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Abstract: The conventional method for functional quantile regression (FQR) is to

fit the regression model for each quantile of interest separately. Therefore, the

slope function of the regression, as a bivariate function of time and quantile, is

estimated as a univariate function of time for each fixed quantile. However, there are

several limitations to this conventional strategy. For example, it cannot guarantee

the monotonicity of the conditional quantiles, nor can it control the smoothness

of the slope estimator as a bivariate function. In this paper, we propose a new

framework for FQR, in which we simultaneously fit the FQR model for multiple

quantiles, with the help of a bivariate basis under some constraints, such that the

estimated quantiles satisfy the monotonicity conditions and the smoothness of the

slope estimator is controlled. The proposed estimator for the slope function is shown

to be asymptotically consistent, and we establish its asymptotic normality. We use

simulation to evaluate the finite-sample performance of the proposed method and

compare it with that of the conventional method. We demonstrate the proposed

method by analyzing the effects of daily temperature on bike rentals, and by

investigating the relationship between children’s growth history and their adult

height.

Key words and phrases: Bivariate spline basis, functional data analysis, non-crossing

quantiles.

1. Introduction

The uth quantile of a scalar response Y conditioning on a functional covariate

X(t), QY (u | X) can be modeled as

QY (u | X) = c(u) +

∫

T

X(t)β(t, u)dt, (1.1)

where X(t) is a stochastic process defined on a compact interval T , and β(t, u)

is a bivariate slope function indexed by both time t and quantile u. Model (1.1)

is called the functional quantile regression (FQR) model. The slope function

β(t, u) is of primary interest, because it describes how the quantile of the response

variable is related to the functional covariate.

In the literature, a common strategy for estimating β(t, u) is to treat it as a

univariate function of t by first fixing the quantile u. However, this strategy has
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two major limitations. First, the slope function β(t, u) is usually assumed to be

smooth over both t and u. However, fitting the regression models for different

quantiles separately cannot guarantee that the resulting estimator for β(t, u) is

smooth over u. Second, for some observations, the estimation of QY (u | X) may

not be monotonically increasing in u, as it should be. These crossing quantiles

can further lead to an invalid distribution estimation for the response variable.

In this paper, we address the above two limitations. In contrast to existing

methods that estimate β(t, u) as a univariate function of t for each fixed u, we

propose using bivariate spline basis functions to approximate β(t, u) directly, and

then estimating the corresponding basis coefficients. Under our framework, the

smoothness of the estimation is guaranteed by the smoothness of the bivariate

spline approximation, which is ensured by adding some linear constraints on the

spline coefficients. In addition, we impose extra linear constraints to mitigate the

crossing-quantile problem. In this way, we ensure that the estimated quantiles

for each subject are monotone. To some extent, the monotonicity problem can

be addressed using monotonization techniques, as in Chernozhukov, Fernández-

Val and Galichon (2009). However, this does not improve the estimation for

β(t, u), because the monotonicity of the quantiles is not considered in the

estimation procedure for β(t, u), and the monotonization is applied only to the

estimated quantiles. For example, Kato (2012) proposed first estimating β(t, u)

for model (1.1), and then estimating conditional quantile functions based on the

estimated β(t, u). He adjusted any nonmonotone quantile functions to become

monotone using the technique of Chernozhukov, Fernández-Val and Galichon

(2009). However, the estimation for β(t, u) was left unchanged.

The model we consider is an extension of the linear quantile regression (LQR)

model, which describes the linear relationship between conditional quantiles of

a scalar response and some predictor variables (Koenker and Bassett (1978)).

By estimating multiple conditional quantiles, an LQR enables us to depict and

then make inferences on the entire distribution of the response, conditioning on

the predictors. LQR is well studied, and is used in many real-world applications

(Koenker and Geling (2001); Wu, Ma and Yin (2015)).

Functional variables are becoming increasingly common in real-world appli-

cations. Functional data analysis is a comprehensive branch of statistics that

provides a useful and convenient framework in which to analyze functional data

with some high-dimensional structures, such as curves, images, and surfaces,

which are so-called functional data. Numerous works estimate a quantile

regression (QR) with a scalar response and some functional covariates, such as

Cardot, Crambes and Sarda (2007), Chen and Müller (2012), Yu, Kong and

Mizera (2016), Wang et al. (2019), and Zhang et al. (2021).

Model (1.1) was first formulated in Cardot, Crambes and Sarda (2005) as a

natural extension of the classic LQR. The authors proposed a penalized spline

estimator for β(t, u) for a fixed u, without any dimension reduction on the
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functional covariate. Later, for the same model (1.1), Kato (2012) proposed

first using a functional principal component analysis (FPCA) to truncate the

functional covariate X(t) for dimension reduction, and then estimating the slope

function β(t, u) for a fixed u using the conventional LQR framework. Kato (2012)

also established an optimal convergence rate for the proposed estimator in the

minimax sense.

The remainder of the paper is organized as follows. In Section 2, we introduce

the model and the corresponding estimator for β(t, u). In Section 3, we present

the main theoretical results, in which we derive the asymptotic consistency

and distribution of the proposed slope function estimator. In Section 4, we

demonstrate the proposed estimation method for the slope function using two

real-world applications. Section 5 concludes the paper.

2. Proposed Method

2.1. Estimation procedure

Let Y be a scalar random variable, and X(t) be a random function with

mean curve µ(t), where t ∈ T , and T ⊂ R is a compact set. Let Ω = T × A ,

where A ⊂ (0, 1) is an interval. For any u ∈ A , the uth quantile of Y given the

functional covariate X(t) is modeled by the following functional quantile model:

QY (u | X) = c(u) +

∫

T

X(t)β(t, u)dt. (2.1)

To estimate the slope function β(t, u) in (2.1), we propose first approximating

β(t, u) using bivariate splines, and then estimating the corresponding coefficients.

Multiple types of bivariate splines can be used for the approximation, such as

tensor products of B-splines (Stone et al. (1997); Prautzsch, Boehm and Paluszny

(2002); Zhang, Cao and Carroll (2017)) or bivariate Bernstein polynomials

over triangulations (Lai and Schumaker (2007)), which is the approach we

use to approximate the bivariate slope function in (2.1). Compared with the

tensor products of B-splines, the triangulation technique of bivariate Bernstein

polynomials enables local refinement; that is, we can flexibly adjust the number

of bivariate basis functions with different resolutions in various local areas of the

two-dimensional space T × [0, 1], which is convenient in many applications. Of

course, the Bernstein polynomials and triangulation technique are not required

for the proposed method; other bivariate bases should also work.

Figure 1 shows an example of local refinement of a triangulation. The left

panel of Figure 1 shows a triangulation over [0, 1] × [0, 1]. The right panel of

Figure 1 shows the triangulation after a local refinement by adding a new vertex

D inside the triangle△ABC. The triangle△ABC is further split into three triangles:

△ABD, △BCD, and △ACD.

Suppose A is the interval containing multiple quantiles of interest. Our goal
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Figure 1. Example of local refinement of triangulation. The left panel shows a
triangulation over [0, 1] × [0, 1]. The right panel shows the triangulation after a local
refinement by adding a new vertex D inside the triangle △ABC.

is to find a function s(t, u) ∈ Sr
d(∆) that well approximates the slope function

β(t, u) on the domain T ×A . To make our writing and proofs in the subsequent

sections clearer, we use {bj(t, u)}Jj=1 to denote the Bernstein polynomials defined

over the triangulation ∆ = {Λ1, . . . ,ΛM}, where j = 1, . . . , J is the index for

the polynomials. The relationship between J and M is J = (d + 2)(d + 1)M/2,

because there are (d + 2)(d + 1)/2 Bernstein polynomials associated with each

triangle of ∆. In addition, for each basis function bj(t, u), we denote its support

by ∆j, which is a specific triangle of ∆ that is the support of bj(t, u). In other

words, bj(t, u) ̸= 0 for (t, u) ∈ ∆j, and bj(t, u) = 0 for (t, u) ̸∈ ∆j. If two

Bernstein polynomials bj(t, u) and bk(t, u) are associated with the same triangle,

then ∆j and ∆k are identical.

The function s(t, u) ∈ Sr
d(T × A ) that approximates β(t, u) can be written

as a linear combination of Bernstein polynomials {bj(t, u)}Jj=1. Then, on the

domain T × A , we have the approximation

β(t, u) ≈ s(t, u) =
J∑

j=1

γjbj(t, u) ∈ Sr
d(∆), (2.2)

where {γj}Jj=1 are the corresponding coefficients.

Under some conventional assumptions on X(t) (Yao, Müller and Wang

(2005); Sang, Wang and Cao (2017); Nie et al. (2018); Nie and Cao (2020);

Shi et al. (2021)) usually satisfied in real applications, by Mercer’s theorem, X(t)

admits the decomposition
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X(t) = µ(t) +
∞∑
k=1

ξkϕk(t), (2.3)

where ϕk(t), for k = 1, . . ., are called functional principal components (FPCs)

and ξk are called FPC scores. By the decomposition (2.3) and the approximation

(2.2), model (2.1) can be approximately re-expressed as

QY (u | X) ≈ c(u) +

∫

T

µ(t)β(t, u)dt+

∫

T

∞∑
k=1

ξkϕk(t)s(t, u)dt,

= c0(u) +

∫

T

∞∑
k=1

ξkϕk(t)s(t, u)dt,

where c0(u) = c(u) +
∫

T µ(t)β(t, u)dt. Let {b0,j(u)}J0

j=1 denote the univariate B-

spline basis functions defined over the interval A . Then, we further approximate

c0(u) by c0(u) ≈
∑J0

j=1 γ0,jb0,j(u) = bT

0 (u)γ0, where bT

0 (u) = (b0,1(u), . . . , b0,J0
(u))

and γT

0 = (γ0,1(u), . . . , γ0,J0
(u)).

In a functional data context, functional observations as infinite-dimensional

subjects do not fit in the conventional LQR framework. In addition, the

observed functional data are not always sufficiently smooth to use numerical

integration to approximate the integral in (2.1). To address these problems and

to extend the classic LQR to an FQR, we usually need to truncate the functional

observations {xi(t)}ni=1 to reduce the dimensionality and to smooth them. A

plausible approach for the dimensionality reduction is to truncate X(t) by using

its first m FPCs obtained from the decomposition (2.3).

As mentioned in the introduction, in contrast to conventional methods, we

estimate β(t, u) as a bivariate function directly. Therefore, all quantiles of interest

are considered simultaneously in the estimation procedure. Numerous papers

have discussed the advantage of combining multiple QR models, such as the

works of Zou and Yuan (2008), Kai, Li and Zou (2011), Zhao and Xiao (2014),

and He et al. (2016). A common approach is to consider the sum of these models.

We know that for a real-valued random variable Y , the minimizer of

E{ρu(Y − u)} is the u-quantile of Y , where ρu(x) = x (u− 1{x < 0}) is called

the check function (Koenker and Bassett (1978)). Assume that we observe

independent and identically distributed (i.i.d.) data pairs {yi, xi(t)}ni=1 as

realizations of {Y,X(t)}. We use A ∈ A to denote a set of quantiles of interest,

which are assumed to be uniformly distributed in A , and use nA to denote the

cardinality of A. We first apply an FPCA on {yi, xi(t)}ni=1 to obtain the estimated

FPCs {ϕ̂k(t)} and FPC scores {ξ̂ik}mk=1. Then, based on the approximation (2.2),

a reasonable estimator for β(t, u) should minimize the following loss function:

1

nnA

nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ0 −
∫

T

m∑
k=1

ξ̂ikϕ̂k(t)s(t, ur)dt

)
, (2.4)
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with respect to s(t, u) ∈ Sr
d(∆) and γ0.

The conventional LQR framework is designed for finite-dimensional subjects,

and estimates a finite-dimensional slope parameter. Although functional obser-

vations can be truncated by using an FPCA into a finite dimension, the slope

function β(t, u) in the model (2.1) is still infinite-dimensional. As a result, a

direct extension (2.4) of the conventional LQR framework to functional data can

lead to an invalid estimation for β(t, u), and the uniqueness of the minimizer of

(2.4) cannot be guaranteed.

To clarify this, let {ŝ(t, u), γ̂0} be a minimizer of (2.4) and fix the truncation

level at m. Assume there exists another function s1(t, u) ∈ Sr
d(∆), such that

s1(t, u) is orthogonal to the first m estimated FPCs of X(t). Then, {ŝ(t, u) +
s1(t, u), γ̂0} is another minimizer of (2.4). Specifically, using an FPCA, we

obtain the (m + 1)th FPC, denoted as ϕ̂m+1(t), which is orthogonal to the first

m estimated FPCs, ϕ̂1(t), . . . , ϕ̂m(t). If there exists some measurable function

w(u) such that ŝ(t, u) + w(u)ϕ̂m+1(t) also belongs to the space Sr
d(∆), then

{ŝ(t, u) + w(u)ϕ̂m+1(t), γ̂0} is also a minimizer of (2.4). This implies that

ŝ(t, u) + w(u)ϕ̂m+1(t) is another estimator for β(t, u). However, the information

of ϕ̂k(t) for any k ≥ m + 1 is excluded from our estimation procedure when

we choose the truncation level as m, and thus the estimator for β(t, u) derived

from the estimation procedure does not include any such information. Therefore,

the objective function (2.4) derived directly from the conventional LQR is

problematic in a functional data context.

To overcome this problem, we propose penalizing the L2-norm of the

approximation s(t, u) during the estimation procedure. In addition, the roughness

of the slope function estimator s(t, u) is also a concern in a functional data

context, and so we a roughness penalty for s(t, u) during the estimation procedure.

Roughness penalties are useful for controlling the smoothness of functions in

an estimation procedure; see Ramsay and Silverman (2002), Cardot, Ferraty

and Sarda (2003), Ramsay and Silverman (2005), Ramsay, Hooker and Graves

(2009), and Cao and Ramsay (2010). We consider the following roughness penalty

R(s;ω0, ω1, ω2):

R(s;ω0, ω1, ω2) =
∑
Λ∈∆

∫

Λ

∑
d1+d2=2

ωd1

(
2

d1

)[
∇d1

t ∇d2
u s(t, u)

]2
dtdu,

where ω0, ω1, and ω2 are tuning parameters representing the weights correspond-

ing to second derivatives in different directions. More specifically, ω0 is the weight

corresponding to ∂2s/∂t2, ω1 is the weight corresponding to ∂2s/∂t∂u, and ω2

is the weight corresponding to ∂2s/∂u2. Because we include a tuning parameter

λ2,n in our estimation procedure for the whole roughness penalty R(s;ω0, ω1, ω2),

ω0 can be fixed as a constant ω0 = 1. In addition, if the smoothness of the

target slope functions along the quantile index and the functional index can be
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assumed to be similar, then we can simply set ω0 = ω1 = ω2 = 1 to reduce the

computational cost. Then, R(s;ω0, ω1, ω2) becomes

R(s) =
∑
Λ∈∆

∫

Λ

∑
d1+d2=2

(
2

d1

)
(
∇d1

t ∇d2
u BT(t, u)γ

)2
dtdu,

which is the most common roughness penalty discussed in the literature.

Let λ1,n and λ2,n be nonnegative tuning parameters. Then, we estimate the

slope function β(t, u) in (2.1) by minimizing

1

nnA

nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ0 −
∫

T

m∑
k=1

ξ̂ikϕ̂k(t)s(t, u)dt

)

+ λ1,n ∥s∥2L2(Ω) + λ2,nR(s;ω0, ω1, ω2), (2.5)

with respect to s(t, u) ∈ Sr
d(∆) and γ0, where the norm ∥s∥2L2(Ω) is defined as

∥s∥2L2(Ω) =
∫

T ×A s2(t, u)dtdu.

For any s(t, u) ∈ Sr
d(∆), we have the expression

s(t, u) =
J∑

j=1

γjbj(t, u) = BT(t, u)γ, (2.6)

where B(t, u) = (b1(t, u), . . . , bJ(t, u))
T and γ is the vector of coefficients

satisfying some linear constraint,

Hγ = 0. (2.7)

The constraint (2.7) ensures that s(t, u) = BT(t, u)γ ∈ Cr(T ×A ). The matrix

H depends on the triangulation ∆, degree d, and smoothness parameter r of the

spline space Sr
d(∆) (Lai and Schumaker (2007)). For example, when r = 1, s(t, u)

is assumed to have continuous first partial derivatives over both t and u. A useful

way of removing the constraint (2.7) is to use a QR decomposition (Wang et al.

(2020)). For a given H, by the QR decomposition, we have

HT = (Q∗,Q)

(
R

0

)
, (2.8)

where (Q∗,Q) is a matrix with orthogonal columns, and R is an upper triangle

matrix with nonzero diagonal elements. With the decomposition (2.8), the

constraint Hγ = 0 can be removed by rewriting γ as

γ = Qθ. (2.9)
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Suppose we observe Xi(t) for t ∈ T , and use nT to denote the cardinality

of T . By (2.6), the penalty ∥s∥2L2(Ω) can be approximated by ∥s∥2L2(Ω) ≈
(1/nAnT )γ

TBA,TB
T

A,Tγ, where BA,T is a J-by-nAnT matrix, with its jth row

being the evaluations of the Bernstein polynomials bj(t, u), for all t ∈ T and

u ∈ A. The roughness penalty R(s;ω0, ω1, ω2) or R(s) can also be written in

matrix form as γTDγ, where the matrix D is a J-by-J positive-definite and

block-diagonal matrix, with each block corresponding to one triangle of the

triangulation ∆, and the size of each block depends on the degree d.

Define L0(θ,γ0) = (nnA)
−1

∑nA

r=1

∑n
i=1 ρur

(yi−bT

0 (ur)γ0−ξ̂T

i P̂ (ur)Qθ) as the

whole quantile loss based on an FPCA. Then, by (2.6) and (2.9), the minimization

problem (2.5) can be converted to

min
θ,γ

0

L0(θ,γ0) + λ1,nθ
TQTBA,TB

T

A,TQθ + λ2,nθ
TQTDQθ, (2.10)

where ξ̂i = (ξ̂i1, . . . , ξim)
T, and P̂ (u) is an m × J matrix, with the (k, j)-entry

being p̂k,j(u) =
∫
(t,u)∈∆j

ϕ̂k(t)bj(t, u)dt. Note that, for the matrix P̂ (u) and a

specific u, say u = ur ∈ A, many entries of P̂ (ur) are zeros, because the integral∫
(t,u)∈∆j

ϕ̂k(t)bj(t, ur)dt is equal to zero if the triangle ∆j, which is the support

of bj(t, ur), does not intersect with the horizontal line u = ur.

If we denote the minimizer of (2.10) by (γ̂0, θ̂), then our proposed estimator

for β(t, u) in (2.1) is

β̂(t, u) = BT(t, u)Qθ̂. (2.11)

In practice, to guarantee that the estimated conditional quantile functions of

all the subjects are monotone, we impose some extra linear constraints on θ.

Specifically, given (γ̂0, θ̂), the estimated u-quantile of the ith subject is Q̂Y (u |
X = xi) = bT

0 (u)γ̂0 + ξ̂T

i P̂ (u)Qθ̂.

The monotonicity of Q̂Y (u | X = xi) can be approximately expressed as

Q̂Y (ur | X = xi) ≤ Q̂Y (u
′
r | X = xi), for any ur < u′

r, ur, u
′
r ∈ A. Then,

a reasonable way to mimic the monotonicity of these quantile functions is to

impose the following constraints on the optimization:

{bT

0 (ur)− bT

0 (u
′
r)}γ0 + ξ̂T

i {P̂ (ur)− P̂ (u′
r)}Qθ ≤ 0

for any quantile ur < u′
r and any i = 1, . . . , n, which guarantee that the estimated

conditional quantiles of Y | Xi(t) do not cross (Bondell, Reich and Wang (2010);

Liu and Wu (2011)). Then, we can solve (2.10) under the constraints

{bT

0 (ur)− bT

0 (u
′
r)}γ0 + ξ̂T

i {P̂ (ur)− P̂ (u′
r)}Qθ ≤ 0 (2.12)

for all i = 1, . . . , n and any ur < u′
r, ur, u

′
r ∈ A.
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2.2. Computation

This subsection examines the computational aspect of the minimization

problem (2.10). As introduced in Koenker and Bassett (1978), for a specific

quantile u, the minimization of the loss function derived from the classic LQR

model is equivalent to a constrained linear programming problem.

For the proposed method, we need to solve the minimization problem (2.10).

Following Koenker and Bassett (1978), (2.10) can be formulated as the minimiza-

tion of the following quadratic programming problem with respect to θ, γ0, and

{wi,r, vi,r}i=1,...,n,r=1,...,nA
:

1

nnA

nA∑
r=1

{
ur

n∑
i=1

wi,r + (1− ur)
n∑

i=1

vi,r

}
+ λ1,nθ

TQTBA,TB
T

A,TQθ

+ λ2,nθ
TQTDQθ, (2.13)

subject to yi − bT

0 (ur)γ0 − ξ̂T

i P̂ (ur)Qθ = wi,r − vi,r, wi,r ≥ 0, and vi,r ≥ 0, for all

i = 1, . . . , n and r = 1, . . . , nA.

If we further impose the monotonicity constraints (2.12) on (2.13), then the

constrained optimization can be formulated similarly as the following problem

with respect to θ, γ0, and {wi,r, vi,r}i=1,...,n,r=1,...,nA
:

1

nnA

nA∑
r=1

{
ur

n∑
i=1

wi,r + (1− ur)
n∑

i=1

vi,r

}
+ λ1,nθ

TQTBA,TB
T

A,TQθ

+ λ2,nθ
TQTDQθ,

subject to yi − bT

0 (ur)γ0 − ξ̂T

i P̂ (ur)Qθ = wi,r − vi,r, {bT

0 (ur) − bT

0 (u
′
r)}γ0 +

ξ̂T

i {P̂ (ur) − P̂ (u′
r)}Qθ ≤ 0, wi,r ≥ 0, and vi,r ≥ 0, for all i = 1, . . . , n and

r = 1, . . . , nA, and any ur < u′
r, ur, u

′
r ∈ A.

In summary, the complete algorithm can be split into two parts:

� Derive the coefficients in (2.13), with or without the monotonicity con-

straints (2.12), such as {ξ̂i}ni=1, {P̂ (u)}u∈A, Q, and so on. Specifically,

we first derive the estimated FPCs {ϕ̂k(t)}mk=1 and corresponding scores

{ξ̂i}ni=1. Next, we compute the matrices related to the bivariate spline basis,

BT(t, u), Q, BA,T , and D. Given {ϕ̂k(t)}mk=1 and BT(t, u), {P̂ (u)}u∈A are

approximated using numerical integration based on Simpson’s rule.

� We can code and solve the quadratic programming problem (2.13), with or

without the constraints (2.12), using Matlab.
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2.3. Tuning parameter selection

In our proposed method, to estimate c(u) and β(t, u) in model (2.1), we need

to first decide the truncation level m and the values of the tuning parameters

λ1,n and λ2,n.

To choose the truncation level m, we suggest using the following BIC:

BIC(m) = log

(
n−1

nA∑
r=1

n∑
i=1

ρur

{
yi − bT

0 (ur)γ̂0 −
∫

T

m∑
k=1

ξ̂ikϕ̂k(t)β̂(t, u)dt

})

+
(m+ 1) log n

n
. (2.14)

We recommend using leave-one-out cross-validation to select the penalty param-

eters λ1,n and λ2,n. However, the computational cost for each fitting is expensive.

Therefore, in practice, we usually use five-fold or 10-fold cross-validation to select

the parameter values. As we show in the next section, the value of λ2,n depends

on the value of λ1,n. Therefore, we propose a sequential procedure for choosing

values for λ1,n and λ2,n. The cross-validation procedure is described as follows.

We use 10-fold cross-validation as an example.

We first use the complete sample {xi(t)}ni=1 to estimate the FPCs {ϕ̂k(t)}mk=1

and corresponding scores {ξ̂i}i=1,...,n. Then, for a fixed m, we use 10-fold cross-

validation to find the optimal values for the tuning parameters λ1,n and λ2,n.

More specifically, we first apply the cross-validation on the following objective

function with only one penalty θTQTBA,TB
T

A,TQθ:

Ln,1(θ,γ0) = L0(θ,γ0) + λ1,nθ
TQTBA,TB

T

A,TQθ,

to decide the optimal value for λ1,n among all candidates, and denote it as λ̂1,n.

Next, based on λ̂1,n, we apply the cross-validation again on the full objective

function with two penalties,

Ln,2(θ,γ0) = L0(θ,γ0) + λ̂1,nθ
TQTBA,TB

T

A,TQθ + λ2,nθ
TQTDQθ,

to find the optimal value for λ2,n among all candidates, and denote it as λ̂2,n.

Then, (λ̂1,n, λ̂2,n) are the optimal values for (λ1,n, λ2,n) for the current truncation

level m. We repeat this sequential selection procedure for multiple values of m,

and then choose the optimal value for m based on criterion (2.14).

3. Theoretical Results

To investigate the asymptotic properties of the proposed slope function

estimator β̂(t, u) defined in (2.11), we assume the following conditions on the

distribution of the random functionX(t), the conditional distribution of Y | X(t),

and the slope function β(t, u):
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(A1) {Yi, Xi(t)}ni=1 are i.i.d.

(A2)
∫

T E (X4(t)) dt < ∞, and E (ξ4k) < Cκ2
k, for all k ≥ 1.

(A3) For some α > 1 and for any k ≥ 1, C−1k−α ≤ κk ≤ Ck−α and κk − κk+1 ≥
C−1k−α−1.

(A4) ∂FY |X(y | X)/∂y ∨ |∂2FY |X(y | X)/∂y2| ≤ C, and infu∈A fY |X(QY |X(u |
X) | X) ≥ C−1.

(A5) β(t, u) ∈ W d+1
q (T ×A ), and for some ζ > α/2+1, supu∈A |βk(u)| ≤ Ck−ζ ,

for k = 1, . . ., where W d+1
q (T ×A ) is a Sobolev space defined over T ×A ,

and βk(u) =
∫

T β(t, u)ϕk(t)dt.

(A6) There exists a finite number p0 such that κk = 0, for all k ≥ p0.

The i.i.d. assumption is conventional, and we do not consider the scenario

of dependent data in this paper. A2 provides commonly assumed restrictions

on the moments of X(t) and ξk. There is no condition on the moment of

Y . A3 is adapted from (A3) of Kato (2012), and ensures the identifiability of

ϕk(t) and the estimation accuracy of ϕ̂k(t). A4 provides common conditions on

the conditional distribution and density functions of Y in a QR context. A5

determines the estimation accuracy of β̂(t, u) by using the truncated functional

covariate, and the Sobolev space assumption ensures that bivariate splines can

be used to approximate β(t, u). A6 implies that the functional covariate Xi(t)

can be represented by a finite number of pairs of FPCs and corresponding FPC

scores.

For a triangle Λ, let |Λ| be the length of its longest edge, and then, for a

triangulation ∆, we define |∆| := max{|Λ| : Λ ∈ ∆} ( i.e., the length of the longest

edge of all triangles in the triangulation ∆). Recall that nA and nT represent

the cardinalities of A and T , respectively, as defined previously. The following

theorem gives the rate of convergence of the slope function estimator β̂(t, u) for

a given truncation level m when an FPCA is used to reduce the dimension of the

functional covariate.

For any fixed u ∈ (0, 1), we use βu(t) to denote β(t, u) and use β̂u(t) to denote

β̂(t, u). Define

A1 =

{
r ∈ (1, . . . , nA) :

∥∥∥β̂ur
(t)− βur

(t)
∥∥∥
L2

≥ Mκ−1/2
m m1/2n−1/2,

for some constant M > 0

}
,

where ∥β̂ur
(t) − βur

(t)∥L2 = {
∫

T (β̂ur
(t) − βur

(t))2dt}1/2. The set A1 can be

regarded as an index set of quantiles for which the estimations are not good

enough.
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Theorem 1. Under conditions A1–A5, assume that |∆| = o(m−(1+2α)/(2d+2)

n−3/(2d+2)) and n−1
A |∆|−1m(α−1)/3 = o(1). Suppose the tuning parameters λ1,n and

λ2,n satisfy λ1,n ≍ n−1
A n−1

T m−1/2n|∆|d+1 and λ2,n = o(λ1,nn
−1
A n−1

T |∆|4). Then,

∥∥∥β̂(t, u)− β(t, u)
∥∥∥
L2(Ω)

≈ Op

(
κ−1/2
m m1/2n−1/2 ∨m−(2ζ+1)/2

)
.

In addition, for A1, we have |A1| = op(m
−1−αn−1/2nA).

Remark 1. The first term of the stochastic order of ∥β̂(t, u) − β(t, u)∥
L2(Ω)

in Theorem 1 decreases as the sample size n increases, and is increasing with

the truncation level m (i.e., adding FPCs to the estimation). The second term

represents the information loss if we include too few FPCs in the estimation

procedure. Then, based on condition A5, we obtain a theoretically optimal

truncation level m ≍ n1/(α+2ζ).

The following theorem presents the asymptotic distribution of the slope

estimator β̂(t, u). We now assume that p0 is known and finite, as in Li et al.

(2022). Under A6 and by Lemma 1 and Lemma 3 presented in the Supplementary

Material, there exist γ∗
0 and θ∗ such that

sup
(t,u)∈T ×A

|β(t, u)−BT(t, u)Qθ∗| ≤ C1|∆|d+1 and sup
u∈A

|c(u)−bT

0 (u)γ
∗
0| ≤ C2|∆|d+1,

for some constants C1 and C2. Let Γ∗ = (γ∗
0,θ

∗)T, Zi(u) = [bT

0 (u), ξ̂
T

i P̂ (u)Q],

B̃(t, u) = (01×nB
,BT(t, u)Q)

T
, and Z̃i = (ZT

i (u1), . . . ,Z
T

i (unA
)). Then, define

Σ1 = n−1
A

∑nA

r=1 E [fi(Zi(ur)Γ
∗)ZT

i (ur)Zi(ur)] and

Σ2 =
1

2n
Σ1 + λ1,n

[
0 0

0 QTBA,TB
T

A,TQ

]
+ λ2,n

[
0 0

0 QTDQ

]
,

where fi is the conditional density of Yi | Xi(t). Let U1 be an nA-by-nA matrix

with the (r, r′)-entry being ur ∧ ur′ − urur′ , for any r, r′ = 1, . . . , nA. Define

U2 = n−2
A E

[
Z̃T

i U1Z̃i

]
and Σ = (2nΣ2)

−1
U2/n (2nΣ2)

−1
.

Theorem 2. Under the conditions of Theorem 1, A6, and nAn|∆|d+2 = o(1), as

n → ∞ and nA → ∞, for fixed (t, u), we have

σ
−1/2
β (t, u)

{
β̂(t, u)− β(t, u)

}
→ N(0, 1)

in distribution, where σβ(t, u) = B̃T(t, u)ΣB̃(t, u).

Remark 2. Because we use the number of quantile levels, nA, to ensure a good

estimate of the bivariate function in the quantile interval, nA should not be too

small. However, larger nA will result in a larger number of triangle basis functions,

which will increase the variance of the estimator. Thus, in our theorems, nA needs
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to satisfy n−1
A |∆|−1m(α−1)/3 = o(1) and nAn|∆d+2| = o(1).

The next theorem describes how to construct a simultaneous confidence

region (SCR) for β(t, u). Let Γmin(·) and Γmax(·) represent the minimum and

maximum eigenvalues, respectively, of a square matrix. Let Ωs denote the set of

vertices of the triangulation ∆, and |Ωs| denote the cardinality of the set Ωs.

Theorem 3. Under the conditions of Theorem 2, and assuming that Γmin (Σ)

and Γmax (Σ) are bounded away from zero and ∞, respectively, with probability

tending to one as n → ∞,

(1) As n, nA → ∞, we have

σ
−1/2
β (t, u)

{
β̂(t, u)− β(t, u)

}
→ ϑ(t, u) (3.1)

in distribution, where ϑ(t, u) is a Gaussian random field with mean zero

defined on Ω with the covariance function

C(t, u, t′, u′) : = Cov (ϑ(t, u), ϑ(t′, u′))

= σ
−1/2
β (t, u)σ

−1/2
β (t′, u′)B̃T(t, u)ΣB̃(t′, u′).

Specifically, C(t, u, t, u) = V ar (ϑ(t, u)) = 1.

(2) For any a ∈ (0, 1),

lim
n→∞

P

{
sup

(t,u)∈Ωs

∣∣∣σ−1/2
β (t, u)

{
β̂(t, u)− β(t, u)

}∣∣∣ ≤ Qβ(a)

}
= 1− a, (3.2)

where Ωs as a subset of Ω becomes denser as n → ∞, and Qβ(a) =

(2 log |Ωs|)1/2 − (2 log |Ωs|)−1/2{log(−0.5 log(1 − a)) + 0.5[log(log |Ωs|) +

log 4π]}. Then, an asymptotic 100(1 − a)% SCR for β(t, u) over Ωs is

given by β̂(t, u)± σ
1/2
β (t, u)Qβ(a).

Remark 3. In Theorem 2, the condition nAn|∆|d+2 = o(1) is used for under-

smoothing of the slope estimator, and is widely applied in series approximating

estimations (Yu et al. (2020, 2021)). By consistently estimating the asymptotic

variance σβ(t, u), we can use the result in Theorem 2 to establish the pointwise

confidence interval of the slope function. Compared with the asymptotic

100(1 − a)% point confidence interval in Theorem 2, β̂(t, u) ± σ
1/2
β (t, u)za, the

width of the SCR in Theorem 3 for any (t, u) ∈ Ωs is inflated by the rateQβ(a)/za,

where za is the a-quantile of the standard normal distribution.
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4. Applications

4.1. The capital bike share program

Urban population growth and increasing air pollution, greenhouse gas

emissions, and other environmental problems have led to some people using

bicycles as a healthy and eco-friendly alternative to driving to work, especially

in big cities.

Rather than owning a bicycle, many people rent one as an economical and

environmentally friendly alternative. As a result, bike-sharing systems have

become an essential part of urban mobility in many major cities.

Because cycling is an outdoor activity, customers’ rental behaviors are

affected by weather conditions. Thus, a successful business needs to have a good

strategy to adjust the supply of available bicycles to meet demand based on

weather conditions. Here, we seek to quantify the effect of weather conditions on

bicycle rentals, focusing on the relationship between the total daily number of

rentals and hourly temperature.

The data set is taken from a study (Fanaee-T and Gama (2014)) on rentals

to cyclists without membership in the Capital Bike Share program in Washington

D.C. from January 1, 2011, to December 31, 2012. The data set includes

hourly counts of casual bike rentals every day, the weather conditions, and

hourly temperature measurements. The demand for bicycles differs between

weekdays and weekends. We restrict our analysis to data observed on weekends.

Specifically, we consider the temperature measurements and the counts of rentals

between 7:00 and 17:00 on Saturdays and Sundays without rain or snow. The

goal of our analysis is to investigate how the hourly temperature affects the lower,

middle, and upper quantiles of the daily total rentals on weekends.

Figure 2 shows the estimated slope function β̂(t, u) for u = 10%, 20%, 50%,

and 90%. In the top two panels of Figure 2, the slope function is negative in

the early morning and becomes positive at noon and in the afternoon, which

are the peak demand periods for bike rentals. Because the temperature in the

early morning is usually cooler than later in the day, the cumulative effect of

temperature on rentals is positive. Here, the lower bounds of rentals are given by

the 10% and 20% quantiles, indicating low rental demand. The result on the 50%

quantile, displayed in the bottom-left panel in Figure 2, represents the normal

situation, and shows a similar pattern to that of the lower quantiles.

The bottom-right panel in Figure 2 shows that when u = 90%, the slope

function is negative in the early morning before 9:00 and in the late afternoon

after 15:30. This may be because higher temperatures in the morning deter

rentals at noon and during the afternoon. If the temperature is high in the

morning, then it is likely to remain high during the day. In addition, the late

afternoon is usually the hottest time of the day, and may be too hot for biking. On

the other hand, a cool morning may indicate a comfortable biking temperature
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− −

− −

Figure 2. The estimated slope function β̂(t, u) for the regression model (2.1) at quantiles
u = 10%, 20%, 50%, 90% based on data collected from the Capital Bike Share program
in Washington D.C. from 7:00 to 17:00 on weekends. The unit of y-axis is per 1,000
bicycles.

for the peak demand periods at noon and in the afternoon. The 90% quantile

indicates high bike rental demand, showing that the weather needs to be cool in

the morning, and comfortable or moderate in the afternoon.

To give an overall visualization of the estimated β̂(t, u), Figure 3(a) displays

the heat map of β̂(t, u) estimated from the proposed method for the time t from

7:00 to 17:00 and the quantile u from 10% to 90%. The estimated slope function

β̂(t, u) is positive after 9:00 for the quantiles u from 10% to 60%, and gradually

becomes negative in the late afternoon for quantiles u from 60% to 90%.

Figure 3(b) shows the heat map of the estimation for β(t, u) derived from

the conventional method Kato (2012), which is not smooth. In addition, the

proposed method can overcome the problem of the monotonicity of the quantile

estimates. Figure 4 compares the estimated quantile functions of the 60th and

the 100th subjects derived from the conventional method (Kato (2012)) and the

proposed method. Let Q∗
60(u) and Q∗

100(u) be the estimated quantile functions

of the 60th and the 100th subjects, respectively, derived from the conventional

method (Kato (2012)), and Q60(u) and Q100(u) be the corresponding estimated

quantile functions derived from the proposed method. We can observe thatQ∗
60(u)

and Q∗
100(u) are not monotone over the interval u ∈ [0.1, 0.9], as they should be,

whereas Q60(u) and Q100(u) are both monotonically increasing in u ∈ [0.1, 0.9].
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Figure 3. Heat maps of the estimated slope function β̂(t, u) for the regression model
(2.1) derived using the proposed method (Panel (a)) and the conventional method (Kato
(2012)) (Panel (b)) based on the data collected from the Capital Bike Share program in
Washington D.C. from 7:00 to 17:00 on weekends.

∗
∗

Figure 4. Estimated quantile functions of the 60th and 100th subjects derived from
the conventional method (Kato (2012)) (shown in the left two panels) and the proposed
method (shown in the right two panels) based on the data collected from the Capital
Bike Share program in Washington D.C. from 7:00 to 17:00 on weekends. The unit of
y-axis is per 1,000 bicycles.

4.2. Berkeley growth data

Child’s height growth is an important health indicator, and abnormal growth

usually implies an underlying health problem or growth disorder. It is thus helpful

to understand the relationship between children’s growth history and their adult

height in order to evaluate their health and growth progress. If the predicted
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Figure 5. Heat maps of the estimated slope function β̂(t, u) for the regression model
(2.1) derived using the proposed method (Panel (a)) and using the conventional method
Kato (2012) (Panel (b)) based on Berkeley growth data for children between the ages of
one and 12.

−
(

(a)

(

(b)

Figure 6. The estimated slope function β̂(t, u) for the regression model (2.1) at u =
20%, 25%, 50%, 75%, and 80% for age t from one to 12, and the estimated slope function
β̂(t, u) at age t = 5 for u from 20% to 80% based on the Berkeley growth data.

adult height of a child has an abnormally small lower quantile, then interventions

should be considered during their teenage years to treat any potential health

problems that might affect height growth.

To investigate this relationship, we use children’s growth history between the

ages of one and 12 as a functional covariate (Chen and Müller (2012)), and the

conditional quantile of their eighteen-year-old height as the response variable.

We apply the proposed method to the Berkeley growth data (Tuddenham and

Snyder (1954)) to estimate the slope function β(t, u) from model (2.1).

Figure 5(a) displays β̂(t, u) for u ∈ [0.2, 0.8] and t ∈ [1, 12]. The major

variation of β̂(t, u) along the direction of u (y-axis variable) occurs between the

ages of one and six. For any fixed age t ≥ 7, β̂(t, u) does not change significantly

as a function of u.

Figure 6(a) displays β(t, u) as a function of t for u = 20%, 25%, 50%, 75%,
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∗
∗

Figure 7. Estimated quantile functions of the 37th and 67th subjects derived from the
conventional method (Kato (2012)) (shown in the left two panels) and the proposed
method (shown in the right two panels) based on the Berkeley growth data for ages one
to 12.

and 80%. It shows that children’s growth history between the ages of seven and

11 is always positively correlated with the quantiles of their adult height. This

interval may be regarded as a growth spurt. If a child has a significantly lower

height compared with the normal level during the growth spurt period, then an

intervention should be considered.

Figure 6(b) shows the estimated slope function β̂(t, u) as a function of u

from 0.2 to 0.8 when t = 5, which is a negative function for any u ∈ [0.2, 0.8]. It

indicates that the early growth spurt is not always a good indicator of a child’s

adult height. The early spurt may decrease children’s potential to have a higher

adult height because of sex hormone levels in their bodies (Soliman et al. (2014)).

These children grow taller than other kids when they are young. However, their

skeletons mature more rapidly. Consequently, they may stop growing at an early

age, and have an average or a below average height as adults.

Similarly to the previous application, Figures 5 and 7 compare the perfor-

mance of the proposed method and the conventional method. In Figure 7, Q∗
37(u)

and Q∗
67(u) are defined in the same way as the previous application. Clearly,

the quantile estimations obtained from the conventional method (Kato (2012))

are not monotone over the interval u ∈ [0.2, 0.8], whereas the proposed method

guarantees the desired monotonicity.
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5. Conclusion

We have proposed a novel framework enabling a simultaneous FQR to

overcome the two major limitations of conventional methods. When the true

slope function is not a univariate function of time, our framework provides a

better estimation for the slope function than that of the conventional estimation

strategy, which estimates the slope function as a univariate function by first fixing

the quantile index. This advantage of the proposed method is examined using

simulation studies in a comparison with the method of (Kato (2012)). In addition,

the proposed framework addresses the two major limitations of conventional

methods. Within the proposed framework, the estimated conditional quantile

functions are guaranteed to be monotone and their smoothness can be controlled.

In the current model (1.1), we consider only a single functional covariate.

This may not be flexible enough to capture all information in the data. Chen

and Müller (2012) proposed a generalized version of model (1.1) by using the

composition of some link function and the linear functional of the functional

covariate. In practice, it is common for several accompanying scalar covariates

to be observed along with the functional covariate. Thus, Tang and Kong (2017)

include a linear combination of the scalar covariates in the model. Moreover, we

often observe multiple functional covariates simultaneously. To consider multiple

functional covariates, Ma et al. (2019) extended the model to incorporate a linear

combination of multiple functional covariates with different slope functions.

Although we present our method based on model (1.1), it can be extended to

different settings of the FQR model, such as sparse functional observations (Yao,

Müller and Wang (2005); Che et al. (2017)). Therefore, in future work, we will

extend our framework to include multivariate functional covariates and finite-

dimensional covariates. We will also investigate the properties and performance

of our method in the scenario of sparse functional observations.

Supplementary Material

The online Supplementary Material presents detailed simulation studies and

technical proofs of the asymptotic results. We provide the code and data required

to reproduce the numerical results in the simulation studies and applications at

https://github.com/caojiguo/FunQR/.
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