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Abstract: An important challenge in analyzing high dimensional data in regression

settings is that of facing a situation in which the number of covariates p in the

model greatly exceeds the sample size n (sometimes termed the “p > n” problem).

In this article, we develop a novel specification for a general class of prior distri-

butions, called Information Matrix (IM) priors, for high-dimensional generalized

linear models. The priors are first developed for settings in which p < n, and then

extended to the p > n case by defining a ridge parameter in the prior construction,

leading to the Information Matrix Ridge (IMR) prior. The IM and IMR priors

are based on a broad generalization of Zellner’s g-prior for Gaussian linear models.

Various theoretical properties of the prior and implied posterior are derived includ-

ing existence of the prior and posterior moment generating functions, tail behavior,

as well as connections to Gaussian priors and Jeffreys’ prior. Several simulation

studies and an application to a nucleosomal positioning data set demonstrate its

advantages over Gaussian, as well as g-priors, in high dimensional settings.
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1. Introduction

In the analysis of data arising in many scientific applications, one often faces
a scenario in which the number of variables (p) greatly exceeds the sample size
(n), often termed the “p > n” problem. In these problems, fitting many types of
statistical models leads to model nonidentifiability in which parameters cannot
be estimated via maximum likelihood. The specification of proper priors can alle-
viate such a nonidentifiability problem and lead to proper posterior distributions
as long as one uses a valid probability density for the data, i.e.,

∫
f(y|θ)dy < ∞.

Specification of proper priors in the p > n context is not easy since it is desir-
able that the prior (i) leads to existence of prior or posterior moments, which
is not guaranteed and theoretically checking this is not easy; (ii) is relatively
non-informative so that the data can essentially drive the inference; (iii) is at
least somewhat semi-automatic in nature requiring relatively little or minimal
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hyper-parameter specification; and (iv) is easy to interpret and computationally
feasible.

Properties (i)−(iv) are important to investigate in considering a class of
priors for posterior inference. The existence of posterior moments is important
since Bayesian inference often relies on the estimation of posterior quantities (e.g.,
means), via Markov chain Monte Carlo (MCMC) or other sampling procedures.
Computing Bayes factors and other model assessment criteria often requires the
existence of posterior moments (Chen, Ibrahim and Yiannoutsos (1999)). Con-
structing estimates through a black box use of MCMC, without knowing that
these estimates are well defined for the class of priors considered, may lead to
nonsensical posterior inference. Non-informativeness is desirable in model selec-
tion and model assessment settings, or wherever prior information is not available.
The specification of semi-automatic priors has been advocated by Spiegelhalter
and Smith (1982), Zellner (1986), Mitchell and Beauchamp (1988), Berger and
Pericchi (1996), Bedrick, Christensen, and Johnson (1996), Chen et al. (1999),
and Ibrahim and Chen (2003), and is attractive in high dimensional settings
where it is difficult to find contextual interpretations for all parameters.

In the p > n paradigm, there has been little work on the specification of de-
sirable priors and, in particular, priors that attain (i)−(iv) above. West (2003)
specifies singular g-priors (Zellner (1986)) for the Gaussian model in the context
of Bayesian factor analysis for p > n. Liang, Paulo, Molina, Clyde and Berger
(2008) advocate the use of mixtures of g-priors to resolve consistency issues in
model selection but their adaptation does not directly extend to cases where
p > n. When p > n, Np(0, γI) priors are often not desirable– for small to mod-
erate γ, they are typically too informative, and for large γ they often lead to
computationally unstable posteriors since the model becomes weakly identified
(see Section 4). They also do not capture the a priori correlation in the param-
eters, and eliciting a prior covariance matrix when p > n is extremely difficult.

The class of priors we consider are called Information Matrix (IM) priors.
They can be applied in any parametric regression context but we initially focus
on generalized linear models (GLMs). The functional form of the IM prior is
obtained once a parametric statistical model is specified for the data, the kernel
of the IM prior being specified through the Fisher Information matrix.

Let (y1, . . . , yn) be independent univariate response variables with density
p(yi|X, β, φ), where β is a p×1 vector of regression coefficients, φ = (φ1, . . . , φq)
a vector of dispersion parameters, and X the n × p matrix of covariates with
ith row x′

i = (xi1, . . . , xip), where ‘′’ denotes matrix transposition. Let α =
(β,φ). Assume for the moment that φ is known, p < n, and rank(X) = p.
The likelihood function of β for a regression model with independent responses
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is L(β) =
∏n

i=1 p(yi|xi, β), and the (i, j)th element of the Fisher information
matrix is

Iij(β) = −E

(
∂2

∂βi∂βj
log(L(β))

)
,

where the expectation is with respect to y|β, and βi is the ith component of β,
(i, j = 1, . . . p). Further, assume that the p × p Fisher information matrix, I(β),
is non-singular, as is often the case when p < n. The general IM prior is now
defined as

πIM (β) ∝ |I(β)|1/2 exp
{
− 1

2c0
(β − µ0)

′I(β)(β − µ0)
}

, (1.1)

where µ0 and c0 ≥ 0 are specified location and dispersion hyperparameters.
The IM prior (1.1) captures the prior covariance of β via the Fisher information
matrix, which seems an attractive specification since this matrix plays a major
role in the determination of the large sample covariance of β in both Bayesian
and frequentist inference. The use of the design matrix X is attractive since
X may reveal redundant covariates. The prior (1.1) is semi-automatic, requiring
specifications only for µ0 (which can be taken to be 0), and the scalar c0. It should
be mentioned that some recent work by Wang and George (2007) and Wang
(2002) uses a related form of the prior for β, with two important differences: (i)
the form of the prior for all GLMs is taken to be Gaussian, and (ii) the covariance
is dependent on the observed information matrix rather than the expected one,
leading to a data-dependent prior, unlike our specification here. We now focus
on the development of these priors and the resultant posterior estimators in the
class of GLMs, where many theoretical and computational properties can be
characterized for p < n and p > n.

2. IM Priors for Generalized Linear Models

We first consider the IM prior for GLMs when p < n, and where the disper-
sion parameter φ is known or intrinsically fixed, as for example in the binomial,
Poisson, and exponential regression models. For a GLM, yi|xi, (i = 1, . . . , n) has
a conditional density given by

p(yi|xi,β, φ) = exp
{

a−1
i (φ)(yiθi − b(θi)) + c(yi, φ)

}
, i = 1, . . . , n, (2.1)

where the canonical parameter θi satisfies the equations θi = θ(ηi), and a(·), b(·)
and c(·) determine a particular family in the class. The function θ(.) is the link
function for the GLM, often referred to as the θ-link, and ηi = xi

′β. When a
canonical link is used, θ(ηi) = ηi. The function ai(φ) is commonly of the form
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ai(φ) = φ−1w−1
i , where wi’s are known weights. Without loss of generality and

for ease of exposition, let φ = 1 and wi = 1. Then (2.1) can be rewritten as

p(yi|xi,β) = exp
{

yiθi − b(θi) + c(yi)
}

, i = 1, . . . , n. (2.2)

Now, let X be the n × p matrix of covariates with i-th row x′
i, θ(Xβ) be a

component-wise function of Xβ that depends on the link, and J be a n × 1
vector of ones. Then in matrix form, we can write the likelihood function of β

for the GLM in (2.2) as

p(y|β) = exp
{

y′θ(Xβ) − J ′b(θ(Xβ)) + c(y)
}

. (2.3)

For the class of GLMs (with φ = 1 and wi = 1), the Fisher information matrix
for β is

I(β) = X ′Ω(β)X, (2.4)

where Ω(β) = ∆(β)V (β)∆(β), (2.5)

where V (β) is the n×n diagonal matrix of variance functions with i-th diagonal
element vi = v(x′

iβ) = d2b(θi)/dθ2
i , and ∆(β) is an n×n diagonal matrix of “link

adjustments”, with i-th diagonal element δi = δ(x′
iβ) = dθi/dηi. We denote the

i-th diagonal element of Ω(β) by ωi. We now can write the IM prior for β as

πIM (β) ∝ |X ′Ω(β)X|1/2 exp
{
− 1

2c0
(β − µ0)

′(X ′Ω(β)X)(β − µ0)
}

. (2.6)

The prior in (2.6) can be viewed as a generalization of several types of priors. As
c0 → ∞, (2.6) converges to Jeffreys’ prior for GLMs, given by

πJ(β) ∝ |X ′Ω(β)X|1/2. (2.7)

Jeffreys’ prior is a popular noninformative prior for Bayesian inference in mul-
tiparameter settings involving regression coefficients, due to its invariance and
local uniformity properties (Kass (1989, 1990)). Also, as long as X ′Ω(β)X is
bounded (for example in the logistic model) as β → ∞, the ratio of prior (2.6)
to (2.7) is zero, hence showing the IM prior has lighter tails than Jeffreys’ in the
limit. Jeffreys’ prior for GLMs is improper for most models, except for binomial
regression models (Ibrahim and Laud (1991)). For the Gaussian linear model,
(2.6) reduces to Zellner’s g-prior (Zellner (1986)). In this case, Ω(β) = σ2I,
where σ2 denotes the variance of yi in the Gaussian linear model. For any given
GLM, if Ω(β) is a constant matrix free of β, say W , then the IM prior will
always be a Gaussian prior, that is β ∼ Np(µ0, c0(X ′WX)−1). For example, for
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Figure 1. Density of IM prior under a logistic model with p = 1 compared
with Jeffreys’ (“Jeff”) and a Gaussian prior (“Norm”) for a simulated data
set with n = 20. The plot is shown at three different scales. The total
density under each curve is the same (normalized); however the Gaussian
prior has the highest mass near the center while Jeffreys’ prior has much
heavier tails (visible in the third panel). The IM prior has lower mass near
the center of the distribution compared to the Gaussian prior but thicker
tails; while it has thinner tails and more central mass compared to Jeffreys’
prior.

the gamma model with log-link, Ω(β) is a constant (identity) matrix. In this
sense, the IM prior can be thought of as a “generalized” g-prior.

The tail behavior of the IM prior can be theoretically compared with the
Gaussian prior for specific GLMs. To show that its tails are heavier than a
Gaussian distribution, we need

lim
‖β‖−→∞

πIM (β)
φ(β; ν, Σ)

= ∞, (2.8)

where φ(β; ν, Σ) denotes the p dimensional multivariate normal density with
mean ν and covariance matrix Σ. (Showing that the expression in (2.8) goes
to zero indicates the tails are lighter than the Gaussian.) For the binomial
regression model and the inverse Gaussian model (with canonical link), it can be
shown that (2.8) holds, so that the IM prior under these models has heavier tails
(Figure 1). For most GLMs, if the IM prior is proper and Ω(β) → 0 elementwise
as ‖β‖ → ∞, then the tails of the IM prior will be heavier than those of Gaussian
priors. When the elements of Ω(β) become infinite as ‖β‖ → ∞, the IM prior has
lighter tails than the Gaussian prior, as with the Poisson model with canonical
link (Figure 2). Although the IM prior for the Poisson model has lighter tails
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Figure 2. Density of IM prior under a Poisson model with p = 1 compared
with a Gaussian prior for a simulated data set with n = 20, shown at two
different scales.

than a Gaussian prior, the IM prior for this model is much flatter in the “middle”
part of the distribution and hence effectively acts as a more noninformative prior.

When the dispersion parameter φ is unknown, the IM prior based on α,
where α = (β, φ), is typically not proper for GLMs and has properties that are
difficult to characterize. In these cases, one can construct the IM prior of β
conditional on φ, and then specify a proper prior for φ such as a gamma prior
or a product of independent gamma densities (Ibrahim and Laud (1991)). The
conditional IM prior of β given φ is defined as

πIM (β|φ) ∝ |I(β|φ)|1/2 exp
{
− 1

2c0
(β − µ0)

′I(β|φ)(β − µ0)
}

, (2.9)

where Iij(β|φ) = −E

(
∂2

∂βi∂βj
log(L(β, φ))

)
,

and L(β,φ) is the likelihood function of (β, φ). We specify the joint prior of
(β,φ) as

π(β, φ) ∝ πIM (β|φ)π(φ), (2.10)

where π(φ) is a proper prior for φ. When q = 1, π(φ) can be taken to be a
gamma prior and, for a general q, π(φ1, . . . , φq) can be assumed to be a product
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of q independent gamma densities. For GLMs, following the results of Section 3,
it can be shown that (2.10) is jointly proper for (β, φ), when φ is distributed as
a product of gamma densities.

2.1. Conditions for the existence of the prior MGF when p < n

We now present theoretical results establishing conditions for the existence
of the prior and posterior moment generating functions (MGFs) using the IM
prior for GLMs. The proofs of these results are presented as special cases of
more general theorems given in Section 3.

Sufficiency. The sufficient condition for the existence of the prior MGF of β for
the IM prior in (2.6) is that∫

exp{τθ−1(r)}
(

d2b(r)
dr2

)1/2

dr < ∞,

for τ in some (−ε, ε). This is derived as a special case of Theorem 1, (Corollary
1.2), and matches the condition of MGF existence for Jeffreys’ prior when p < n
(Ibrahim and Laud (1991)).

Necessity. The necessary condition for existence of the prior MGF of β for the
IM prior in (2.6) is the finiteness of the p-dimensional integral∫ p∏

i=1

[
vj(β)δ2

j (β)
]1/2

exp
{
− 1

2c0
(β − µ0)

′I(β)(β − µ0) + t′β

}
dβ, (2.11)

for any t in some p-dimensional sphere about 0, where I(β) = X ′Ω(β)X. In
many cases, checking (2.11) reduces to a condition involving a one-dimensional
integral (Section 3.1). Note here that (2.11) is less stringent a condition here
than for Jeffreys’ prior, allowing prior MGFs to exist for models where Jeffreys’
prior is improper. This is discussed further in Section 3.1.

2.2. Existence of the posterior MGF when p < n

A sufficient condition for the existence of the posterior MGF of β for the
IM prior in (2.6) is the finiteness of the following one-dimensional integral for
τ ∈ (−ε, ε), some ε > 0:∫

exp
{

τθ−1(r) + φ−1w(yr − b(r))
}(

d2b(r)
dr2

)1/2

dr. (2.12)

This is the same condition as for Jeffreys’ prior in Ibrahim and Laud (1991).
Since the sufficient conditions for the prior and posterior are the same as those
for using Jeffreys’ prior, the examples which satisfy sufficiency conditions for
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Jeffreys’ prior in Ibrahim and Laud (1991) also satisfy the sufficient conditions
here, e.g., the posterior MGFs exist for binomial, Poisson and Gamma GLMs if
none of the observed y’s is zero.

3. IM Ridge Priors for GLMs When p > n

When p > n, β is not identifiable in the likelihood function and the MLE of
β does not exist. Specifying a proper prior guarantees a proper posterior in this
setting; however, not all proper priors yield the existence of prior and posterior
moments which are often the end objectives in Bayesian inference. To generalize
the IM priors to a proper prior in the p > n case, we introduce a scalar “ridge”
parameter λ in the prior construction, defining the IM Ridge (IMR) prior as

πIMR(β) ∝ |X ′Ω(β)X+λI|1/2 exp
{
− 1

2c0
(β − µ0)

′(X ′Ω(β)X+λI)(β − µ0)
}

.

(3.1)
Here λ can be considered a “ridge” parameter as used in regression models for
high dimensional covariates, and to reduce effects of collinearity (Hoerl and Ken-
nard (1970)). With the introduction of λ, the matrix X ′Ω(β)X + λI is always
positive definite regardless of the rank of X and the form of Ω, for any GLM.
As c0 → ∞ in 3.1, the IMR prior converges to a generalized Jeffreys’ prior given
by π∗

J(β) ∝ |X ′Ω(β)X + λI|1/2, which is useful in the p > n setting since the
usual Jeffreys’ prior (2.7) does not exist when X ′Ω(β)X is singular. This idea
is similar in spirit (but considerably different in form) to the introduction of a
constant matrix Λ added to the sample covariance matrix S in the construction
of a data-dependent prior for the population covariance matrix Σ in multivariate
normal settings (Schafer (1997)).

To understand the IMR prior in (3.1), first consider the IMR prior for the
linear model. In this case, the IMR prior for β|σ2 is Gaussian and the posterior
distribution is also Gaussian. Specifically, consider the linear model Y = Xβ+ε,
where ε ∼ Nn(0, σ2I), and p > n. The IMR prior in this case becomes β|σ2 ∼
Np(µ0, c0σ

2(X ′X +λIp)−1), and the posterior distribution of β given σ2 is easily
shown to be the non-singular Gaussian distribution:

β|y, σ2 ∼ N

(
Σ

(
1
c0

(X ′X + λI)µ0 + X ′y

)
, σ2Σ

)
, (3.2)

where Σ = [(1+1/c0)X ′X +(λ/c0)Ip]−1. Theoretical properties of the IMR prior
for the linear model are investigated in Section 3.3.

3.1. MGF existence for GLMs using the IMR prior

The prior MGF must exist for the posterior MGF to exist, when p > n. We
first provide necessary and sufficient conditions for prior MGF existence.
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Theorem 1. A sufficient condition for the existence of the MGF of β based on
the prior (3.1) when p > n is that the one-dimensional integral∫

exp
{
− λM

2c0
[θ−1(r)]2 + τiθ

−1(r)
}[

d2b(r)
dr2

]1/2

dr < ∞, (3.3)

for some τi ∈ (−ε, ε), where rank(X) = n, M is such that |X∗| ≤ M−p/2,

X∗′ = [X ′ ... x′
0], with x0 as a (p− n)× p matrix selected such that X∗ is positive

definite.

Proof. Proofs of all theorems are given in the Appendices (in the online Article
Supplement).

Corollary 1.1. Let ωk(β) denote the kth diagonal element of Ω(β) in (2.5). If∑n
k=1 ωk(β) ≤ 1, the prior MGF of β from (3.1) always exists, as the integral is

dominated by a Gaussian MGF.

Corollary 1.2. The sufficient condition (3.3) also holds and is identical in the
p < n case and, additionally, reduces to the sufficient condition for Jeffreys’ prior
if λ = 0.

The IMR prior thus can be useful (and more desirable than the IM prior)
even in the p < n case, in the face of high-dimensionality, collinearity, or weak
identifiability.

Theorem 2. If the prior MGF exists when p > n, the p-dimensional integral∫
as(β) exp

{
− 1

2c0
(β − µ0)

′(I(β) + λI)(β − µ0) + t′β

}
dβ (3.4)

is finite for some t ∈ (−ε, ε), for s = 0, 1, . . . , p, where as(β) = |I(β)(i1,...,is)| is
the determinant of the (p− s)× (p− s) sub-matrix of I(β) formed by leaving out
the (i1, . . . , is)th rows and columns of I(β) = X ′Ω(β)X.

Note here that a0(β) = |I(β)|, ap−1(β) = trace(I(β)), and ap(β) = 1. As
a working principle, try to check the sufficiency condition first: if it does not
hold, check the necessity condition. For the necessity condition (Theorem 2) it
is easiest to first check the p = 1 case. Necessity does not hold if there exists no
t ∈ (−ε, ε) such that∫

a11(β)1/2 exp
{
− 1

2c0
(β − µ0)2(a11(β) + λ) + tβ

}
dβ

is finite, where a11(β) = b′′(θ)[(dθ)/(dη)]. If this condition is not satisfied, the
MGF does not exist. If the necessity condition is satisfied for p = 1, we need to
check the condition for larger p; if for any p we find that the necessity condition
is not satisfied, the prior MGF does not exist.
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Corollary 2.1. The result in Theorem 2 holds when n > p, and simplifies to
(2.11) when λ = 0.

Theorem 3. A sufficient condition for the existence of the posterior MGF for
πIMR(β) is that∫

exp
{
− M1λ

2c0
[θ−1(r)]2 + τθ−1(r) + φ−1w(yr − b(r))

}[
d2b(r)
dr2

]1/2

dr (3.5)

is finite for some τ in an open neighborhood about zero, for j = 1, . . . , p. For
j = n+1, . . . , p, the condition is the same as for the existence of the prior MGF.

Corollary 3.1. When p < n (and λ = 0), a sufficient condition for the existence
of the posterior MGF is that∫

exp
{

τθ−1(r) + φ−1w(yr − b(r))
}[

d2b(r)
dr2

]1/2

dr (3.6)

is finite for some τ in an open neighborhood about zero, and that the MLE exists.

Here we additionally require that the MLE exists (i.e., the likelihood function
is bounded above). However, existence of the prior MGF is not necessary.

The next result demonstrates the usage of the necessary and sufficient con-
ditions in some specific examples of GLMs to determine existence of prior and
posterior MGFs. Without loss of generality, we assume that µ0 = 0.

Theorem 4.

(i) The sufficient conditions (3.3) and (3.5) guarantee the existence of prior and
posterior MGFs for p > n in the Binomial model with canonical and probit
link, and in the Poisson model with canonical and identity link.

(ii) According to condition (3.4), prior and posterior MGFs do not exist for the
Gamma model with canonical link.

(iii)For the Inverse Gaussian model with canonical link, (3.3) is not satisfied,
while (3.4) is satisfied, thus it cannot be determined by these conditions alone
whether the prior and posterior MGFs exist.

Note that, however, the prior and posterior MGFs do exist for the Gamma
model with a log link, due to a result shown in Section 3.2. All derivations are
given in the Appendices.

3.2. Connection between IM and g-priors

When the information matrix Ω(β) = ∆(β)V (β)∆(β) is independent of β,
the IMR prior reduces to a “ridge” g-prior for a Gaussian linear model, and is
of Gaussian form, proper, and its MGF exists. This provides a quick way to
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determine existence of the prior and posterior MGF for models for which the
sufficiency conditions do not hold, but the necessary ones do. Examples are the
gamma model with log-link and the Gaussian model with canonical link. For the
gamma model with log link, note that b(θ) = − log(−θ), so that b′′(θ) = vi(β) =
1/θ2; and θ = −e−η, thus [(dθ)/(dη)] = δi(β) = θ. The diagonal elements of Ω(β)
are vi(β)δ2

i (β) = 1. Hence Ω(β) reduces to an identity matrix, and πIMR(β) is
a Gaussian distribution with mean µ0 and covariance matrix c0(X ′X + λI)−1,
which is always proper, and for which the MGF exists even if p > n.

3.3. Characterization of “frequentist” bias and variance

To determine the influence of λ and c0 in the IMR prior on the posterior
estimates, we first explore the case of Gaussian linear models, where closed forms
exist. For simplicity, assume µ0 = 0.

Theorem 5. The posterior covariance matrix of β for the Gaussian linear model,

σ2Σ = σ2

[(
1 +

1
c0

)
X ′X +

λ

c0
Ip

]−1

, (3.7)

satisfies (
c0

λ

)p/2

(
1 + c0+1

λ x
(p)
0

)−n

nn/2
≤ |Σ| ≤

(
c0

λ

)p/2

,

where x
(p)
0 = max{diag(X ′X)}, if c0 > λ.

Corollary 5.1. If p −→ ∞, c0 > λ, and n is finite, then |Σ| −→ ∞.

Theorem 6. The posterior bias of β, for the IMR prior, satisfies

1
p

p∑
i=1

bias(βp) ≤
1
p

p∑
i=1

|βi|.

Equivalently, for the determinant of the bias matrix, D = ΣX ′X − I, ‖ Dβ ‖2=
β′D′Dβ ≤ β′β.

It is also of interest to compare the bias and MSE of estimates arising from
the use of the IMR prior to those obtained using a Gaussian prior, N(0, c0Ip).
For simplicity, assume σ2 = 1, and βi = 1, for i = 1, . . . , p. With DIM and DN

denoting the bias matrices of the IMR and Gaussian priors, respectively, it can
be shown that the ratio of their determinants is

|DIM |
|DN |

=
|{(1+c0)X ′X+λI}−1X ′Xc0−I|

|{(X ′X+c0I)−1X ′X−I}−1X ′Xc0−I|
|X ′X+λI||X ′X+c0I|
|(1+c0)X ′X+λI||c0I|

(3.8)



1652 MAYETRI GUPTA AND JOSEPH G. IBRAHIM

Figure 3. Ratio of determinants of bias (panel 1) and MSE (panel 2) for the
IMR prior compared to a Gaussian N(0, c0Ip) prior for the Normal linear
model.

and, similarly, the ratio of the determinants of the mean square error (MSE)
matrices is

|MSEIM |
|MSEN |

=
|(ΣX ′X − I)′(ΣX ′X − I) + Σ|

|[(X ′X+c0I)−1X ′X−I]′[(X ′X+c0I)−1X ′X−I] + (X ′X+c0I)−1|
,

(3.9)
where Σ is as given in (3.7). Figure 3 depicts the behavior of these ratios for a
set of choices of (n, p). The bias ratio (averaged over 5 data sets) decreases with
an increase in c0, and the IMR prior is uniformly better when c0 is sufficiently
large (> 3) irrespective of whether n is larger or smaller than p. When n ≥ p,
the MSE using the IMR prior is uniformly better when c0 is moderately large.
However, when p > n, an increase in c0 leads to a an increase in the MSE with
the IM prior, and a sharper Gaussian prior (with a large bias) is favored in terms
of the MSE.

3.4. Elicitation of λ, µ0 and c0

The parameter λ plays an important role in the construction of the IMR
prior since its introduction makes the prior covariance matrix of β nonsingular
regardless of p. One question is whether to take λ fixed or random in the model.
Empirical experience suggests that if λ is random, any prior for λ would have to be
quite sharp since there is no information in the data for estimating it. Empirical
studies show that taking λ fixed gives similar results with far less computational
effort. When taking 0 < λ ≤ 1, posterior inference about β appears quite robust
for a wide range of values of λ in (0, 1) (Section 4.2). Note that when c0 is
large, λ and the design matrix X have a small impact on the posterior analysis
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of β. Since our main aim is to develop a relatively noninformative IM prior
for Bayesian inference, other practical hyperparameter choices include µ0 = 0
(consistent with Zellner’s g-prior) and a moderately large c0 (c0 ≥ 1).

4. Empirical Studies

4.1. Density of the IM prior compared to Jeffreys’ and Gaussian priors

We simulated data under a logistic model with sample size n = 20, varying
the number of covariates in the range 1 ≤ p ≤ 500, to get an idea of the behavior
of the IMR prior for p < n and p > n. For the prior πIMR(β), setting µ0 = 0,
the posterior density of β is

p(β|y) ∝
|Σ|−1/2 exp

[∑n
i=1 yix

′
iβ − β′Σ−1β/2

]
∏n

i=1(1 + ex
′
iβ)

, (4.1)

where Σ = Σ(β) = c0[X ′Ω(β)X + λIp]−1, and ωi(β) = (exp(x′
iβ))/([1+

exp(x′
iβ)]2), (for i = 1, . . . , n). When p < n and λ = 0, (4.1) reduces to the

IM prior. The IM prior was compared to Jeffreys’ prior and a Gaussian prior
N(0, c0(X ′X)−1/4) (i.e., equivalent to setting β = 0 in the IM prior). For the
p = 1 case, we can plot the exact prior densities (normalized computationally to
be on the same scale) over a range of values. Figure 1 shows the three priors
superimposed on the same plot at three scales. The IMR prior lies between Jef-
freys’ prior and the Gaussian prior at the center of the range, has heavier tails
than do the others for a wider range than Jeffreys’ and, at the tails, converges
to a Gaussian prior. We repeated the study with the same n, but set p = 5 and
used the IMR prior. In this case, we cannot analytically derive the marginals,
but instead prior and posterior samples are drawn from the respective distribu-
tions using Adaptive Rejection Metropolis Sampling (ARMS) (Gilks, Best and
Tan (1995)), using the HI package in the statistical software R (R Development
Core Team (2004)). Smoothed kernel density estimates based on a Gaussian
kernel are plotted for one of the marginals (Figure 4). This indicates the relative
flatness of the IMR prior compared to the posterior density, showing that it is
less informative than taking a Gaussian prior. Posterior densities are centered
closely around 0.9, the true value of β.

4.2. Robustness of posterior estimates

Effect of c0 on posterior estimates. We investigated the performance of
estimates using the IM prior with different settings of c0 and for values of p from
10 to 500, with a sample size n = 150. Data were generated from a logistic
model with a design matrix x = (xij), xij ∼ N(0, 0.1), and coefficient vector
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Figure 4. Panel 1: Density of IMR prior with p = 5 compared with Jeffreys’
prior (“Jeff”) and a Gaussian prior (“Norm”) for a simulated data set with
n=20. Panel 2: Prior (“pr”) and posterior (“po”) log-densities based on the
three priors.

Figure 5. Performance of IMR prior for different settings of c0.

β = (β1, . . . , βp), where βj = 0.9 (j = 1, . . . , p). When p > n, the ARMS
algorithm did not work well for generating posterior samples of β, the autocorre-
lations in the samples being quite high. To generate posterior draws, we turned to
importance sampling with a multivariate t trial density with mean 0, dispersion
matrix Vt, and 3 df, denoted as t3(0, Vt), where Vt = [(1+1/g)X ′WX +λ/gI]−1,
and g is a scalar quantity controlling the dispersion. The performance of the
estimates worsened as p increased for a fixed n (Figure 5). With an increase in
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c0, the change in the bias and MSE of estimators was small for p ≤ 200. When
p = 500, the variance of the estimator overshadowed the bias and hence a moder-
ate c0 led to a small MSE, with a negligible change in bias. We tested a range of
g between 0.1 and 100, for which smaller values appeared to give more accurate
results. Results using g between 0.1 and 5 were virtually indistinguishable. The
results reported are for a setting of g = 0.25, and λ = 0.5.

Robustness to choice of λ. We tested the effect of λ on posterior estimates
when p > n. Here we present results from a simulation with data from a logistic
model with p = 100, n = 50, c0 = 1, and λ chosen at approximately equal
intervals between 0 to 1 (λ > 0). Figure 6 shows that very small values of λ,
close to zero, led to unstable estimates; however, interestingly, the estimates were
remarkably consistent, exhibiting little or no difference over a large range of λ

values, between 0.4 and 1. Since the results were robust to this wide range of λ

for both the p < n and p > n cases, we chose the value λ = 0.5 for all analyses.

Effect of the relationship between n and p on posterior estimates.
We compared the performance of estimates based on the IMR prior to Gaussian
priors and a “g-prior” for the logistic model, as the sample size decreased relative
to p. We generated sets of data for a fixed p = 100, while n varied between
p/2 = 50 and 2p = 200. Five data sets were generated for each combination
of (n, p), while β was generated from a N(β0, c0[x′W (β0)x + λI]) distribution,
with β0 = (2×J50,−2×J50)′ where Jq denotes a q-dimensional vector of ones.

Sampling from the posterior distribution was done with a multivariate t trial
density. In addition to the bias and MSE, we also computed the theoretical
“asymptotic covariance” of the estimates from the inverse of the Hessian matrix
of the log-posterior, as Vas = [−δ2 log p(β|y, x)/δβ2]−1. Vas cannot be evaluated
in closed form, so we used a numerical computation routine in R to get an ap-
proximate estimate. The results from the IM prior (Figure 7) were compared
with estimates using (i) N(0, γI) prior distributions for a highly informative
prior with γ = 1 and an almost non-informative prior with γ = 106, the default
used in the software BUGS (Gilks, Thomas and Spiegelhalter (1994)); and (ii)
N(0, γ(X ′X)−1) priors for γ = 1, 106 (equivalent to the “g-prior” for a normal
linear model). We denote estimates found using the five methods, IMR prior,
Gaussian priors N(0, I), N(0, 106I), g-priors N(0, (X ′X)−1), N(0, 106(X ′X)−1)
as IM, NO, NO6, GP, and GP6. Figure 7 shows that (i) when n > p, the IM
prior had the lowest or comparable bias to NO6; (ii) when p > n, the IM prior
had almost comparable bias to the NO prior; (iii) the MSE of estimates based on
the IM prior was almost uniformly lowest. The GP6 and NO6 performed badly
in terms of MSE, especially when p > n, whereas for larger n, the NO and GP
priors appear too informative and hence led to more biased estimates. Overall,
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Figure 6. Performance of estimates using the IMR prior for different settings of λ.

Figure 7. Comparison of estimates based on the IMR prior with a Gaussian
prior N(0, γI), and g-prior N(0, γ(X ′X)−1), with γ = 1 and 106 for a data
set with p = 100. When n ≥ p, estimates based on the IM prior had the
lowest bias and MSE; while when n < p, they performed equally well as the
N(0, I) prior.

the IMR prior appears to be an attractive choice for computing estimates of the
regression coefficients for both cases, whether n is larger or smaller than p.

Comparison to Bayesian model averaging predictions. In high-dimen-
sional regression applications, an alternative method to estimating the full model
is Bayesian model averaging (BMA) of the posterior estimates (Hoeting, Madi-
gan, Raftery and Volinsky (1999)). We compared predictions using the IMR
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Figure 8. ROC curves comparing the predictive classification performance
between IMR (red solid line), BMA using BIC (green dashed line), and BMA
using a g-prior (blue dotted line) for a simulated data set.

priors in a full model to those obtained using BMA with a g-prior in a sce-
nario where p > n in logistic regression. Since the g-prior is undefined when
p > n, the model averaging procedure was restricted to involve only p < n

models. IMR was compared with (i) BMA using BIC, in a stepwise variable
selection algorithm (Yeung, Bumgarner and Raftery (2005)) implemented as the
iBMA routine in the R package “BMA”, and (ii) BMA under Zellner’s g-prior
with a marginal likelihood evaluated using the generalized Laplace approxima-
tion (Bollen, Ray and Zavisca (2005)) with model selection through the evolu-
tionary Monte Carlo (EMC) algorithm (Liang and Wong (2000)). The approxi-
mation to the marginal likelihood is given by p(y) ≈ exp[

∑n
i=1{yix

′
iβ̂ − log(1 +

ex
′
i
ˆβ)}]|c0(X ′X)−1|1/2φ(β̂;0, [X ′Ω(β̂)X]−1 + c0(X ′X)−1), where φ(y; µ, Σ) de-

notes the multivariate Gaussian density N(µ, Σ) at y, β̂ is the MLE of β, and
Ω(·) is as defined in (2.5).

We first adapted a procedure proposed in Hoeting et al. (1999) to compare
the predictive performance of the three methods. The data was randomly split
into halves, and each model selection method was applied on the first half of the
data (“training set”, T). The performance was then measured on the second half
(“test set”, t) of the data through an approximation to the predictive logarithmic
score (Good (1952)) which is given by the sum of the logarithms of the observed
ordinates of the predictive density under the model M for each observation in
the test set −

∑
d∈t log P (d|DT ,M), where d = (y,x) denotes a data point, and

DT denotes the training data set. For BMA, the predictive score is measured
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by −
∑

d∈t log{
∑

M∈M P (d|DT ,M)p(M |DT )}; the smaller the score for a model
or model average, the better is the predictive performance. The second criterion
used for comparing the performance was obtained through generating the fit-
ted probabilities for the test set using regression coefficients β̂(T ) estimated from
the training set, given by π̂i

(t) = exp(X(t)
i β̂(T ))/[1 + exp(X(t)

i β̂(T ))]. We then
compared the performance of the three methods through their receiver operat-
ing characteristic (ROC) curves, based on comparison to the true value of the
ordinates. Figure 8 shows the ROC curves for the IMR prior, BMA using BIC,
and BMA using the g-prior (gBMA), for a simulated data set under a logistic
regression model with test and training data set sizes of 75, and 100 covariates.
IMR and gBMA appeared to have a similar performance (with IMR performing
better at the two ends of the curve), and both performed much better than the
BMA-BIC method at almost all points. The corresponding predictive logarithmic
scores were 53.67 (IMR), 77.79 (BMA-BIC), and 51.43 (gBMA). The scores from
IMR and gBMA are highly comparable, though BMA requires a much higher
computational cost in exploring the high dimensional model space (it sampled a
total of 3,592 distinct models in 50,000 iterations of EMC). Interestingly, restrict-
ing BMA with the g-prior to the top 100 models sampled, the score increased to
197.65, making it extremely inaccurate.

5. Analysis of Nucleosomal Positioning Data

5.1. Data description and background

The misregulation of the chromatin structure in DNA is associated with the
progression of cancer, aging, and developmental defects (Johnson (2000)). It is
known that the accessibility of genetic information in DNA is dependent on the
positioning of histone proteins packaging the chromatin, forming nucleosomes
(Kornberg and Lorch (1999)), which in turn is dependent upon the underlying
DNA sequence. Nucleosomes typically comprise regions of about 147 bp of DNA
separated by stretches of “open” DNA (nucleosome-free regions, or NFRs). Nu-
cleosome positioning is known to be influenced by di- and tri-nucleotide repeats
(Thastrom, Bingham and Widom (2004)), but overall, the sequence signals in-
fluencing positioning are relatively weak and difficult to detect.

To determine how sequence features affect nucleosome positioning, we ob-
tained data from a genome-wide study of chromatin structure in yeast (Hogan,
Lee and Lieb (2006)). The data consist of normalized log-ratios of intensities
measured for a tiled array for chromosome III, consisting of 50-mer oligonu-
cleotide probes that overlap every 20 bp. We first fitted a two-state Gaussian
hidden Markov model, or HMM (Juang and Rabiner (1991)) to determine the
nucleosomal state for each probe. We then refrained from any further use of the
probe-level microarray data, as it was our primary interest to determine whether
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Table 1. Overall sensitivity and specificity of methods using three types of
priors,under the full model, and BMA using the g-prior (gBMA), by ten-fold
cross validation, on set (a): p = 340, n = 1, 260 and set (b): p = 1, 364, n =
1, 260. %pNFR: percentage of predicted nucleosome-free regions by each
method; ave.corr: average percent correct classification = (Sens + Spec)/2,
averaged over the ten cross-validation data sets. The average percentage of
NFRs in the data sets was 43%. Note: It was not possible to use the gBMA
procedure for set (b) due to the massive computational cost.

Set Prior Range[E(β|y)] %pNFR ave.corr
(a) IMR (−0.295, 0.443) 0.708 0.664

N(0, I) (−0.192, 0.161) 0.123 0.509
N(0, 106I) (−0.188, 0.168) 0.111 0.475
gBMA (−8.778, 11.437) 0.569 0.670

(b) IMR (−0.518, 0.535) 0.387 0.447
N(0, I) (−1.142, 0.496) 0 −
N(0, 106I) (−3.424, 2.179) 0 −

certain sequence features are predictive of nucleosome and nucleosome-free po-
sitions in the genome, which would enable us to make predictions for genomic
regions for which experimental data is currently unavailable or difficult to obtain.

5.2. Analysis with the sample size n > dimension p

In order to determine how sequence features might influence the positions
of nucleosome-free regions, we concentrated on a region of about 1,400 adjacent
probes on yeast chromosome III. For each probe, the covariate vector was the set
of observed frequencies of nucleotide k-tuples, with k = 1, 2, 3, 4. This led to a
total of p = 340 covariates (without including an intercept in the model). The
HMM-based classification gave the observed “state” of each probe, whether cor-
responding to a nucleosome-free region (NFR) or a nucleosome (N). The results
reported here are with c0 = 1, results with c0 = 10 were essentially similar.

We carried out ten-fold cross validation to test the predictive power of the
model. The set of probes, with the associated covariates, were divided into
ten non-overlapping pairs of training sets (90% of probes) and test sets (10%
of probes). Each training set thus had a sample size of n = 1, 260, which is
greater than the number of covariates (340). For each training-test set pair,
the logistic regression model was first fitted to the training data set (with the
three priors: IMR, N(0, I) and N(0, 106I)), and the fitted values of β used to
compute the posterior probabilities of classification into the NFR state, for the
corresponding test set. The sensitivity and specificity of cross validation using
the three different priors was compared, where any region having an estimated
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posterior probability of 50% or more with the logistic model was classified as
an NFR. The IMR prior showed uniformly higher sensitivity while its specificity
was comparable to the other two priors (Table 1). The IMR predicted a slightly
higher percentage of NFRs than the true percentage, while the other two methods
consistently underestimated the number of NFRs. Overall, using the IMR was
about 16% more accurate in predicting NFRs compared to the next best method.
We also compared the results with Bayesian model averaging, using a g-prior
and using the set of 340 covariates, in which case it performed equally well as
the full model with an IMR prior. The computational cost of using BMA was
much higher than IMR- 5,000 iterations under this setting took about 104 hours
on a 1.261 GHz Intel Pentium III compute node running Red Hat Enterprise
Linux 4. In comparison, generating 5,000 independent samples from the posterior
distribution of β using the IMR prior required less than an hour.

Out of 340 covariates using the IMR prior, 93 and 91 coefficients had ap-
proximate 95% HPD intervals above and below zero. Among the significant
dinucleotides, “aa”, “at”, “tg”, and “tt” had a positive effect on the possibility
of being an NFR, while “ac”, “ag”, “cc”, “ct”, “gc”, and “gg” had the opposite
effect. It was previously found that “aa” or “tt” repeats have an effect of mak-
ing DNA rigid, and thus difficult to form nucleosomes, while “gg” and “cc” lead
to less rigid DNA for which it is easier to form nucleosomes (Thastrom et al.
(2004)). Thus these results seem reasonable compared to biological knowledge.
On the other hand, we see that dinucleotides alone do not seem to have the
strongest power to distinguish NFRs from nucleosomal regions, suggesting that
the relationship between sequence factors and nucleosome positioning could be
more complex than linear.

5.3. Analysis with p > n

Next, we increased the number of predictors to test how far the improved
model fit, by including the 5-tuple counts, would be offset by the increased covari-
ate dimensionality. We repeated the same process for creating the 10 training-
test data set pairs as in the earlier case, except that we included k-tuples for
k = 1, . . . , 5, leading to p = 1, 364, with the training set size as 1, 260. We
next carried out the ten-fold cross-validation procedure over each training-test
set pair. As seen in Table 1, the IMR prior in this case is the only method that
could predict even a proportion of the NFRs correctly. However, the overall pre-
dictive power using 5-mers decreased, due to a combination of overfitting with
sparse data as well as induced bias due to the massive increase in dimensionality.

The above empirical studies are mainly to illustrate that the use of the IMR
prior is beneficial in situations where the number of observations does not signif-
icantly exceed, or is even less than the number of observed covariates, and the
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lack of prior knowledge of the situation prevents selection of a fewer number of
covariates in advance of the analysis. We observed some dissimilarities between
the sets of covariates found significant between the two situations; however, we
suspect the main reason for this is that the covariates are highly collinear (the av-
erage correlation between them ranges from −0.7 to 0.9) and the values are highly
sparse, especially the counts for k-mers with a large k. The results, however, in-
dicate that the positioning of nucleosomes may indeed depend on a number of
underlying sequence factors, and not just a few dinucleotides, as was previously
thought. The logistic regression model may be a simplification of the actual rela-
tionship between the covariates and response, but is a first step towards modeling
a more complex, possibly non-linear relationship with the covariates. Using the
logistic model to connect sequence features with nucleosomal state, rather than
modeling the probe-level data as an intermediate step, is a direct attempt to de-
termine how sequence features influence positioning. For instance, a model with
high predictive power of correct nucleosomal state can provide useful surrogate
information for other applications when experimental data, which are expensive
to generate, are not available.

6. Discussion

The proposed IM and IMR priors can be viewed as a broad generalization of
the “g-prior” (Zellner (1986)) for Gaussian linear models, reducing to Jeffreys’
prior as a limiting case. Although the g-prior was originally conceived (and
is still most frequently used) in the context of model selection, the proposed
priors provide a desirable alternative to Gaussian or improper priors with high-
dimensional data in generalized linear models. The IM and IMR priors appear to
produce results similar to a diffuse Gaussian prior, but are computationally more
stable with collinear variables. They provide a desirable alternative to Jeffreys’
prior, being proper for most GLMs, but giving more flexibility than Jeffreys’ prior
in the choice of tuning parameters, and being less subjective than the choice of
an arbitrary Gaussian prior. Theoretical and computational properties of the IM
and IMR priors were investigated, demonstrating their effectiveness in a variety
of situations. The IM and IMR priors for many GLMs are proper and their
moment generating functions (MGFs) exist.

Numerical studies demonstrated that the IMR prior, even with the full
model, compared favorably with a more complex Bayesian model averaging pro-
cedure with a g-prior that involves dimension reduction. With extremely high
dimensional data, the BMA procedure becomes computationally infeasible in our
examples. The BMA procedure could also be used with an IMR prior– it would
be interesting to explore the possibility of improving variable selection methods
in GLMs, as in Hans, Dobra and West (2007) and Liang et al. (2008), through
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the use of an IMR prior instead of conventional priors. This would require the
ability to compute accurate approximations for the marginal likelihoods, which
is a complex problem outside the Gaussian family of priors. Future work is also
needed in developing alternative methods for eliciting λ, such as choosing the λ

that maximizes the marginal likelihood. Although our current focus is on GLMs,
the IMR prior framework can be easily extended to a variety of other models, for
instance, to survival and longitudinal models, and to others used in a multitude
of scientific applications.
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