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1. Introduction

The Cox (1972) proportional hazards model along with the partial likelihood
(Cox (1975)) has been extensively applied to survival data. The theoretical
properties of the maximum partial likelihood estimator can be easily derived by
expressing the partial likelihood score as a counting process-based martingale
integral; see Andersen and Gill (1982), Fleming and Harrington (1991), and
Kalbfleisch and Prentice (2002).

For sequential analysis, the partial likelihood score needs to be evaluated
along the calendar time and its asymptotic behavior is crucial to deriving the
corresponding group sequential methods. Due to the staggered entry of patients,
the partial likelihood score as a process of calendar time is no longer a martingale
integral. In a pioneering paper, Sellke and Siegmund (1983) showed that the
score process can still be approximated by the Brownian motion process, thereby
laying the foundation for group sequential analysis of survival studies. Slud
(1984) also established the Brownian approximation to the log-rank process for
survival outcome under staggered entry. A Gaussian random field approximation
to the two-dimensional score process in the case of two-sample comparison was
established by Gu and Lai (1991); see also Chapter 10 in Andersen et al. (1993).
More general results about Gaussian random field approximation to the two-
dimensional score process under the Cox proportional hazards regression can be
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found in Bilias, Gu, and Ying (1997), where modern empirical process theory is
applied to derive certain key results, bypassing the martingale formulation.

The results of Sellke and Siegmund (1983) can be readily applied in the
context of group sequential analysis as described in Pocock (1977), O’Brien and
Fleming (1979), and Lan and DeMets (1983). However, their results are not
applicable under adaptive designs where treatment allocation may depend on
preceding outcomes. This is because the outcome variables are dependent so
that neither the counting process-martingale argument nor the empirical process
theory may be used to derive the desirable Brownian motion approximation. For
some initial ideas of adaptive design, see Thompson (1933) and Robbins (1952);
for early works, see Zelen (1969), Wei and Durham (1978), and Wei (1978); for
more recent developments, see Flournoy and Rosenberger (1995) and Hu and
Rosenberger (2006).

The existing literature on response adaptive treatment allocation methods
primarily deals with continuous or binary outcome variable. Recently Zhang
and Rosenberger (2007) developed a parametric approach to survival outcomes.
They assumed that survival times follow the exponential or, more generally, the
Weibull family of distributions. They showed that their approach can result
in approximately optimal treatment allocation assuming survival times are rela-
tively shorter than the follow up period.

The main focus of this paper is to extend the results of Sellke and Siegmund
(1983) to the situation in which treatment allocations may depend on preceding
outcomes. A key step in the new development is the expression of the partial
likelihood score process in terms of integrals over the calendar and entry times.
As a result, the usual martingale structure is preserved and can be applied to
establish large sample properties. Indeed, it is shown that the partial likelihood
score process is approximated by a time-rescaled Brownian motion process and
that the maximum partial likelihood estimator is asymptotically normal.

The remainder of this paper is organized as follows. Section 2 first explains
why the current martingale approach fails under the outcome dependent alloca-
tions, and then introduces a new approach. The corresponding functional central
limit theorems are presented in Section 3, where convergence properties for the
corresponding maximum partial likelihood estimator are also established. Some
discussion is in Section 4. Most technical developments are presented in the
supplementary material.

2. Notation and Model Specification

We first introduce the setup and define some basic quantities. We consider
a follow up study with calendar time period [0, τ ], where τ < ∞. Let n be the
sample size of the study. Denote by Un,i the entry time for individual i, i ≥ 1.
For technical convenience, we assume that the Un,i have no ties. Thus, without
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loss of generality, Un,1 < Un,2 < · · · < Un,i < · · · . Define the associated counting
process for entry times

Rn(t) =
∑
i≥1

I(Un,i≤t) , (2.1)

so Rn(t) is the total enrollment up to time t and Rn(τ) = n. By large sample, we
mean that n goes to infinity while τ remains fixed. In other words, the situation
considered here is high rate of entry over a fixed time period. An example of such
kind in survival studies is the Beta-Blocker Heart Attack Trial (BHAT (1982)),
where 3837 persons entered during the 27-month follow up period. For notional
convenience we omit the subscript n in Un,i when no confusion arises.

For subject i, let Ti denote the survival time (since entry) and Ci the cen-
soring time. Throughout, a ∧ b = min{a, b}, a ∨ b = max{a, b}, a+ = max{0, a},
and a− = max{0,−a}. Let T̃i = Ti ∧Ci and ∆i = I(Ti≤Ci), indicating failure (1)
or censoring (0). Thus, if ∆i = 1(0), then individual i experiences failure (cen-
soring) at calendar time Ui+ T̃i. Furthermore, there is a p-dimensional covariate
vector Zi that may include ith individual’s treatment assignment and certain
relevant baseline characteristics.

We describe the Cox model specification with independent censoring under
outcome dependent allocation as follow. For the ith subject, given Zi, Ti is
conditionally independent of Ci and {Tj , Cj , Zj ; j < i} and has a proportional
hazards model specification

λi(t) = exp(β′Zi)λ0(t),

where β is an unknown p-dimensional regression parameter of interest and λ0 is
the baseline hazard function. Note that under adaptive allocation, given Zj , Tj

may not be independent of Ti if i > j since Zi, which includes the treatment
allocation of the ith subject, may depend on the survival experiences of other
subjects who enrolled before time Ui. For instance, in Figure 1, we can see that Zi

(and Ti) may depend on the survival information Tj under the outcome dependent
allocation scheme. Compared with the independent enrollment scheme, as in
Sellke and Siegmund (1983) where {Ti, Ci, Zi} are all assumed to be independent,
outcome dependent allocation violates the independent assumption, raising the
issue of validity for the existing sequential testing procedures. We demonstrate
the theoretical challenges of the violation of independence in the next subsection,
and propose our new approach in Subsection 2.2.

2.1. Partial likelihood score process over survival time

With the usual nonadaptive allocation, i.e., observations from individual
units are mutually independent, the partial likelihood (Cox (1975)) takes the
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Figure 1. Fn,t(s): σ-filtrations defined along calendar time and survival
time.

form

PL(t) =
∏

i: T̃i≤(t−Ui)
+,

∆i=1

{
exp(β′Zi)∑

j:T̃j≤(t−Uj)
+,

T̃j≥Ti

exp(β′Zj)

}
. (2.2)

Taking logarithm and differentiating with respect to β results in the correspond-

ing partial likelihood score process

Un(t) =
∑

i:Ui≤t

∫ t

0
[Zi − Z̄n(β; t, s)]Ni(t, ds), (2.3)

where

Z̄n(β; t, s) =

∑
i:Ui≤t−s Zi exp(β

′Zi)I(T̃i≥s)∑
i:Ui≤t−s exp(β

′Zi)I(T̃i≥s)

,

Ni(t, s) = ∆iI(T̃i≤s∧(t−Ui)+) .

Let

Mi(t, s) =Ni(t, s)−
∫ s

0
I(T̃i∧(t−Ui)+≥w) exp(β

′Zi)λ0(w)dw. (2.4)

It is well known that the partial likelihood score does not change numerically

when the Ni are replaced by the Mi, so

Un(t) =
∑

i:Ui≤t

∫ t

0
[Zi − Z̄n(β; t, s)]Mi(t, ds). (2.5)



SEQUENTIAL ANALYSIS UNDER RESPONSE DEPENDENT ALLOCATION 1765

The integration in (2.5) is with respect to survival time s. Under the usual
independent sampling scheme, the Mi are martingales in survival time s with
a suitably defined σ-filtration as in (2.6) below (Andersen et al. (1993)). Fur-
thermore, the integrands are predictable, and Un(t) is a martingale integral with
respect to survival time s. As a result, the martingale central limit theorem (Re-
bolledo (1980)) can be applied to obtain the normal (Brownian) approximation.

Under outcome dependent allocation, we show that the martingale (along
survival time s) argument is no longer valid. For s ≥ 0, let Fn,t(s) be the
σ-filtration generated by observations up to survival time s and calendar time t,

Fn,t(s) = σ
{
I(Ui≤t), UiI(Ui≤t), ZiI(Ui≤t), I(T̃i≤s∧(t−Ui)+),

Ni(t, s), T̃iI(T̃i≤s∧(t−Ui)+), i = 1, · · · , n
}
. (2.6)

Figure 1 illustrates the information accumulated along survival time. The grey
trapezoid area shows the filtration Fn,t(s). From Figure 1, we can see that for
the ith subject enrolled at time Ui, although its survival time is less than s, its
treatment allocation (Zi) depends on the outcome information of Tj , which is
outside of Fn,t(s). Therefore, Mi(t, s) may not be a martingale with respect to
filtration Fn,t(s) under outcome dependent allocation. However, if {Ti, Ci, Zi}
are all independent as is the case in Sellke and Siegmund (1983) and Gu and Lai
(1991), the Mi(t, s) are still Fn,t(s) martingales in s for any fixed t.

2.2. Calendar time based score process

We introduce a new way to represent the partial likelihood score so that a

useful martingale structure will arise. This representation expresses the score

process in terms of integrals over entry time and calendar time. Use of entry

time instead of survival time is natural in terms of the information accumulation

from data and the adaptive treatment allocation process.

With a slight abuse of notation, let T̃u, Zu, and ∆u refer to T̃i, Zi, and ∆i

when u = Ui, which is well defined since the Ui are distinct for different i. Define

a random counting measure

pn(ds du) = I(u+T̃u=s,∆u=1)dR(u)

that defines a bivariate counting process along both calendar time s and entry

time u. It equals 1 if there exists a subject i such that Ui = u and Ti = s − u;

otherwise it equals 0. Based on this two-dimensional counting process, the Cox

score in (2.3) can be rewritten as an integral with respect to both calendar time

and entry time:

Un(t) =

∫ t

0

∫ s

0
[Zu − Z̄n(β; t, s− u)]pn(ds du), (2.7)
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Figure 2. Fn,t,u: σ-filtrations defined along calendar time and entry time.

Let Fn,t denote the corresponding σ-filtration containing all the information ac-

cumulation over calendar time period [0, t],

Fn,t = σ
{
I(Ui≤t), UiI(Ui≤t), ZiI(Ui≤t),

I(T̃i≤(t−Ui)+), ∆iI(T̃i≤(t−Ui)+), T̃iI(T̃i≤(t−Ui)+); i = 1, · · · , n
}
.

A sub-σ-algebra of Fn,t that is of interest is

Fn,t,ϑ = σ
{
I(Ui≤ϑ), UiI(Ui≤ϑ), ZiI(Ui≤ϑ), I(T̃i≤(t−Ui)+,Ui≤ϑ),

∆iI(T̃i≤(t−Ui)+,Ui≤ϑ), T̃iI(T̃i≤(t−Ui)+,Ui≤ϑ), i = 1, · · · , n
}
.

Intuitively, Fn,t,ϑ represents information up to calendar time t for individuals who

enrolled before time ϑ, where 0 < ϑ ≤ t. See Figure 2 for an illustration. The

grey trapezoid area shows the filtration Fn,t1,u1 that contains all the information

up to calendar time t1 and enrollment time u1. Compared with Figure 1, we can

see that the treatment allocation information of the ith subject (enrolled at time

Ui) is now included in the new filtration.

Without loss of generality, we assume that R(t) and Zt are predictable with

respect to {Fn,t, t ≥ 0}, which is standard in survival analysis. Note that for the

ith subject, by the Dood-Meyer decomposition and the Cox model assumption,

the compensator for the counting measure p(ds, u = Ui) = I(Ui+T̃i=s,∆u=1) is
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I(T̃i≥s−Ui)
exp{β′Zi}λ0(s− Ui)ds when s > Ui. This follows from the fact that

P (Ui + Ti ∈ (s, s+ ds]|Fn,s) = I(T̃i>s−Ui)
exp{β′Zi}λ0(s− Ui)ds.

More generally, let

qn(ds du) = I(T̃u≥s−u) exp{β
′Zu}λ0(s− u)dR(u)ds.

Note that I(u<s)qn(ds du) is the compensator of I(u<s)pn(ds du). Thus we have

the following lemma.

Lemma 1. For t ∈ (0, τ ],

Mn(t) ,
∫ t

0

∫ t

0
I(u<s)[pn(ds du)− qn(ds du)] (2.8)

is a {Fn,t, t ≥ 0} martingale. Moreover, for fixed t,

Mn(t, ϑ) ,
∫ t

0

∫ ϑ

0
I(u<s)[pn(ds du)− qn(ds du)], (2.9)

as a process in ϑ, is a {Fn,t,ϑ, 0 ≤ ϑ ≤ t} martingale.

Let Mn(ds du) = I(u<s)[pn(ds du)− qn(ds du)] be the corresponding martin-

gale measure. The Cox score process in (2.7) can then be written as

Un(β; t) =

∫ t

0

∫ t

0
[Zu − Z̄n(β; t, s− u)]I(u<s)pn(ds du)

=

∫ t

0

∫ t

0
[Zu − Z̄n(β; t, s− u)]Mn(ds du).

More generally, we can define a two-parameter score process with respect to

calendar time t and entry time ϑ as

Un(β; t, ϑ) =

∫ t

0

∫ ϑ

0
[Zu − Z̄n(β; t, s− u)]Mn(ds du). (2.10)

Note that Un(β; t, t) = Un(β; t).

The expression here for Un(β; t) is an integral along the calendar time instead

of the survival time as in standard counting process approach to survival analysis.

Through this framework, responses and covariates history is expressed by the

filtration Fn,t. As a result, it is not difficult to show that Mn,t is a martingale

with respect to σ-filtration Fn,t (Lemma 1). This forms a crucial step for us to

use the martingale central limit theorem to obtain the convergence for Un(β; t);

see Section 3 for more details.
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3. Large Sample Theory

In this section, we establish large sample properties that are important for

the usual statistical inferences, especially for sequential analysis. We first deal

with the score process, and then with the estimator.

3.1. Weak convergence of score process

We show here the weak convergence of Un to a Gaussian random process.

This extends results of Sellke and Siegmund (1983), Gu and Lai (1991), and

Bilias, Gu, and Ying (1997) to cover the case with outcome dependent allocation

schemes.

We adopt the setting of Bilias, Gu, and Ying (1997) and restrict t to [0, τ ]

with τ satisfying

lim inf
n→∞

1

n

n∑
i=1

P (T̃i ≥ τ) > 0 (3.1)

and λ0 being bounded on [0, τ ]. Here we are adopting asymptotics in terms of

a high rate of entry over a fixed time interval (large n), as opposed to a fixed

rate of entry over a long time interval (large τ); see Siegmund (1985; p. 126).

This allows us to develop a Gaussian random field approximation as in Gu and

Lai (1991), which also assumes large n. For asymptotics under large τ , certain

rescaling is needed and the corresponding Gaussian approximations can also be

developed under certain stability assumptions (Siegmund (1985)).

For a p-dimensional covariate vector Z with regression parameter vector β,

let Z⊗0=1, Z⊗1=Z, and Z⊗2=ZZ ′. For k=0, 1 and 2, ϑ>0, and w>0, let

Sn,k(β;ϑ,w) =
∑

i:Ui≤ϑ

Z⊗k
i exp(β′Zi)I(T̃i≥w)

=

∫ ϑ

0
I(T̃u≥w)Z

⊗k
u exp(β′Zu)dR(u). (3.2)

As in Section 2.2, take

Un(β; t) =

∫ t

0

∫ t

0
[Zu − Z̄n(β; t, s− u)]Mn(ds du),

Un(β; t, ϑ) =

∫ t

0

∫ ϑ

0
[Zu − Z̄n(β; t, s− u)]Mn(ds du),

where

Z̄n(β; t, w) =
Sn,1(β; t− w,w)

Sn,0(β; t− w,w)
.

Let β0 be the true regression parameter. We require conditions.
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C1 The Zi are uniformly bounded in the sense that there exists a non-random

constant Kτ such that supi:Ui≤τ |Zi| ≤ Kτ , where | · | denotes the L1 norm

for a p-dimensional vector.

C2 For k = 0, 1, and 2, there exist non-random constants Ēk(ϑ,w) such that,

as n → ∞,
1

n
Sn,k(β0;ϑ,w)− Ēk(ϑ,w)

P−→ 0

uniformly for all positive ϑ,w satisfying ϑ+ w ≤ τ .

Remark 1. Conditions C1 and C2 are analogous to Conditions 1−3 in Bilias,

Gu, and Ying (1997). In particular, C1 can be extended to a moment condition

on Z for the components related to the baseline covariates. Condition C2 is

required so that the sample moments for the Zi are stable.

Theorem 1. If C1 and C2 are satisfied, then

(i) n−1/2Un(β0; t) converges weakly to a vector-valued zero-mean Gaussian pro-

cess ξ on [0, τ ] with covariance function

E[ξ(t1)ξ
′(t2)] =

∫ t1∧t2

0

[
Ē2(t1 ∧ t2 − w,w)− Ē⊗2

1 (t1 ∧ t2 − w,w)

Ē0(t1 ∧ t2 − w,w)

]
λ0(w)dw;

(ii) n−1/2Un(β0; t, ϑ) converges weakly to a vector-valued zero-mean Gaussian

random field ξ̃(t, ϑ) on {(t, ϑ) : 0 ≤ ϑ ≤ t ≤ τ} with covariance function

E[ξ̃(t1, u1)ξ̃
′(t2, u2)]

=

∫ t1∧t2

0

[
Ẽ2(u1, u2, t1, t2, w)− 2

Ē1(t1 ∧ t2 − w,w)

Ē0(t1 ∧ t2 − w,w)
Ẽ′

1(u1, u2, t1, t2, w)

+
Ē⊗2

1 (t1 ∧ t2 − w,w)

(Ē0(t1 ∧ t2 − w,w))2
Ẽ0(u1, u2, t1, t2, w)

]
λ0(w)dw,

where Ẽk(u1, u2, t1, t2, w) = Ēk(u1 ∧ u2 ∧ (t1 ∧ t2 − w), w), k = 0, 1, and 2.

Remark 2. Theorem 1 extends existing results by allowing allocation schemes

to be dependent on previous information. In addition, it implies that ξ̃ has

independent increments in calender time t. Thus the diagonal process ξ̃(t, t) =

ξ(t) is a time-rescaled Brownian motion when dim(Z) = 1, and a vector-valued

Gaussian process with independent increments when dim(Z) > 1.

Remark 3. To apply Theorem 1, we need to estimate the covariance function

E[ξ̃(t1, u1)ξ̃
′(t2, u2)]. A natural approach is to replace the unknown quantities Ēk

and Λ(·) with Sn,k/n and the Nelson-Aalen estimator, respectively. Consistency

of the corresponding covariance estimator can be derived under C1 and C2.
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The proof of the next lemma, which plays a key role in the proof of Theorem

1, is given in the supplementary material.

Lemma 2. Under the assumptions of Theorem 1,

sup
ϑ,t∈[0,τ ]

1√
n

∫ t

0

∫ ϑ

0

[
Z̄n(β0; t, s− u)− Ē1(t− (s− u), s− u)

Ē0(t− (s− u), s− u)

]
Mn(ds du)

P−→ 0.

Remark 4. Lemma 2 shows that Z̄n may be replaced by its (non-random) limit.

The replacement makes it easy to use the martingale structure along the calendar

time and the entry time without appealing to the empirical process theory that

may not apply.

Proof of Theorem 1. When ϑ = t, Un(β0; t, ϑ) = Un(β0; t), so we need only

prove the weak convergence of n−1/2Un(β0; t, ϑ). By Lemma 2, it suffices to show

the weak convergence of

n−1/2Ũn(β0; t, ϑ) = n−1/2

∫ t

0

∫ ϑ

0

[
Zu − Ē1(t− (s− u), s− u)

Ē0(t− (s− u), s− u)

]
Mn(ds du).

We first show that for any positive integer k and partition 0 ≤ u1 < · · · < uk ≤ τ ,

{n−1/2Ũn(β0; t, u1), . . . , n
−1/2Ũn(β0; t, uk), 0 ≤ t ≤ τ} converges weakly to a

multivariate Gaussian process {ξ̃(t, u1), . . . , ξ̃(t, uk), 0 ≤ t ≤ τ}. By Lemma 1,

we have that the {Ũn(β0; t, uj),Fn,t, 0 ≤ t ≤ τ} are martingales along calendar

time t with predictable variation processes

⟨n−1/2Ũn(β0; . . . , ui), n
−1/2Ũn(β0; . . . , uj)⟩(t)

=
1

n

∫ t

0

∫ ui∧uj∧s

0

[
Zu − Ē1(t− (s− u), s− u)

Ē0(t− (s− u), s− u)

]⊗2

qn(ds du)

P−→
∫ t

0

[
Ē2(ui ∧ uj ∧ (t− w), w)− 2

Ē1(t− w,w)

Ē0(t− w,w)
Ē′

1(ui ∧ uj ∧ (t− w), w)

+
Ē⊗2

1 (t− w,w)

(Ē0(t− w,w))2
Ē0(ui ∧ uj ∧ (t− w), w)

]
λ0(w)dw,

where the convergence in probability is uniform in t and follows from C2. By the

martingale central limit theorem (Rebolledo (1980)), any linear combination of

{n−1/2Ũn(β0; t, u1), . . . n
−1/2Ũn(β0; t, uk), 0 ≤ t ≤ τ} converges weakly to the cor-

responding linear transformation of {ξ̃(t, u1), . . . , ξ̃(t, uk), 0 ≤ t ≤ τ}. Therefore,
we obtain the weak convergence of {n−1/2 Ũn(β0; t, u1), . . . , n

−1/2Ũn (β0; t, uk),

0 ≤ t ≤ τ} via the Cramér-Wold device. In particular, n−1/2Ũn(β0; t, ϑ) con-

verges in finite dimensional distributions to a Gaussian random field.
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In the supplementary material, it is shown (Proposition 1) that for any ϵ > 0,

there exist a constant k0 < ∞ and partition 0 = un,0 ≤ un,1 ≤ · · · ≤ un,k0 = τ

such that, for all large n,

P
(

max
0≤j<k0

sup
ϑ∈[un,j ,un,j+1];

0≤t≤τ

1√
n
|Ũn(β0; t, ϑ)− Ũn(β0; t, un,j)| ≥ ϵ

)
≤ ϵ.

Thus, n−1/2Ũn(β0; t, ϑ) is tight. Combined with the finite dimensional distribu-

tional convergence result, we obtain the desired conclusion.

3.2. Asymptotic normality of maximum partial likelihood estimator

We can use Un(β0; t, ϑ) to obtain an asymptotically unbiased estimator of β

for each fixed (t, ϑ). Specifically, let β̂(t, ϑ) be the solution to Un(β; t, ϑ) = 0. At

ϑ = t, β̂(t, t) is simply the maximum partial likelihood estimator with observable

data at calendar time t. We show in this subsection that β̂(t, ϑ) is asymptotically

normal.

We first state a condition that ensures that the information matrix is non-

singular when normalized by the sample size n.

C3 There exists τ0 ∈ (0, τ ] such that for all (ϑ, τ) satisfying τ0 ≤ ϑ ≤ t ≤ τ ,

λmin(A(t, ϑ)) ≥ v0 > 0, a.s., where

A(t, ϑ) =

∫ t

0

[
Ē2(t− w,w)− Ē⊗2

1 (t− w,w)

Ē0(t− w,w)

]
Ē0(ϑ ∧ (t− w), w)

Ē0(t− w,w)
λ0(w)dw,

Ēk defined as in C2 and λmin(A) the minimum eigenvalue of a symmetric

matrix A.

Theorem 2. Suppose that C1, C2, and C3 are satisfied. Then {
√
n(β̂(t, ϑ) −

β0), τ0 ≤ ϑ ≤ t ≤ τ} converges weakly to a vector-valued zero-mean Gaussian

process η with covariance function

E[η(t1, u1)η
′(t2, u2)] = (A(t1, u1))

−1E[ξ̃(t1, u1)ξ̃
′(t2, u2)] (A(t2, u2))

−1 ,

where ξ̃ is the Gaussian process defined as in Theorem 1.

Proof of Theorem 2. By Lemma 3 in the supplementary material, we have

that, as n → ∞,

sup
0≤ϑ≤t≤τ

∣∣∣ 1
n
Un(β0; t, ϑ)

∣∣∣ P−→ 0. (3.3)

Condition C2 implies that

sup
0≤ϑ≤t≤τ

∣∣∣∣ 1n ∂

∂β
Un(β0; t, ϑ) +A(t, ϑ)

∣∣∣∣ P−→ 0. (3.4)
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Since 1
n

∂
∂βU(β0; t, ϑ) has a uniformly bounded derivative with respect to β, C3

and (3.4) imply that there exists a neighborhood of β0, N (β0), such that

lim inf
n→∞

inf
τ0≤ϑ≤t≤τ

inf
β∈N (β0)

λmin

(
− 1

n

∂

∂β
U(β; t, ϑ)

)
≥ v0

2
> 0. (3.5)

Therefore, by (3.3), (3.5), and Lemma 5 in the supplementary material, together

with the positive definiteness of − 1
n

∂
∂βU(β; t, ϑ), we have

sup
τ0≤ϑ≤t≤τ

|β̂(t, ϑ)− β0|
P−→ 0.

By the Taylor series expansion, we have that

0 =
1√
n
U(β̂(t, ϑ); t, ϑ)

=
1√
n
U(β0; t, ϑ) +

1

n

∂

∂β
U(β0; t, ϑ)

√
n(β̂(t, ϑ)− β0) + op(1),

uniformly in τ0 ≤ ϑ ≤ t ≤ τ . Therefore

√
n(β̂(t, ϑ)− β0) = −

(
1

n

∂

∂β
U(β0; t, ϑ)

)−1 1√
n
U(β0; t, ϑ) + op(1).

The weak convergence of
√
n(β̂(t, ϑ)− β0) follows from this expansion and The-

orem 1.

4. Discussion

One of the limitations of the asymptotic theory developed here is the assump-

tion of high accrual rate in a fixed follow up period. Such an assumption entails

that a significant portion of survival experiences from previously entered sub-

jects may not be fully available for optimal treatment allocation due to delayed

survival outcomes. Consequently, the asymptotically optimal treatment alloca-

tion ratio as discussed in Zhang and Rosenberger (2007) may not be attainable.

On the other hand, the flexibility of using all observed survival outcomes could

alleviate this deficiency of delayed response.

Another way to formulate large sample setting is to assume large time, rather

than high accrual rate, so τ (follow up period) goes to infinity. Under this

formulation for large (calendar time) t, the proportion of observed outcomes

from previously entered subject will tend to 1 as t goes to infinity, making the

asymptotically optimal treatment allocation feasible. When there is no other

explanatory variable besides a dichotomous treatment allocation, it is not difficult

to extend the present approach by rescaling of time through the “compensator”.
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In general, it may require additional assumptions on the explanatory variables in

order to establish the vector-valued Gaussian martingale approximation to the

multivariate score process.

To alleviate the effect of delayed survival outcomes, certain surrogate vari-

ables (markers) for the survival time may be used for the purpose of treatment

allocation. For example, in the BATTLE trial (Zhou et al. (2008); Kim et

al. (2011)), if patients’ survival times were the endpoint, then one could use

progression-free survival as a surrogate variable. It is of interest to develop a

similar theoretic framework under which the Brownian approximation may be

used.

The approach developed here may be extended to other follow-up studies

with more general outcome variables. For studies with longitudinal outcomes,

dynamic regression models have been proposed and studied (Martinussen and

Scheike (2000)). Adaptive and outcome dependent designs for such studies may

result in staggered entry and dependent observation units. We believe the general

approach developed in this paper can be extended to deal with such designs.
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