives of type I)? The following result provides a positive answer.

Proposition 3. Assume that λλλ(n) as in (3.1) is such that n1/2r(n)q → ∞ as

n → ∞. Then, T (n)
q − T (n)

q (βββ) is oP(1) under P
(n)

βββ,λλλ(n) as n → ∞.

See the Supplementary Material for a proof. Proposition 3 states that

the test ϕ(n) and the test ϕ
(n)
βββ are asymptotically equivalent under the null

hypothesis H(n)
0q , and therefore also under contiguous alternatives. This shows

directly that the three tests ϕ(n), ϕ
(n)
LRT, and ϕ

(n)
βββ enjoy the same asymptotic local

power properties against the same contiguous alternatives of type I. In particular

they are locally and asymptotically maximin for the sphericity of ΣΣΣ
(n)
Y in (4.1),

and therefore enjoy some local and asymptotic optimality property for detecting

alternatives of type I. The results of Monte our Carlo simulations, provided in the

“Further simulations” section of the Supplementary Material confirm the results

presented in this section.

5. New Tests

As shown in the previous sections, the test ϕ(n) (and therefore ϕ
(n)
LRT) enjoys

some local and asymptotic optimality properties against alternatives of type I,

but is blind to alternatives of type II. This is often problematic, because, in

general, the purpose of this test is to provide information on the dimension of the

underlying signal. Here, we propose tests that combine the properties of (i) being

asymptotically equivalent to ϕ(n) under H(n)
0q (and therefore also under contiguous

alternatives of type I) and (ii) being able to detect alternatives of type II. More

precisely, we consider tests of the form

ϕ(n)
new := I(T (n)

q > χ2
d(p,q);1−α)I(T

(n)
q,q+1 > χ2

2;1−γ) + I(T (n)
q,q+1 ≤ χ2

2;1−γ), (5.1)

for α ∈ (0, 1) and γ ∈ (0, 1), where

T
(n)
q,q+1 :=

n{∑q+1
j=q λ̂

2
j − (1/2)(

∑q+1
j=q λ̂j)

2}
(1/2)(

∑q+1
j=q λ̂j)2

(5.2)
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is a natural test statistic to test the equality of λ(n)
q and λ

(n)
q+1. Note that in (5.1),

we take the convention T
(n)
0,1 ≡ +∞ so that, for testing H(n)

00 , the tests ϕ(n)
new and

ϕ(n) do coincide. The test ϕ(n)
new can be viewed as a “preliminary test” test that

rejects H(n)
0q for large values of T (n)

q , provided that T
(n)
q,q+1 is large enough, and

also rejects when T
(n)
q,q+1 is too small. The idea underpinning this test lies in the

concept of “preliminary test estimators” studied in Saleh (2006) and Paindaveine,

Rasoafaraniaina and Verdebout (2021). We have the following result, obtained,

without loss of generality, under sequences of models P
(n)

βββ,λλλ(n) , with λλλ(n) as in (3.1).

Proposition 4. Assume that λλλ(n) as in (3.1) is such that n1/2r(n)q → ∞ as

n → ∞. Then, under P
(n)

βββ,λλλ(n), ϕ
(n)
new − ϕ(n) is oP(1) as n → ∞.

See the Supplementary Material for a proof. It follows directly from Propo-

sition 4 that ϕ(n)
new is asymptotically valid, because under H(n)

0q , limn→∞ E(ϕ(n)
new) =

α. Moreover, ϕ(n)
new inherits the local and asymptotic properties of ϕ(n) under

contiguous alternatives of type I. As shown below using simulations and as

expected, the test ϕ(n)
new shows far better power properties than ϕ(n) against

alternatives of type II. Indeed, assume that λλλ(n) in (3.1) is such that it belongs to

alternatives of type II with n1/2r(n)q → 0 as n → ∞. Following the same rationale

as in Section 3, because limn→∞ P
(n)

βββ,λλλ(n)(T
(n)
q,q+1 > χ2

2;1−γ) ≤ γ, for γ ∈ (0, 1),

lim
n→∞

P
(n)

βββ,λλλ(n)

(
ϕ(n)
new = 1

)
≥ lim

n→∞
P

(n)

βββ,λλλ(n)

(
T

(n)
q,q+1 ≤ χ2

2;1−γ

)
≥ 1− lim

n→∞
P

(n)

βββ,λλλ(n)

(
T

(n)
q,q+1 > χ2

2;1−γ

)
≥ 1− γ,

so that small values of γ necessarily result in large asymptotic power of ϕ(n)
new

against type II alternatives.

To illustrate the properties of the new tests, we perform Monte Carlo

simulations. We generate M = 2,000 independent samples of i.i.d. observations

X
(b,τ)
1 , . . . ,X(b,τ)

n ,

for τ = 0, 1, 2, 4, 6, 8 and b = 0, 1/8, 1/4, 1/2, 1, 2. The X
(b,τ)
i are i.i.d. with a

common (p =)5-dimensional Gaussian distribution with mean zero and covariance

matrix

ΣΣΣ(b, τ) = diag

(
3, 1 + n−b, 1 + n−b, 1, 1− τ

n1/2

)
.

We compare the classical test ϕ(n) performed at the asymptotic nominal level

α = 0.05 with three versions of the ϕ(n)
new test (all with α = 0.05 in (5.1)) based

on γ = 0.9, γ = 0.5, and γ = 0.05. All tests are performed for H(n)
03 (q = 3).

The couples (τ, b) = (0, 0), (τ, b) = (0, 1/8), and (τ, b) = (0, 1/4) provide data-

generating processes under H(n)
03 , while all other couples provide data-generating
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Figure 3. Empirical rejection frequencies of the classical ϕ(n) performed at the asymptotic

nominal level 0.05 and three versions of the ϕ
(n)
new test (all with α = 0.05 in (5.1)), based

on three choices of γ: γ = 0.9 (denoted as new(0.1)), γ = 0.5 (denoted as new(0.5)), and
γ = 0.05 (denoted as new(0.95)). The sample size is n = 500.

processes under the alternative. In particular, the values (τ, b) = (0, 1/2), (τ, b) =

(0, 1), and (τ, b) = (0, 2) provide alternatives that are purely of type II, and the

couples (τ, b) with τ > 0 and b < 1/2 provide alternatives that are purely of type

I. In Figures 3 and 4, we provide the empirical rejection frequencies (out of the

2,000 replications) of the four tests as functions of τ for sample sizes n = 500 and

n = 10,000, respectively. The two figures show that the new tests ϕ(n)
new behave as

predicted by the asymptotic theory. They enjoy the same empirical power curves

as ϕ(n) when λ(n)
q is not too close to λ

(n)
q+1. Of course, there is some “continuity

phenomenon” that implies that for finite samples, the nominal level constraint

holds essentially for (τ, b) = (0, 0) and (τ, b) = (0, 1/8) only. The situation

improves as n becomes larger, as shown in Figure 4. This is a finite-sample effect

since, because, as explained below Proposition 4, ϕ(n)
new is asymptotically valid.

For large values of γ, the same “continuity phenomenon” is more pronounced,

with a larger power enhancement. The new tests ϕ(n)
new outperform ϕ(n) in terms

of detecting alternatives of type II, as expected.
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Figure 4. Empirical rejection frequencies of the classical ϕ(n) performed at the asymptotic

nominal level 0.05 and three versions of the ϕ
(n)
new test (all with α = 0.05 in (5.1)), based on

three different choices of γ: γ = 0.9 (denoted as new(.1)), γ = 0.5 (denoted as new(0.5)),
and γ = 0.05 (denoted as new(0.95)). The sample size is n = 10,000.

6. Estimation of the Signal Dimension and a Real-Data Application

In this Section, we demonstrate the usefulness of our method by applying it to

the data used in Cho et al. (1998) on gene expressions. The data set contains data

on n = 384 gene expressions, measured at p = 17 time points, and is available

online at http://faculty.washington.edu/kayee/pca/ . As explained in Cho

et al. (1998), expression levels peak at different time points, corresponding to the

five phases of cell cycles. The gene expressions are partitioned into five classes,

corresponding to each phase of the cycle. Following Yeung and Ruzzo (2001), it

is important to provide methods that cluster such data sets in order to recover

the cell cycles, furthermore, a PCA is performed before clustering to reduce the

noise level in the data. Then, the clustering is based on the noise-free data set.

Deleting the noise is crucial in the Yeung and Ruzzo (2001) procedure.

We show how our tests can be used to construct an estimator of the signal

dimension. The signal dimension k is the value q ∈ {0, . . . , p − 2} for which

H(n)
0q holds. Note that if H(n)

0q does not hold for any q ∈ {0, . . . , p − 2}, we then

http://faculty.washington.edu/kayee/pca/
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put k = p − 1; in such a case, the signal does not contain noise. As shown in

Nordhausen, Oja and Tyler (2022), a consistent estimator k̂ of k can be obtained

as follows: letting b(n)q , q = 0, . . . , p− 2 be positive sequences such that b(n)q → ∞
and b(n)q = o(n) as n → ∞ for all q, the estimator k̂ is defined as

k̂ := min{q ∈ {0, . . . , p− 2}, T (n)
q < b(n)q }, (6.1)

with k̂ := p − 1 if the minimum above is not achieved. Using the test ϕ(n)
new, we

define a new estimator of k as

k̂new = (6.2)

min {q ∈ {0, . . . , p− 2}, I(T (n)
q > b(n)q )I(T (n)

q,q+1 > c(n)) + I(T (n)
q,q+1 ≤ c(n)) = 0},

for some positive sequence c(n) → ∞ such that c(n) = o(n) as n → ∞, and as

k̂new := p − 1 if the minimum is not achieved. A consistency result for k̂new is

provided in the Supplementary Material. Here, we compare the small-sample

properties of the estimators k̂ and k̂new using Monte Carlo simulations, before

using them on the real data. We generate M = 2,000 independent samples

of i.i.d. observations X
(b,τ(n))
1 , . . . ,X(b,τ(n))

n from a common (p =)3-dimensional

Gaussian distribution with mean zero and covariance matrix ΣΣΣ(b, τ (n)) = diag(1+

n−b, 1, 1 − τ (n)). We simulate observations with τ (n) = 0, n−1/2, 0.99 and b =

0, 1/2, 1. At each replication, we compute three versions of the estimator k̂ in

(6.1): one for each b(n)q ∈ {log(n), χ2
d(p,q),0.95, n

1/2}, q = 0, . . . , p − 2. We also

compute 12 versions of the estimator k̂new in (6.2): one for each couple (b(n)q , c(n)),

with b(n)q ∈ {log(n), χ2
d(p,q),0.95, n

1/2} and c(n) ∈ {χ2
2;0.05, χ

2
2;0.1, χ

2
2;0.95, n

1/2}. We

compare the estimators with the true value of k, given by

k = (p− 1)I(τ (n) > 0) +

{
I
(
b <

1

2

)
+ (p− 1)I

(
b ≥ 1

2

)}
I(τ (n) = 0).

In Figures 5, 6, and 7, we provide the frequencies (among the 2,000 replications)

of good selection of k for the various estimators. More explicitly, we compute

the proportion of replications for which k̂ = k and k̂new = k. The figures show

that the new selectors perform equivalently to k̂ when b = 0 (the two largest

eigenvalues are sufficiently separated), and outperform k̂ when b > 0. This is

in line with the result that the tests associated with the selectors k̂new perform

better in terms of detecting alternatives of type II. When τ = 0.99, the two

smallest eigenvalues are strongly separated, and all estimators select the signal

dimension perfectly.

In practice, the selection of c(n) and b(n)q remains problematic. Virta and

Nordhausen (2019) encountered a similar problem when selecting the b(n)q used

to compute the classical estimator k̂. Our recommendation is similar to theirs:

use b(n)q = χ2
d(p,q);1−α and c(n) = χ2

2;1−α as default choices, for some reasonable α.
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This choice is in line with the discussion in Section 5 about the asymptotic power

of ϕ(n)
new under type II alternatives.

The simulation results show that our estimator k̂new performs quite well.

We therefore use it to estimate the signal dimension of the log-transformed data

set described earlier, comprising n = 384 gene expressions measured at p = 17

time points. Because we can question the Gaussianity in this practical example,

we use estimators based on robustified versions of our test statistics, namely,

the pseudo-Gaussian test statistics, in the sense of Waternaux (1984) (see also

Hallin, Paindaveine and Verdebout (2010)). The pseudo-Gaussian test statistics

use estimated kurtosis coefficients to extend the asymptotic validity of parametric

Gaussian procedures to the class of elliptical distributions (with finite moments of

order four). They furthermore keep the local and asymptotic power properties of

the same parametric Gaussian procedures in the Gaussian case. Letting κ̂(n) be a

consistent estimator of the underlying kurtosis parameter (see Waternaux (1984)

for details), the pseudo-Gaussian test statistics are T̃ (n)
q := (1 + κ̂(n))−1T (n)

q and

T̃
(n)
q,q+1 := (1 + κ̂(n))−1T

(n)
q,q+1. We compute pseudo-Gaussian versions of k̂

with b(n)q ∈ {log(n), χ2
d(p,q),0.95, n

1/2}, for q = 0, . . . , p − 2, and 12 pseudo-

Gaussian versions of estimators k̂new, one for each couple (b(n)q , c(n)), with

b(n)q ∈ {log(n), χ2
d(p,q),0.95, n

1/2} and c(n) ∈ {χ2
2;0.05, χ

2
2;0.1, χ

2
2;0.95, n

1/2}. In Figure

8, we provide the values taken by the various estimators. Figure 8 reveals that,

although the small eigenvalues look close to each other, the data set does not

contain much noise; the classical estimator k̂ estimates the dimension of the

signal at 13 or 14. Our new estimators with c(n) ∈ {χ2
2;0.95, n

1/2} indicate that

the data contain no noise. Given the performance of the various estimators

on simulated examples, we suggest that every principal component should be

considered significant and kept in the data set if the goal is to explain the

maximal amount of variance possible. Because the data set is noiseless, any

dimension reduction based on a PCA will come at a cost of relevant information.

There is no denoising step to conduct here, and any further dimension reduction

technique should be performed on the full data set.

7. Conclusion

We have studied procedures for testing problems characterized by null

hypotheses of the form

H(n)
0q : (λ

(n)
q+1 = · · · = λ(n)

p ) ∩ (n1/2(λ(n)
q − λ

(n)
q+1) → ∞ as n → ∞).

We have shown that ϕ(n) (or, equivalently, ϕ
(n)
LRT) enjoys some local and asymptotic

optimality properties against alternatives of type I, but is blind to alternatives of

type II. Our proposed tests for the problem, that retain the local and asymptotic

optimality properties of ϕ(n) against alternatives of type I, are able to detect
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Figure 5. Proportion of good selection of k for three estimators k̂ (in red, denoted as

“classic”) and for estimators k̂new (in blue) with b
(n)
q ∈ {log(n), χ2

d(p,q),0.95, n
1/2}, and

c(n) ∈ {χ2
2;0.05, χ

2
2;.1, χ

2
2;0.95, n

1/2} . The sample size is n = 1000 and τ (n) = 0.
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Figure 6. Proportion of good selection of k for three estimators k̂ (in red, denoted as

“classic”) and for estimators k̂new (in blue) with b
(n)
q ∈ {log(n), χ2

d(p,q),0.95, n
1/2}, and

c(n) ∈ {χ2
2;0.05, χ

2
2;.1, χ

2
2;0.95, n

1/2} . The sample size is n = 1000 and τ (n) = n−1/2.
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Figure 7. Proportion of good selection of k for three estimators k̂ (in red, denoted as

“classic”) and for estimators k̂new (in blue) with b
(n)
q ∈ {log(n), χ2

d(p,q),0.95, n
1/2}, and

c(n) ∈ {χ2
2;0.05, χ

2
2;.1, χ

2
2;0.95, n

1/2} . The sample size is n = 1000 and τ (n) = 0.99.
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Figure 8. (a) the eigenvalues of the log-transformed gene expression data set; (b)-(d) the

values (between zero and 16) taken by the estimators k̂ (in red, denoted as “classic”) for

b
(n)
q ∈ {log(n), χ2

d(p,q),0.95, n
1/2} and k̂new (in blue) for b

(n)
q ∈ {log(n), χ2

d(p,q),0.95, n
1/2}

and c(n) ∈ {χ2
2;0.05, χ

2
2;0.1, χ

2
2;0.95, n

1/2}.

alternatives of type II. In Proposition 2, we show that the consistency of an

empirical projection on the first q principal axes can hold only if n1/2(λ(n)
q −λ

(n)
q+1)

diverges to ∞ as n → ∞. This makes H(n)
0q a natural sequence of null hypotheses

to test in order to perform an inference on the signal dimension. We then used

our tests to build a new estimator of the signal dimension, which performs quite

well, as shown in a simulation study.

Note that our asymptotic analysis concerns classical Gaussian estimators

and tests. However, the same type of analysis will hold for robust tests

built, for instance, on the eigenvalues of empirical robust scatter matrices

R(n) in setups in which the distribution of U(n) := (ΣΣΣ(n))−1/2n1/2(R(n) −
ΣΣΣ(n))(ΣΣΣ(n))−1/2 is spherically symmetric, and the weak limit of vec(U(n)) is

Gaussian. As explained in the real-data illustration, we can correct Gaussian

LRTs using empirical kurtosis coefficients to obtain tests that are asymptotically

valid under elliptical distributions with finite fourth-order moments; see, for

instance, the pseudo-Gaussian tests in Waternaux (1984) and Hallin, Paindaveine

and Verdebout (2010). Simulations illustrating the properties of these pseudo-
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Gaussian procedures in non-Gaussian settings are provided in the Supplementary

Material.

Finally, in our study, the dimension p is fixed. It would be natural to extend

our results to the high-dimensional case considered, for instance, in Forzani, Gieco

and Carlos (2017) and Virta (2021). This is left to future research.

Supplementary Material

The supplement contains various simulation studies to illustrate our results,

all the technical proofs and a consistency result for the new estimator of the

dimension of the signal.
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