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Abstract: The joint estimation of multiple graphical models from high-dimensional

data has been studied in the statistics and machine learning literature, owing to

its importance in diverse fields including molecular biology, neuroscience, and the

social sciences. We propose a Bayesian approach that decomposes the model pa-

rameters across multiple graphical models into shared components across subsets

of models and edges, and idiosyncratic components. This approach leverages a

novel multivariate prior distribution, coupled with a jointly convex regression-based

pseudo-likelihood that enables fast computation using a robust and efficient Gibbs

sampling scheme. We establish strong posterior consistency for model selection un-

der high-dimensional scaling, with the number of variables growing exponentially as

a function of the sample size. Lastly, we demonstrate the efficiency of the proposed

approach in borrowing strength across models to identify shared edges using both

synthetic and real data.

Key words and phrases: Gibbs sampling, Omics data, posterior consistency, Pseudo-

likelihood.

1. Introduction

The joint estimation of multiple related Gaussian graphical models has at-

tracted much interest in statistics and machine learning owing to its wide ap-

plication in biomedical studies involving omics data (e.g. Pierson et al. (2015)

and Kling et al. (2015)), as well as in text mining and roll call voting Guo et al.

(2011). The key idea of this approach which makes it preferable to separate

network-wise estimations, is to “borrow strength” across related models, and

thus enhance the “effective” sample size used to estimate the model parameters.

In high-dimensional settings, joint estimation is achieved primarily by using a

penalty function to induce sparsity/zeros in the group-specific inverse covariance

(precision) matrices. Specifically, Guo et al. (2011), who first formulated the

problem, model the elements of each inverse covariance matrix as the product

of a component, common across all models and an idiosyncratic (model-specific)
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component, and impose an `1-penalty on each one. Thus, when the penalty

sets the common component to zero, the corresponding edge is absent across all

models. However, if the common component is not zero, edges can be absent

because the penalty sets the idiosyncratic component to zero for selected models.

Another set of approaches aims to achieve a certain amount of “fusing” across

all models being considered, focusing on both the presence and the absence of

common edges across all models simultaneously. Examples of such approaches

include those of Danaher, Wang and Witten (2014), who employed a group lasso

and/or a fused lasso penalty on each edge parameter across all models, and Cai

et al. (2016), who used a mixed `1/`∞ norm for the same task.

However, in many application settings, only a subset of edges exhibit shared

connectivity patterns across models, with the reminder showing different connec-

tivity patterns in each model. In other settings, subsets of edges share common

connectivity patterns across only a subset of models. In both instances, the pre-

viously mentioned approaches exhibit rather poor performance in terms of dis-

covering these more complex patterns. To address this issue, Ma and Michailidis

(2016) proposed a supervised approach based on fusing through a group lasso

penalty, wherein the various connectivity patterns across the subsets of edges

and subsets of models are known a priori. An alternative supervised approach

Saegusa and Shojaie (2016) employs a similarity graph penalty for fusing across

models, and an `1-penalty to obtain sparse model estimates. The similarity graph

is assumed to be known a priori.

The Bayesian paradigm comes with the advantage of natural uncertainty

quantification through the posterior distribution, and also a natural structured

mechanism for incorporating prior information. Peterson, Stingo and Vannucci

(2015) proposed a Bayesian variant of the approach of Saegusa and Shojaie (2016)

using a Markov random field prior distribution to capture model similarity, fol-

lowed by a spike-and-slab prior distribution on the edge model parameters. Tan

et al. (2017) developed a Bayesian approach that, similarly to Peterson, Stingo

and Vannucci (2015), uses G-Wishart prior distributions on the group-specific

precision matrices, given the sparsity patterns in each group, and then employs

a multiplicative model, based hierarchical prior on these networks to induce sim-

ilarity/dependence. Recent works including those of Shaddox et al. (2018) and

Petersen et al. (2020), extend the ideas in Wang (2015) to a joint estimation set-

ting for improved computational scalability. However, this class of approaches

still suffers from scalability problems beyond moderate-dimensional settings with

150 or so variables. There are two main computational difficulties for posterior

sampling. First, the precision matrices are restricted to be positive definite (p.d.).
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Second, the dependence structure between groups is induced through priors on

large discrete spaces of sparsity patterns (graphs) for the precision matrices, and

the conditional updates of the relevant discrete/latent variables and respective

hyper-parameters can be messy and add significantly to the computational bur-

den.

For the single graphical model estimation problem based on n independent

and identically distributed (i.i.d.) observations from a distribution with inverse-

covariance/precision matrix Ω, the entries in the ith row of Ω can be interpreted

as least squares coefficients when regressing the ith variable against the other vari-

ables (see (4.1)). This idea has been leveraged to develop quasi-likelihood/pseudo-

likelihood based approaches; see Meinshausen and Bühlmann (2006), Lin et al.

(2017), and Atchade (2019). These approaches relax the p.d. constraint on Ω,

leading to significant improvement in computational speed. Note that relaxing

the p.d. constraint does not create issues/complications for model/sparsity selec-

tion in Ω, which is often the key objective. If a p.d. estimate of Ω is needed

for a downstream application, it can be obtained in a straightforward manner,

for example, by computing the restricted maximum likelihood estimation (MLE)

based on the estimated sparsity pattern.

Lin et al. (2017) extend this idea to the joint graphical model estimation

problem, using the regression-based neighborhood selection procedure of Mein-

shausen and Bühlmann (2006) with an alternate version of the Markov random

field priors in Peterson, Stingo and Vannucci (2015) to induce dependence be-

tween groups. Relaxing the p.d. constraint leads to a significant improvement

in computational performance compared with that of the likelihood-based ap-

proaches mentioned above. However, the use of matrix inversions and latent

variable updates still leads to a steep increase in the computational cost of the

corresponding algorithm, labeled BNS, as the number of variables p increases

(see Section 5.2). “Maximization-based” Bayesian approaches for joint graphi-

cal estimation, which focus on obtaining posterior modes, have been proposed

by Li, McCormick and Clark (2018) and Yang et al. (2021). These approaches

are computationally scalable, but unlike the other “sampling-based” approaches

discussed above, they do not generate samples from the posterior and are unable

to provide detailed uncertainty quantification. For example, Yang et al. (2021)

use relevant conditional posterior probabilities evaluated at the posterior mode to

evaluate the uncertainty for individual edges, but do not provide more nuanced

uncertainty for the joint inclusion/exclusion of multiple edges (see Table G.2, for

example).
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While uncertainty quantification through the posterior is an attractive fea-

ture of a Bayesian approach, in high-dimensional settings, it is crucial to rigor-

ously justify its validity. In the current context, this corresponds to establishing

strong posterior selection consistency, that is, proving that the posterior distri-

bution of the combined sparsity pattern in the group-specific precision matri-

ces asymptotically places all of its mass on the “true” sparsity pattern in the

high-dimensional data-generating model. Although Yang et al. (2021) establish

selection consistency for the posterior mode, a high-dimensional strong selection

consistency result for joint graphical model estimation has not been established

for any of the Bayesian approaches discussed above.

Given this background, the key objective of this study is to develop a scalable

sampling-based Bayesian approach with high-dimensional selection consistency

guarantees for joint estimation and uncertainty quantification for multiple related

Gaussian graphical models that exhibit complex edge connectivity patterns across

models for different subsets of edges. We avoid the Markov-random-field-based

approach for inducing group similarity, and instead take a more direct approach

based on a subset-specific decomposition (see (2.2)) of the group-specific precision

matrices. We then introduce a novel subset-specific (S2) prior that, for each edge,

aims to select the subset of models it is common to (see (3.2)–(3.4) and Remark 1).

We couple these with the jointly convex regression-based pseudo-likelihood used

in Khare, Oh and Rajaratnam (2015) for estimating a single Gaussian graphical

model.

The above framework leads to an easy to implement and scalable Gibbs

sampling scheme for exploring the posterior distribution. The corresponding al-

gorithm, called the Bayesian joint network selector(BJNS), essentially involves

O(p2) univariate updates from relevant mixture distributions, and avoids the need

for matrix inversions or latent variables. As a result, the computational perfor-

mance of the BJNS is an order of magnitude faster than that of BNS algorithm

of Lin et al. (2017) (see Section 5.2). Our direct subset-specific approach can

lead to significantly improved statistical selection performance compared with

that of existing methods (see Section 5). We also establish a strong posterior

model selection consistency result (Theorem 1) for the proposed approach. In-

tuitively, the proposed framework achieves the objectives set forth in Ma and

Michailidis (2016), without requiring an a priori specification of the shared edge

connectivity patterns; thus, the approach is fully unsupervised. Furthermore, the

availability of posterior samples allows for uncertainty quantification in the form

of subset-specific inclusion probabilities (see Figure D.1 and Table G.2).
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Note that the main goal of the proposed framework is model/sparsity selec-

tion. As described in detail in Section 2.1, for identifiability purposes, we need

a constraint that imposes restrictions on the magnitude of the relevant precision

matrix entries. First, this constraint has no adverse effect on the main task of

sparsity selection in the sense that the framework still produces a valid posterior

distribution on the space of all possible sparsity patterns for the various group-

specific precision matrices. As our simulation and consistency results show, the

BJNS performs very well in terms of sparsity selection compared with existing

methods, even when this constraint is not satisfied in the data-generating model.

Second, as pointed out above, a regression-based approach is not directly useful

for magnitude estimation anyway, because the resulting estimates of the precision

matrices are not guaranteed to be p.d.. If such estimates are needed for down-

stream applications, one can obtain them by using the respective MLEs restricted

to the estimated sparsity pattern for each group-specific matrix (see (4.4)). Note

that the resulting estimates are guaranteed to be p.d. and are free from the iden-

tifiability constraint in Section 2.1 (which is used only for sparsity selection, and

does not play a role in (4.4). We also provide a simulation study that evaluates

the (magnitude) estimation accuracy in the Supplementary Material Section D.4.

The remainder of the paper is organized as follows. Section 2 formulates the

problem, and Section 3 introduces the S2 prior. Section 4 shows how to obtain and

sample from the posterior distribution. Section 5 presents extensive numerical

results and comparisons, and Section 6 presents a metabolomics application using

a case-control study on inflammatory bowel disease. Section 7 establishes the

high-dimensional posterior consistency for the BJNS, and Section 8 concludes

the paper.

2. Framework for Joint Sparsity Selection

Suppose we have data from K a priori defined groups. For each group k

(k = 1, 2, . . . ,K), let Yk :=
{
yki:
}nk

i=1
denote p-dimensional i.i.d. observations from

a multivariate normal distribution, with mean 0 and covariance matrix
(
Ωk
)−1

,

which is specific to group k. Based on the discussion in the introductory section,

theK group-specific precision matrices
{
Ωk
}K
k=1

can share common edge patterns

across subsets of the K models, as delineated next. Our goal is to jointly select

the edge structures (or, equivalently, the sparsity patterns) for all K precision

matrices to account for these shared structures.
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Let P (K) denote the power set of {1, . . . ,K}, and for k = 1, . . . ,K, define

ϑk as follows:

ϑk = {r ∈ P (K) \ {0} : k ∈ r} , k = 1, . . . ,K. (2.1)

It is easy to check that each ϑk is the collection of subsets that contain k, and has

2K−1 members. Denote by Ψr the matrix that contains common patterns among

the precision matrices
{
Ωj
}
j∈r. For any singleton set r = {k}, the nonzero

elements in the matrix Ψr correspond to edges that are unique to group k. For

any other set r containing more than a single element, the nonzero elements in the

matrix Ψr correspond to edges (and their magnitudes) that are common across

all members in r (and not present in other networks). For example, the nonzero

elements in Ψ123 := Ψ{1,2,3} correspond to edges that are shared exclusively by

networks 1, 2, and 3.

Therefore, each precision matrix Ωk can be decomposed as

Ωk =
∑
r∈ϑk

Ψr, k = 1, . . . ,K, (2.2)

where
∑

r∈ϑk
Ψr accounts for all the structures in Ωk that are either unique to

group k (i.e., Ψk) or are shared exclusively between group k and some combi-

nation of other groups (i.e.,
∑

r∈ϑk\{k}Ψr). We further assume that Ψk ∈ M+
p ,

for k = 1, 2, . . . ,K, where M+
p denotes the space of all p× p matrices with posi-

tive diagonal entries. Finally, the diagonal entries of every joint matrix Ψr, with

r ∈ ∪Kk=1 (ϑk \ {k}), are set to zero; in other words, the diagonals entries of Ωk

are contained in the corresponding Ψk.

To illustrate the notation, consider the case of K = 3, and following the nota-

tion in (2.1), define the sets: ϑ1 = {{1}, {12}, {13}, {123}}, ϑ2 = {{2}, {12}, {23},
{123}}, and ϑ3 = {{3}, {13}, {23}, {123}}. Then, decompose the precision ma-

trices Ω1, Ω2, and Ω3, as follows:

Ω1 =
∑
r∈ϑ1

Ψr = Ψ1 + Ψ12 + Ψ13 + Ψ123,

Ω2 =
∑
r∈ϑ2

Ψr = Ψ2 + Ψ12 + Ψ23 + Ψ123,

Ω3 =
∑
r∈ϑ3

Ψr = Ψ3 + Ψ13 + Ψ23 + Ψ123,

where Ψ1, Ψ2, and Ψ3 are matrices that contain group-specific patterns, Ψ12,

Ψ13, and Ψ23 are matrices that contain patterns shared across pairs of models
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(for subsets of the edges), and the matrix Ψ123 contains patterns shared across

all models.

2.1. Identifiability considerations

A moment of reflection shows that the model decomposition (2.2) is not

unique. For example, for any arbitrary matrix X, the model (2.2) is equivalent

to Ωk =
∑

r∈ϑk
Φr, with Φr = Ψr+X and Φk = Ψk−{1/(2K−1 − 1)}X. Hence,

without imposing appropriate identifiability constraints, meaningful inference is

not feasible. To that end, rewrite the element-wise representation of model (2.2)

as

ωkij =
∑
r∈ϑk

ψrij , 1 ≤ i < j ≤ p, 1 ≤ k ≤ K, (2.3)

where ωkij and ψrij are the ijth coordinates of the matrices Ωk and Ψr, respectively.

We consider the upper off-diagonal entries, owing to the symmetry of the precision

matrix, and thus define the vectors θij , for every 1 ≤ i < j ≤ p, as

θij =
{
ψrij
}
r∈P(K)\{0} , (2.4)

where each θij has 2K − 1 distinct parameters. For identifiability purposes, we

require that each vector θij has at most one nonzero element. Note that under

this constraint, if an edge (i, j) is shared among many groups, the nonzero element

will be allocated to the maximal set s ∈ ∪Kk=1 (ϑk \ {k}), whereas all subsets of s

will be allocated a zero value. As an example, consider again the case of K = 3

groups and an edge (i, j) shared among all three groups. In this case, the edge is

allocated to the Ψ123 component and not to any other components, such as Ψ12

or Ψ13. Hence, Ψ123
ij is nonzero, but Ψ12

ij = Ψ13
ij = Ψ23

ij = Ψ1
ij = Ψ2

ij = Ψ3
ij = 0.

Next, we discuss the implications of this identifiability constraint.

The precision matrices {Ωk}Kk=1 have a total of Kp(p + 1)/2 parameters.

We expand these precision matrices in terms of the subset specific matrices

{Ψr}e∈P(K)\{0} (see (2.3)). This expanded set of parameter matrices has Kp +

(2K − 1)p(p − 1)/2 parameters, in all. The identifiability constraint reduces the

number of parameters to Kp + p(p − 1)/2, and thereby helps significantly with

computational scalability. Further, sparsity constraints are introduced by the

spike-and-slab priors described in Section 3.

Another consequence of the identifiability constraint is that if edge (i, j) is

shared by a subset s, then all {ωkij}k∈s have the same magnitude. Note that it

makes sense in a variety of applications for shared edges to have similar mag-
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nitudes and/or the same sign. In fact, the approaches of Danaher, Wang and

Witten (2014)and Li, McCormick and Clark (2018) based on a group/fused lasso

encourage similarity, or even exact equality of the magnitudes across the shared

edges. As demonstrated by the simulation results in Table 3, our working model

still performs well in selecting the sparsity/skeleton compared with existing meth-

ods when the shared edges have different magnitudes, but the same sign. This is

also supported by the theoretical results in Section 7, where we allow the true

precision matrices to have different magnitudes, but the same sign for the shared

edges.

Finally, because we employ a regression-based pseudo-likelihood (see (4.2),

which is well defined as long as the relevant precision matrix has positive diagonal

entries, we relax the p.d. constraint on {Ωk}Kk=1 for faster computation. Note that

neither the identifiability constraint nor the p.d. relaxation restrict the range of

allowable sparsity patterns, and both are only used in the working framework for

sparsity selection. Once the sparsity patterns are selected, if needed, we perform

a simple refitting step (see (4.4)) to obtain p.d. estimates of the K precision

matrices that obey the selected sparsity patterns and are completely free of the

above identifiability constraint.

3. Subset-Specific (S2) Prior Distribution

Next, we construct a novel prior distribution that respects the introduced

identifiability constraint and encourages further sparsity in the parameters. For

any generic symmetric p× p matrix A, define a = (a12, a13, . . . , ap−1p) and δA =

(a11, . . . , app), where because of the symmetric nature of A, the vector a contains

all of the off-diagonal elements, and δA contains all of the diagonal elements. In

particular, ψr is the vectorized version of the off-diagonal elements of Ψr. Using

the above notation, define Θ as the vector obtained by combining the vectors{
ψr, r ∈ P (K) \ {0}

}
. To illustrate, for K = 3 groups, Θ is given by

Θ = (ψ123′,ψ23′,ψ13′,ψ12′,ψ3′,ψ2′,ψ1′)′. (3.1)

Note that Θ is a rearrangement of the vector (θ12,θ13, . . . , θp−1p)
′. Thus, ac-

cording to the location of the nonzero coordinates in θij (2K possibilities), there

are 2Kp(p−1)/2 possible sparsity patterns across the K groups for Θ. Let ` be a

generic sparsity pattern for Θ, and denote the set of all 2Kp(p−1)/2 sparsity pat-

terns by L. To illustrate, consider K = 2 groups and p = 3 variables. In this case,

each matrix has three off-diagonal edges ({ij : 1 ≤ i < j ≤ p} = {12, 13, 23}).
Assume edge 12 is shared between the two groups, edge 13 is unique to group
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2, and edge 23 is absent from both groups. In this case, Θ is given by Θ =((
ψ12

12, 0, 0
)
,
(
0, ψ2

13, 0
)
, (0, 0, 0)

)′
, and the sparsity pattern extracted from Θ be-

comes: ` = ((1, 0, 0) , (0, 1, 0) , (0, 0, 0))′ . For every sparsity pattern `, let d` be

the density (number of nonzero entries) of `, and M` be the space where Θ

varies, when restricted to follow the sparsity pattern `. Furthermore, λ ∈ R2K−1
+

and Λ = diag(λ,λ, . . . ,λ) is a diagonal matrix (with p(p− 1)/2 diagonal blocks

of λ, the entries of which determine the amount of shrinkage imposed on the

corresponding elements in Θ. We specify the hierarchical prior distribution S2,

as follows:

π (Θ|`) =
|Λ``|1/2

(2π)d`/2
exp

(
−Θ′ΛΘ

2

)
I(Θ∈M`), (3.2)

π(`) ∝

{
(2π)d`/2|Λ``|−1/2qd`1 (1− q1)(

p

2)−d` d` ≤ τ,
(2π)d`/2|Λ``|−1/2qd`2 (1− q2)(

p

2)−d` d` > τ,
(3.3)

where Λ`` is a sub-matrix of Λ obtained after removing the rows and columns

corresponding to the zeros in Θ ∈ M`, and q1 and q2 are edge inclusion proba-

bilities, for the case of sparse (d` ≤ τ) and dense (d` > τ) Θ, respectively. An

equivalent “spike-and-slab” representation of (3.2) is

{θij}1≤i<j≤p are conditionally independent given ` and

π (θij |`) = 1{θij=0}1{`ij=0} +
∑

r∈P(K)\{0}

√
λr
2π
e−λrθ2ij,r/21{θij,−r=0}1{`ij,r=1}. (3.4)

Note that the distribution of θij is supported on the axes of R2K−1. The “spike”

corresponds to the point mass at the origin, and the “slabs” correspond to a nor-

mal distribution on an appropriate axis (when exactly one coordinate is nonzero).

In fact, when q1 = q2 = q, it follows by (3.3) that {`ij}1≤i<j≤p are a priori inde-

pendent, and the prior distribution of `ij is given by P (`ij,k = 1) =
√

2πλ−1
k q/C,

for every 1 ≤ k ≤ 2K − 1, and

P (`ij = 0) =
(1− q)
C

, where C = 1− q + q

2K−1∑
k=1

√
2π

λk

 .

Hence, smaller values of q can be used to encourage sparser models in high-

dimensional settings.

Note that the S2 prior allows at most one entry in each θij to be nonzero,

and thus sets at least {(p(p− 1)/2)(2K − 2)} parameters to be exactly equal to
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zero. In particular, the S2 prior considers the entire range of models allowable

under the identifiability constraint discussed in Section 2.1: at one end, we have

the model with complete sparsity, where Θ = 0, and at the other end, we have

models with
(
p
2

)
parameters where each θij containing exactly one nonzero entry.

In addition to forcing sparsity, the diagonal entries of Λ enforce a shrinkage to

the corresponding elements in Θ.

The vector Θ incorporates, only the off-diagonal entries of Ψ matrices. For

the diagonal entries, for every k ∈ {1, . . . ,K}, we let δΨk be the vector compris-

ing the diagonal elements of the matrix Ψk, and define ∆ as the vector of all

diagonal vectors δΨK , that is, ∆ = (δΨ1 , . . . , δΨK ). We assign an independent

Exponential(γ) prior to each coordinate of ∆ (diagonal element of the matrices

Ψk, for k = 1, . . . ,K), that is, π (∆) ∝ exp (−γ1′∆) IRKp
+

(∆). In the next sec-

tion we discuss selecting the hyperparameters Λ and γ. Because the diagonal

entries of every joint matrix Ψr, with r ∈ ∪Kk=1 (ϑk \ {k}), are set to zero, the

specification of the prior is now complete.

Remark 1. Prior distributions with similarities to the subset-specific one pro-

posed here have been used in genetic association (eQTL) analyses with hetero-

geneous subgroups; see Wen and Stephens (2014) and Flutre et al. (2013), and

the references therein. However, there are two crucial differences in these two

settings. First, in the eQTL setting, we have a single regression model with the

gene expression level as the response and a single predictor (genotype), whereas

in the current joint graphical model setting, we employ a pseudo-likelihood con-

sisting of p different regressions (corresponding to the p variables), each of which

has multiple (p − 1) predictors; see (4.1) and (4.2) below. Second, even though

the p.d. constraint on the precision matrices is relaxed for the sparsity selection,

the symmetry constraint is not (we still need the sparsity patterns for each Ωk to

be symmetric). This symmetry couples the p regressions that form the pseudo-

likelihood. These complications lead to unique challenges in the methodological

development and theoretical analysis of the joint graphical model setting.

4. The BJNS

With a prior distribution in hand, sparsity/network selection is based on a

pseudo-likelihood approach, leveraging the regression interpretation of the entries

of Ω. It can also be regarded as a weight function, and as long as the product of the

pseudo-likelihood and the prior density is integrable over the parameter space, we

can construct a (pseudo) posterior distribution for inference purposes. The main

advantage of using a pseudo-likelihood, as opposed to a full Gaussian likelihood,
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is that it allows for a sampling scheme from the posterior distribution that is

easy to implement, and it provides more robust results under deviations from the

Gaussian assumption, as illustrated by works in the frequentist domain (Khare,

Oh and Rajaratnam (2015); Peng et al. (2009)). Of course, the use of this pseudo-

posterior distribution has to be justified both by theoretical consistency results

and by assessing its performance in finite-sample simulation settings, which we

do in Section 7, respectively.

Note that if Y ∈ Rp with Cov(Y) = Ω−1, then

Ωj,−j = (Ωjk)1≤k≤p,k 6=j = argmin
w∈Rp−1

E
(
ΩjjYj + w′Y−j

)2
.

Hence, if Y1,Y2, . . . ,Yn are i.i.d. with covariance matrix Ω−1, then the above

regression interpretation of Ω can be used to construct the CONCORD pseudo-

likelihood introduced in Khare, Oh and Rajaratnam (2015), given by

exp

n
p∑
j=1

logωjj −
n

2
tr
(
Ω2S

) , (4.1)

where S denotes the sample covariance matrix. The CONCORD pseudo-likelihood

is jointly convex in the entries of Ω. This makes it both theoretically and computa-

tionally preferable to other variants of the regression-based pseudo-likelihood (see

the discussion in Khare, Oh and Rajaratnam (2015)). In addition, because the re-

gression interpretation does not depend on the Gaussian assumption, regression-

based approaches such as the one above in general provide more robust results

under deviations from that assumption.

Let Sk denote the sample covariance matrix of the observations in the kth

group. Based on the above discussion, we employ the pseudo-likelihood in (4.1)

and the model specification (2.2) to construct the joint pseudo-likelihood function

for K precision matrices, as follow:,

K∏
k=1

exp

n p∑
j=1

logψkjj −
n

2
tr


(∑
r∈ϑk

Ψr

)2

Sk


. (4.2)

Because we have parametrized the S2 prior in terms of (Θ,∆), we will rewrite

the above pseudo-likelihood function in terms of (Θ,∆) as well. Some straight-

forward algebra shows that
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tr


(∑
r∈ϑk

Ψr

)2

Sk

 =
(

Θ′ ∆′
)(Υ A

A′ D

)(
Θ

∆

)
, (4.3)

where Υ is a {p(p− 1)(2K − 1)}/2×{p(p− 1)(2K − 1)}/2 symmetric matrix with

entries that are either zero or a linear combination of {skij}
1≤k≤K
1≤i<j≤p; D is a Kp×Kp

diagonal matrix with entries
{
skii
}1≤k≤K

1≤i≤p ; a is a {p(p− 1)(2K − 1)}/2× 1 vector

with entries that depend on ∆ and {skij}
1≤k≤K
1≤i<j≤p; and A is a {p(p − 1)(2K −

1)}/2 ×Kp matrix such that A∆ = a. The algebraic details of the equality in

(4.3), structures of Υ and a, and algebraic forms of the joint and conditional

posterior densities for Θ and ∆ are provided in Supplementary Material Section

A.1.

Gibbs Sampling Scheme for the BJNS: Generating exact samples from the

joint posterior of (Θ,∆) is not feasible. Instead, we generate approximate sam-

ples by computing the full conditional distributions of the vectors {θij}1≤i<j≤p
and of the diagonal entries {ψkii}1≤i≤p,1≤k≤K .

Each θij contains 2K −1 elements, of which at most one is nonzero. For ease

of exposition, let θl,ij denote the lth element of θij , for l = 1, . . . , 2K − 1 (based

on (2.4), where every θl,ij represents a ψrij , for some r ∈ P(K)). Using the same

notation for the shrinkage parameters (diagonal elements of Λ), let λl,ij be the

shrinkage parameter corresponding to θl,ij . Because there are 2K possibilities for

the location of the nonzeros in each θij , θij is an element in one of the disjoint

spaces M0, M1, . . . , M2K−1, where M0 is the singleton set consisting of the zero

vector of length 2K − 1 and Ml (l = 1, . . . , 2K − 1) is the space spanned by the

lth unit vector of length 2K − 1. Denote by Θ−(ij) the sub vector Θ obtained

by removing θij . It can be shown that (Supplementary Material Section B.1)

the conditional density of θij given Θ−(ij),∆, is a mixture of univariate normal

densities respectively supported on {Mi}2
K−1
i=0 . Furthermore, conditional on Θ,

the diagonal entries
{
ψkii
}1≤k≤K

1≤i≤p are a posteriori independent. We provide an

efficient algorithm to sample them in Supplementary Material Section B.1.

Selection of Hyperparameters: Let θ and δ be generic elements of Θ and

∆, and let λ and γ be their corresponding shrinkage parameters. Selecting ap-

propriate values for the latter is an important task. In other Bayesian analyses

of high-dimensional models, shrinkage parameters are usually generated based

on an appropriate prior distribution; see Park and Casella (2008),Kyung et al.

(2010), and Hans (2009)) for regression analyses and Wang (2012) for graphical

models. We assign independent gamma priors on each shrinkage parameter λ
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or γ; specifically, λ, γ ∼ Gamma(r, s), for some hyperparameters r and s. The

amount of shrinkage imposed on each element θ and δ is calculated by consider-

ing the posterior distribution of λ and γ, given (Θ,∆). Straightforward algebra

shows

λ| (Θ,∆) ∼ Gamma(r + 0.5, 0.5θ2 + s), and γ| (Θ,∆) ∼ Gamma(r + 1, |δ|+ s).

Note that E{λ| (Θ,∆)} = (r + 0.5)/(0.5 θ2 + s) and E{γ| (Θ,∆)} = (r + 1)/

(|δ|+ s). That is, our approach selects the shrinkage parameters λ and γ based on

the current values of θ and δ in a way that larger (smaller) entries are regularized

less (more).

The selection of the hyperparameters r and s is also an important task and,

in our experience can affect performance, especially for small sample sizes. As

the sample size grows, the results become less sensitive to the choice of the hy-

perparameters (see Supplementary Material Section C, for an illustration). In

the absence of any prior information, we recommend the noninformative choice

r = 10−4 and s = 10−8, which corresponds to a flat prior for the λ and γ val-

ues, and is based on the suggestions made in Wang (2012) for hyperparameter

selection. In general, we found that this choice works well in the extensive sim-

ulations presented in Section 5. For q1 and q2, we suggest using q1 = q2 = 1/2.

To encourage sparser models in really high-dimensional situations, one can use

q1 = 1/p, q2 = qn1 (essentially zero), and τ = n/ log n, based on the theoretical

result in Section 7.

Finally, we construct the Gibbs sampler as follows: matrices {Ψk}Kk=1 are

initialized as the identity matrix, and {Ψr}{r:r∈P(K),&|r|>1} at zero. Then, in

each iteration of the MCMC chain, we update the vectors θij and the diagonal

entries ψkii, one at a time, using their full conditional posterior densities given

in (B.25) and (B.26), respectively. Procedure 1 in the Supplementary Material

Document describes one iteration of the resulting Gibbs sampler.

Procedure for Sparsity Selection and Uncertainty Quantification: Note

that the conditional posterior probability density of the off-diagonal elements of

θij is a mixture density that puts all of its mass on the events {θij : |θij |0 ≤ 1},
where |θij |0 is the number of nonzero coordinates of θij . This property of the

BJNS allows for model selection, in the sense that for every (post burn-in) iter-

ation of the Gibbs sampler, one can check whether θij = 0 or which element of

θij (there can be at most one nonzero element) is nonzero. Note that each ele-

ment of θij corresponds to a subset of {1, . . . ,K}. The nonzero frequency during
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sampling for any given subset S, normalized by the total number of iterations,

provides an estimate of the posterior probability that the edge (i, j) is shared

between elements of S. Hence, at the end of the procedure, we choose the ele-

ment with the highest nonzero frequency during sampling. Denoting the chosen

element (subset) by Ŝij , we set ωkij = 0 if k /∈ Ŝij , and ωkij 6= 0 if k ∈ Ŝij .

Procedure for P.D. Estimation: Once we have completed sparsity selection

in the form of subsets {Ŝij}, these subsets can be used to obtain sparsity graphs

{Ĝk}Kk=1 for the K group-wise precision matrices (i.e., (i, j) is in Ĝk if k ∈ Ŝij).
Next, we obtain the p.d. estimate Ω̂k of Ωk as the solution to the following

restricted optimization problem (implemented in R package glasso):

Ω̂k = argmin
Ω∈PĜk

{
tr(ΩSk)− log detΩ

}
. (4.4)

Here, PĜk is the space of all p.d. matrices, in which the (i, j)th entry is zero

whenever (i, j) is not an edge in Ĝk. Hence, the resulting “refitted” estimates

{Ω̂k}Kk=1 are p.d., and are not constrained to obey any working sign/magnitude

restrictions used in the sparsity selection process. Another possibility is to obtain

fully Bayesian refitted estimates by using G-Wishart priors on PĜk for each sub-

group, and then computing the posterior mean for each group using one of the

computationally efficient sampling methods developed in Mitsakakis, Massam

and Escobar (2011); Lenkoski (2013); Khare, Rajaratnam and Saha (2018).

5. Simulation Studies

In this section, we present simulations in which we evaluate the statistical and

computational properties of the BJNS algorithm. Most tables and figures, and

several additional simulation results are provided in the Supplementary Material.

5.1. Sparsity selection performance

We present two simulation studies to evaluate the sparsity selection perfor-

mance of the BJNS. In the first study (Section 5.1.1), we compare the perfor-

mance of the BJNS with that of other high-dimensional methodologies for joint

sparsity selection: (1) a separate estimation using a graphical lasso (Glasso) of

each Ωk; (2) the joint estimation of Guo et al. (2011) (JEM-G); (3) the two joint

graphical lasso variants, GGL and FGL of Danaher, Wang and Witten (2014);

and (4) the Bayesian neighborhood selection (BNS) of Lin et al. (2017). In the

second study (provided in Supplementary Material Section D.1, owing to space

constraints), we illustrate the strengths of the BJNS in terms of sparsity se-
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lection and uncertainty quantification using two scenarios, with four precision

matrices each. In the Supplementary Material Section D.3, we provide a compar-

ison with the joint structural estimation method (JSEM) of Ma and Michailidis

(2016), which is a supervised approach that incorporates exact information on

the shared sparsity structure. Finally, the C++ code for the BJNS is publicly

available at https://www.github.com/PeymanJalali/BJNS.

5.1.1. Sparsity selection comparison with other high-dimensional meth-
ods

We consider two settings involving six networks. We first consider a sce-

nario with K = 6 graphs, each with p = 200 variables (see Figure G.4 in the

Supplementary Material Section G), where we generate the adjacency matrices

corresponding to three distinct p-dimensional networks, so that the adjacency

matrices in each column of the plot in Figure G.4 in the Supplementary Mate-

rial Section G, are common. Next, we replace the connectivity structure of the

bottom-right diagonal block of size p/2 by p/2 in each adjacency matrix with

that of another two distinct p/2-dimensional networks. As such, the the graph-

ical models in each column exhibit the same connectivity pattern, except in the

bottom-right diagonal blocks of their adjacency matrices. The resulting true de-

compositions are Ωi = Ψi,i+1 + Ψ135 for odd i, and Ωi = Ψi−1,i + Ψ246 for even

i.

The sparsity level for all six networks is set to 92% (equivalently, the edge

density is set to 8%), and the proportion of common zeros (no edge present)

across all six networks is about 60%. Given the adjacency matrices, we then

construct p.d. inverse covariance matrices, with the nonzero off-diagonal entries

in each Ωk being uniformly generated from [−0.6,−0.4] ∪ [0.4, 0.6]. Based on

whether or not the corresponding shared edges have the same value, we consider

two settings: in the first, the values of the shared edges are set to be equal, and

in the second, the values of the shared edges are only constrained to share the

sign, and hence their absolute values can differ across networks.

For each of these two settings, in addition to the scenario with and edge den-

sity of 8% described above, we add 4% additional edges are added to each “true”

network to make the overall edge density 12%. For each of these scenarios, we

generated nk = 200, 300 independent samples, for each k = 1, . . . ,K, and exam-

ined the finite-sample performance of different methods in terms of identifying

the true graphs/networks, using optimal choices of the tuning parameters. To

select the optimal values of the tuning parameters in the penalized approaches,

we searched over a fine grid and chose the value that resulted in the minimum

https://www.github.com/PeymanJalali/BJNS


2684 JALALI, KHARE AND MICHAILIDIS

Table 1. MCC values for various joint sparsity selection approaches across six networks,
when the true sparsity patterns are random and shared edges have the same values. The
MCC values are averaged over 50 replications.

Edge density Glasso JEM-G GGL FGL BNS GemBag BJNS

n = 200

8% 47 (0.009) 50 (0.010) 47 (0.009) 49 (0.009) 35 (0.010) 43 (0.010) 57 (0.010)

12% 40 (0.008) 35 (0.010) 35 (0.008) 39 (0.009) 30 (0.010) 34 (0.010) 40 (0.010)

n = 300

8% 54 (0.009) 60 (0.010) 54 (0.008) 56 (0.008) 40 (0.010) 52 (0.010) 70 (0.010)

12% 47 (0.009) 43 (0.009) 42 (0.008) 47 (0.009) 35 (0.010) 42 (0.010) 51 (0.010)

Table 2. MCC values for joint sparsity selection approaches across six networks, when
the true sparsity patterns are random and shared edges have the same sign, but different
values. The MCC values are averaged over 50 replications.

Edge density Glasso JEM-G GGL FGL BNS GemBag BJNS

n = 200

8% 46 (0.009) 50 (0.011)) 47 (0.010) 49 (0.009) 36 (0.011) 43 (0.010) 54 (0.011)

12% 40 (0.008) 36 (0.009) 36 (0.008) 39 (0.009) 29 (0.010) 35 (0.009) 40 (0.009)

n = 300

8% 54 (0.010) 60 (0.010) 54 (0.009) 56 (0.008) 43 (0.010) 52 (0.011) 67 (0.010)

12% 48 (0.009) 44 (0.009) 43 (0.008) 48 (0.009) 37 (0.010) 43 (0.009) 51 (0.009)

BIC on the normalized data.

Once the off-diagonal elements are chosen, we set the diagonal elements of

each precision matrix to be bigger than the absolute value of its minimum eigen-

value. This ensures that the resulting precision matrices are stable and invertable.

Note that we need to compute the covariance matrices to be able to generate syn-

thetic data from multivariate normal distributions.

We assess the model/sparsity selection performance using the Matthews cor-

relation coefficient (MCC), which is defined as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

with TP, TN, FP, and FN denoting the number of true positives, true negatives,

false positives, and false negatives, respectively. Larger values of MCC indicate

better sparsity selection. Tables 1 and 2 show MCC values based on 50 replica-

tions for varying levels of sample size and true edge density.

Tables 1 and 2 show that the BJNS significantly outperforms the competing

methods across all settings considered. As expected, the overall performance

of all methods improves with additional samples, and worsens with higher edge

density in the true precision matrices. Glasso is competitive in scenarios with
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a smaller sample size (n = 200) and a higher edge density (12%), owing to

the overall heterogeneity of the six networks. Note that analogous performance

patterns hold for the settings in Tables 1 and 2. Finally, to check whether these

comparisons are affected by the edge value range, we replicated Table 2, this time

by generating the edges from [−0.8,−0.3] ∪ [0.3, 0.8]. The results were similar.

For more details, please see the Supplementary Material Section D.2.

5.2. Computational comparison with other sampling-based methods

The recent Gaussian likelihood-based methods of Shaddox et al. (2018) and

Petersen et al. (2020) use the spike-and-slab prior-based approach of Wang (2015)

to improve the computational scalability of the G-Wishart prior-based approach

of Peterson, Stingo and Vannucci (2015). These methods use a Gibbs sampler

to generate samples from the resulting posterior. In addition to the precision

matrix parameters, these models have latent variable parameters for edge inclu-

sion, and other hyperparameters to encourage similarity between graphs. The

overall updates for just the precision matrix parameters involve several matrix

inversions, and have a computational complexity of KO(min(np3, p4)) per itera-

tion. The updates for the other parameters, including the latent variables for the

sparsity patterns and other “relatedness” hyperparameters, require an additional

computation involving Metropolis–Hastings-based moves. Hence, these methods

are not typically scalable to settings beyond a hundred or so variables.

On the other hand, Lin et al. (2017) introduce a Bayesian analog of the

regression-based neighborhood selection approach of Meinshausen and Bühlmann

(2006) for joint sparsity selection, called BNS. They use an alternative Markov

random field approach to encourage similarity among the groups. A Gibbs sam-

pler is used to generate samples from the posterior distribution. Similarly to

Shaddox et al. (2018), the BNS undertakes a column-wise update for the preci-

sion matrices, which involves an inversion of (p− 1)× (p− 1) matrices. Although

the computational complexity of the precision matrix parameter updates remains

KO(min(np3, p4)), the simpler structure of the regression-based approach results

in several simplifications, including needing fewer matrix inversions per itera-

tion. In addition, the updates for the sparsity pattern-based latent parameters

and other hyperparameters are, in general, simpler than those in Shaddox et al.

(2018). Hence, the BNS provides a significant computational improvement, and

to the best of our knowledge, is the fastest sampling-based Bayesian approach for

joint graphical model selection.

Next, we derive the computational complexity for the BJNS Gibbs sampler

described in Procedure 1 (see the Supplementary Material), which does not in-
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Table 3. Wall clock time for the BJNS and BNS (4,000 iterations).

p = 50 p = 200 p = 500 p = 50 p = 200 p = 500

BJNS 0.003h 0.092h 1.193h 0.016h 0.510h 5.738h

BNS k = 2 0.029h 0.282h 6.503h k = 4 0.128h 0.672h 11.8h

volve any matrix inversions. In particular, for each (i, j), the full conditional

posterior distribution of θij is a mixture of 2K univariate densities. The sparsity

structure of Υ(ij)(−(ij)) and Θ−(ij) (see equations A.15 and A.16) and an anal-

ysis similar to that of Khare, Oh and Rajaratnam (2015, Lemma 6) imply that

the computation of each mean µl,ij in (B.24) can be achieved in O(min(n, p))

operations.

Hence, sampling from the mixture requires 2KO{min(n, p)} operations, im-

plying that the overall worst case computational complexity per iteration is

2KO{min(np2, np3)}. Hence, the computational complexity of the vanilla BJNS

algorithm is 2K/(Kp) times that of the BNS. In many applications, such as those

considered in Shaddox et al. (2018) and Petersen et al. (2020) and the IBD data

considered in Section 6, the number of groups K = 4. The BJNS/BNS computa-

tional complexity ratio turns out to be 0.065 (OxPhos pathway for the COPD data

in Shaddox et al. (2018)), 0.04 (Alzheimer’s MRI data in Petersen et al. (2020))

and 0.01 (IBD data in Section 6). In general, the computational complexity of

the BJNS is much smaller than that of the BNS for typical genomics data sets,

where K is small/moderate and p is much larger. To further illustrate the latter

point, we provide a wall clock time comparison between the BJNS and BNS in

Table 3 for simulations with various numbers of variables p and groups K. The

true data-generating process is identical to that described in the previous sub-

section (we use n = 3p/2). In order to make a fair comparison, we compiled the

MATLAB code of the BNS provided by its authors, to machine language code.

All computations were done on an intel CPU with 6 GB of memory. Overall,

BJNS has a significantly lower wall clock time requirement than that of the BNS

across all settings.

If K is large, we develop a preprocessing step in the Supplementary Material,

Section E, to reduce the size of the mixture from 2K to a much smaller user-

specified number MK . Taking into account the preprocessing step, the overall

per iteration computational complexity is further reduced to (K2 + MK)

O(min(np2, np3)).
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6. An Application of the BJNS to Metabolomics Data

In this section, we employ the proposed methodology to obtain networks

across four groups of patients who participated in the Integrative Human Mi-

crobiome Project. The data were downloaded from the Metabolomics Work-

bench (Study ID ST000923) and correspond to measurements of 428 primary

and secondary metabolites and lipids from stool samples of 542 subjects, parti-

tioned in the following groups: inflammatory bowel disease (IBD) patients (males

n1 = 202 and females n2 = 208), and non-IBD controls (males n3 = 72 and fe-

males n4 = 70), Groups 1–4, respectively. Because there are two factors in the

study design, the following model was fitted to the data:

Ω1 = Ψ1 + Ψ12 + Ψ13 + Ψ1234, Ω3 = Ψ3 + Ψ13 + Ψ34 + Ψ1234,

Ω2 = Ψ2 + Ψ12 + Ψ24 + Ψ1234, Ω4 = Ψ4 + Ψ24 + Ψ34 + Ψ1234.

The edge counts of the estimated precision matrices are shown in Table G.1

(set1: 289 lipids; set2: 139 proteins; set1.2: interaction edges between set1 and

set2), together with the components in the proposed decomposition. We also

applied the JEM-G and show the corresponding edge counts in Table G.1. Note

that the BJNS detects a large number of edges that are shared across all groups,

indicating common patterns. Furthermore, the component shared between male

and female IBD patients has a fairly large number of edges, indicating that the

disease status exhibits commonalities across genders. The graphs produced by

the JEM-G are much more similar, which is consistent with the fact that the

JEM-G differentiates graphs only by a multiplicative factor. The JEM-G also

tends to provide a significantly higher number of edges for each network.

Table G.2 illustrates the detailed uncertainty quantification provided by the

BJNS by providing posterior inclusion probabilities for all 10 possible subsets for

10 chosen edges. Figure G.5 presents the common connectivity patterns shared

across all four groups. The primary and secondary metabolites are depicted in

red, and the lipids are shown in blue. Not surprisingly, as shown in sub-figure

G.5a, primary metabolites (those involved in cellular growth, development, and

reproduction) form a fairly strongly connected network. In addition, based on

the sub-network in G.5b, there are different fairly strongly connected subnet-

works present among the lipids, including dicylglycerols (DAG) with tricylglyc-

erols (TAG), that are the main constituents of animal and vegetable fat (upper-

right corner of the plot), and various phospholipids (upper-left corner of the plot).

On the other hand, the connectivity between the lipids (whose functions include

storing energy, signaling, and acting as structural components of cell membranes)
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and the metabolites is not particularly strong; see the network in sub-figure G.5c.

In general, the results reveal interesting patterns that can be used to understand

the progression of IBD.

7. High-Dimensional Sparsity Selection Consistency

Let {Ω̄k,0}Kk=1 denote the true precision matrices, and P0 denote the prob-

ability measure associated with the corresponding true data-generating model.

Note that the identifiability constraint in Section 2.1 assumes that whenever an

edge (i, j) is shared in a subset S, the magnitudes of the (i, j)th entries in the

corresponding precision matrices are the same. We allow {Ω̄k,0}Kk=1 to deviate

from this assumption, that is, we allow the entries in {Ω̄k,0
i,j }k∈S to have different

magnitudes. We will show that as long as the deviation in the magnitudes is

moderate, the BJNS still leads to consistent high-dimensional model selection.

Define the matrices {Ωk,0}Kk=1 as follows. For each 1 ≤ i 6= j ≤ p and

1 ≤ k ≤ K, if Ω̄k,0
ij 6= 0, set

Ωk,0
ij =

∑
k′:Ω̄k′,0

ij 6=0
Ω̄k′,0
ij

|k′ : Ω̄k′,0
ij 6= 0|

,

and set Ωk,0
ij = Ω̄k,0

ij otherwise. The matrices {Ωk,0}Kk=1 can be thought of as har-

monized versions of the true precision matrices {Ω̄k,0}Kk=1, which obey the identi-

fiability constraint in Section 2.1. We define Dn = max1≤i 6=j≤p,1≤k≤K |Ωk,0
ij −Ω̄k,0

ij |
as a discrepancy measure between the true and the harmonized precision matri-

ces.

Let {Ψr,0, r ∈
⋃K
k=1 ϑk} be such that Ωk,0 =

∑
r∈ϑk

Ψr,0 corresponds to the

decomposition of each harmonized precision matrix, for k = 1, . . . ,K. Let Θ0

be the vectorized version (see (3.1)) of the off-diagonal elements of the matrices

{Ψr,0, r ∈
⋃K
k=1 ϑk}. Let t denote the sparsity pattern in Θ0, Mt denote the

corresponding parameter space, and dt denote the number of nonzeros in Θ0.

Note that our main objective is to accurately select the shared sparsity pat-

terns in the off-diagonal entries of the group-specific precision matrices. Hence,

following the pseudo-likelihood-based high-dimensional consistency proofs in Peng

et al. (2009), Khare, Oh and Rajaratnam (2015), and Atchade (2019), we con-

sider a setting in which we first obtain sufficiently accurate estimates {Ω̂k
ii}

1≤k≤K
1≤i≤p

of the diagonal entries (see eq. (F.34) in the Supplementary Material, and the

subsequent discussion for a quick way of obtaining such estimates using parallel

lasso regressions). Denote the resulting estimates of the vectors ∆ and a by ∆̂
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and â, respectively. We now consider the accuracy of the shared sparsity pattern

selection for the off-diagonal entries after running the BJNS procedure with the

diagonal entries fixed at ∆̂. For this section, we assume that the entries of λ are

fixed. The following assumptions are needed to establish our consistency results.

Assumption 1. dt
√

log p/n→ 0, as n→∞.

This standard assumption essentially states that the number of variables p has

to grow more slowly than e(n/d2t); see, for example, Banerjee and Ghosal (2014,

2015).

Assumption 2. (Sub-Gaussianity). There exists c > 0, independent of n and

K, such that E
{

exp
(
α′yk

i:

)}
≤ exp (cα′α). Theorem 1 shows that the BJNS

procedure is robust (in terms of consistency), even under a misspecification of the

data-generating distribution, as long as its tails are sub-Gaussian.

Assumption 3. (Bounded eigenvalues). There exists ε̃0 > 0, independent of

n and K, such that the eigenvalues of Ω̄k,0 are uniformly bounded above and below

by ε̃0 and 1/ε̃0, respectively. This is a standard assumption in high-dimensional

consistency analysis; see, for example, Cao, Khare and Ghosh (2019).

Assumption 4. (Signal strength). Let sn be the smallest nonzero entry (in

magnitude) in the vector Θ0. We assume (1/2) log n+ dtbn/(ns
2
n) → 0, where

bn = log p + ndtD
2
n. This is again a standard assumption. Similar assumptions

on the signal size can be found in Khare, Oh and Rajaratnam (2015) and Peng

et al. (2009).

Assumption 5. (Edge probability decay). Let q1 = e−a2dtbn, q2 = e−a3nbn,

and τn = (ε̃0/4c)
√
n/log p, for constants a1 and a2 (not depending on n), spec-

ified in (F.39) in the Supplementary Material. Assumption 5 a priori penalizes

patterns with too many nonzeros (see Narisetty and He (2014) and Cao, Khare

and Ghosh (2019) for similar assumptions). Next, we establish that the posterior

mass assigned to the true model converges to one in probability (under the true

model).

Theorem 1. (Strong selection consistency). Based on the joint posterior

distribution given in (B.21), and under Assumptions 1–5, the following holds:

π
{

Θ ∈Mt|∆̂,Y
}

P0−→ 1, as n→∞. (7.1)
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8. Conclusion

We have proposed a comprehensive Bayesian methodology for the joint es-

timation of multiple graphical models. Leveraging a novel multivariate prior

distribution and a pseudo-likelihood, our model enables fast and provably accu-

rate estimations. We have shown how our methodology uses the information that

is shared across groups to provide greater accuracy. We also develop a computa-

tional strategy for dealing with a large number of networks K, and investigate it

numerically in Section E of the Supplementary Material. Furthermore, simulation

studies illustrate the superior performance of the BJNS in comparison with that

of frequentist and Bayesian competitors. Finally, an application to IBD disease

progression reveals interesting patterns.

Supplementary Material

The Supplement contains the proofs of all the main technical results stated

in the paper, together with additional auxiliary technical lemmas, together with

additional tables and figures for the numerical experiments and the real data

discussed in the main paper.
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