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Abstract: In comparative studies, researchers often seek an optimal covariate

balance. However, chance imbalance still exists in randomized experiments, and

becomes more serious as the number of covariates increases. To address this issue,

we introduce a new randomization procedure, called adaptive randomization via

the Mahalanobis distance (ARM). The proposed method allocates units sequentially

and adaptively, using information on the current level of imbalance and the incoming

unit’s covariate. Theoretical results and numerical comparison show that with

a large number of covariates or a large number of units, the proposed method

shows substantial advantages over traditional methods in terms of the covariate

balance, estimation accuracy, hypothesis testing power, and computational time.

The proposed method attains the optimal covariate balance, in the sense that

the estimated treatment effect attains its minimum variance asymptotically, and

can be applied in both causal inference and clinical trials. Lastly, numerical

studies and a real–data analysis provide further evidence of the advantages of the

proposed method. An R package CARM implementing the proposed method is

freely accessible in CRAN.

Key words and phrases: Clinical trial, covariate balance, treatment effect estima-

tion.

1. Introduction

Randomization is the foundation of evaluating a treatment effect. However,

traditional randomization methods often generate unsatisfactory configurations,

with unbalanced prognostic covariates. “Most of experimenters on carrying out

a random assignment of plots will be shocked to find out how far from equally the

plots distribute themselves”(Fisher (1926)). Balanced covariates offer three main

advantages (Hu et al. (2014)). First, it improves the efficiency of a treatment

effect estimation. Second, it increases the interpretability of the estimated

treatment effect by making the units in the treatment groups more comparable,

thereby enhancing the credibility of the analysis. Third, it makes the analysis

more robust against model misspecification.

If significant covariate imbalance exists in clinical studies and causal infer-

ence, the subsequent inference on the treatment effect often needs to be adjusted.
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Some ex-post adjustments, such as regression (Freedman (2008)) and subsample

selection using matching or trimming based on propensity scores (Imbens and

Rubin (2015)), can cope with such imbalance, but are much less efficient than

achieving an ex-ante balance (Bruhn and McKenzie (2008)). In addition, these

adjustments often rely on at least a nearly correct model, which can be difficult to

test (Cochran (1965); Cochran and Rubin (1973)). Rubin (2008) that the design

phase of an experiment is particularly important, because in the analysis stage,

the researcher may bias the results (Morgan (2011); Imbens and Rubin (2015)).

Furthermore, the effects of a covariate imbalance become worse as the number

of covariates p and the sample size n become large, as is almost always the case in

big data. Although the difference between the covariate means across treatment

groups becomes smaller as n increases, the confidence intervals become more

sensitive to small differences in the outcome variables, which can be affected by

imbalances on the covariates (Morgan and Rubin (2012)).

In the context of causal inference, Morgan and Rubin (2012) propose

rerandomization (RR). They propose repeatedly randomizing the units into

treatment groups using complete randomization (CR), until a balance criterion,

namely, the Mahalanobis distance M(n) between the sample means across

different treatment groups, is below a threshold a > 0:

M(n) = (x̄1 − x̄2)
T cov(x̄1 − x̄2)

−1(x̄1 − x̄2) ∝ n(x̄1 − x̄2)
TΣ−1(x̄1 − x̄2),

where x̄1 ∈ Rp and x̄2 ∈ Rp are the sample means for two treatment groups, and

Σ = cov(x) ∈ Rp×p is the covariance matrix of the covariate. Morgan and Rubin

(2012) also assume fixed equal numbers of units in the two treatment groups,

and demonstrate various desirable properties. RR works well in the case of a

few covariates. However, as the number of covariates increases, the probability of

acceptance, Pa = P{M(n) < a}, decreases drastically, causing the RR procedure

to remain in a loop for a long time. To alleviate the computational burden, one

can increase a, which may lead to a covariate imbalance.

In clinical trials, to balance important covariates, most existing methods

focus only on discrete covariates. These methods include stratified permuted

block randomization (SPBR), the stratified biased coin design (SBCD) (Shao,

Yu and Zhong (2010)), minimization methods (Taves (1974); Pocock and Simon

(1975); Hu and Hu (2012)), and the covariate-adaptive biased coin design (CA-

BCD) (Antognini and Zagoraiou (2011)). Discretizing continuous covariates

is often less efficient and changes the nature of the covariates. A variety

of methods for balancing continuous covariates have been proposed, including

optimum biased coin designs (DA-BCD) (Atkinson (1982)) and methods based

on ranks (Ciolino et al. (2011); Hoehler (1987); Stigsby and Taves (2010)), p-value

(Frane (1998)), the Kullback–Leibler divergence (KLD), an empirical cumulative

distribution (Lin and Su (2012)), and the kernel density (Ma and Hu (2013)).
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However, the performance of these procedures is usually evaluated by simulation,

and few studies examine their theoretical properties.

Here, we propose an approach called adaptive randomization via the

Mahalanobis distance (ARM). The ARM approach generates a more balanced

treatment allocation, and thus improves the subsequent estimation and inference

in causal inference and clinical trial settings. Unlike RR and CR, in which all

units are allocated independently, we allocate units adaptively and sequentially by

assigning one randomly chosen pair of units at a time. For each pair of units, we

avoid incidental covariate imbalance by using their covariate information and the

existing level of imbalance of the already allocated units to adjust the probability

with which the pair is allocated to a treatment group. In this way, we produce

a much more balanced allocation of units. We investigate the properties of the

proposed procedure both theoretically and numerically.

The proposed method offers several advantages. First, when we have a

large number of covariates or a large number of units, the proposed method

exhibits superior performance, with a more balanced randomization and less

computational time. Second, the proposed procedure attains the optimal

covariate balance, in the sense that the estimated treatment effect under the

proposed method attains its minimum variance asymptotically. Third, in addition

to the optimal estimation precision, the proposed procedure is the most powerful

of several tests for the treatment effect. Fourth, the proposed procedure is

designed to directly randomize units with continuous and discrete covariates.

Therefore, the ARM procedure can be applied to balance many important

covariates in comparative studies.

The remainder of this paper is organized as follows. We introduce the

proposed ARM method and investigate its theoretical properties in Section 2. We

demonstrate its advantages in terms of treatment effect estimation and hypothesis

testing in Section 3. In Sections 4 and 5, we use simulations and a real–data

analysis, respectively, to demonstrate the superior performance of the proposed

method. Section 6 concludes the paper. All proofs are related to the online

supplementary material.

2. The ARM Method

Suppose that n units (patients) are assigned to two treatment groups. Let

Ti be the assignment of the ith unit, that is, Ti = 1 for treatment 1, and Ti =

0 for treatment 2. Consider p continuous covariates for each unit. Let xi =

(xi1, . . . , xip)
T ∈ Rp represent the covariates of the ith unit. For simplicity, we first

assume a causal inference setting in which all units are available for assignment

at the beginning of the randomization. Later, we explain how to adapt this for

a clinical trial setting in which the units enroll in the study sequentially. The

ARM method is as follows:
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(1) Arrange all n units randomly into a sequence x1, . . . ,xn.

(2) Assign the first two units with T1 = 1 and T2 = 0.

(3) Suppose that 2i units have been assigned to treatment groups, for the (2i+

1)th and (2i+ 2)th units:

(3a) If the (2i + 1)th unit is assigned to treatment 1 and the (2i + 2)th

unit is assigned to treatment 2, then we can calculate the “potential”

Mahalanobis distance between the updated treatment groups with 2i+2

units, that is, M1(2i + 2) = (x̄1,2i+2 − x̄2,2i+2)
T Σ̂−1(x̄1,2i+2 − x̄2,2i+2),

where Σ̂ is the sample covariance matrix, and x̄1,2i+2 and x̄2,2i+2 are

the updated covariate means of the treatment groups.

(3b) Similarly, if the (2i + 1)th unit is assigned to treatment 2 and the

(2i + 2)th unit is assigned to treatment 1, then we can calculate the

other “potential” Mahalanobis distance, M2(2i+ 2).

(4) Assign the (2i + 1)th unit to treatment groups according to the following

probabilities:

P (T2i+1 = 1|x2i, . . . ,x1, T2i, . . . , T1) =


q if M1(2i+ 2) < M2(2i+ 2),

1− q if M1(2i+ 2) > M2(2i+ 2),

0.5 if M1(2i+ 2) = M2(2i+ 2),

where 0.5 < q < 1, and assign T2i+2 = 1 − T2i+1 to maintain equal

proportions.

(5) Repeat the steps 3 and 4 until all units are assigned. If n is odd, assign the

last unit to two treatments with equal probabilities.

We choose the Mahalanobis distance as the covariate imbalance measure for

several reasons. First, the Mahalanobis distance has produced good results and

is used frequently in the literature (Morgan and Rubin (2012, 2015); Li, Ding

and Rubin (2018); Zhou et al. (2018); Li and Ding (2020)). Furthermore, it

is an affinely invariant imbalance measure, which is appealing for multivariate

data. Second, we can obtain desirable properties by using the Mahalanobis

distance, such as the optimal asymptotic variance for the treatment effect

estimation. Third, in real–data analyses, covariates often have different variances,

ranges, and metrics (e.g., inches and pounds). Given limited computational

power, minimizing the Mahalanobis distance evenly improves the balance of all

covariates, because it considers the covariate balance relative to their variances.

During the randomization stage, it is difficult to know which of the covariates

contribute most to the balance, because the outcome variables are not observed.

Therefore, minimizing the Mahalanobis distance is safer, because it improves the

balance of all covariates equally.
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Note that we are not establishing the Mahalanobis distance as the only

choice of imbalance measure. Other choices, such as the L2–norm of the

imbalance vector, are also available, and focus on different aspects of the covariate

imbalance. When the covariance matrix is the identity matrix, the Mahalanobis

distance becomes the L2–norm of the imbalance vector. The aforementioned

algorithm also works with difference imbalance measures.

In steps (3a) and (3b), the covariance matrix in the Mahalanobis distance is

replaced with the sample covariance matrix Σ̂. In a causal inference setting, the

sample covariance matrix is based on all units, Σ̂ = Σ̂n, and remains the same

throughout the randomization. In a clinical trial setting, the sample covariance

estimate is updated using the first 2i+ 2 units during each iteration, Σ̂ = Σ̂2i+2.

The proposed procedure can adapt easily to both settings.

Here, we allocate a pair of units at a time so that the sample sizes across

the treatment groups remain equal,
∑n

i=1 Ti =
∑n

i=1(1−Ti). However, depending

on the speed of the patient recruitment process, we can allocate unita one at a

time, but at the cost of different treatment group sample sizes. In practice, this

modified version of the ARM approach also performs well, and we denote it as

mARM. The algorithm is provided in the Supplementary Material.

The value of q is set to 0.75 throughout this article. Different values of q do

not affect our theoretical results. For a further discussion of q, please see Hu and

Hu (2012).

The proposed method is designed for directly randomizing units with

continuous covariates. In the literature, continuous covariates are usually

discretized on order to be included in the balancing procedures. However,

breaking a continuous covariate into subcategories means increased effort and a

loss of information, as pointed by Scott et al. (2002). Ciolino et al. (2011) further

note that the lack of publicity about practical methods for continuous covariate

balancing and the lack of knowledge about the cost of failing to balance continuous

covariates results in continuous covariates being excluded from the randomization

plan in clinical trials. Therefore, the proposed method also contributes to the

literature in this regard. Note that, the proposed procedure works well for large

p and n, whereas most existing methods work only for small p.

We now study the asymptotic properties of the Mahalanobis distance under

the proposed method.

Theorem 1. Under the proposed procedure, suppose that the covariate xi, for

i = 1, . . . , n, is independent and identically distributed (i.i.d.) as a multivariate

normal distribution with a zero mean and covariance matrix Σ. Then we have

M(n) = Op(n
−1).

Note that the Mahalanobis distance obtained using CR has a chi-squared dis-

tribution with p degrees of freedom, that is, MCR(n) ∼ χ2
df=p. The Mahalanobis

distance obtained using RR has a conditional chi-squared distribution, that is,
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MRR(n) ∼ χ2
df=p|χ2

df=p < a. Hence, the proposed method outperforms RR and

CR as the sample size increases, because its Mahalanobis distance converges to

zero at a rate of 1/n. That is, as more units are included, the better the covariate

balance becomes. In addition, note that our theoretical results focus on the case

of fixed p and diverging n.

Moreover, as the number of covariates p increases, the distribution of MCR(n)

becomes flatter, which implies a poorer covariate balance. Consequently, RR

has a lower probability of acceptance. Therefore, the advantage of the proposed

method becomes more significant as p increases, because the M(n) obtained using

the proposed method converges to zero regardless of p.

3. Treatment Effect Estimation and Hypothesis Testing

3.1. Framework

After the randomization, we estimate the treatment effect based on the

outcome variable yi obtained under treatment Ti, for i = 1, . . . , n. A natural

choice is the difference-in-means estimator,

τ̂ =

∑n
i=1 Tiyi∑n
i=1 Ti

−
∑n

i=1(1− Ti)yi∑n
i=1(1− Ti)

. (3.1)

However, τ̂ is sensitive to covariate imbalance. For example, if treatment 1

contains mostly males and treatment 2 contains mostly females, then τ̂ will not

be able to exclude the gender effect.

To adjust for such an imbalance, we can use a linear regression to estimate

the treatment effect. That is, conditional on the treatment assignment Ti, the

outcome variable is assumed to follow

yi = µ1Ti + µ2(1− Ti) + β1xi1 + · · ·+ βpxip + εi, (3.2)

where µ1 and µ2 are the main effects of treatments 1 and 2, respectively, and

µ1 − µ2 = τ is the treatment effect. Furthermore, βj represents the covariate

effect, and εi is an i.i.d. random error with a zero mean and constant variance

σ2
ε , and is independent of the covariates.

Define Y = (y1, . . . , yn)T , X = (x1, . . . ,xn)T = [xij]n×p, T = (T1, . . . , Tn)T ,

1 = (1, . . . , 1)T , X̃ = [T ; 1 − T ;X], β = (β1, . . . , βp)
T , and β∗ = (µ1, µ2,β

T )T .

The ordinary least squares estimate of β∗ is β̂∗ = (X̃T X̃)−1X̃TY . Consider L =

(1,−1, 0, . . . , 0)T , a (p + 2)-dimensional vector. We define the linear-regression-

adjusted estimator under (3.2) as

τ̃ = LT β̂∗,

which is adjusted for the covariate imbalance. Note that if X̃ does not include
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any covariates, that is, X̃ = [T ; 1 − T ], then the working model becomes

yi = µ1Ti + µ2(1− Ti) + εi. (3.3)

Hence, τ̃ under (3.3) becomes τ̂ , the difference-in-means estimator.

In addition to estimating treatment effects, hypothesis testing is another

important part of comparative studies. To detect whether a treatment effect

exists, we have the following hypothesis testing problem:

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0. (3.4)

We can conduct the hypothesis tests under models (3.2) and (3.3), respectively,

which essentially correspond to using τ̃ and τ̂ , respectively.

Under model (3.2), we define the test statistic Sadj as

Sadj =
LT β̂∗√

σ̂2
wL

T
(
X̃T X̃

)−1
L

=
τ̃√

σ̂2
wL

T
(
X̃T X̃

)−1
L

,

where σ̂2
w = ‖Y − X̃β̂∗‖2/(n − p − 2) is the estimate of σ2

ε under model (3.2).

The test statistic Sadj is essentially a linear–regression–adjusted T-test for the

treatment effect µ1 − µ2. Traditionally, the null hypothesis is rejected if

|Sadj| > z1−α/2, where z1−α/2 is the (1 − α/2)th quantile of the standard normal

distribution, and α is the significance level.

Under model (3.3), we can simplify the test statistic by letting X̃ = [T ; 1−T ]

and L = (1,−1)T . The test statistic becomes

Sunadj =
τ̂

s
√

1/n1 + 1/n2

,

where n1 =
∑n

i=1 Ti, n2 = n − n1, and s2 = {
∑

i:Ti=1(yi − ȳ1)2 +
∑

i:Ti=0(yi −
ȳ2)

2}/(n − 2), where ȳ1 and ȳ2 are the respective sample means of the two

treatment groups. Note that this is essentially a two–sample T–test statistic

with equal variance, but it is not adjusted for the covariate imbalance. Again,

the null hypothesis is rejected if |Sunadj| > z1−α/2.

Note that throughout this paper, the outcome variable genuinely follows

model (3.2), where the covariates can directly affect the outcome variable.

However, we often use the working model (3.3) for inference, for various practical

reasons, such as the simplicity of the testing procedure and its robustness to

model misspecification, even though some covariates are omitted in the working

model (3.3).

In the next section, we examine the properties of estimating using by τ̃ and

τ̂ and hypothesis testing using Sadj and Sunadj under the proposed and other

randomization methods.
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3.2. Theoretical properties

Under the framework above, we can show that τ̂ under the ARM method

achieves the optimal precision, and Sunadj under the ARM method achieves the

highest power.

Theorem 2 (Optimal precision). Suppose that the outcome variable yi follows

the linear regression model in Equation (3.2), and that we estimate the treatment

effect under the proposed method and under CR; then, we have

√
n
{
τ̂ARM − (µ1 − µ2)

} D→ N(0, V1),
√
n
{
τ̃ARM − (µ1 − µ2)

} D→ N(0, V2),
√
n
{
τ̃CR − (µ1 − µ2)

} D→ N(0, V3),
√
n
{
τ̂CR − (µ1 − µ2)

} D→ N(0, V4),

where 4σ2
ε = V1 = V2 = V3 < V4.

This theorem implies that under the proposed method, the precision of the

difference-in-means estimator, τ̂ARM, is the same as the precision of the linear-

regression-adjusted estimator, τ̃ARM. This suggests that the proposed method can

balance the covariates so well that, asymptotically, the regression adjustment is

not needed, and τ̂ARM is just as good as τ̃ARM.

In addition, under the linear regression assumption, we can show that

τ̂ = µ1 − µ2 +
2

n


n∑
i=1

(2Ti − 1) εi +
p∑
j=1

βj

 ∑
i∈{i:Ti=1}

xij −
∑

i∈{i:Ti=0}

xij

 .

Therefore, the variance of τ̂ can be decomposed into two parts:

Var(τ̂) = Var

{
2

n

n∑
i=1

(2Ti − 1) εi

}

+ Var

 2

n

p∑
j=1

βj

 ∑
i∈{i:Ti=1}

xi,j −
∑

i∈{i:Ti=0}

xi,j

 . (3.5)

The first part of Var(τ̂) is due to the random error, and the second is due to the

covariate imbalance. Because random errors are inevitable, the minimum variance

of τ̂ is Var {2
∑n

i=1 (2Ti − 1) εi/n} = 4σ2
ε/n. Theorem 2 shows that the precision

of τ̂ARM is exactly 4σ2
ε/n. Therefore, we conclude that the difference-in-means

estimator under the proposed method, τ̂ARM, attains the optimal precision, but

that τ̂CR cannot.

Theorem 2 further implies that the variance of the linear-regression-adjusted

estimator τ̃ is also 4σ2
ε/n, regardless of the randomization method, as long as

the linear model assumption is true. That is, the second term of (3.5) can be

eliminated by using regressions. Therefore, τ̃ is also considered asymptotically

optimal, with the help of a linear regression.
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Table 1. The relationship of asymptotic variances of different estimators. All results are
derived under the proposed framework.

Randomized Randomization Estimators

Covariates Method τ̂ τ̃

X

CR Asym. Var. > Asym. Var.

∨ ‖
RR Asym. Var. > Asym. Var.

∨ ‖
ARM Asym. Var. = Asym. Var.

Although τ̃ and τ̂ARM have the same precision, note that τ̂ARM is a sample

mean difference and is conceptually simple, whereas τ̃ needs to estimate all

regression coefficients β∗ and requires linear regression assumptions. In some

situations, τ̃ is not preferred, such as in the case of model misspecification, ethical

issues, ex-post adjustments, data privacy, and so on. Li and Ding (2020) examine

a more general case in which the covariates in the design and analysis stages can

take various relationships, and emphasize the importance of ex-ante balance. In

contrast, we focus on the case in which the covariates in the analysis stage are

subsets of those in the design stage, and provide similar conclusions. In the

Supplementary Material, we provide additional numerical studies that compare

the performance of τ̂ and τ̃ under several model misspecification cases.

For comparison, we present the properties of τ̂RR and τ̃RR. Note that all

properties are derived under the proposed framework, which differs from that of

Morgan and Rubin (2012).

Corollary 1. Under the same assumptions as in Theorem 2, suppose that we

estimate the treatment effect under the RR; then, we have

√
n
{
τ̃RR − (µ1 − µ2)

} D→ N(0, V5),
√
n
{
τ̂RR − (µ1 − µ2)

} D→ N(0, V6),

where 4σ2
ε = V1 = V2 = V3 = V5 < V6 < V4.

This theorem shows that RR cannot achieve optimal precision in contrast to

the proposed method. Furthermore, it cannot completely remove the covariate

imbalance. In Table 1, we summarize the relationships between these estimators’

asymptotic variances.

Next, we establish the properties of the hypothesis tests using Sadj and Sunadj.

Note that because of the optimality of τ̂ARM, Sunadj under ARM also attains the

highest power among all tests. Theorem 3 follows from the work of Ma et al.

(2019).

Theorem 3. Under the proposed method, when testing the treatment effect using

Sunadj (i.e., the two-sample T-test with equal variance), we have
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1. Under H0 : µ1 − µ2 = 0; then, Sunadj
d→ N {0, σ2

ε/(σ
2
ε + βTΣβ)} .

2. Under H1 : µ1 − µ2 6= 0, where µ1 − µ2 = δ/
√
n, for a fixed δ 6= 0; then,

Sunadj
d→ N{δ/(2

√
σ2
ε + βTΣβ), σ2

ε/(σ
2
ε + βTΣβ)}.

Theorem 3 provides insights about the distribution of Sunadj under the ARM

method. We often incorrectly assume a standard normal distribution for Sunadj

under the null hypothesis. However, according to our results, under the ARM

method, the null distribution of Sunadj is narrower than the standard normal

distribution, because σ2
ε/(σ

2
ε + βTΣβ) < 1. Therefore, the traditional testing

procedure with the critical value z1−α/2 leads to a reduced type-I error.

To obtain the correct type I–error, we can adjust the testing procedure using

the corrected critical value zARM
1−α based on part 1 of Theorem 3. This test also has

an adjusted test has higher power than that of the traditional test. In practice,

because the corrected critical value depends on the unknown parameters, we use

the bootstrap method or directly estimate the parameters to obtain the critical

value.

Similarly, we establish the asymptotic distribution of Sunadj under CR and

RR as follows (Ma et al. (2019)).

Corollary 2. Under CR, when testing the treatment effect using Sunadj (i.e., the

two–sample T-test with equal variance), we have

1. Under H0 : µ1 − µ2 = 0; then, Sunadj
d→ N (0, 1).

2. Under H1 : µ1 − µ2 6= 0, where µ1 − µ2 = δ/
√
n, for a fixed δ 6= 0; then,

Sunadj
d→ N{δ/(2

√
σ2
ε + βTΣβ), 1}.

Corollary 3. Under RR, when testing the treatment effect using Sunadj (i.e., the

two–sample T-test with equal variance), we have

1. Under H0 : µ1 − µ2 = 0; then, Sunadj
d→ (σεZ + βTξ)/

√
σ2
ε + βTΣβ, where

Z is a standard normal random variable and ξ = Σ1/2D |DTD < a, where

D ∼ N(0, Ip×p).

2. Under H1 : µ1 − µ2 6= 0, where µ1 − µ2 = δ/
√
n, for a fixed δ 6= 0; then,

Sunadj
d→ (δ + 2σεZ + 2βTξ)/(2

√
σ2
ε + βTΣβ).

Furthermore, the asymptotic variance of Sunadj is (σ2
ε +maβ

TΣβ)/(σ2
ε +βTΣβ),

where ma = {2γ(p/2 + 1, a/2)}/{pγ(p/2, a/2)} = P
(
χ2
p+2 ≤ a

)
/P
(
χ2
p ≤ a

)
< 1,

and γ is the incomplete gamma function γ(b, c) =
∫ c
0
yb−1e−ydy.

Based on the corollaries, under CR, the null distribution of Sunadj is N(0, 1).

Hence, the traditional test with the critical value z1−α/2 is valid, and no

adjustment is needed. Under RR, the null distribution of Sunadj is narrower than
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Table 2. Comparison of ARM, CR, and RR in terms of the type-I errors of the traditional
test using z1−α and the test using the corrected critical value, and the power of the test
using the corrected critical value.

Type I error of the traditional test Type I error of the adjusted test Power of the adjusted test

Methods |Sunadj| > z1−α/2 |Sunadj| > corrected CV |Sunadj| > corrected CV

CR Valid (α) Valid Least powerful

RR Moderately conservative (< α) Valid Moderately powerful

ARM Most conservative (< α) Valid Most powerful

−2 0 2 4 6 8

0
.0

0
.2

0
.4

0
.6

0
.8

Theoretical distributions

Sunadj

p
d
f z1−α 2

z1−α 2
RR

z1−α 2
ARM

Null Alternative
CR

RR

ARM

Figure 1. Comparison of the theoretical null and alternative distributions of Sunadj under
ARM, CR, and RR.

the standard normal distribution, indicating that the aforementioned traditional

test is conservative. Here, we need to use the corrected critical value zRR
1−α/2 based

on Corollary 3 to maintain a valid type-I error.

Because the outcome variable follows model (3.2), the covariate distributions

influence the distributions of both the estimated treatment effect τ̂ and the

test statistic Sunadj obtained from (3.3). Because the covariate-adaptive design

changes the covariate distributions, it also distorts the distributions of τ̂ and

Sunadj. Therefore, the covariate distributions and the random nature of the

covariate-adaptive design play an important role in determining the sampling

distributions of τ̂ and Sunadj.

Under the ARM method, CR, and RR, the null (and alternative) distribu-

tions of Sunadj all share the same mean. The null (and alternative) distributions of

Sunadj under the ARM method are the narrowest of all three, and RR is narrower

than CR. When using the traditional critical value z1−α, the test under the ARM

method is most conservative, with the lowest type-I error. The test under RR

is moderately conservative. The test under CR is valid, with a correct type-I

error. On the other hand, when using the corrected critical values, the tests are

all valid. The test under the ARM method is the most powerful, and RR is more

powerful than CR; see Table 2 and Figure 1.
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For completeness, we also derive the properties of Sadj under ARM, CR, and

RR below.

Theorem 4. Under ARM, CR, and RR, when testing the treatment effect using

Sadj (i.e., the linear-regression-adjusted T-test), we have

1. Under H0 : µ1 − µ2 = 0; then, Sadj
d→ N (0, 1).

2. Under H1 : µ1 − µ2 6= 0, where µ1 − µ2 = δ/
√
n, for a fixed δ 6= 0; then,

Sadj
d→ N {δ/(2σε), 1} .

Therefore, the null distribution of Sadj is the standard normal distribution,

and the traditional testing procedure using the critical value z1−α/2 is valid

with a correct type-I error, and no adjustment is needed. However, such an

approach requires that we estimate of the working model parameters and adopt

the corresponding assumptions.

3.3. Computational advantage

The previous section clearly demonstrates the advantages of the proposed

method. A natural question is whether we can also let a → 0 inRR to improve

its performance to match that of the proposed method (because RR allows

researchers to increase the power of the analysis at the expense of computational

time (Morgan and Rubin (2012))). However, this option is extremely expensive

computationally in many cases.

Theorem 5. For RR, to achieve the same level of covariate balance as that of the

ARM method, the acceptance probability Pa of RR is χ2
df=p(a

∗), where χ2
df=p(·) is

the cumulative distribution function of a chi-squared distribution with p degrees

of freedom, and a∗ is the root of γ(p/2, a∗/2)Dp2 = 2γ(p/2 + 1, a∗/2)n, where

D > 0 is a constant.

We report the acceptance probabilities for several scenarios as quantitative

values in Table 3. For a small sample size and low-dimensional covariates, the

acceptance probability is reasonable. However, as either p or n increases, the

acceptance probability approaches zero very quickly.

4. Numerical Studies

In this section, we use simulation studies to demonstrate the computational

advantages of the proposed method. Additional numerical results are shown in

the Supplementary Material.

4.1. Proposed method under different settings

We examine the effect of the sample covariance matrix on our proposed

method under three settings: (1) Causal inference setting: all units are available
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Table 3. Acceptance probabilities of RR to match the covariate balance produced by the
proposed method for different levels of n and p.

n p = 2 p = 5 p = 10 p = 20 p = 30

1,000 0.019360138 5.889118e-04 1.366763e-05 2.041414e-07 2.886993e-08

2,000 0.009504544 1.058795e-04 4.742458e-07 3.091250e-10 2.424319e-12

3,000 0.006528596 3.886533e-05 6.451756e-08 6.184287e-12 7.804135e-15

for assignment before the randomization starts; hence, we can use all units to

estimate the covariance matrix. The sample covariance matrix stays the same

throughout the randomization process. (2) Clinical trial setting: units come to

the study sequentially and are assigned to a treatment sequentially; hence, we

can estimate the covariance matrix using only the available units. Therefore, the

sample covariance matrix needs to be updated during the randomization process.

(3) Oracle setting: we use the true covariance matrix in our randomization

process. We examine both the ARM and the mARM methods, and we allocate

one unit at a time. Note that when allocating one unit at a time, the numbers

of units in both treatment groups are usually different, with an order of
√
n.

We simulate the covariates according to xi ∼ MN(0, Ip×p), with different

p and n, to obtain the treatment assignments. We plot the distribution of the

Mahalanobis distance of the ARM method in Figure 2, and that of the mARM

method in the Supplementary Material. Short dotted, long dotted, and solid

curves correspond to settings (1), (2), and (3), respectively. These figures show

that the distributions of the Mahalanobis distance under the three settings are

almost identical, especially when the sample sizes are large. Thus, the sample

covariance matrix has a very limited impact on the final Mahalanobis distance.

When the sample size is 200 and the number of covariates is 20, there is a mildly

negative effect. This is because we need to estimate many parameters in the

covariance matrix using limited observations. As more units are assigned, the

sample covariance matrix converges, and the Mahalanobis distances in the three

scenarios become are the same. Therefore, as long as the sample size is at least

moderate, we can use the sample covariance matrix for the proposed method.

This simulation study verifies the applicability of the proposed method in both

causal inference and clinical trial settings with pairwise and sequential allocation

procedures.

4.2. Covariate balance and computational advantage

In this section, we compare the proposed method with other methods,

especially RR, in terms of covariate balance and computational feasibility.

We first compare the proposed method with RR (with Pa = 0.05) by

simulating the covariates with x ∼ MN(0, Ip×p); the results are presented in

Figure 3. For different n and p, we plot histograms of M(n) of the proposed
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Figure 2. Comparison of the distributions of the Mahalanobis distances obtained using
the ARM method under three scenarios. Short dotted curves are for known true
covariance settings. Long dotted curves are for the causal inference setting. Solid curves
are for the clinical trial setting.

method and MRR(n) of RR. As the figure shows, as n increases, the distribution of

MRR(n) remains unchanged, whereas the distribution of M(n) converges rapidly

to zero. Moreover, as p increases, the distributions obtained using RR and the

proposed method become wider, but the inflation of the distribution is much less

severe for the proposed method (i.e., the overlap between the two distributions

becomes smaller as p increases).

Next, we compare the proposed method with RR in terms of computational

time. Note that the proposed method requires only one iteration, whereas

RR requires multiple iterations of CR to achieve an acceptable balance level.

Therefore, we compared the number of iterations required for RR to achieve the

same performance (i.e., the same Mahalanobis distance) as that of the proposed

method. We also compared the corresponding computational times; see Figure

4. As shown in Figures 4a and 4b, when n and p are small, the computational

advantage of the proposed method is not obvious. However, as n and p increase,

the advantage of the proposed method becomes more significant, because RR

requires more iterations and more time to achieve the same level of performance

as that of the proposed method. As p continues to increase, RR becomes

computationally expensive. Note that the computational time of the proposed

method grows only linearly with n, and remains the same for different p, whereas
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Figure 3. Comparison of the distributions of the Mahalanobis distances obtained using
the proposed method, M(n), and RR, MRR(n), for different sample sizes n and different
numbers of covariates p.
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Figure 4. Comparison of the numbers of iterations, computational times, and ratios of
computational times for RR and the proposed method. Panel (a): numbers of iterations
of RR required to achieve the same performance as that of the proposed method. Panel
(b): the corresponding computational times used in Panel (a). Panel (c): the ratios of
the computational times shown in Panel (b).

the computational time of RR grows exponentially as either n or p increases.
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4.3. Treatment effect estimation

We compare the proposed method with other randomization methods in

terms of the treatment effect estimation. The competing randomization methods

are CR, RR, the covariate-adaptive biased coin design (CA-BCD) (Antognini

and Zagoraiou (2011)), the optimum biased coin designs (DA-BCD) (Atkinson

(1982)), the stratified permuted blocks randomization (SPBR) (Taves (1974)),

the stratified biased coin design (SBCD) (Shao, Yu and Zhong (2010)), ARM,

and mARM. For ARM, mARM, and SBCD, the treatment allocation probability

is q = 0.75. The acceptance probability of RR is Pa = 0.05. Following (Antognini

and Zagoraiou (2011)), the design parameter of CA-BCD is two. The block size

of SPBR is four. We simulate 10 continuous covariates xi = (xi1, . . . , xi10)
T

according to xi ∼ MN(0, I10×10). We set the sample size to n = 500, 5000 to

approximate the finite/large sample size cases, respectively. We applied different

randomization methods to these simulated units and obtained the simulated

treatment assignments Ti. Because CA-BCD, SPBR, and SBCD cannot be

used for continuous covariates, we discretize the covariates into binary covariates

according to their signs. We further simulate the outcome variable according

to yi = µ1Ti + µ2(1 − Ti) +
∑10

j=1 βjxij + εi, where µ1 = 0, µ2 = 1, βj = 1,

for j = 1, . . . , 10, and εi ∼ N(0, 22). We also compared the performance of

these methods in the discrete covariate case. The results are provided in the

Supplementary Material.

Using the simulated data, we estimate the treatment effect using the following

four working models, and obtain the asymptotic standard error for each method

under the different randomization methods:

W1: yi = µ1Ti + µ2(1− Ti) + εi

W2: yi = µ1Ti + µ2(1− Ti) +
∑3

j=1 βjxij + εi

W3: yi = µ1Ti + µ2(1− Ti) +
∑10

j=4 βjxij + εi

W4: yi = µ1Ti + µ2(1− Ti) +
∑10

j=1 βjxij + εi.

Note that W1 is equivalent to τ̂ and W4 is equivalent to τ̃ . The results are

presented in Table 4, and are consistent with those shown in Table 1. Under W1,

the proposed method performs best. CR performs the worst, because it does

not reduce the covariate imbalance. RR and DA-BCD perform better than CR,

but still worse than the proposed method. Because CA-BCD, SPBR, and SBCD

are designed for discrete covariates, their performance is worse than that of the

proposed method, because some covariate information is lost. When p = 10,

the number of possible strata is 210. When the sample size is 5000, CA-BCD

outperforms CR, but they perform similarly when the sample size is 500, because

there are not enough observations in each stratum.
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Table 4. Comparison of the asymptotic standard errors of the estimated treatment effect
for working model W1, W2, W3, and W4 under different randomization methods. This
table is a verification of Table 1. Asymptotic standard errors are multiplied by

√
n/2 for

easy comparison.

Randomization n = 500, Working models n = 5000, Working models

method W1 W2 W3 W4 W1 W2 W3 W4

ARM 2.1476 2.1145 2.0319 1.9922 2.0102 2.0043 2.0045 1.9983

mARM 2.0724 2.0425 2.0190 1.9882 2.0107 2.0093 2.0081 2.0069

CR 3.7242 3.3605 2.6168 2.0100 3.7840 3.3038 2.6565 2.0119

RR 2.7117 2.5436 2.2492 2.0465 2.6887 2.5142 2.2352 2.0075

DA-BCD 2.4212 2.3094 2.0995 1.9663 2.4483 2.3265 2.1370 2.0082

CA-BCD 3.7004 3.2656 2.6476 2.0027 3.1655 2.9052 2.3855 2.0068

SPBR 3.6204 3.2553 2.6261 1.9818 2.9297 2.6586 2.3390 1.9902

SBCD 3.5961 3.1802 2.5770 2.0072 3.1217 2.8716 2.3678 2.0088

As we include additional covariates into the working model, the standard

error gradually decreases, because the covariate imbalance is partially adjusted

by the linear regression. When all covariates are included in the working model

(i.e., W4), the standard errors are the smallest. Note that W4 is almost the same

under all randomization methods. This is because the covariate imbalance from

the randomization methods has been completely adjusted, therefore; thus, the

standard error reaches its minimum.

4.4. Hypothesis testing

Here, we compare different randomization methods in terms of hypothesis

testing under the same settings as those in the previous section, with n = 5,000.

For CE, RR, ARM, and mARM, we can estimate the critical values. For CA-

BCD, DA-BCD, SPBR, and SBCD, we obtain the true critical value through

simulation. We present the type-I errors in Table 5, which shows that all type-I

errors with estimated critical values are successfully controlled at 5%. Therefore,

the theoretical asymptotic distributions of Sunadj under CR, RR, ARM, and

mARM work well.

We also calculate the power of the test for various levels of µ1−µ2, and plot

the results in Figure 5. As µ1−µ2 increases away from zero, the power increases,

in general. However, under different working models, the various randomization

methods provide different power. ARM and mARM clearly have the highest

power compared with that of the other randomization methods under the same

working model. Furthermore, the power under W1 for ARM and mARM is

the same as the power under W2, W3, and W4, whereas the power of the

other randomization methods gradually increase from W1 to W4. Note that the

different working models affect the performance of CR most, because CR does
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Table 5. type-I error for the treatment effect under various working models and
randomization procedures.

Randomization method
Working models

W1 W2 W3 W4

ARM 0.052 0.054 0.055 0.050

mARM 0.055 0.053 0.052 0.048

CR 0.043 0.041 0.055 0.052

RR 0.037 0.042 0.050 0.048

DA-BCD 0.050 0.050 0.050 0.050

CA-BCD 0.050 0.050 0.050 0.050

SPBR 0.050 0.050 0.050 0.050

SBCD 0.050 0.050 0.050 0.050
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Figure 5. Power against µ1 − µ2. Sample size n = 5,000. From left to right are four
working models. The results for CR, RR, ARM, mARM, DA-BCD, CA-BCD, SPBR,
and SBCD are shown in each panel to aid comparison.

not balance the covariate. The remaining methods do balance the covariates, but

not as well as ARM and mARM do, and so their power is better than that of CR

but worse than that of ARM.

5. Real–Data Example

In this section, we demonstrate our proposed method using data from a real

clinical study of a Ceragem massage thermal therapy bed, a device for treating

lumbar disc disease. In total, there are 186 patients with p = 50 covariates. There

are 30 continuous covariates, such as age and the baseline measurements of the

patient’s current conditions, for example, lower back pain and leg numbness, all

measured on a scale from zero to 10. The outcome variable yi, representing

measurements of lower back pain after the treatment or control experiment, was

recorded to study the treatment effect.
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Figure 6. Comparison of the distributions of the Mahalanobis distance obtained using
ARM, CR, and RR. Note that RR is represented by the portion of the CR distribution
that lies to the left of the vertical line (M = 20, 30, 40).

In the original study, the patients were assigned randomly to the treatment or

control groups. The corresponding Mahalanobis distance was 57.67, indicating a

moderate covariate imbalance. To compare, we repeatedly assigned these patients

to treatment groups using the proposed method, CR, and RR (M < a and

a = 20, 30, 40). The corresponding Mahalanobis distances are plotted in Figure 6.

Note that in the right panel of Figure 6, in order to mimic a setting with a large

sample, we replicated the data four times to n = 744.

As shown in Figure 6, the Mahalanobis distances of the proposed method on

the original data (n = 186) are consistently lower. If we had n = 744 patients,

the Mahalanobis distance of the proposed method decreases further toward zero.

Few CR allocations achieve the same level of balance as that of the proposed

method. RR produces Mahalanobis distances to the left of the vertical lines

(M = 20, 30, 40), which are still not comparable with the proposed method.

For each randomization method, we further simulated the outcome variable

ysimi according to ysimi = µ̂1T
sim
i + µ̂2(1 − T sim

i ) + xTi β̂ + εsimi , where T sim
i is the

simulated patient allocation, εsimi is sampled from the residuals of the regression

fitted to the original data, and µ̂1, µ̂2, and β̂ are the corresponding estimated

regression coefficients. Using the simulated outcome variable, we obtain the

average treatment effect using τ̂ . The performance comparison is summarized

in Table 6. The proposed method exhibits the best performance, especially when

the sample size is large, and it yields the lowest variance. For RR, a smaller

threshold results in better performance. However, this comes at the cost of a

longer computational time and a lower acceptance probability. As the sample size

increases, the gain from the proposed method becomes increasingly substantial,
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Table 6. Comparison of the proposed method with RR and CR for the real–data analysis.

Sample Size Method MSE (or Var)
Power of Test

No cov. All cov.

n = 186

Proposed 0.081 0.843 0.862

RR (M < 40) 0.090 0.684 0.861

RR (M < 30) 0.085 0.735 0.856

RR (M < 20) 0.081 0.792 0.877

CR 0.100 0.517 0.853

n = 744

Proposed 0.018 0.832 0.881

RR (M < 40) 0.022 0.604 0.882

RR (M < 30) 0.021 0.669 0.880

RR (M < 20) 0.018 0.721 0.875

CR 0.025 0.534 0.872

whereas the RR method does not improve at all.

We also conduct hypothesis testing for the treatment effect using the working

model with no covariates and the working model with all covariates. Each test

is simulated 1,000 times and the results are presented in Table 6. The results

show that the power of the working model that includes all covariates is similar

for the various randomization procedures. However, if the working model does

not include the covariates used in the randomization, the power degrades. The

proposed method shows the least degradation, RR shows moderate degradation,

and CR shows the most degradation. This evidence shows the importance of

adjusting the hypothesis testing procedure, and that better covariate balance

improves the power of the hypothesis testing. In particular, under ARM, the test

has the highest power and appears equivalent to the model in which all covariates

are adjusted.

6. Discussion

We have proposed a new randomization procedure for balancing covariates

in order to improve statistical inference for causal inference and clinical trials.

The proposed method shows superior performance in terms of covariate balance,

estimation accuracy, hypothesis testing power, and computational time. It

achieves optimality under the linear regression framework, in the sense that,

asymptotically, the proposed method balances the covariates so well that the

imbalance adjustment provided by the linear regression is not needed.

The proposed method follows the spirit of the minimization methods used

in clinical trials (Taves (1974); Pocock and Simon (1975); Hu and Hu (2012)).

However, the focus and context of these methods differ from ours. Their methods

cannot be applied when patients enroll sequentially in a clinical trial. In contrast,

our proposed method can be applied both in clinical trials in which units are
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enrolled sequentially, and in causal inference in which all units are collected before

the randomization and experiment begin. Another significant difference is that

the minimization methods are suitable for discrete covariates, minimizing the

margin and stratum imbalance. In contrast, the proposed method is suitable for

both discrete and continuous covariates.

Banerjee et al. (2020) and Kapelner et al. (2021) state that an optimal

design should be more random than a deterministic assignment, but less random

than CR. The former has the greatest robustness, but its estimation efficiency

is unsatisfactory. The latter is less robust, because unseen subject-specific

characteristics can be highly imbalanced, which is considered risky and leads

to a severe loss in robustness. Thus, the proposed method is a good choice for a

design, because it can make the trade-off between CR and the highly optimized

deterministic assignment by using the treatment allocation probability q. For the

proposed method, we suggest a mild q (such as q = 0.75) to avoid pursuing the

covariate balance to the extreme.

Many directions for further research remain. For example, as the number

of covariates increases, it is more efficient to balance only the most important

covariates (Morgan and Rubin (2015)); therefore, selecting the important

covariates to balance in our proposed framework is an interesting topic for future

work.

Supplementary Material

The online Supplementary Material contains additional numerical studies

and proofs.
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