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Abstract: We revisit the problem of determining the sample size for a Gaussian pro-

cess emulator and provide a data analytic tool for exact sample size calculations

that goes beyond the n = 10d rule of thumb and is based on an IMSPE-related

criterion. This allows us to tie sample size and prediction accuracy to the antici-

pated roughness of the simulated data, and to propose an experimental process for

computer experiments, with extension to a robust scheme.
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1. Introduction

The Gaussian process model was proposed by Sacks et al. (1989) as a statisti-

cal emulator for deterministic computer codes, and a large body of literature has

subsequently been devoted to the exploration of its performance under various

conditions. Experimental design for computer experiments has been extensively

investigated, whether space-filling designs (see e.g. Johnson, Moore and Ylvisaker

(1990), Joseph, Dasgupta and Wu (2012)) or optimal designs driven by differ-

ent statistical criteria (e.g. Sacks, Schiller and Welch (1989), Shewry and Wynn

(1987), Harari and Steinberg (2014)).

One might think that the design of experiments for deterministic computer

model emulation would be a topic with little left to study. Still, Only a small

amount of literature has been dedicated to the foundational topic of sample size

in computer experiments, and practitioners often make the naive assumption

that the sample size should grow linearly with the input dimension, known as

the “n = 10d” rule of thumb, where d is the number of inputs to the computer

model (Chapman et al. (1994), Jones, Schonlau and Welch (1998)). A partial

justification for the latter is given by Loeppky, Sacks and Welch (2009), who

advocate the n = 10d rule in specific cases. Their message is that, for rela-

tively uncomplicated surfaces and moderate d, good prediction accuracy can be
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obtained with n = 10d observations in an initial experiment, and increasing n

further can increase accuracy further. However, if n = 10d observations results

in poor accuracy, (which tends to happen in complicated or high dimensional

codes with input factors having similar complexity), then the improvement in

accuracy through adding more runs tends not to be helpful.

In this paper, we take the view that the choice of experimental design ought

to take into account the prior belief about the complexity of the response surface,

the desired prediction accuracy, and the available resources.

The underlying structural assumptions about the approximated response

surface by embracing the n = 10d rule are far-reaching, and are often not fully

understood. For d = 20, for example, n = 200 would not even suffice to estimate

a linear model with 20 main effects and all 190 two-factor interactions. Fitting a

Gaussian process model using so few data points must then reflect the belief by

experimenter that either the change in the response is purely additive in many

of the factors or that several factors are entirely inert.

Originally, small sample sizes were a consequence of lengthy simulation run-

times, numerical singularity in the correlation matrix and computational issues,

stemming from the need to store and repeatedly invert a large n× n covariance

matrix. With remedies in place (see e.g. Ranjan, Haynes and Karsten (2011),

Kaufman et al. (2011)), in conjunction with improving computing capabilities, it

is expected that large-scale computer experiments will routinely take place in the

near future. It is easy to imagine models with a large number of inputs (≥ 100)

where factor sparsity (Box and Meyer (1986)) implies that relatively few (≈ 20)

of the inputs are important. In such cases, careful consideration of the model

structure and the goals of the experiment are important.

The sample size for an experiment, the complexity of the model, and the pre-

diction goals of the experiment are intimately related. In this paper we attempt

to provide methodology for computer experiments to address their interrelation-

ships.

This paper is organized as follows. Section 2 provides a brief introduction to

the Gaussian process model commonly used for computer model emulation. In

addition, we take high prediction accuracy as an experimental objective and pro-

pose different interpretations for that goal. Section 3 ties the prediction accuracy

to the sample size and the model hyperparameters that specify the response sur-

face complexity, and discusses consequences for experimental design. In Section

4 we develop a methodical experimental process for computer experiments, and

in Section 5 we demonstrate the proposed process on an experiment involving
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a piston simulator. We then provide a robust scheme, in Section 6, to handle

uncertainty with regard to the hyperparameters. Section 7 includes a discussion

and some thoughts for future work.

For the reader’s convenience, a web applications was created to accompany

this paper and facilitate future analyses. For details, see the Supplementary

Materials section.

2. Gaussian Processes Emulators for Deterministic Computer Models

2.1. Gaussian process regression

Building a computer model emulator can be viewed as nonparametric re-

gression for deterministic simulators. The reasons for using the conventional

specification for the Gaussian process (Sacks et al. (1989)) lie with its ability to

interpolate the model output and to quantify uncertainty at unsampled inputs.

In this setting, the computer model output, y (x), is viewed as a real-

ization of a stationary, zero mean, Gaussian process with covariance function

C (x,x′) = σ2Rθ (x− x′). The correlation function, Rθ (·), depends on the vec-

tor of hyperparameters θ that govern the correlation between responses at sep-

arate locations. Denote the experimental design D = {x1, . . . ,xn} ⊂ X , where

X ⊂ Rd is the experimental region. We will assume, without loss of generality,

that X = [0, 1]d. Let y = [y (x1) , . . . , y (xn)]T be a vector of observations at the

design points, and denote byRθ the matrix whose entries are Rij = Rθ (xi − xj).
Then for any x ∈ X , choosing the Kriging predictor

ŷ (x) = E
{
y (x)

∣∣y} = r
θ

(x)TR−1θ y, (2.1)

to predict y (x) would yield the Mean Squared Prediction Error (MSPE)

E
[
{ŷ (x)− y (x)}2

∣∣y] = Var
{
y (x)

∣∣y} = σ2
{

1− r
θ

(x)TR−1θ r
θ

(x)
}
, (2.2)

for r
θ

(x) = [Rθ (x− x1) , . . . , Rθ (x− xn)]T. For the rest of this paper we sup-

press the θ subscript, keeping in mind that the correlation between responses at

different locations depends heavily on these hyperparameters.

2.2. A measure for prediction accuracy

Using (2.2), the Integrated MSPE (IMSPE) of the Kriging predictor (2.1) is

given by

J (ŷ,D;θ) =

∫
[0,1]d

E
[
{ŷ (x)− y (x)}2

∣∣y]dx
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= σ2 − σ2tr

{
R−1

∫
[0,1]d

r (x) r (x)T dx

}
. (2.3)

Weighted versions of (2.3) have been proposed to emphasize prediction in certain

areas of the design region (see e.g. Sacks et al. (1989)).

As y (x) is taken to be stationary, Var {y (x)} = σ2, we may then consider

the normalized quantity

J (ŷ,D;θ)

σ2
=

∫
[0,1]d

Var
{
y (x)

∣∣D}
Var {y (x)}

dx (2.4)

as the average proportion of the variability of y (x) that remains unexplained

by design D. This is reminiscent of the proportion of unexplained variability in

linear regression models, typically calculated as the ratio of the sum of squares

for error and the total sum of squares. In this case. however, (2.4) is for out of

sample observations. Following this analogy, we can form the counterpart of the

squared multiple correlation coefficient in regression.

Proposition 1. Let y (x) ∼ GP
(
0, σ2R

)
and let ŷ (x) = r (x)TR−1y be the

Kriging predictor of y (x). Then

1− J (ŷ,D;θ)

σ2
= ρ2 (y, ŷ) ..=

∫
[0,1]d

ρ2 (y (x) , ŷ (x)) dx, (2.5)

where ρ (·, ·) denotes the correlation coefficient.

Proof. First note that, from (2.1)

cov (y (x) , ŷ (x)) = r (x)TR−1cov (y (x) ,y) = σ2r (x)TR−1r (x) = Var {ŷ (x)}

and, since Var {y (x)} = σ2, we have

ρ2 (y (x) , ŷ (x)) =

{
σ2r (x)TR−1r (x)

}2

σ2 · σ2r (x)TR−1r (x)
= r (x)TR−1r (x) .

The result follows from (2.2) and (2.4).

We can interpret ρ2 (y, ŷ) in (2.5) as the average squared correlation among

the simulator responses and predicted responses at unsampled inputs. Proposi-

tion 1 sheds new light on the interpretation of IMSPE-optimal designs (see e.g.

Sacks et al. (1989)). The proposition demonstrates that minimizing the IMSPE

is equivalent to maximizing the average, squared, out-of-sample correlation be-

tween y (x) and ŷ (x). By minimizing the IMSPE we can expect to improve the

predictive ability of the Kriging predictor.

Definition 1. The Root Average Unexplained Variability (RAUV) of predictor

ŷ, evaluated at design D ⊂ [0, 1]d is
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RAUV (ŷ;D,θ) =

(
J (ŷ,D;θ)

σ2

)1/2

=

(∫
[0,1]d

Var
{
y (x)

∣∣D}
Var {y (x)}

dx

)1/2

.

We propose RAUV as a measure of expected prediction error on designing

a computer experiment. Its indicated magnitude is relative to the prior stan-

dard deviation, and the choice of the square root scale is in line with similar

measures used by Loeppky, Sacks and Welch (2009) and Chen et al. (2016). It

is common practice to measure model performance by its Empirical Root Mean

Square Error (ERMSE) computed on a holdout set, normalized by some measure

of the variation in the data measured in the original units, such as the range or

the empirical standard deviation. We have found sample sizes that warrant low

a priori RAUV to be consistent with good empirical prediction accuracy, much

more so than the average unexplained variability without the square root. It

can also be justified equivalently in terms of uncertainty quantification: requir-

ing RAUV ≤ 0.05 means that we want the square root of the average squared

length of our prediction intervals to shrink by 95% once data is observed. From

Proposition 1

RAUV (ŷ;D,θ) =
√

1− ρ2 (y, ŷ).

Thus, ensuring RAUV (ŷ) ≤ ε, explaining at least 100
(
1− ε2

)
% of the variabil-

ity in y (x) by the model and achieving |ρ (ŷ, y)| ≥
√

1− ε2 are equivalent for

Gaussian process model fitting in the context of computer model emulation.

3. Model Complexity, Sample Size and Prediction Accuracy

We invoke the result of Micchelli and Wahba (1981) and Harari and Steinberg

(2014) to shed some light on the link between the complexity of the model being

estimated, the prediction accuracy and sample size.

Theorem 1. If

R
(
x,x′;θ

)
=

∞∑
k=1

λkϕk (x)ϕk
(
x′
)

is the Mercer expansion of R(·;θ) on [0, 1]d, with eigenfunctions {ϕk (x)} and

eigenvalues {λk}, then

inf
D

{
J (ŷ;D,θ)

σ2

}
≥
∑

k≥n+1

λk. (3.1)

Over [0, 1]d, the eigenfunctions and eigenvalues can be solved numerically;

in particular, for separable correlation functions, the problem reduces to a series
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of univariate eigendecompositions. Details are provided in Harari and Steinberg

(2014).

The inequality (3.1) encapsulates the complex relationship between sample

size, model complexity (in the form of the Gaussian process hyperparameters)

and prediction accuracy. One immediate result is the following.

Corollary 1. Let {λk} be the set of eigenvalues of R (x,x′;θ). Let nc be the

critical sample size required to achieve RAUV ≤ ε for some ε > 0. Then

nc ≥ min

n :

√ ∑
k≥n+1

λk ≤ ε

 = min

{
n :

n∑
k=1

λk ≥ 1− ε2
}
. (3.2)

Given some idea about the way in which the different inputs act, one can

then, (at least approximately) derive analytically the required sample size for

a given average level of prediction accuracy. Thus, to achieve an acceptable

amount of unexplained variability, one has a choice of ε, and this depends on the

particular application and its goals.

For the piston example of Section 5, Figure 7 there displays actual vs. pre-

dicted values for a large holdout set, where the predicted values are obtained

from (2.1). The four panels show sample sizes of 30, 50, 70, and 120, respectively,

which, for the hyperparameters θ selected for the piston example, correspond to ε

values of 0.191, 0.120, 0.086 and 0.045. In the top left panel of the figure, n = 30

and ε = 0.191, the quality of the fit is far from perfect, but this corresponds to

96% of the average explained variability. In our experience, agreement such as

that indicated in top right panel of Figure 7 (with n = 50 and ε = 0.1) reflects,

for deterministic simulators, an acceptable fit with at least 99% of the variability

(on average) explained. An even better fit, in the bottom right corner of Figure

7, corresponds to ε = 0.05 (and n = 120).

Remark 1. Ideally, one would like an upper bound of the form

inf
D

{
J (ŷ;D,θ)

σ2

}
≤
∑

k≥n+1

λk + α2 (n,θ)

to bound the critical sample size n
L
≤ nc ≤ n

U
, with n

U
guaranteeing an RAUV

below the desired threshold. Without an upper bound we treat inequality (3.1)

roughly as an equality throughout this paper, and remember that we need to

choose a slightly larger sample size than the one recommended by (3.2). This

approach is supported by Figure 2 and the findings of the simulation study in

Section 5.

We now proceed to use these ideas in a practical setting by fixing any two of
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Prediction Accuracy

(RAUV)

Model Complexity

(θ)

Sample Size

(n)

Figure 1. The three interacting elements of a (computer) experiment.

the three vertices of the triangle appearing in Figure 1 and observing the impact

on the third vertex.

3.1. Sample size for a desired level of prediction accuracy and fixed θ

For fixed Gaussian process hyperparameters (model complexity) and a given

level of prediction accuracy (RAUV), determination of the required sample size

follows a simple application of Corollary 1.

Example 1. Consider the computer code used by Yi et al. (2005) to simulate

ligand activation of G-protein in yeast. Loeppky, Sacks and Welch (2009) fixed

five of nine factors and used a 4-dimensional Gaussian process emulator for the

response, using the squared-exponential correlation function

R
(
x,x′;θ

)
= exp

{
−

4∑
i=1

|xi − x′i|
2

θi

}
, (3.3)

with θ = (θ1, θ2, θ3, θ4) a vector of correlation length parameters.

Based on a design with n = 80 runs, they found the maximum likelihood

estimates for the emulator to be θ̂ = (9.09, 1.59, 1.79, 0.56). Treating these for the

moment as the actual parameters for the data-generating process, we can find the

eigenvalue. Figure 2 shows the lower bound
√∑

k≥n+1 λk for the RAUV versus n.

If we set a threshold ε = 0.05, the smallest sample size for which the threshold is

crossed is n = 21. Also plotted are the RAUV values for IMSPE-optimal designs

of various sample sizes and the given θ. While the theoretical lower bound is

closely approached by the empirical values, caution needs to be taken and a few

more runs (in this example 5 or 6) may be needed to guarantee that the desired

precision level is achieved. More conservatism is called for when the design to be
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Figure 2. RAUV lower bound curve for the squared exponential correlation function, with
the estimated correlation length parameters for the G-protein example from Loeppky,
Sacks and Welch (2009). The dots in the figure denote RAUV values calculated for
IMSPE-optimal designs.

used is not IMSPE-optimal. In this example both the lower bound curve and the

empirical IMSPE values indicate that a sample size of n = 10d = 40 should be

more than enough for an adequate fit (if parameter estimates are to be trusted),

which is consistent with the findings of Loeppky, Sacks and Welch (2009).

Example 2. We look to find an n that will give an RAUV of ε = 0.05 for a

Gaussian process model with the product Matérn correlation function

R
(
x,x′;φ,ν

)
=

d∏
i=1

1

Γ(νi)2νi−1

(
2
√
νi |xi − x′i|
φi

)νi
Kνi

(
2
√
νi |xi − x′i|
φi

)
,

where φi and νi are the correlation length and smoothness parameters along the

ith direction, respectively, and Kν (·) is the modified Bessel function of order ν.

Here we focus on an isotropic 4-dimensional process with φ1 = · · · = φ4 = 1 and

ν1 = · · · = ν4 = 5/2 (to guarantee twice differentiable realizations). In this case

the lower bound curve (see Figure 3) indicates that a sample size of n ≥ 112

is required for the precision target we set for ourselves, and the n = 10d rule

with d = 4 is inadequate; a process whose realizations are harder to predict com-

pared to a process that is based on the squared exponential correlation function,

requires more observations for the same level of prediction accuracy.
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Figure 3. RAUV lower bound curve for the product Matérn correlation function of an
isotropic process with ν = 5/2 and θ = 1.

3.2. Assessing prediction accuracy for fixed n and θ

With a limited computation budget, the experimenter is interested in antic-

ipated quality of the predictions that can be achieved for the emulator. For in-

stance, solving for eigenvalues and taking advantage of (3.1), the product Matérn

correlation function specified in Example 2, n = 40 runs, leads to RAUV ≥ 0.128.

If this level of inaccuracy is excessive, the experimenter may consider instead ex-

ploring only a sub-set of the inputs or increasing the computational budget.

3.3. Maximum model complexity for fixed n and prediction accuracy

Inequality (3.1) does not define a one-to-one relationship between the Gaus-

sian process hyperparameters and the sample size required for a desired level

of prediction accuracy. If, however, one only considers isotropic models, (3.2)

can be inverted. Suppose, for example, that one wishes the most complicated

isotropic Gaussian process model that can be investigated with prediction accu-

racy RAUV ≤ 0.05 and the product Matérn correlation function with ν = 5/2

and n = 40, correlation length of φ = 1.46 is the minimum value that results

in
√∑

k≥41 λk ≤ 0.05. With this parameter determined, the experimenter can

then produce Functional Analysis of Variance (FANOVA) plots (see Saltelli et al.

(2008)) of realizations from an isotropic Gaussian process with φ = 1.46.

Figure 4 displays 20 realizations from a univariate Gaussian process based
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Figure 4. 20 realizations drawn from a univariate Gaussian process based on the product
Matérn correlation function with φ = 1.46 and ν = 5/2.

on the product Matérn correlation function with φ = 1.46 and ν = 5/2. If the

realizations demonstrate a complexity that is less than the experimenter’s belief

in the computer model then this φ is unlikely to achieve the desired level of

precision. In that case, one may either find a way to increase the sample size or

lower the a priori expectations with regard to prediction accuracy.

4. Stepping Through Design Process

Ultimately, the design of computer experiments shares many of the same

features as the design of physical experiments. The experimenter is usually faced

with having to propose 2 of the 3 values in Figure 1. In general, we recom-

mend roughly following the proposed scheme, below, when designing a computer

experiment.

4.1. Eliciting a prior

Choose a suitable correlation family and hyperparameters. This amounts

to choosing the response surface model and related complexity. We recommend

presenting the experimenter with several plots of realizations similar to Figure 4

as guidance, and recommend choosing a prior process that is slightly less smooth

than the anticipated response as a matter of robustness.

4.2. Calculating the required sample size/expected accuracy

Obtain a lower bound for the required number of runs for a desired level

of prediction accuracy (as in Subsection 3.1). Alternatively, on a fixed budget

of runs, the expected prediction accuracy of the Gaussian process model (see

Subsection 3.2) can be assessed. As another alternative, examine the complexity
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level of the response that the budget and prediction accuracy allow, as in Section

3.3.

4.3. Making operational decisions

If the calculated required number of runs is operationally feasible, one can

proceed that number of runs, and preferably more in view of (3.2). If for a feasible

number of runs, the calculated RAUV appears to be greater than a tolerable level,

a mitigating measure could be considered.

1. Reducing dimensionality by eliminating inputs: Obviously, every

input coded into the simulator likely matters to some degree. Some inputs,

however, may be thought to be less influential than others. If an expert

can identify inputs whose absence from the model may have little bearing

on the response, omitting those from the model (while holding them fixed

at, say, their midpoint during computer runs) can significantly decrease the

required number of runs.

2. Altering the emulation model: Excessive RAUV is an indication that

lack of training data can lead to predicting a constant everywhere (except

for spikes at the observed simulator outputs), in which case one might con-

sider sacrificing interpolation and retreating to “traditional”, parametric

statistical models.

5. An Illustration

Consider the piston simulation appearing in Kenett and Zacks (1998). Here,

a piston’s linear motion is transformed into circular motion of a rod connected

to a disk. The measured response is the time it takes to complete one cycle,

C (M,S, V0, k, P0, Ta, T0) = 2π

(
M

k + S2(P0V0/T0)(Ta/V 2)

)1/2

(5.1)

for V = (S/2k){(A2+4k(P0V0/T0)Ta)
1/2−A} and A = P0S+19.62M−(kV0/S),

where M ∈ [30, 60] is the piston weight (kg), S ∈ [0.005, 0.020] is the piston

surface area (m2), V0 ∈ [0.002, 0.010] is the initial gas volume (m3), k ∈ [1,000,

5,000] is the spring coefficient (N/m), P0 ∈ [9× 104, 11× 104] is the atmospheric

pressure (N/m2), Ta ∈ [290, 296] is the ambient temperature (K), and T0 ∈
[340 − 360] is the filling gas temperature (K). More documentation (and code)

for this model can be found at http://www.sfu.ca/~ssurjano/emulat.html.

Suppose that the underlying model is unknown, but that an expert believes

that with all other factors being held fixed, letting M increase will increase the

http://www.sfu.ca/~ssurjano/emulat.html
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Figure 5. Main effect plots for the piston simulator, provided by the tgp R package
(Gramacy and Taddy (2010)), where x1, . . . , x7 represent the input variables M , S, V0,
k, P0, Ta, T0, respectively.

cycle time moderately in a nonlinear fashion and that the same is true for k,

although a reverse trend is expected; likewise, that increasing S will result in a

sharp, nonlinear decrease in cycle time, while the opposite will happen when V0
alone varies; that within the experimental region the average effect of P0 is very

limited; and that varying Ta has an unnoticeable effect on the cycle time, the

same being true for T0.

In practice, we might use realizations drawn from univariate Gaussian pro-

cesses, with different values of the correlation lengths, to help specify θ. In the ab-

sence of a domain expert our assessments would then be based on the main effect

plots from the FANOVA of the cycle time C (x), see Figure 5. In light of the sensi-

tivity plots, a Gaussian process prior with a squared exponential correlation func-

tion (3.3) would be selected with hyperparameters θ = (1, 0.4, 0.4, 1, 3, 10, 10),

leading to a sample size of n ≥ 210 when aiming at RAUV ≤ 0.05 in (3.2).

Instead, ignoring T0 and Ta and treating the model as 5-dimensional leads to a

critical sample size of n ≥ 111. We to compare the performance of the different

sample sizes.

Since randomness in the response can only be incorporated via randomness

in the design, we generated 50 random 5-dimensional Latin hypercube samples

of various sample sizes. We first took a conservative approach to the sample size

and chose n = 120 instead of n = 111 suggested by the inequality (3.2). In order
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Figure 6. Empirical RAUV values over 50 repetitions for the piston example. Each
repetition stands for a randomly chosen Latin hypercube (for each sample size).

to compare the 10d rule of thumb for d = 5 or d = 7, we also considered n = 50

and n = 70. The corresponding RAUV is shown in column 2 of Table 1.

To measure performance using simulated data, we evaluated the Empirical

RAUV

ERAUV (ŷ;D) =

(∑nho

i=1 (ŷho

i − yho

i )2

n
ho
σ̂2

)1/2

at a size n
ho

= 100,000 holdout set in the 7-dimensional space, where the estimate

σ̂2 = 0.022 was obtained by fitting a one time 5-dimensional model to a size 1,000

dataset that remained fixed throughout the simulation study.

Results of the simulation study appear in Table 1 and Figure 6. The vari-

ability in the results shows how the randomness of the choice of the design (Latin

hypercube in this case) propagates into the model. With an additional design

optimality criterion (maximin distance for example) one should expect to see

clear separation between the different sample sizes.

The maximum likelihood estimates, θ̂ = (1.60, 0.30, 0.50, 0.44, 1.99), turned

out to be quite different from our early assessment. In spite of this, our pro-

cedure seems to have captured the overall complexity of the model to a good

degree, judging by the proximity of the theoretical RAUV values (for the spec-

ified parameter values) to the empirical ones in Table 1. Section 6 discusses a
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Table 1. Summary of simulation results for the piston cycle time model. Average ERAUV
results appear with ± one standard deviation.

Sample Size Theoretical RAUV ERAUV
30 ≥ 0.191 0.172(±0.025)
50 ≥ 0.120 0.107(±0.024)
70 ≥ 0.086 0.080(±0.013)

120 ≥ 0.045 0.050(±0.008)

GP fit for a sample size of 30 GP fit for a sample size of 50

GP fit for a sample size of 70 GP fit for a sample size of 120
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Figure 7. True response vs. fitted plots for the piston example, based on sample sizes of
30, 50, 70 and 120, respectively, and randomly constructed Latin hypercube designs.

robust procedure that allows the experimenter to provide a range of values for

each correlation length parameter, rather than giving a single guess.

Finally, Figure 7 provides a visualization of the improvement of the RAUV

(for randomly chosen designs) from 0.167 to 0.106, 0.079 and finally 0.048 as the

sample size increases from 30 to 50, 70 and 120, respectively (for a single fit,

each).

6. Robust Sample Size Calculations

The task of choosing values for the correlation parameters is challenging, and

specifying a range of values may be easier in practice. It is therefore natural to

consider incorporating some uncertainty with respect to these chosen values to
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Table 2. Robust sample size calculations for the piston simulation, based on different
levels of uncertainty.

Very high uncertainty High uncertainty Moderate uncertainty
Range n (95%) Range n (95%) Range n (95%)

θ1 : [0.001, 5]

≥ 157

θ1 : [0.5, 1.5]

≥ 214

θ1 : [0.8, 1.2]

≥ 140
θ2 : [0.001, 5] θ2 : [0.1, 0.7] θ2 : [0.25, 0.55]
θ3 : [0.001, 5] θ3 : [0.1, 0.7] θ3 : [0.25, 0.55]
θ4 : [0.001, 5] θ4 : [0.5, 1.5] θ4 : [0.8, 1.2]
θ5 : [0.001, 5] θ5 : [1, 5] θ5 : [2, 4]

enhance robustness.

Denote by g : Rd → N+ the function that maps each vector of correlation

parameters θ to a critical sample size nc through (3.2). If we now assign a

distribution θ ∼ π (θ), g will induce a probability measure on nc. Drawing a

random sample {θi} from π (θ) will then result in a Monte Carlo sample {g (θi)}
from a distribution π (nc) of sample sizes.

As an example, consider the piston simulation of Section 5 and assign θ1, . . . , θ5
independent uniform priors on [0.8, 1.2], [0.25, 0.55], [0.25, 0.55], [0.8, 1.2] and

[2, 4], respectively (see the “Moderate uncertainty” scenario in Table 2). We

drew a random sample of size 10,000 from π (θ) and produced the corresponding

random sample from π (nc) through solving for eigenvalues and calculating the

critical sample size (3.2) for each drawn vector. Figure 8 shows the histogram for

the sample sizes. Given the uncertainty in the response surface specification, a

choice must be made in order to run the experiment. One could, of course, choose

the maximum sample size from those observed. Doing so would be extreme in

our view (and also would require more random samples to appropriately estimate

the maximum sample size). Looking at the plot, a line at n = 140, marking the

95th percentile of the sample sizes, is added. We view this as representing a

safe choice for a sample size that accounts for uncertainty in θ. Although the

eventual recommended sample size is somewhat larger than that from Section 5,

it is still rather economical compared to the worst case scenario sample of 187.

The choice of prior distribution for the correlation parameters impacts the

sample size. One might be tempted to think that more uncertainty in the com-

plexity requires more samples, but this is not necessarily the case. To study how

sample size calculations are impacted by the choice of π (θ), we assigned θ1, . . . , θ5
independent uniform priors on respective intervals about their conjectured val-

ues. Table 2 summarizes the results of a small scale simulation. We considered

three scenarios: “Very high uncertainty”, “High uncertainty” and “Moderate
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Figure 8. A histogram of a Monte Carlo sample from the sample size distribution π (nc),
induced by assigning a distribution π (θ). The cutoff at n ≥ 140 marks the 95th per-
centile.

uncertainty”, pertaining to long, fairly long, and medium length intervals, re-

spectively. For each scenario we drew a random sample of size 10,000 from π (θ)

and produced the corresponding random sample from π (nc) through solving for

eigenvalues and calculating the critical sample size (3.2) for each sampled vector.

Looking at Table 2, increased uncertainty does not automatically translate

into increased sample size. The wide intervals in the leftmost column resulted in

some inactive dimensions for many of the randomly drawn vectors, and in turn

to a smaller sample size than the one recommended for the more focused “High

uncertainty” scenario.

7. Discussion

The machine learning community refers to the IMSPE curve versus n as the

“learning curve” (see e.g. Williams and Vivarelli (2000)) and, over the years,

tighter lower bounds than (3.1) for the case of noisy data – as well as upper

bounds – have been derived (see e.g. Sollich (1999)). However, in the interpo-

lation setting we are considering, these bounds do not apply. Thus the bound

in (3.1) is used in this paper. It has been found to be fast to calculate and, as

Figure 2 implies, fairly tight in practice.
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Figure 9. The minimum sample size (3.2) required to achieve RAUV ≤ 0.05 vs. correla-
tion length for a 4 dimensional isotropic Gaussian process based on the product Matérn
correlation function with smoothness ν = 2.5.

As a possible topic for future research, one could look to establish an ex-

plicit expression governing the trade-off between the correlation length θ and

the required sample size for a given ε. We performed a simulation study for

the isotropic 4-dimensional product Matérn kernel with smoothness parameter

ν = 2.5 by calculating nc for θ = 0.05, 0.1, 0.15, . . . , 2.5 and ε = 0.05. Figure

9 shows the results in the log-log scale, along with the fitted linear regression

line. The estimated slope is very close to −3, suggesting the critical sample size

decays at a rate of O
(
θ−3
)

for this example.

We are in agreement with Loeppky, Sacks and Welch (2009) in noting that

in high dimensions, the number of samples may be onerous. As an illustration,

we considered a setting with d = 26 inputs and varied the number of active

factors from 1 to 26. For each number of active inputs, and sample sizes of n =

50, 100, 200, 400, and 500, we generated 50 realizations of a Gaussian process

with the product power-exponential covariance and θ = 1 for the active factors,

using a randomly drawn Latin hypercube design along with a hold-out set of 100

randomly chosen trials. The Kriging model, with the product power-exponential

covariance, was fit to each simulated dataset and the predictive performance was

evaluated on the corresponding hold-out set using the empirical value of∫
[0,1]d

Var
{
y (x)

∣∣D}
Var {y (x)}

dx.
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Figure 10. Empirical average unexplained variability values for data generated by multi-
plicative (10a) and additive (10b) univariate Gaussian processes vs. the number of active
inputs and sample size.

There, for a fixed sample size, the average unexplained variability grows fairly

rapidly as the number of active factors increases. Indeed, even when n = 500,

we see that, when the number of active factors is about 15, the Gaussian process

emulator has a difficult time predicting the response surface accurately. Overall,

the more complex the response surface and the more active inputs influencing
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the response, the larger the sample size required.

We repeated the same procedure, but generated data for the same scenarios

using a sum of 1-d independent Gaussian processes (one for each active dimen-

sion) with θ = 1 for the active factors. However, the data analysis was performed

using the same Kriging model as before with the product squared-exponential co-

variance. The results are summarized in Figure 10b. There, for the same sample

sizes and numbers of active dimensions, the standard GP explains almost all of

the variability on average, except for the relatively small setting of n = 50. The

take-away message here is that, when the model is simple, the Gaussian process

does an admirable job at computer model emulation.

Our belief is that the complexity of many computer models lies somewhere

between these two extremes, and thus the methodology proposed in this paper is

a conservative approach. The illustrations point to a need for a class of simpler

random functions that represent the space in which the computer model response

surface lie for both design and analysis.

Supplementary Materials

A web application that performs all the analyzes presented in this paper

is available at https://harario.shinyapps.io/Sample_Size_Shiny. In addi-

tion, R code for the study of Section 5 is available online as supplementary

material.
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