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Abstract: We prove that the fluctuation limit of a sequence of Galton-Watson
branching processes with immigration can be an Ornstein-Uhlenbeck type process
under some assumptions on the offspring and the immigration laws. The asymptotic
properties of the conditional least square estimators of the offspring mean and the
immigration mean are studied when the limit process is an Ornstein-Uhlenbeck
diffusion process.
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1. Introduction

Let {ζ(l, j)}l,j≥1 and {η(l)}l≥1 be independent sequences of independently
identically distributed nonnegative integer valued random variables. A Galton-
Watson branching process with immigration (GWI process) {Y (l)}l≥0 is defined
as

Y (l) =
Y (l−1)∑

j=1

ζ(l, j) + η(l), l = 1, 2, . . . ,

where Y (0) is a nonnegative integer valued random variable independent of
{ζ(l, j)}l,j≥1 and {η(l)}l≥1. We call the expectations m = E[ζ(l, j)] and λ =
E[η(l)] the offspring mean and immigration mean, respectively, if they exist.
Meanwhile, the GWI process {Y (l)}l≥0 is called subcritical, critical, and super-
critical, respectively, when the offspring mean m < 1, = 1, and > 1. When a
sequence of GWI processes {Yk(l)}l≥0, for k = 1, 2, 3, . . . , is given, it is called
nearly critical if the corresponding offspring mean sequence mk = E[ζk(l, j)] → 1
as k → ∞. See Arthreya and Ney (1972) for more details.

A spectrally positive homogeneous Ornstein-Uhlenbeck (O-U) type process
is defined as a real-valued cádlág Markov process {X(t)}t≥0 with generator A
given by

Af(x) = −pxf
′
(x) + qf

′′
(x) +

∫ ∞

0+
{f(x + u) − f(x) − uf

′
(x)}µ0(du),
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where p and q are two nonnegative constants and µ0(du) is a σ−finite measure on
(0,∞) such that

∫ ∞
0+(u ∧ u2)µ0(du) < ∞. A realization of this O-U type process

can be given as the unique solution to the stochastic differential equation

dX(t) = dL(t) − pX(t)dt, t ≥ 0,

where {L(t)}t≥0 is a spectrally positive cádlág Lévy process with L(0) = 0 and
its increment distribution determined by

E[exp{−λ(L(r + t) − L(r))}] = exp
{

t
(
qλ2 +

∫ ∞

0+
(e−λu − 1 + λu)µ0(du)

)}
for any λ ≥ 0. The connection between O-U type processes and Lévy processes
was found in the study of the limit distributions for sums of certain random
variables in Sato and Yamazato (1984) and Wolfe (1982). See also Bertoin
(1996) for more on Lévy processes.

Studying the functional weak limit theorem for branching processes has an
extended history. In Feller (1951), a procedure for obtaining diffusion processes
as limits of a sequence of Galton-Watson processes was formulated. Kawazu and
Watanabe (1971) characterized the continuous state branching processes with
immigration (CBI processes) by its Laplace transformation and proved that a
sequence of GWI processes converges in finite dimensional distributions to a
stochastically continuous and conservative continuous time CBI process under
some suitable conditions. Li (2006) extended this result to the case of weak
convergence in the Skorokhod space. In addition, Grimvall (1974), Sriram (1994),
and Wei and Winnicki (1987, 1990) established the relationship between GWI
processes and CBI processes in some special cases.

By virtue of Laplace transforms, Li (2000) considered the fluctuation limit
theorem for branching processes. He proved that under certain conditions the
fluctuation limit of a sequence of continuous time discrete state branching pro-
cesses with Poisson immigration is an O-U type process. Ispány, Pap, and Zuijlen
(2005) proved that under some suitable moment conditions the fluctuation limit
of a sequence of GWI processes is a continuous inhomogeneous O-U type process
driven by a time changed Wiener process by means of the Martingale Central
Limit Theorem and the Continuous Mapping Theorem. It was also proved in
Li (2009) that the fluctuation limit of a sequence of Jǐrina processes with im-
migration, the discrete time CBI processes, is an O-U type process under some
moment conditions.

The main purpose of this paper is to establish the functional fluctuation
limit of a sequence of GWI processes to a homogeneous O-U type process when
some constraints about the moment generating functions for the offspring pro-
cesses {ζk(·, ·)}k≥1 and the immigration processes {ηk(·)}k≥1 are satisfied. The
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main result of this paper is different from the existing ones in Li (2000, 2006)
and Ispány, Pap, and Zuijlen (2005) mentioned above, and we also employ the
different method to prove it. We present some examples in Section 3.

The functional limit theorems of branching processes can be used in such
fields as queueing theory, mathematical finance, and statistical inference for
stochastic processes. Indeed, based on the weak convergence results of GWI
processes, many asymptotic properties can be obtained for the estimators of the
offspring mean m and the immigration mean λ. For example, using their func-
tional weak limit theorem, Wei and Winnicki (1987, 1990) proved that, in the
critical case, the various conditional least square (CLS) estimators for m are not
asymptotically normal but consistent, and that the CLS estimator for λ is not
consistent. Sriram (1994) established a functional weak limit theorem for the
critical branching process, and successfully illustrated the invalidity of the para-
metric bootstrap method for critical GWI processes. Ispány, Pap, and Zuijlen
(2005) discussed the CLS estimators’ asymptotic properties for a sequence of
nearly critical branching processes using their functional fluctuation limit theo-
rems. We give, in Section 4, an application of our functional limit theory to the
asymptotic properties of the CLS estimators for a sequence of GWI processes
that converge to an O-U diffusion process.

The paper is organized as follows. In Section 2, we prove that the functional
fluctuation limit of a sequence of GWI processes is an O-U type process when
the offspring and the immigration laws are subject to constraints. We present
some examples in Section 3, and discuss the asymptotic properties of the CLS
estimators for offspring mean and immigration mean in Section 4. Some of the
technical details are reported in the appendix.

2. Main Results

Let {Yk(l)}l≥0, k = 1, 2, . . . be a sequence of GWI processes whose one-step
transition probability is determined by

Ex[e−λYk(1)] = E[e−λ{Px
j=1 ζk(1,j)+ηk(1)}] = Gk(e−λ)xHk(e−λ),

where Gk(·) and Hk(·) are the moment generating functions of ζk(1, j) and ηk(1),
respectively. We assume

(H0): H
′
k(1) = ka(1 − G

′
k(1)), E[Yk(0)] = ka,

(H1): k2(1 − G
′
k(1)) → α,

(H2): k2G
′′
k(eiλk−1/2

) → Υ1(λ),

(H3): kH
′′
k (eiλk−1/2

) → Υ2(λ),
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as k → ∞. Here a is a positive constant, α is a nonnegative constant, i =
√
−1,

and Υj , j = 1, 2, are continuous complex-valued functions of λ. Note that we
use the notation G

′
k(x0) = ∂Gk(x)/∂x|x=x0 , G

′′
k(x0) = ∂2Gk(x)/∂x2|x=x0 , and

likewise in this paper. Under assumptions (H2)−(H3), both Υ1(λ) and Υ2(λ) are
characteristic functions of finite measures on [0,∞). Then there is a probability
measure µ1 on [0,∞) such that

aα + aΥ1(λ) + Υ2(λ)
aα + aΥ1(0) + Υ2(0)

=
∫ ∞

0
eiλuµ1(du).

Let b = µ1({0}), µ(du) = µ1(du)/u2 for u > 0, and c = aα + aΥ1(0) + Υ2(0).
Let C∞

c (R) be the set of infinitely differentiable functions with compact support
on R.

To formulate our fluctuation limit theorem, we define the random step func-
tions

Xk(t) = k−1/2
{

Yk(bk2tc) − ka
}

, t ≥ 0, k = 1, 2, . . . ,

where bxc denotes the integer part of x. The following is the main result of the
paper.

Theorem 1. If assumptions (H0)−(H3) hold and Xk(0) converges weakly to
X(0) as k → ∞, then the sequence {Xk(·)}k≥0 converges weakly in the Skorohod
space DR[0,∞) to a generalized O-U type process with a generator A that satisfies

Af(x) = −αxf
′
(x) +

1
2
(aα + bc)f

′′
(x)

+c

∫ ∞

0+
{f(x + u) − f(x) − uf

′
(x)}µ(du) (2.1)

for all f ∈ C∞
c (R).

The proof of the theorem needs the following two lemmas, whose proofs are
given in the appendix. Let ξk(x) = ka +

√
kx, which is treated as non-negative

integers by properly choosing x, and

Zk(xk) = k−1/2{Yk(1) − ka −
√

kxk} = k−1/2{Yk(1) − ξk(xk)}.

Lemma 1. If xk → ∞ as k → ∞, then

Eξk(xk)

[ ∫ 1

0
(1 − w)k2f

′′
(xk + wZk(xk))Z2

k(xk)dw
]
→ 0.

Lemma 2. If xk → x < ∞ as k → ∞, then

Eξk(xk)

[ ∫ 1

0
(1 − w)k2f

′′
(xk + wZk(xk))Z2

k(xk)dw
]

→ 1
2
(aα + bc)f

′′
(x) + c

∫ ∞

0+
{f(x + u) − f(x) − uf

′
(x)}µ(du).
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Proof of Theorem 1. Note that Xk(·) is a Markov chain taking values in
Ek = [−

√
ka,+∞). Define

Tkf(x) = Eξk(x)

[
f
(
k−1/2(Yk(1) − ka)

)]
.

By Duffie, Filipović and Schachermayer (2003) Theorem 2.7, C∞
c (R) is a core for

the generator A of an O-U type process. So by Ethier and Kurtz (1986, p.31,
p.233), it is sufficient to show that if Ek 3 xk → x ∈ R ∪ {∞}, then

lim
k→∞

∣∣∣k2[Tkf(xk) − f(xk)] − Af(xk)
∣∣∣ = 0, ∀f ∈ C∞

c (R).

By Taylor’s expansion,

k2
[
Tkf(xk) − f(xk)

]
= k2Eξk(xk)

[
f
(
k−1/2(Yk(1) − ka)

)
− f(xk)

]
= Eξk(xk)

[
k2f

′
(xk)Zk(xk) +

∫ 1

0
(1 − w)k2f

′′
(xk + wZk(xk))Z2

k(xk)dw
]
.

Because k2Eξk(xk)[Zk(xk)] = k2xk[G
′
k(1) − 1] → −αx1{xk→x<∞} and Af(xk) →

Af(x)1{xk→x<∞}, using Lemma 1 and Lemma 2, one obtains Theorem 1.

Remark 1. The scaling used in this theorem is k2 in time, rather than the
commonly used k. But one can prove similarly that

Xk(t) = k−s(Yk(bkdtc) − kra)

converges to an O-U type process when positive constants d, r, and s are properly
chosen, and similar assumptions to (H0)−(H3) are given.

Remark 2. The limit process would be an O-U diffusion process if we assumed
that Υ1(λ) and Υ2(λ) in assumptions (H2) and (H3) are positive constants. One
typical situation that lead to positive real values for Υ1(λ) and Υ2(λ) is when
both the offspring number and the immigration number take nonnegative integer
values no larger than 2. Examples that converge to O-U type processes according
to our weak convergence theory, either when Υ1(λ) and Υ2(λ) are real values or
complex functions of λ, are given in Section 3.

Remark 3. Since our limit processes are of O-U type, which are special cases
of the affine processes suggested by Duffie, Filipović and Schachermayer (2003)
we can try to do some option pricing work based on our convergence result.
Specially, it is interesting to consider the pricing and hedging problems under
model (3.1), namely the Vasicek model with Poisson jumps, by considering the
convergence problem of the prices under the corresponding GWI processes.
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Remark 4 In Section 4, we present studies of this fluctuation limit theorem for
statistical inference for the parameters of the GWI process.

3. Examples

In this section, we give some examples of convergence to O-U type processes
according to Theorem 1. We use gk and hk to denote the probability distribution
corresponding to the moment generation functions Gk and Hk for the offspring
processes and the immigration processes, respectively. Also write {Bt}t≥0 for the
standard Brownian motion.

3.1. Limit processes without jumps

The first two examples are extremely simple cases with only two possible
states for both the offspring processes and the immigration processes.

(I) Let the offspring processes be a sequence of independently identically
distributed 0−1 random variables with gk(0) = αk−2 and gk(1) = 1−αk−2, and
the immigration processes be a sequence of independently identically distributed
0 − 1 random variables with hk(0) = 1 − aαk−1 and hk(1) = aαk−1. Here, a

and α are positive constants. Then G
′
k(1) = 1 − α/k2 and H

′
k(1) = aα/k. So

H
′
k(1) = ka(1 − G

′
k(1)), and we have

k2(1 − G
′
k(1)) = α, k2G

′′
k(eiλk−1/2

) = 0, kH
′′
k (eiλk−1/2

) = 0,

aα + aΥ1(λ) + Υ2(λ)
aα + aΥ1(0) + Υ2(0)

=
aα + a × 0 + 0
aα + a × 0 + 0

= 1 ⇒ b = 1, µ = 0.

Hence,
Xk(t) = k−1/2

(
Yk(bk2tc) − ka

)
→ X(t),

where {X(t)}t≥0 is an O-U diffusion process with generator Af(x) = −αxf
′
(x)+

aαf
′′
(x) or, equivalently, that satisfies the stochastic differential equation

dX(t) = −αX(t)dt +
√

2aαdBt.

(II) Let the offspring processes be a sequence of independently identically
distributed 0−1 random variables with gk(0) = αk−2 and gk(1) = 1−αk−2, and
the immigration processes be a sequence of independently identically distributed
0 − 2 random variables with hk(0) = 1 − aαk−1/2 and hk(2) = aαk−1/2. Here,
a and α are positive constants. Then G

′
k(1) = 1 − α/k2 and H

′
k(1) = aα/k. So

H
′
k(1) = ka(1 − G

′
k(1)), and we have

k2(1 − G
′
k(1)) = α, k2G

′′
k(eiλk−1/2

) = 0, kH
′′
k (eiλk−1/2

) = aα, b = 1, µ = 0.
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Hence,
Xk(t) = k−1/2

(
Yk(bk2tc) − ka

)
→ X(t),

where {X(t)}t≥0 is an O-U diffusion process that satisfies the stochastic differ-
ential equation

dX(t) = −αX(t)dt +
√

3aαdBt.

(III) Let the offspring processes be a sequence of independently identically
distributed random variables with gk(0) = 3αk−2/4, gk(1) = 1 − αk−2, and
gk(2) = αk−2/4, and the immigration processes be a sequence of independently
identically distributed 0 − 1 random variables with hk(0) = 1 − aαk−1/2 and
hk(1) = aαk−1/2. Here, a and α are positive constants. Then G

′
k(1) = 1−α/2k2

and H
′
k(1) = aα/(2k). So H

′
k(1) = ka(1 − G

′
k(1)), and we have

k2(1 − G
′
k(1)) =

1
2
α, k2G

′′
k(eiλk−1/2

) =
1
2
α, kH

′′
k (eiλk−1/2

) = 0, b = 1, µ = 0.

Hence,
Xk(t) = k−1/2

(
Yk(bk2tc) − ka

)
→ X(t),

where {X(t)}t≥0 is an O-U diffusion process that satisfies the following stochastic
differential equation

dX(t) = −1
2
αX(t)dt +

√
3aα

2
dBt.

(IV) Let the offspring processes follow the same law as in (I) and the immi-
gration processes be a sequence of independently identically distributed Poisson
random variables with mean H

′
k(1) = ka(1 − G

′
k(1)) = aα/k. Then

kH
′′
k (eiλk−1/2

) =
(aα)2

k
e(aα/k)(iλk−1/2−1) → 0

and one has the same limit process {X(t)}t≥0 as in (I).

3.2. Limit processes with jumps

(I) Let the probability law corresponding to the independently identically
distributed offspring processes be

gk(0) =
2α1

3k2
− α2

k3
, gk(1) = 1 − α1

k2
, gk(2) =

α1

3k2
, gk(b

√
kc) =

α2

k3
,

and the immigration sequences be determined by distribution law

hk(0) = 1 − aα1

4k
+

aα2(2b
√

kc − 1)
k2

, hk(1) =
aα1

6k
− 2aα2b

√
kc

k2
,
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hk(2) =
aα1

12k
, hk(b

√
kc) =

aα2

k2
,

where a, α1 and α2 are positive constants. Then

k2(1 − G
′
k(1)) =

α1

3
− α2b

√
kc

k
→ α1

3
,

k2G
′′
k(eiλk−1/2

) =
2
3
α1 + α2

b
√

kc(b
√

kc − 1)
k

eiλ(b
√

kc−2)/
√

k → 2
3
α1 + α2e

iλ,

kH
′′
k (eiλk−1/2

) =
aα1

6
+ b

√
kc(b

√
kc − 1)

aα2

k
eiλ(b

√
kc−2)/

√
k → aα1

6
+ aα2e

iλ,

b + eiλµ({1}) =
7α1/6

7α1/6 + 2α2
+

2α2

7α1/6 + 2α2
eiλ.

So the corresponding limit process has the realization

dX(t) = −3−1α1X(t)dt + d
[√

3aα1/2Bt + Nt − 2aα2t
]
, (3.1)

where {Nt}t≥0 is a Poisson process with rate parameter 2aα2 independent of the
Brownian motion {Bt}t≥0.

(II) We note as in Li (2000) that when α in (2.1) is 0, the limit process is a
Lévy process. Let the offspring law be

gk(0) =
2α1

3k5/2
− α2

k3
, gk(1) = 1 − α1

k5/2
, gk(2) =

α1

3k5/2
, gk(b

√
kc) =

α2

k3
,

and the immigration law be

hk(0) = 1 − aα1/(3k3/2) + aα2b
√

kck−2, hk(1) = aα1/(3k3/2) − aα2b
√

kck−2,

where a, α1, α2 are positive constants. Then

kH
′′
k (eiλk−1/2

) = 0, k2(1 − G
′
k(1)) =

α1

3
√

k
− α2b

√
kc

k
→ 0,

k2G
′′
k(eiλk−1/2

) =
2α1

3
√

k
+ α2

b
√

kc(b
√

kc − 1)
k

eiλ(b
√

kc−2)/
√

k → α2e
iλ,

b + eiλµ({1}) = eiλ.

So the corresponding limit process has the realization

Xk(t)
D→X(t) = Nt − aα2t,

where {Nt}t≥0 is a Poisson process with rate parameter aα2.
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4. Applications to Statistical Inference for GWI Processes

Consider a sequence of GWI processes satisfying Theorem 1. When the
immigration mean λk = H

′
k(1) = E[ηk(l)] is known,

k2∑
l=1

[
Yk(l) − E[Yk(l)|F

(k)
l−1]

]2
= Θ(G

′
k(1),H

′
k(1)), (4.1)

where Θ(u, v) =
∑k2

l=1 [Yk(l) − uYk(l − 1) − v]2. Then the CLS estimator m̂k of
the offspring mean mk = G

′
k(1) = E[ζk(l, j)] is

m̂k =
∑k2

l=1 Yk(l − 1){Yk(l) − H
′
k(1)}∑k2

l=1{Yk(l − 1)}2
,

which minimizes Θ(u,H
′
k(1)). If the immigration mean λk is unknown, then the

joint CLS estimators for (mk, λk), which could be gained by minimizing Θ(u, v)
with respect to u and v, have the form

m̃k =
∑k2

l=1 Yk(l − 1){Yk(l) − Ȳk}∑k2

l=1{Yk(l − 1) − Ȳ ∗
k }2

, λ̃k = Ȳk − m̃kȲ
∗
k ,

where Ȳk = k−2
∑k2

l=1 Yk(l), Ȳ ∗
k = k−2

∑k2

l=1 Yk(l − 1).
Based on Theorem 1, the following three asymptotic properties could be

established by using the Continuous Mapping Theory and the Martingale Trans-
form Theorem. This method has been suggested in Ispány, Pap, and Zuijlen
(2003a,b, 2005) and Strasser (1986).

Theorem 2. Suppose that, for a sequence of GWI processes {Yk(l)}l≥0, k =
1, 2, 3, . . ., Theorem 1 holds with an O-U diffusion process {X(t)}t≥0 as the limit
process, with generator

Af(x) = −αxf
′
(x) + aαf

′′
(x), for all f(·) ∈ C∞

c (R),

where a, α are two positive constants and E[X(0)2] < ∞. Then

k2(m̃k − mk)
D→

N(1) − M(1)
∫ 1
0 X(u)du∫ 1

0 X2(u)du − {
∫ 1
0 X(u)du}2

, (4.2)

k(λ̃k − λk)
D→

aM(1)
∫ 1
0 X(u)du − aN(1)∫ 1

0 X2(u)du − {
∫ 1
0 X(u)du}2

,

k5/2(m̂k − mk)
D→ a−1M(1),

where M(t) = X(t)−X(0)+α
∫ t
0 X(u)du, N(t) = e−αtX(0)M(t)+X(0)

∫ t
0 M(u)

de−αu+eα(1−t)Γ(t)+
∫ t
0 Γ(u)deα(1−u). Here S(t) = eα(t−1)X(t)−e−αX(0), Γ(t) =∫ t

0 S(t)dM(t).
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Proof of Theorem 2. Let

Xk,l = k−1/2(Yk(l) − ka),

Mk,l = Xk,l − E[Xk,l|F
(k)
l−1] = k−1/2{Yk(l) − G

′
k(1)Yk(l − 1) − H

′
k(1)}.

Then

m̃k − G
′
k(1) =

k
[∑k2

l=1 Xk,l−1Mk,l − (1/k2)
∑k2

l=1 Xk,l−1 ×
∑k2

l=1 Mk,l

]
k3

[
(1/k2)

∑k2

l=1 X2
k,l−1 −

(
(1/k2)

∑k2

l=1 Xk,l−1

)2
] . (4.3)

We need to consider the weak convergence of each item in the last equality.
By using the Continuous Mapping Theory, we have

1
k2

k2∑
l=1

Xk,l−1 =
∫ 1

0
Xk(u)du

D→
∫ 1

0
X(u)du,

1
k2

k2∑
l=1

X2
k,l−1 =

∫ 1

0
X2

k(u)du
D→

∫ 1

0
X2(u)du,

Mk(t) =
bk2tc∑
l=1

Mk,l = Xk(t) − Xk(0) +
{

1 − G
′
k(1)

}
k2

∫ bk2tc/k2

0
Xk(u)du

D→ X(t) − X(0) + α

∫ t

0
X(u)du = M(t).

Here, M(t) is obviously a square-integrable martingale.
When the limit process is an O-U diffusion process, by similar reasoning as

in Lemma 1, we can see that {Mk,l}l≥1 satisfies

bk2tc∑
l=1

E[|Mk,l|1{|Mk,l|>ε}|Fk,l−1]
Pn−→0, ∀ε > 0.

Define Sk(t) = Sk,bk2tc =
∑bk2tc

l=1 G
′
k(1)k2−lMk,l. Then

Sk(t) = G
′
k(1)k2−bk2tcXk,bk2tc − G

′
k(1)k2

Xk,0
D→eα(t−1)X(t) − e−αX(0) = S(t),

and, by the Martingale Transform Theorem,

Γk(t) = Γk,bk2tc =
bk2tc∑
l=1

Sk,l−1Mk,l
D→

∫ t

0
S(t)dM(t) = Γ(t).
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Using the Continuous Mapping Theorem, we get

bk2tc∑
l=1

Xk,l−1Mk,l
D→ e−αtX(0)M(t) + X(0)

∫ t

0
M(u)de−αu

+eα(1−t)Γ(t) +
∫ t

0
Γ(u)deα(1−u) = N(t).

A further application of the Continuous Mapping Theory to (4.3) completes the
proof of (4.2).

Similarly, we can prove that

k(λ̃k − H
′
k(1))

= k
[
k3/2

∑k2

l=1 Mk,l · 1
k2

∑k2

l=1 X2
k,l−1 + k2a

∑k2

l=1 Mk,l · 1
k2

∑k2

l=1 Xk,l−1

−k3/2 · 1
k2

∑k2

l=1 Xk,l−1 ·
∑k2

l=1 Xk,l−1Mk,l − k2a
∑k2

l=1 Xk,l−1Mk,l

]/
[
k3

{
1
k2

∑k2

l=1 X2
k,l−1 −

(
1
k2

∑k2

l=1 Xk,l−1

)2}]
D→

aM(1)
∫ 1
0 X(u)du − aN(1)∫ 1

0 X2(u)du − {
∫ 1
0 X(u)du}2

,

and

k5/2(m̂k − G
′
k(1))

= k5/2 ·
k

∑k2

l=1 Xk,l−1Mk,l + k3/2a
∑k2

l=1 Mk,l

k3 · k−2
∑k2

l=1 X2
k,l−1 + 2k7/2a · k−2

∑k2

l=1 Xk,l−1 + k4a2

D→ a−1M(1).
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Appendix

Proof of Lemma 1. When xk → ∞, without loss of generality we can assume
that |xk| > δ. We first prove∣∣∣Eξk(xk)

[ ∫ 1

0
(1 − w)k2f ′′(xk + wZk(xk))Z2

k(xk)dw
]∣∣∣
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≤ 1
2
||f ′′ ||Eξk(xk)

[
k
{

Yk(1) − ξk(xk)G
′
k(1) − H

′
k(1)

}2
1U0

k

]
,

where

U0
k = {|Yk(1) − ξk(xk)G

′
k(1) − H

′
k(1)| ≥ k1/2(|xk|G

′
k(1) − δ)}.

Note we assumed the support set for an arbitrary function f ∈ C∞
c (R) is [−δ, δ],

which contains the set where f(x) 6= 0 and f
′′
(x) 6= 0, so

{|f ′′(xk + wZk(xk))| > 0, when 0 < w < 1}
⊂ {−δ < xk + wZk(xk) < δ, when 0 < w < 1}

⊂

{
{Zk < δ − xk, (δ − xk)/Zk(xk) ≤ w ≤ 1}, xk > δ

{Zk > −δ − xk, (−δ − xk)/Zk(xk) ≤ w ≤ 1}, xk < −δ
.

When xk > δ, we have∣∣∣Eξk(xk)

[ ∫ 1

0
(1 − w)k2f ′′(xk + wZk(xk))Z2

k(xk)dw
]∣∣∣

≤ Eξk(xk)

[ ∫ 1

0
(1 − w)k2|f ′′(xk + wZk(xk))|Z2

k(xk)1{|f ′′(xk+wZk(xk))|>0}dw
]

≤ Eξk(xk)

[ ∫ 1

(δ−xk)/Zk(xk)
(1 − w)k2||f ′′ ||Z2

k(xk)1{Zk(xk)<δ−xk}dw
]

=
1
2
||f ′′||Eξk(xk)

[
k2

{
Zk(xk) − δ + xk

}2
1{Zk(xk)<δ−xk}

]
=

1
2
||f ′′||Eξk(xk)

[
k2

{
k−1/2Yk(1) − k−1/2ξk(xk) − δ + xk

}2
1U1

k

]
=

1
2
||f ′′||Eξk(xk)

[
k2

{
k−1/2Yk(1) − δ − k−1/2(ka + k1/2xk) + xk

}2
1U1

k

]
=

1
2
||f ′′||Eξk(xk)

[
k2

{
k−1/2Yk(1) − δ − k−1/2(ka + k1/2xk)G

′
k(1)

+k−1/2ka(G
′
k(1) − 1) + xkG

′
k(1)

}2
1U1

k

]
=

1
2
||f ′′||Eξk(xk)

[
k2

{
k−1/2Yk(1) − k−1/2ξk(xk)G

′
k(1)

−k−1/2H
′
k(1) − (δ − xkG

′
k(1))

}2
1U2

k

]
≤ 1

2
||f ′′ ||Eξk(xk)

[
k2

{
k−1/2Yk(1) − k−1/2ξk(xk)G

′
k(1) − k−1/2H

′
k(1)

}2
1U2

k

]
≤ 1

2
||f ′′ ||Eξk(xk)

[
k
{

Yk(1) − ξk(xk)G
′
k(1) − H

′
k(1)

}2
1U0

k

]
,

where

U1
k =

{
Yk(1) − ξk(xk) < k1/2(δ − xk)

}
,
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U2
k =

{
Yk(1) − ξk(xk)G

′
k(1) − H

′
k(1) < k1/2(δ − xkG

′
k(1))

}
.

By the same arguments, (A.1) also holds when xk < −δ.
Now we prove that

lim
k→∞

Eξk(xk)

[
k
{

Yk(1) − ξk(xk)G
′
k(1) − H

′
k(1)

}2
1U0

k

]
= 0.

According to the definition of GWI processes, let

Wk =
ξk(xk)∑
j=1

ζ(1, j), ηk = ηk(1).

Then E[e−λWk ] = Gk(e−λ)ξk(xk), E(e−ληk) = Hk(e−λ). Let

I1
k = {|Wk + ηk − ξk(xk)G

′
k(1) − H

′
k(1)| ≥ k1/2(|xk|G

′
k(1) − δ)},

I2
k = {|Wk − ξk(xk)G

′
k(1)| ≥ 1

2
k1/2(|xk|G

′
k(1) − δ)},

I3
k = {|ηk − H

′
k(1)| ≥ 1

2
k1/2(|xk|G

′
k(1) − δ)}.

Then based on the assumptions (H2) and (H3) and a Taylor expansion, one
obtains that

Eξk(xk)

[
k
{

Yk(1) − ξk(xk)G
′
k(1) − H

′
k(1)

}2
1U0

k

]
= E

[
k
{

Wk + ηk − ξk(xk)G
′
k(1) − H

′
k(1)

}2
1I1

k

]
≤ 2E

[
k
[{

Wk − ξk(xk)G
′
k(1)

}2
+

{
ηk − H

′
k(1)

}2]
1I2

k

]
+2E

[
k
[{

Wk − ξk(xk)G
′
k(1)

}2
+

{
ηk − H

′
k(1)

}2]
1I3

k

]

≤ 2E
[
k
{

Wk − ξk(xk)G
′
k(1)

}2
1I2

k

]
×

[
1 +

4E
[{

ηk − H
′
k(1)

}2]
k
{
|xk|G

′
k(1) − δ

}2

]

+2E
[
k
{

ηk − H
′
k(1)

}2
1I3

k

]
×

[
1 +

4E
[{

Wk − ξk(xk)G
′
k(1)

}2]
k
{
|xk|G

′
k(1) − δ

}2

]

≤ 2E
[{

Wk − ξk(xk)G
′
k(1)

}4] 4k

k
{
|xk|G

′
k(1) − δ

}2 ×
[
1 +

4E
[{

ηk − H
′
k(1)

}2]
k
{
|xk|G

′
k(1) − δ

}2

]
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+2E
[{

ηk−H
′
k(1)

}4] 4k

k
{
|xk|G

′
k(1)−δ

}2 ×
[
1 +

4E
[{

Wk−ξk(xk)G
′
k(1)

}2]
k
{
|xk|G

′
k(1)−δ

}2

]
.

Since the right side of the above inequality goes to 0 as k → ∞, the above
inequality implies that Lemma 1 holds.

Proof of Lemma 2. Because Eξk(xk)[Z2
k(xk)] < ∞ and f ∈ C∞

c (R), we have by
Fubini’s Theorem and the uniformly continuity of f

′′
that

lim
k→∞

Eξk(xk)

[ ∫ 1

0
(1 − w)

{
k2f

′′
(xk + wZk(xk))Z2

k(xk)
}

dw
]

= lim
k→∞

∫ 1

0
(1 − w)Eξk(xk)

[
k2f

′′
(x + wZk(xk))Z2

k(xk)
]
dw.

We first prove that when k → ∞,

− k2 d2

dλ2
Eξk(xk)[e

iλZk(xk)] → aα + c
{

b +
∫ ∞

0+
u2eiλuµ(du)

}
. (A.1)

Note condition (H1) and (H2) ensure that Gk(eiλk−1/2
) 6= 0. Let Lk(λ) =

−iλk−1/2ξk(xk) + ξk(xk) log Gk(eiλk−1/2
). By using the Dominated Convergence

Theorem,

Eξk(xk)[k
2eiλZk(xk)Z2

k(xk)]

= −k2 d2

dλ2
Eξk(xk)[e

iλZk(xk)] = −k2 d2

dλ2

[
eLk(λ)Hk(eiλk−1/2

)
]

= −k2L
′′
k(λ)eLk(λ)Hk(eiλk−1/2

) − k2(L
′
k(λ))2eLk(λ)Hk(eiλk−1/2

)

−2k2L
′
k(λ)eLk(λ)H

′
k(e

iλk−1/2
)(

ieiλk−1/2

k1/2
)

−k2eLk(λ)H
′′
k (eiλk−1/2

)e2iλk−1/2
(−1

k
)

−k2eLk(λ)H
′
k(e

iλk−1/2
)eiλk−1/2

(−1
k
).

So we can deduce that, as k → ∞,

−k2 d2

dλ2
Eξk(xk)

[
eiλZk(xk)

]
= −k2

[
− ξk(xk)

k

e2iλk−1/2

Gk(eiλk−1/2)
G

′′
k(eiλk−1/2

)
]
eLk(λ)Hk(eiλk−1/2

)

+aα − k2eLk(λ)H
′′
k (eiλk−1/2

)e2iλk−1/2
(−1

k
)
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−k2eLk(λ)H
′
k(e

iλk−1/2
)eiλk−1/2

(−1
k
) + o(1)

= k2ae2iλk−1/2
G

′′
k(eiλk−1/2

) + aα + kH
′′
k (eiλk−1/2

)e2iλk−1/2

+kH
′
k(e

iλk−1/2
) + o(1)

→ 2aα + aΥ1(λ) + Υ2(λ). (A.2)

What is more,

kH
′′
k (eiλk−1/2

)e2iλk−1/2
+ kH

′
k(e

iλk−1/2
)eiλk−1/2

+ k2ae2iλk−1/2
G

′′
k(eiλk−1/2

)

= −k2 d2

dλ2
Hk(eiλk−1/2

) + k2ae2iλk−1/2
G

′′
k(eiλk−1/2

)

=
∞∑

m=0

km2eiλk−1/2mhk(m) + k2a
∞∑

m=0

m(m − 1)eiλk−1/2mgk(m)

=
∞∑

m=0

eiλk−1/2m
[
km2hk(m) + k2am(m − 1)gk(m)

]
,

which is proportional to the characteristic function of a nonnegative integer val-
ued process with factor kH

′′
k (1) + kH

′
k(1) + k2aG

′′
k(1). Here gk(·) and hk(·) are

the distribution laws corresponding to the generating functions Gk(·) and Hk(·),
respectively. Observe that kH

′′
k (1)+kH

′
k(1)+k2aG

′′
k(1) → c. So, according to the

Lévy Continuity Theorem, these ensure the existence of a probability measure
µ1 such that

−k2(d2/dλ2)Eξk(xk)[eiλZk(xk)] − aα

kH
′′
k (1) + kH

′
k(1) + k2aG

′′
k(1)

→
∫ ∞

0
eiλuµ1(du),

and hence (A.1) holds. Alternatively, based on (A.2) and (H2)−(H3), we know
Υj , j=1,2, are characteristic functions of finite measures on [0,∞), and hence
there exists a probability measure µ1 on [0,∞) such that

{−k2 d2

dλ2
Eξk(xk)[e

iλZk(xk)]−aα}c−1→{aα+aΥ1(λ)+Υ2(λ)}c−1 =
∫ ∞

0
eiλuµ1(du).

Therefore, (A.1) follows.
Next, it is an elementary matter to see that Qk converges weakly to Q based

on this convergence result, where Qk, k = 1, 2, . . . and Q are measures defined as
follows: for any measurable set O ⊂ R,

Qk(O) = Eξk(xk)

[
k2Z2

k(xk)1O(Zk(xk))
]
/Eξk(xk)

[
k2Z2

k(xk)
]
, and

Q(O) =
[
(aα + bc)1O(0) + c

∫
O∩(0,+∞)

u2µ(du)
]
(aα + c)−1.
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This implies, for all f ∈ C∞
c (R),

Eξk(xk)

[
k2f(Zk(xk))Z2

k(xk)
]
→ (aα + bc)f(0) + c

∫ ∞

0+
u2f(u)µ(du).

Finally, applying the Dominated Convergence Theorem again, we have

lim
k→∞

∫ 1

0
(1 − w)Eξk(xk)

[
k2f

′′
(x + wZk(xk))Z2

k(xk)
]
dw

=
∫ 1

0
(1 − w) lim

k→∞
Eξk(xk)

[
k2f

′′
(x + wZk(xk))Z2

k(xk)
]
dw

=
∫ 1

0
(1 − w)

{
(aα + bc)f

′′
(x) + c

∫ ∞

0+
u2f

′′
(x + wu)µ(du)

}
dω

=
1
2
(aα + bc)f

′′
(x) + c

∫ ∞

0+

∫ 1

0
(1 − w)u2f

′′
(x + wu)dwµ(du)

=
1
2
(aα + bc)f

′′
(x) + c

∫ ∞

0+
{f(x + u) − f(x) − uf

′
(x)}µ(du),

and hence Lemma 2 follows.
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Ispány, M., Pap, G. and Zuijlen, M. V. (2003a). Asymptotic inference for nearly unstable

INAR(1) models. J. Appl. Prob. 40, 750-765.
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