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Abstract: In relation to variable selection, most existing screening methods focus

on marginal effects and ignore the dependence between covariates. To improve

the performance of variable selection, we incorporate pairwise effects in covariates

for screening and penalization. We achieve this by studying the asymptotic distri-

bution of the maximal absolute pairwise sample correlation between independent

covariates. The novelty of the theory is that the convergence is related to the di-

mensionality p, and is uniform with respect to the sample size n. Moreover, we

obtain an upper bound for the maximal pairwise R squared when regressing the

response onto two covariates. Based on these extreme-value results, we propose a

screening procedure to detect covariates pairs that are potentially correlated and

associated with the response. We further combine the pairwise screening with sure

independence screening and develop a new regularized variable selection procedure.

Numerical studies show that our method is competitive in terms of both prediction

accuracy and variable selection accuracy.

Key words and phrases: Pairwise screening, penalized regression, sure independence

screening, variable selection.

1. Introduction

With the growing prevalence of big data, high-dimensional problems are

becoming increasingly commonplace in many scientific fields, where the number

of variables may be comparable to, or even much larger than the sample size.

For example, in genetic studies, one often has tens of thousands of genes in

microarray data sets based on only a few hundred patients, and in neuroscience,

fMRI images may contain millions of voxels.

Many recent studies have focused on how to handle high-dimensional data

analyses. Of the methods proposed, the penalized least squares plays an im-

portant role. One of the most well-known methods is the LASSO, proposed by
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Tibshirani (1996), which is the solution to the following penalized problem:

min
β∈Rp

‖y −Xβ‖22 + λP (β), (1.1)

where λP (β) = λ
∑p

j=1 |βj | is the l1-penalty. Tibshirani (1996) showed that

the LASSO leads to a sparse estimator that shrinks the OLS solution and sets

some of the estimated coefficients to zero. Despite its good theoretical properties

and practical performance, the LASSO has two major drawbacks. First, it may

over-shrink the estimates, causing significant bias. Second, in the case of a group

of highly correlated variables, the LASSO tends to select only one of them. To

address these issues, Zou and Hastie (2005) introduced the elastic net method,

which uses λ1‖β‖1+λ2‖β‖22 as the regularization term in (1.1), thus encouraging a

grouping effect. Furthermore, various other penalized variable selection methods

have been proposed as extensions to the LASSO, including the Dantzig selector

(Candès and Tao (2007)) and the smoothly clipped absolute deviation (SCAD)

penalty (Fan and Li (2001)), among many others; see Hastie, Tibshirani and

Friedman (2003) and Fan and Lv (2010) for a comprehensive overview.

In high-dimensional variable selection, it is crucial that we account for the

dependency structure of the covariates. Such information improves the accuracy

of selection and provides practical insights. For instance, in gene expression data,

rather than working independently, genes usually function as biological pathways.

However, classical penalized variable selection methods usually do not explicitly

consider the relationships between covariates. To address this problem, Yuan

and Lin (2006) proposed the group LASSO method, which takes advantage of

the grouping of the covariates. Extension to the group LASSO include, but

are not limited to Breheny and Huang (2015). Other methods use the structure

information as a predictor graph (see Li and Li (2008); Pan, Xie and Shen (2010);

Zhu, Shen and Pan (2013); Yu and Liu (2016), among others).

A common assumption in the aforementioned methods is that the under-

lying predictor graph is given, which may not hold in practice. When prior

information is not available, clustering can be used to improve regression perfor-

mance. Specifically, Park, Hastie and Tibshirani (2007) proposed performing hi-

erarchical clustering on the covariates, and then using the cluster averages as new

predictors for the regression. Other methods use supervised clustering to encour-

age highly correlated pairs of covariates to be included or excluded, simultane-

ously (Bondell and Reich (2008); Sharma, Bondell and Zhang (2013)). Similarly,
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another type of method aims to make correlated covariates have similar regression

coefficients (She (2010)). Nevertheless, a large sample correlation between two

variables does not necessarily indicate that they are dependent, in the population

sense. When the dimensionality continues to increase, the maximal pairwise

correlation between p independent covariates can be close to one (Fan and Lv

(2010)). Therefore, it is important to identify covariates that are truly correlated,

and to incorporate such information into the variable selection procedures.

In this study, we examine the limiting behavior of the maximal absolute pair-

wise sample correlation between covariates when they are independent Gaussian

random variables. In contrast to prior works, we investigate the limiting dis-

tribution as the dimensionality p diverges. Therefore, the proposed asymptotic

results can potentially be applied to data sets with arbitrarily large dimensional-

ity. We also discuss the extreme behavior of the maximal absolute Spearman rho

statistic for covariates with general distributions, and obtain the upper bound

of the maximal pairwise R squared when regressing the response onto pairs of

covariates. Using the extreme-value results, we formulate a screening procedure

to identify covariate pairs that are potentially dependent and associated with

the response. We further combine the pairwise screening with sure independence

screening (SIS) (Fan and Lv (2008)), and propose a novel penalized variable se-

lection method. More specifically, we assign different penalties to each individual

covariate, according to the screening results. Numerical experiments show that

the performance of our proposed method is competitive compared with existing

approaches in terms of both variable selection and prediction accuracy.

The remainder of this paper is organized as follows. We first investigate the

limiting distribution of the maximal pairwise sample correlation between covari-

ates in Section 2.1. We also show that our asymptotic results cover that of Cai

and Jiang (2012) as a special case. Then, we propose an upper bound for the

maximal pairwise R squared in Section 2.2. In Section 3.1, we formulate our

proposed variable selection approach as a penalized maximum likelihood prob-

lem, and discuss potential extensions of our method in Section 3.2. Theoretical

properties are discussed in Section 4. In Section 5, we use simulated experiments

and two real data sets to show that the proposed method exhibits improved per-

formance when important variables are highly correlated. Finally, we conclude

this paper and discuss possible future work in Section 6. Proofs of the theoretical

results are provided in the Appendix.
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2. Pair Screening for Covariates

Suppose we have the following linear model:

y = Xβ + ε, (2.1)

where y = (y1, y2, . . . , yn)T is the response vector, X = (x1,x2, . . . ,xp) is an

n×p design matrix, with xj being n independent and identical observations from

the covariate Xj . We assume that the covariate vector x = (X1, X2, . . . , Xp)
T

has a multivariate distribution with unknown covariance matrix Σ, and ε =

(ε1, ε2, . . . , εn)T is a vector of independent and identically distributed (i.i.d.) ran-

dom variables with mean zero and standard deviation σ, and is independent of

the covariate vector x.

For the linear model given in (2.1), variable selection methods aim to identify

the nonzero components of β, in other words, the important variables among

all candidate predictors. In particular, if two covariates have a large pairwise

correlation, we may want to include or exclude these two variables simultaneously

when conducting variable selection. However, the sample correlation can be

spurious, especially when the number of covariates p is relatively large. Therefore,

it is important to identify covariates that are truly correlated. In other words, we

need to find a threshold for the pairwise sample correlation between the covariates

in order to screen the covariate pairs. In the following subsection, we discuss the

asymptotic results that generate the screening rule.

2.1. Extreme laws of pairwise sample correlation between covariates

We propose choosing a bound based on the extreme laws of pairwise sample

correlations when the p covariates are independent. Our investigations are under

two settings: (a) the covariates are normally distributed; (b) the covariates are

nonGaussian random variables.

2.1.1. Gaussian covariates

A recent study shows that the maximal absolute Pearson sample correlation

between p i.i.d. Gaussian covariates and an independent response has a Gumble-

type limiting distribution as p goes to infinity (Zhang (2017)). Motivated by this

result, we find that the maximal absolute pairwise sample correlation between p

independent covariates also has a limiting distribution, as stated in the following

theorem.

Theorem 1. Suppose X1, X2, . . . , Xp are p independent Gaussian variables, and
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we observe n independent samples from each Xj. Let Wpn = max1≤i<j≤p |ρi,j |,
where ρi,j = Ĉorr(Xi, Xj) is the Pearson sample correlation between Xi and Xj.

Then, as p→∞,

lim
p→∞

∣∣∣∣∣P
(
W 2
pn − ap,n
bp,n

≤ x

)

− I
(
x ≤ n− 2

2

)
exp

{
−1

2

(
1− 2

n− 2
x

)(n−2)/2
}
− I

(
x >

n− 2

2

) ∣∣∣∣∣ = 0,

(2.2)

which is uniform for any n ≥ 3. Here, ap,n = 1 − p−4/(n−2)cp,n, bp,n = 2/(n −
2)p−4/(n−2)cp,n, and cp,n = ((n − 2)/2B(1/2, (n − 2)/2)

√
1− p−4/(n−2))2/(n−2)

are the normalizing constants.

In random matrix theory, Wpn is also known as the coherence when the

design matrix X is random. Specifically, the coherence is defined as the largest

magnitude of the off-diagonal entries of the sample correlation matrix associated

with a random matrix. The limiting behavior of the coherence has been well

studied when the sample size n goes to infinity. For example, Cai and Jiang

(2011) studied the asymptotic distribution under certain regularity conditions,

and applied the results to test a covariance matrix. Cai and Jiang (2012) obtained

the limiting laws of the coherence for different divergence rates of p with respect

to n, and summarized the results as phase-transition phenomena. Our result

unifies the convergence in terms of the sample size, and includes the results of

Cai and Jiang (2012) as special cases, as described in the following corollary.

Corollary 1. Let Wpn be defined as in Theorem 1, where Xj are independent

normal random variables. Let Tpn = log(1−W 2
pn).

(a) (Sub-Exponential Case) Suppose p = pn →∞ as n→∞ and (log p)/n→
0; then, as n→∞,

P (nTpn + 4 log p− log log p ≤ x)→ 1− e−ex/2/
√
8π.

(b) (Exponential Case) Suppose p = pn satisfies (log p)/n → β ∈ (0,∞) as

n→∞. Then, as n→∞,

P (nTpn + 4 log p− log log p ≤ x)→ 1− exp
{
K(β)e(x+8β)/2

}
,

where K(β) = (β/(2π(1− 4e−4β)))1/2.
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(c) (Super-Exponential Case) Suppose p = pn satisfies (log p)/n → ∞ as

n→∞. Then, as n→∞,

P

(
nTpn +

4n

n− 2
log p− log n ≤ x

)
→ 1− e−ex/2/

√
2π.

Compared with those of previous works, our asymptotic distribution is novel

in two respects. First, the convergence in Theorem 1 is with respect to p, not

n, making it applicable to high-dimensional data, or even ultrahigh-dimensional

problems. Moreover, our convergence result is uniform for any n ≥ 3; thus,

finite-sample performance is guaranteed.

2.1.2. NonGaussian covariates

When the covariates are nonGaussian random variables, it is more desirable

to choose a distribution-free statistic for the screening rule. Therefore, instead of

using Pearson’s sample correlation, we study the extreme behavior of the Spear-

man rho statistic (Spearman (1904)). Recall that xj = (X1j , X2j , . . . , Xnj)
T are

n i.i.d. observations from the covariate Xj . Let Qjni and Qkni be the ranks of Xij

and Xik in {X1j , . . . , Xnj} and {X1k, . . . , Xnj}, respectively. Then, Spearman

rho is defined as

ρij =

∑n
i=1(Q

j
ni − Q̄

j
n)(Qkni − Q̄kn)√∑n

i=1(Q
j
ni − Q̄

j
n)2
∑n

i=1(Q
k
ni − Q̄kn)2

, (2.3)

where Q̄jn = Q̄kn = (n+ 1)/2.

Similarly to the normal setting, we are particularly interested in the limiting

distribution of S2
pn = max1≤i<j≤p ρ

2
ij when the covariates are all independent,

which has been studied in Han and Liu (2014). The following proposition states

that as n increases, S2
pn converges to a Gumble-type distribution.

Proposition 1. Suppose X1, . . . , Xp are i.i.d. random variables, and we have

n independent samples for each of the covariates. Let S2
pn = max1≤i<j≤p ρ

2
ij be

the squares of the maximal pairwise Spearman rho statistics. Then, for log p =

o(n1/3), we have

lim
n→∞

∣∣∣∣P ((n− 1)S2
pn − 4 log p+ log log p ≤ x

)
−exp

{
−(8π)−1/2 exp

(
−x

2

)} ∣∣∣∣ = 0.

(2.4)

Theorem 1 and Proposition 1 characterize the magnitude of the maximal
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pairwise correlation and Spearman rho statistic, respectively, when the covariates

are independent. If a pair of covariates, say X1 and X2, have an absolute sample

correlation greater than the 95% quantile of the distribution given in Theorem

1 or Proposition 1, then they tend to be marginally dependent. Because we are

only interested in pairs of truly important covariates, we further investigate the

extreme behavior of the maximal pairwise R squared under the null model; that

is, all βj are equal to zero.

2.2. R-squared screening for pairs of covariates

Using the asymptotic distributions introduced in the previous subsections,

we can identify covariates pairs that are potentially dependent. However, such

screening does not consider the association between the covariates and the re-

sponse. It is possible that an important variable has a large sample correlation

with unimportant variables, or that two highly correlated covariates are both un-

related to the response. To address such issues, we introduce another screening

procedure based on the R squared from regressing the response Y onto the pairs

of covariates.

Consider a linear regression in which we regress Y onto a pair of covariates

Xi and Xj , with i 6= j. Here, we can obtain the corresponding R-squared, R2
ij .

Under the model setting in (2.1), when all coefficients are zeros, the maximal

pairwise R-squared, max1≤i<j≤pR
2
ij , cannot be too large. In fact, there exists an

asymptotic bound for max1≤i<j≤pR
2
ij , as described in the following theorem.

Theorem 2. Let R2
pn = max1≤i<j≤pR

2
ij, where R2

ij is the pairwise R-squared

after regressing Y onto Xi and Xj, where i 6= j. Suppose X1, . . . , Xp and Y are

from the model setting in (2.1) and that Y is normally distributed. Then, when

βj are all zero, we have the following, for any fixed n ≥ 4, δ > 0, as p → ∞:

P (R2
pn ≥ 1− p−(4+δ)/(n−3)) = O(p−δ/2)→ 0.

Using the bound given by Theorem 2, we can design a screening rule to find

pairs of covariates that are potentially associated with the response. In Section

3, we explain how to use the theoretical results for variable selection.

3. Penalized Variable Selection Using Pairwise Screening

In this section, we propose a pairwise screening procedure that takes advan-

tage of the asymptotic results in Section 2. Furthermore, we establish a new

penalization algorithm for variable selection.
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3.1. Screening-based penalization

Given the limiting distribution of the maximal pairwise sample correlation

described in Section 2, we propose the following screening rule to identify covari-

ates pairs that are potentially correlated and related to the response:

G =
{

(i, j) : i < j, |Ĉorr(Xi, Xj)| ≥ a and R2
ij ≥ r0

}
, (3.1)

where a is the 100(1− α)% quantile of the distribution given in Theorem 1 (for

Gaussian covariates) or Proposition 1 (for nonGaussian covariates), and r0 =

1− p−(4+δ)/(n−3). Note that the values of α and δ can affect the size of G, where

larger values mean that fewer pairs are included in G. In practice, we suggest

setting α = 0.05 and δ = 0.1.

The group definition in (3.1) is a screening procedure with respect to co-

variate pairs. Screening is prevalent for high-dimensional data analyses. In par-

ticular, for penalized variable selection methods, high dimensionality makes it

more difficult to capture the inherent sparsity structure, making dimension re-

duction necessary. To this end, Fan and Lv (2008) introduced the SIS method,

which ranks the covariates based on the magnitude of their sample correlation

with the response. Specifically, let w = (w1, w2, . . . , wp)
T be a vector, such that

wj = |Ĉorr(Xj , Y )|, and let γ be a constant between (0, 1). Then, a sub-model

is defined as

Mγ = {j : wj is amongst the largest [γn] of all}, (3.2)

where [γn] denotes the integer part of γn. Fan and Lv (2008) further demon-

strated that SIS is screening consistent under some conditions. This guarantees

that all Xj with βj 6= 0 are included in the subset of covariates.

To take advantage of the distribution information in implementing dimension

reduction, we propose a new penalized variable selection approach that applies

different penalties to each covariate, based on the screening results. LetM be the

index set of covariates that have the largest [n\ log n] absolute sample correlation

with the response from among X1, X2, . . . , Xp. Define the set of paired covariates

as

C = {Xi : ∃j such that (i, j) ∈ G}. (3.3)

Our proposed method solves the following optimization problem:

min
β∈Rp

1

2n
‖y −Xβ‖22 + λ1

∑
j:j∈Cc∩M

|βj |+ λ2
∑

j:j∈C∩M
β2j , (3.4)
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subject to βj = 0, for j /∈ M. In other words, we ignore the covariates that fail

the marginal screening.

From the above problem, it can be seen that we apply different penalties to

the covariates, based on the results of two types of screening. Intuitively, the

proposed penalty works as follows:

• For a covariate that is included in both C and M, we apply the l2-penalty

only because it tends to be an important variable that we need to include

in the final model.

• For a covariate that is included inM, but not in C, we apply the l1-penalty

only, because there is no significant multicollinearity between it and other

covariates.

• For a covariate that is not included in M, because it does not pass the

marginal screening, we no longer consider it in the regression. This is be-

cause SIS enjoys screening consistency under certain assumptions, which

implies that M covers all important variables.

Our proposed method is connected with existing penalization approaches

when the covariates have a certain covariance structure. In particular, when the

covariates are all independent, our method reduces to the SIS-LASSO, which

performs marginal screening first, and then implements the LASSO on the re-

maining covariates; and, when the predictors are all highly correlated, such that

G includes all covariate pairs, our method is equivalent to the SIS-Ridge.

Thus far, we have established a new penalized variable selection. Now, we

discuss how to solve the optimization problem in (3.4). The penalty part of

(3.4) is convex. Therefore, we can solve it efficiently using coordinate descent

algorithm (Friedman, Hastie and Tibshirani (2010)). Specifically, the updating

rule has the following form:

β̂j ←


S

(
1

N

N∑
i=1

xij(yi − ỹ(j)i ), λ1

)
for j ∈ Cc ∩M,

(1/N)
∑N

i=1 xij(yi − ỹ
(j)
i )

1 + λ2
for j ∈ C ∩M,

(3.5)

where ỹ
(j)
i = β̂0 +

∑
k 6=j xikβ̂k is the fitted value, excluding the effect of xij , and

S(z) = sign(z)(|z| − λ)+ is the soft-thresholding function. In practice, we can

first implement SIS to obtain M when the dimension is high, and then run the

algorithm on the covariates Xj , for j ∈M.
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Remark 1. The computational cost of the pairwise screening procedure is O(p2),

which can become very inefficient as p increases. In our proposed procedure, to

reduce the computational complexity, we implement the marginal screening first

to obtain M. Because the cardinality of M is O(n/ log(n)), the computational

cost of applying pairwise screening to M reduces to O
(
(n/ log(n))2

)
.

3.2. Further extensions

As discussed in the previous subsection, we introduce a new penalized method

that combines marginal screening with pairwise screening in a linear model set-

ting. Note that the pairwise covariate screening does not involve the response.

Therefore, our method can be extended to include generalized linear models

(GLM), such as the logistic regression for binary responses, or the Cox model for

survival data. Suppose the response Y is from the following one-parameter ex-

ponential family f(y|x, θ) = h(y) exp{yθ− b(θ)}. Moreover, we assume θ = xTβ

for GLMs.

Similarly to (3.1), we define the pairwise screening as

G1 =
{

(i, j) : i < j, |Ĉorr(Xi, Xj)| ≥ a
}
. (3.6)

The difference is that we do not consider the R-squared screening for GLMs.

This is because for GLMs, it is not reasonable to use the regression R-squared

to evaluate the associations between the covariates and the response. We further

define the set of paired covariates as follows:

C1 = {Xi : ∃j such that (i, j) ∈ G1}. (3.7)

Let Pλ1,λ2
(β) = λ1

∑
j:j∈Cc1∩M |βj |+λ2

∑
j:j∈C1∩M β2j be our proposed screening-

based penalty. Then, for the logistic regression, we need to solve the following

penalized maximum likelihood problem:

min
β

n∑
i=1

(
yi(x

T
i β)− log(1 + ex

T
i β)
)

+ Pλ1,λ2
(β). (3.8)

In the above optimization problem, the log-likelihood part can be approxi-

mated by a quadratic function, which is a weighted least squares term (Friedman,

Hastie and Tibshirani (2010)). Therefore, it can still be solved using the coordi-

nate descent algorithm. Similarly, we can use the algorithm proposed by Simon

et al. (2011) to solve the regularized Cox proportional hazard model using the
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screening-based penalty Pλ1,λ2
(β).

4. Theoretical Properties

In this section, we study the theoretical properties of the proposed pair-

wise correlation screening (PCS) method. More specifically, we investigate the

conditions under which PCS achieves variable selection consistency.

Note that we implemented the marginal screening using SIS on the covariates

set. Fan and Lv (2008) demonstrated that, under certain regularity conditions,

SIS exhibits screening consistency; that is, the resulting subset of covariates

includes all important variables. Owing to space constraints, we present the main

result only. The regularity conditions (A1)–(A4) are provided in the Appendix.

Proposition 2 (Fan and Lv (2008)). Under (A1)–(A4), if 2κ+τ < 1, then there

is some θ < 1− 2κ− τ such that, when γ ∼ cn−θ with c > 0, we have, for some

C > 0,

P (M∗ ⊂Mγ) = 1−O
[
exp

{
−C1−2κ

log(n)

}]
, (4.1)

where Mγ is the subset of covariates obtained from the SIS.

The above proposition guarantees that all important variables survive the

marginal screening with high probability. In order to achieve selection consis-

tency, we also need to ensure that only important variables can pass the pairwise

screening. In the following theorem, we present the technical conditions required

such that the event C ∩M ⊂M∗ occurs with high probability.

Theorem 3. Suppose the following conditions hold:

(B1) n/p2 → 0.

(B2) There exists η > 0, such that either one of the following two conditions

holds:

(a) limn→∞ log p/n → η0,maxi∈M∗,j∈M\M∗ |Corr(Xi, Xj)| < min{η, 1 −
e−4η0}

(b) limn→∞ log p/n→ 0,maxi∈M∗,j∈M\M∗ |Corr(Xi, Xj)| < η.

Here, Corr(Xi, Xj) denotes the population correlation between covariates Xi and

Xj. Then, under conditions (B1) and (B2)(a) or conditions (B1) and (B2)(b),

we have that as n→∞,

P (C ∩M ⊂M∗)→ 1. (4.2)
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Given Proposition 2 and Theorem 3, to demonstrate the selection consis-

tency of PCS, we need only show that the l1-penalty in (3.4) can identify the

important variables in Cc ∩M exactly. This relates to the selection consistency

of the LASSO, which has been studied extensively. In particular, Zhao and Yu

(2006) have shown that the Irrepresentable Condition (specified later) is almost

necessary and sufficient for the LASSO to select all important variables.

We first introduce some necessary notation. Let C = (1/n)XTX. With-

out loss of generality, assume that β = (β1, β2, . . . , βp)
T , where βj 6= 0 for

j = 1, . . . , s, and βj = 0 otherwise. By Theorem 3, we further assume that

C ∩ M = {1, . . . , s1}, where 1 ≤ s1 ≤ s. Then, the design matrix X can

be expressed as X = (X1
(1), X

2
(1), X(2)), where X1

(1) corresponds to the first s1
columns, X2

(1) corresponds to the (s1 + 1)th to the sth columns and X(2) corre-

sponds to the last p− s columns of X. Similarly, we write β
(1)
1 = (β1, . . . , βs1)

T ,

β
(1)
2 = (βs1+1, . . . , βs)

T , and β(2) = (βs+1, . . . , βp)
T .

Set C
(11)
11 = (1/n)X1

(1)
T
X1

(1), C
(12)
11 = (1/n)X1

(1)
T
X2

(1), C
(21)
11 = (1/n)X2

(1)
T
X1

(1),

C
(22)
11 = (1/n)X2

(1)
T
X2

(1), C
(1)
21 = (1/n)XT

(2)X
1
(1) , C

(2)
21 = (1/n)XT

(2)X
2
(1), C22 =

(1/n)XT
(2)X(2), C

(1)
12 = (1/n)X1

(1)
T
X(2), and C

(2)
12 = (1/n)X2

(1)
T
X(2). Then, C

can be expressed in blockwise form, as follows:C
(11)
11 C

(12)
11 C

(1)
12

C
(21)
11 C

(22)
11 C

(2)
12

C
(1)
21 C

(2)
21 C22

 .

We impose the following assumption, which is analogous to the Irrepre-

sentable Condition introduced by Zhao and Yu (2006). Specifically, we assume

that there exists a constant δ > 0, such that

‖C(2)
21 (C

(22)
11 )−1sign(β

(1)
2 )‖max ≤ 1− δ, (4.3)

where ‖ · ‖max is the max norm.

In fact, we can show that this condition is implied by the Irrepresentable

Condition on the full covariates set M, under mild assumptions. We illustrate

this result in the following theorem.

Theorem 4. Assume there exists λ0 > 0, such that λmin(C
(11)
11 ) ≥ λ0, λmin(C

(22)
11 )

≥ λ0, and that conditions (B1) and (B2)(b) hold. Suppose the Irrepresentable

Condition holds; that is, ∃ξ > 0, s.t.
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‖C21C
−1
11 sign(β1)‖max ≤ 1− ξ, (4.4)

where C11 =

(
C

(11)
11 C

(12)
11

C
(21)
11 C

(22)
11

)
, C21 =

(
C

(1)
21 C

(2)
21

)
, β1 = (β1, . . . , βs)

T , and ξ is a

positive constant. Then, with probability tending to one, condition (4.3) holds.

The assumptions λmin(C
(11)
11 ) ≥ λ0 and λmin(C

(22)
11 ) ≥ λ0 in Theorem 4

require that C
(11)
11 and C

(22)
11 have eigenvalues bounded below. Given the Irrepre-

sentable Condition in (4.4), we need additional constraints on the random noise

εi and the coefficients of the important variables β1, . . . , βs.

(C1) εi are i.i.d. random variables with a finite 2k moment E(εi)
2k <∞, for an

integer k > 0.

(C2) There exists 0 < α ≤ 1 and d0 > 0, such that n(1−α)/2 minj=1,...,s |βj | ≥ d0.

Thus far, we have discussed the theoretical assumptions required to ensure

the selection consistency of the proposed PCS method. We conclude the consis-

tency result in the following theorem.

Theorem 5. Suppose conditions (A1)–(A4), (C1)–(C2), and inequality (4.4)

hold, and that the assumptions of Theorem 4 are satisfied. Then, for any λ1 such

that λ1/
√
n = o(nα/2) and (1/p)(λ1/

√
n)→∞, we have

P
(
{j : β̂j 6= 0} =M∗

)
→ 1 as n→∞, (4.5)

where β̂ = (β̂1, . . . , β̂p)
T is the solution to (3.4).

The proof follows immediately from Proposition 2 and Theorems 3 and 4,

as well as from the selection consistency of the LASSO. Thus, under certain

conditions, our proposed method is consistent in terms of variable selection. In

Section 5, we use numerical examples to show that our proposed method performs

well in practice.

5. Numerical Studies

In Section 3, we established a new regularized variable selection approach for

high-dimensional linear models. In this section, we demonstrate the performance

of our proposed method using both simulations and real-data examples.
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5.1. Simulation study

In this section, we use several simulations to show that our method with PCS

or pairwise rank-based correlation screening (PRCS) outperforms some existing

variable selection procedures. Specifically, PCS denotes our proposed method

using the limiting distribution in Theorem 1, and PRCS uses the asymptotic

result in Proposition 1.

For the comparison, we consider the LASSO, elastic net (Enet), SIS-LASSO,

SIS-elastic net (SIS-Enet), and SIS-PACS methods. The SIS-PACS applies the

PACS method proposed by Sharma, Bondell and Zhang (2013) after implement-

ing the SIS procedure. For the SIS-type methods, we first implement SIS to

identify those covariates with the largest [n\ log n] absolute sample correlations

with the response. Then, we perform the LASSO, Enet, or PACS on these vari-

ables. We evaluate the variable selection accuracy using false negatives (FN) and

false positives (FP). FN is defined as FN =
∑p

j=1 I(β̂j = 0)× I(βj 6= 0), where

I(·) denotes the indicator function, and FP is defined as FP =
∑p

j=1 I(β̂j 6=
0) × I(βj = 0). We use the following quantities to evaluate the prediction accu-

racy:

• ‖β̂−β0‖2: the l2-distance between the estimated coefficient vector and the

true coefficients β0;

• Out-of-sample mean squared errors (MSE) on the independent test data;

We generate the simulated data from Model (2.1) and conduct 100 replica-

tions. Each simulated data set includes a training set of size 100, an independent

validation set of size 100, and an independent test set of size 400. Here, we fix the

sample size at 100 throughout the simulation study. In the next subsection, we

also vary the sample size in our sensitivity study. We only fit models on the train-

ing data, and we use the validation data to select the tuning parameters. Given

the fitted model, we can calculate the FN, FP, and estimation error ‖β̂ − β0‖2,
and make predictions and calculate the out-of-sample MSEs using the test data.

We simulate the covariates from the multivariate Gaussian distribution N (0,Σ),

where Σ = (σij)p×p is the correlation matrix.

Details of the simulated examples are as follows:

Example 1. We consider p = 1,000 or 5,000, σ = 2, and β = (2, 2, . . . , 2, 0, . . . ,

0)T , where the first 10 coefficients are nonzero and equal to two. We set σij = 0.8

for 1 ≤ i 6= j ≤ 5, 6 ≤ i 6= j ≤ 10 and set it to zero for all the other i 6= j. We
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Table 1. Results for Example 1. For each method, we report the average MSE, l2-
distance, FN, and FP over 100 replications (with standard errors given in parentheses).

Method MSE ‖β̂ − β0‖2 FN FP

p = 1,000, σ = 2

Elnet 5.94 (0.07) 1.40 (0.03) 0.00 (0.00) 1.64 (0.24)

SIS-Elnet 5.47 (0.06) 1.30 (0.03) 0.00 (0.00) 1.15 (0.12)

LASSO 5.95 (0.07) 1.50 (0.03) 0.00 (0.00) 1.28 (0.18)

SIS-LASSO 5.47 (0.06) 1.42 (0.03) 0.00 (0.00) 0.85 (0.10)

SIS-Ridge 86.00 (0.76) 4.50 (0.01) 0.00 (0.00) 12.00 (0.00)

SIS-PACS 4.69 (0.07) 0.48 (0.02) 0.00 (0.00) 0.01 (0.01)

PCS 4.74 (0.05) 0.76 (0.02) 0.00 (0.00) 0.03 (0.02)

PRCS 4.91 (0.05) 0.93 (0.02) 0.00 (0.00) 2.55 (0.15)

p = 5,000, σ = 2

Elnet 6.42 (0.09) 1.57 (0.03) 0.00 (0.00) 2.45 (0.26)

SIS-Elnet 5.64 (0.06) 1.41 (0.03) 0.00 (0.00) 1.28 (0.12)

LASSO 6.41 (0.08) 1.64 (0.04) 0.00 (0.00) 2.06 (0.21)

SIS-LASSO 5.65 (0.06) 1.52 (0.03) 0.00 (0.00) 1.03 (0.10)

SIS-Ridge 88.74 (0.75) 4.59 (0.01) 0.00 (0.00) 12.00 (0.00)

SIS-PACS 4.97 (0.08) 0.72 (0.02) 0.00 (0.00) 1.78 (0.43)

PCS 4.77 (0.05) 0.81 (0.03) 0.00 (0.00) 0.02 (0.02)

PRCS 4.85 (0.06) 0.89 (0.03) 0.00 (0.00) 1.21 (0.11)

also consider σ = 6; see the Supplementary Material. In other words, there are

two groups in the covariates, where each group has five important variables.

Example 2. We consider p = 1,000 or 5,000, σ = 2, and β0 = (3,−1.5, 2, 0, . . . ,

0, . . . , 0)T , where the first three coefficients are nonzero. We also consider σ =

6; see Supplementary Material. We generated Gaussian covariates with σij =

0.5|i−j|, for 1 ≤ i 6= j ≤ 1,000.

Example 3. The coefficients have the same setup as those in Example 1. How-

ever, we set σij = 0.8 for 1 ≤ i 6= j ≤ 5, and to zero for all the other i 6= j.

Therefore, only some of the important variables are highly correlated. We con-

sider p = 5,000 and σ = 6 in this example.

Example 4. Here, we examine the performance of all methods under the logistic

regression setting. We simulate the binary response Y from the binomial distri-

bution Binom(1, exp{XTβ + σ}/(1 + exp{XTβ + σ})), where X and β follow

the same setups as those in Example 1. We consider p = 5,000 and σ = 6 in

this example. Instead of comparing MSEs, we calculate the classification errors
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Table 2. Results for Example 2. The format of this table is the same as Table 1.

Method MSE ‖β̂ − β0‖2 FN FP

p = 1,000, σ = 2

Enet 6.75 (0.08) 2.45 (0.02) 1.00 (0.01) 0.98 (0.25)

SIS-Enet 6.47 (0.10) 2.30 (0.03) 0.76 (0.05) 3.16 (0.41)

LASSO 6.75 (0.08) 2.45 (0.02) 1.00 (0.01) 0.98 (0.25)

SIS-LASSO 6.47 (0.10) 2.30 (0.03) 0.76 (0.05) 3.16 (0.41)

SIS-Ridge 14.14 (0.10) 3.85 (0.00) 0.27 (0.04) 19.27 (0.04)

SIS-PACS 6.53 (0.14) 2.43 (0.04) 1.06 (0.05) 3.39 (0.73)

PCS 5.24 (0.12) 1.41 (0.08) 0.34 (0.05) 1.63 (0.13)

PRCS 5.72 (0.13) 1.75 (0.08) 0.43 (0.05) 1.34 (0.24)

p = 5,000, σ = 2

Elnet 7.16 (0.08) 2.55 (0.02) 1.02 (0.01) 0.40 (0.09)

SIS-Elnet 7.02 (0.09) 2.49 (0.03) 0.94 (0.03) 1.31 (0.34)

LASSO 7.16 (0.08) 2.55 (0.02) 1.02 (0.01) 0.36 (0.08)

SIS-LASSO 7.03 (0.09) 2.49 (0.03) 0.94 (0.03) 1.31 (0.34)

SIS-Ridge 14.40 (0.11) 3.87 (0.00) 0.59 (0.05) 19.59 (0.05)

SIS-PACS 7.28 (0.16) 2.83 (0.04) 1.26 (0.07) 2.41 (0.95)

PCS 5.96 (0.14) 1.83 (0.09) 0.63 (0.06) 0.74 (0.08)

PRCS 6.48 (0.13) 2.14 (0.07) 0.68 (0.05) 0.73 (0.24)

Table 3. Results for Example 3. The format of this table is the same as Table 1.

Method MSE ‖β̂ − β0‖2 FN FP

Enet 69.71 (0.88) 5.13 (0.03) 4.99 (0.13) 1.57 (0.37)

SIS-Enet 72.54 (0.88) 5.25 (0.03) 5.65 (0.10) 0.23 (0.12)

LASSO 72.78 (0.87) 5.41 (0.03) 6.06 (0.10) 0.09 (0.04)

SIS-LASSO 70.12 (0.86) 5.35 (0.04) 5.69 (0.12) 0.94 (0.19)

SIS-Ridge 109.66 (0.87) 5.74 (0.01) 4.46 (0.06) 16.46 (0.06)

SIS-PACS 71.27 (0.89) 5.58 (0.02) 5.06 (0.02) 3.45 (0.07)

PCS 58.87 (0.50) 4.80 (0.04) 4.95 (0.03) 0.06 (0.06)

PRCS 59.76 (0.56) 4.83 (0.04) 4.97 (0.02) 0.00 (0.00)

on the test data. We do not include SIS-PACS in this example because the R

program does not support GLMs.

Example 5. In this example, we generate the covariates from a multivariate

t-distribution, where Xj are t-distributed with degrees of freedom five. The

covariance structure of the covariates and the coefficients are set up as in Example

1. We consider p = 5,000 and σ = 6 in this example.
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Table 4. Results for Example 4. The format of this table is the same as Table 1.

Method Classification Error ‖β̂ − β0‖2 FN FP

Enet 0.129 (0.003) 5.79 (0.01) 2.16 (0.17) 12.77 (1.54)

SIS-Enet 0.126 (0.003) 5.69 (0.03) 1.37 (0.15) 7.48 (0.39)

LASSO 0.136 (0.003) 5.83 (0.01) 4.19 (0.13) 4.25 (0.49)

SIS-LASSO 0.130 (0.003) 5.75 (0.02) 3.94 (0.12) 3.50 (0.32)

SIS-Ridge 0.311 (0.003) 6.28 (0.01) 0.11 (0.05) 12.11 (0.05)

PCS 0.098 (0.004) 5.39 (0.05) 1.73 (0.14) 2.92 (0.31)

PRCS 0.099 (0.004) 5.34 (0.06) 1.71 (0.13) 3.26 (0.32)

Table 5. Results for Example 5. The format of this table is the same as Table 1.

Method MSE ‖β̂ − β0‖2 FN FP

Enet 102.47 (1.84) 3.90 (0.08) 1.51 (0.12) 4.88 (0.86)

SIS-Enet 96.60 (2.74) 3.49 (0.09) 1.02 (0.12) 4.20 (0.37)

LASSO 103.11 (1.89) 4.42 (0.08) 2.30 (0.13) 3.74 (0.71)

SIS-LASSO 96.97 (2.78) 4.27 (0.08) 2.05 (0.14) 1.87 (0.20)

SIS-Ridge 226.52 (3.78) 4.95 (0.03) 0.26 (0.08) 12.26 (0.08)

SIS-PACS 89.82 (2.70) 3.54 (0.15) 0.26 (0.08) 7.32 (0.45)

PCS 79.79 (3.16) 2.42 (0.14) 0.42 (0.10) 1.29 (0.33)

PRCS 74.60 (1.24) 2.15 (0.12) 0.31 (0.08) 0.06 (0.03)

The results for Example 1 are shown in Table 1. We see that when there

are groups in the covariates, the performance improvement of our approach is

significant compared with that of other penalized methods. Although the elastic

net-based procedures perform better than LASSO-type approaches do in terms

of FN, as illustrated by Zou and Hastie (2005), they still miss approximately

one important covariate, on average. In contrast, the model selection results of

our method are much closer to the correct model for this example. In addition,

although SIS-PACS shows competitive performance when σ is small, it tends to

include more unimportant variables in the model when the noise level increases,

and therefore may not work well.

Table 2 displays the performance comparisons for Example 2. Compared

with Example 1, this setting is a more difficult one for our method, because

correlations exist between all pairs of covariates. Nevertheless, PCS and PRCS

perform better than, or as well as, other methods do in terms of the estimation

error and prediction accuracy. Moreover, with the exception of SIS-Ridge, our

proposed methods are able to identify more important variables than the other



408 GONG, ZHANG AND LIU

methods do in this example when the noise level is low.

Table 3 shows the results for Example 3, where only some of the important

variables are correlated. This example is more difficult than the scenario in Ex-

ample 1, owing to the correlation structure of the covariates. For example, there

are significantly more FNs in all the procedures. Nevertheless, our method still

outperforms all the others in terms of prediction and variable selection accuracy.

Example 4 considers a logistic regression setting; see Table 4. The results

show that the proposed method performs competitively, even as the correlations

between the covariates vary.

Table 5 displays the results for all methods in a nonGaussian covariate set-

ting. Similarly to Example 1, our proposed PCS and PRCS significantly out-

perform their competitors. Moreover, owing to the nonGaussian setups, the

nonparametric method PRCS outperforms PCS.

In summary, our method is able to take advantage of the correlation struc-

ture among the predictors. Compared with other penalized variable selection

procedures, our method performs well, especially when the covariates are highly

correlated.

5.2. Sensitivity study

In this subsection, we investigate whether the performance of our method

depends on the sample size, dimensionality, and noise level. In particular, we

consider n = 100 or 500, p = 500, 1,000, 2,000, or 5,000, and σ = 2 or 6 in

Example 1 in Section 5.1. We illustrate the MSE, ‖β̂ − β0‖2, FN, and FP

against different values of p for each configuration of sample size and noise level

in Figure 1.

The plots show that the performance of PCS does not change much as the

dimensionality p increases from 500 to 5,000, especially in terms of the MSE and

the estimation error of β0. Moreover, the performance is better when the sample

size and signal-to-noise ratio (SNR) become larger, which is expected. In general,

our proposed PCS method is robust to the sample size, dimensionality, and SNR.

5.3. Soil data

We first demonstrate the performance of our method in real applications

using a small data set. This data set contains 15 covariates of soil characteristics

for 20 plots within the same area in the Appalachian Mountains. The outcome

variable is the forest diversity for each plot. More descriptions of the data can

be found in Bondell and Reich (2008). To better demonstrate the correlation
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Figure 1. Performance of PCS for different dimensionality p.

structure of covariates, we obtain the absolute pairwise correlation matrix, and

show the heatmap in Figure 2. One can see that some predictors are highly

correlated. In particular, the magnitudes of the pairwise correlations between the

sum of cations (SumCation), calcium, magnesium, the base saturation (BaseSat),

and the cation exchange capacity (CEC) are as large as 0.9. This is because

SumCation, BaseSat, and CEC are characteristics of cations, whereas calcium

and magnesium are examples of cations (Bondell and Reich (2008)).

We conduct a total of 100 replications. In each replication, 15 samples are

chosen randomly as the training set, and the remainder form the test set. As

in the simulation experiments, we applied the LASSO, Enet, Ridge, and our



410 GONG, ZHANG AND LIU

Table 6. Average MSE and model size (with standard errors in parentheses) for Enet,
LASSO, Ridge, and the proposed method for soil data.

Method MSE Model Size

Enet 1.088 (0.047) 3.70 (0.38)

LASSO 1.068 (0.045) 2.08 (0.21)

Ridge 1.113 (0.044) 15.00 (0.00)

PCS 0.996 (0.062) 5.82 (0.37)

PRCS 1.028 (0.063) 5.96 (0.38)
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Figure 2. Heatmap for the absolute pairwise correlation matrix of the covariates for soil
data.

proposed PCS and PRCS to the data set. For each method, five-fold cross-

validation is used to choose the tuning parameters, because the sample size is

very small. We report the average prediction errors on the test data and the

model size in Table 6. The results show that PCS and PRCS outperform all

other procedures in terms of prediction accuracy. Moreover, PCS and PRCS

tend to include more covariates in the model than the LASSO and Enet do.

To further investigate the performance in terms of variable selection, we sum-
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Table 7. Frequency of each variable being selected for PCS, Enet, and the LASSO out
of 100 replications.

PCS Enet LASSO

Variables

BaseSat 16 9 0

SumCaton 32 23 0

CECbuffer 86 62 48

Ca 37 32 11

Mg 6 10 0

K 49 27 12

Na 22 10 6

P 32 15 5

Cu 47 17 9

Zn 29 17 4

Mn 69 43 32

HumicMatt 89 70 69

Density 25 15 4

pH 27 11 4

ExchAc 16 9 4

marize the frequency with which each covariate is selected for the LASSO, Enet,

and the proposed method; see Table 7. The variables that are most frequently

selected by the LASSO and Enet, for instance, CEC, Mn, and HumicMatt, also

tend to be included by our method. Moreover, our method can identify covariates

that are strongly correlated. For example, potassium, sodium, and copper are

variables related to cations, and all have a large sample correlation with CEC,

which is a potentially important variable. These variables are frequently selected

by our method, but not by the Enet or LASSO.

5.4. Riboflavin data

In this section, we consider a real data set on riboflavin production in Bacillus

subtilis. The data contain n = 71 samples, where the response variable is the

logarithm of the riboflavin production rate, and the covariates are the logarithms

of the expression levels of p = 4,081 genes. More detail about the data set can be

found in Bühlmann, Kalisch and Meier (2014). Before the analysis, all covariates

are standardized to have zero means and unit standard deviations.

For the comparison, we apply the LASSO, Enet, SIS-LASSO, SIS-Enet, SIS-

ridge, and our method to the data set. We conduct 100 replications, and ran-
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Table 8. Average MSE and model size (with standard errors in parentheses) for SIS-Enet,
SIS-LASSO, SIS-Ridge, PCS, and PRCS for riboflavin data.

Method MSE Model Size

SIS-Enet 0.358 (0.015) 15.66 (0.46)

SIS-Lasso 0.356 (0.016) 9.12 (0.18)

SIS-Ridge 0.632 (0.024) 26.00 (0.00)

PCS 0.327 (0.014) 15.04 (0.39)

PRCS 0.361 (0.018) 12.77 (0.37)

domly split the data set into a training set of size 50, with the remainder as the

test data. For all methods, we implement 10-fold cross-validation on the training

data to select the penalty parameters.

The results are reported in Table 8, and show that PCS exhibits significant

improvement in terms of the out-of-sample MSE over those of its competitors.

On the other hand, PRCS does not perform well compared with PCS. A possible

reason is that, in this data set, all variables are log transformations and are ap-

proximated well by a Gaussian distribution. Moreover, owing to the assumption

of Proposition 1, where log p = o(n1/3), PRCS is more sensitive to the dimen-

sionality and the sample size of the data set. As a result, PRCS may not achieve

good performance when the dimensionality is too high.

We also examine the gene selection results. Eight genes are selected at

least 50 times in the 100 replications using our method, that is, XTRA at,

YCKE at, YDAR at, YOAB at, YWFO at, YXLC at, YXLD at, and YXLE at.

Apart from YXLC at, all the other genes appear among the most frequently

selected genes by SIS-Enet and SIS-LASSO, with a frequency no less than 50.

For YXLC at, we find that the magnitude of the pairwise sample correlations

between this gene and two other genes, YXLD at and YXLE at, are greater

than 0.95. This indicates that our method is capable of identifying potentially

important variables that are highly correlated with other variables.

6. Discussion

We have proposed a novel variable selection method that regularizes co-

variates selectively based on the results from two screening procedures: pairwise

screening and marginal screening. The screening process for covariate pairs takes

advantage of the distribution information about the maximal absolute pairwise

sample correlation between covariates, and is applicable to large-scale problems.
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Simulation experiments and real-data studies demonstrate that the proposed

method performs well when important variables are highly correlated, compared

with existing approaches. Future research can consider other extensions to our

proposed method, such as the Cox model for survival data.

Supplementary Material

The online Supplementary Material contains proofs of Corollary 1 and The-

orem 2, and additional numerical studies.
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Appendix

A. Technical Proofs

We present some regularity conditions and key proofs in the appendix.

Regularity Conditions for Sure Independence Screening Define z =

Σ−1/2x, Z = XΣ−1/2. Let M∗ be the index set of covariates with nonzero

coefficient. The following assumptions are imposed:

(A1) p > n and log(p) = O(nε) for some ε ∈ (0, 1 − 2κ), where κ is given by

condition (A3).

(A2) z has a spherically symmetric distribution, and ∃c0, c1 > 1, C1 > 0 such

that

P

(
λmax(p̃Z̃Z̃T ) > c1 or λmin(p̃Z̃Z̃T ) <

1

c1

)
≤ exp(−C1n)

holds for any n× p̃ submatrix Z̃ of Z with c0n < p̃ ≤ p.

(A3) V ar(Y ) = O(1), and for some κ ≥ 0 and c2, c3 > 0,

min
j∈M∗

|βj | ≥
c2
nκ
, min

j∈M∗
Cov(β−1j Y,Xj) ≥ c3

(A4) There are some τ ≥ 0 and c4 > 0 such that λmax(Σ) ≤ c4nτ .
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Proof of Theorem 1. To prove Theorem 1, we need to use the following lemma,

which is from Arratia, Goldstein and Gordon (1989).

Lemma 1. Let I be an index set and {Bα, α ∈ I} be a set of subsets of I, that

is, Bα ⊂ I for each α ∈ I. Let also {ηα, α ∈ I} be random variables. For a given

t ∈ R, set λ =
∑

α∈I P (ηα > t). Then∣∣∣∣∣P
(

max
α∈I

ηα < t

)
− e−λ

∣∣∣∣∣ ≤ (1 ∧ λ−1)(b1 + b2 + b3)

where b1 =
∑

α∈I
∑

β∈Bα P (ηα > t) P (ηβ > t), b2 =
∑

α∈I
∑

α 6=β∈Bα P(ηα > t,

ηβ > t) and b3 =
∑

α∈I E|P (ηα > t|σ(ηβ, β /∈ Bα)) − P (ηα > t) |, and σ(ηβ, β /∈
Bα) is the σ-algebra generated by {ηβ, β /∈ Bα}. In particular, if ηα is independent

of {ηβ, β /∈ Bα} for each α, then b3=0.

In our proof, we take I = {(i, j); 1 ≤ i ≤ j ≤ p}. Let α = (i, j) ∈ I, we

define Bα = {(k, l) ∈ I; one of k and l = i or j, but (k, l) 6= α}, and Aα = Aij =

{|ρi,j |2 ≥ t}, where ρi,j = |Ĉorr(Xi, Xj)|. Let Wpn = max1≤i<j≤p |ρi,j |, by the

Chen-Stein method (in particular, Lemma 6.2 in Cai and Jiang (2011)),

|P (W 2
pn ≤ t)− e−λp,n | ≤ b1 + b2, (A.1)

where λp,n =
∑

α∈I P (Aα) = ((p(p−1))/2)P (A12), and b1 =
∑

α∈I
∑

β∈Bα P (Aα)

P (Aβ), b2 =
∑

α∈I
∑

α 6=β∈Bα P (AαAβ).

Moreover, we have b1 ≤ 2p3P (A12)
2 and b2 ≤ 2p3P (A12A13).

Since X1, . . . , Xp are independent, A12 and A13 are also independent with

equal probability. Therefore we have b1 ∨ b2 ≤ 2p3P (A12)
2.

On the other hand, |ρi,j |2 ∼ B(1/2, (n − 2)/2). Take t∗ = ap,n + bp,nx (x ≤
(n − 2)/2), where ap,n = 1 − p−4/(n−2)cp,n, bp,n = 2/(n − 2)p−4/(n−2)cp,n, and

cp,n = ((n− 2)/2B(1/2, (n− 2)/2)
√

1− p−4/(n−2))2/(n−2). Then

P (A∗12) =
2(1− t∗)(n−2)/2

B(1/2, (n− 2)/2)(n− 2)
√
t∗

(
1 +O

(
1

log(p)

))
.

= p−2
(

1− 2

n− 2
x

)(n−2)/2
√

1− p−4/(n−2)
ap,n

(
1 +

(
bp,n
ap,n

x

))−1/2
(1 +O(log−1(p))

)
.

= p−2
(

1− 2

n− 2
x

)(n−2)/2(
1 +O

(
log log(p)

log(p)

))
(1 +O(log−1(p))

)2
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= p−2
(

1− 2

n− 2
x

)(n−2)/2(
1 +O

(
log log(p)

log(p)

))
. (A.2)

Therefore, uniformly for any n ≥ 3, b1 ∨ b2 = O(1/p), and limp→∞ λp,n =

(1/2)(1− (2/(n− 2))x)(n−2)/2

Then it follows from (A.1) that uniformly for any n ≥ 3 and x ≤ (n− 2)/2,

lim
p→∞

∣∣∣∣P (W 2
pn ≤ t∗)− exp

{
− 1

2

(
1− 2

n− 2
x

)(n−2)/2}∣∣∣∣ = 0. (A.3)

When x ≥ (n−2)/2, t∗ = 1+((2/(n−2))x−1)p−4/(n−2)cp,n ≥ 1. Therefore,

uniformly for any n ≥ 3,

lim
p→∞

P (Wpn ≤ t∗) = 1. (A.4)

Combining (A.3) and (A.4) we have uniformly for any n ≥ 3,

lim
p→∞

∣∣∣∣P (Wpn ≤ t∗)

− I
(
x ≤ n− 2

2

)
exp

{
− 1

2

(
1− 2

n− 2
x

)(n−2)/2}
− I
(
x >

n− 2

2

)∣∣∣∣ = 0.

(A.5)

Or equivalently,

lim
p→∞

∣∣∣∣P(W 2
pn − ap,n
bp,n

≤ x
)

− I
(
x ≤ n− 2

2

)
exp

{
− 1

2

(
1− 2

n− 2
x

)(n−2)/2}
− I
(
x >

n− 2

2

)∣∣∣∣ = 0.

(A.6)

Proof of Theorem 3. Let event A = {R2
ij ≤ 1 − p−(4+δ)/(n−3) for all i, j ∈

M\M∗}, event B = {ρ̂ij ≤ f(n, p, α) for i ∈ M∗, j ∈ M\M∗} where ρ̂ij =

|Ĉorr(Xi, Xj)|, f(n, p, α) is the screening threshold for pairwise correlation screen-

ing. Then A implies that no pairs of unimportant variables passed the R squares

screening. B implies that important and unimportant variables can not be too

highly correlated.

By the definition of C, we have

P (C ∩M ⊂M∗) ≥ P (A ∩B) ≥ P (A) + P (B)− 1. (A.7)
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For the event A, we have

P (A) = 1− P

( ⋃
i 6=j∈M\M∗

R2
ij ≥ 1− p−(4+δ)/(n−3)

)

≥ 1−
∑

i 6=j∈M\M∗

P (R2
ij ≥ 1− p−(4+δ)/(n−3))

= 1− (n/ log(n))2P

(
Beta

(
1,
n− 3

2

)
≥ 1− p−(4+δ)/(n−3)

)
= 1− (n/ log(n))2p−(4+δ)/2.

Under the assumption (B1), (n/ log(n))2p−(4+δ)/2 → 0 as n→∞. Therefore

we have P (A)→ 1.

Next we show that P (B)→ 1 as n→∞. We have

P (B) = 1− p

( ⋃
i∈M∗,j∈M\M∗

ρ̂ij ≥ f(n, p, α)

)

≥ 1−
∑

i∈M∗,j∈M\M∗

P (ρ̂ij ≥ f(n, p, α))

= 1− (n/ log(n))2P (ρ̂ij ≥ max{ap,n + bp,nFn(α), η})
= 1− (n/ log(n))2P (ρ̂ij ≥ δp,n) ,

where Fn(α) is the 100(1 − α) quantile of the limiting cumulative distribution

function of the maximal pairwise correlation statistic, and we denote max{ap,n+

bp,nFn(α), η} by δp,n.

Note that

ap,n + bp,nFn(α) = 1− p−4/(n−2)cp,n
(

1− 2

n− 2
Fn(α)

)
= 1− p−4/(n−2)cp,n{−2 log(1− α)}2/(n−2)

= 1−
(
Cαp

−2n− 2

2
B

(
1

2
,
n− 2

2

)√
1− p−4/(n−2)

)2/(n−2)

= 1−O
(
C2
α(n− 2)(1− p−4/(n−2))

p4

)1/(n−2)
for large enough n

= 1−O
(
e− log p/n

)
for large enough n.

Let ρij be the population correlation coefficient between Xi and Xj . Write
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z(n) = (1/2) log((1 + ρ̂ij)/(1 − ρ̂ij)), ξ = (1/2) log((1 + ρij)/(1 − ρij)). It has

been shown that as n→∞, n1/2(z(n)− ξ)→ N (0, 1).

We have

P (ρ̂ij ≥ δp,n) = P

(
n1/2(z(n)− ξ) ≥ n1/2

(
1

2
log

1 + δp,n
1− δp,n

− ξ
))

= P

(
Z ≥ n1/2

(
1

2
log

1 + δp,n
1− δp,n

− ξ
)

+ on(1)

)
≤ e−Cp,nn√

2πnCp,n
,

(A.8)

where Cp,n = (1/2) log(1 + δp,n)/(1− δp,n)− ξ.
If log(p)/n→∞ as n→∞, then ap,n + bp,nFn(α)→ 1. Therefore δp,n → 1,

which yields Cp,n →∞. Then the tail probability in (A.8) goes to zero as n→∞.

It follows that P (B)→ 1 as n→∞.

If log(p)/n→ η0 as n→∞, then δp,n → max{1− e−4η0 , η}. Under assump-

tion (B2) that ρij < max{1 − e−4η0 , η}, limn→∞Cp,n = limn→∞(1/2) log((1 +

max{1− e−4η0 , η})/(1−max{1− e−4η0 , η}))− ξ > 0. Again the tail probability

in (A.8) goes to zero as n→∞. It follows that P (B)→ 1 as n→∞.

If log(p)/n → 0 as n → ∞, then ap,n + bp,nFn(α) → 0. Hence δp,n → η.

Under the assumption (B2), we have limn→∞Cp,n = log(1 + η)/(1− η)− ξ > 0.

Therefore P (B)→ 1 as n→∞.

Given P (A)→ 1 and P (B)→ 1, we have P (C ∩M ⊂M∗)→ 1 as n→∞.

Proof of Theorem 4. It follows from (4.4) directly that

‖(C(2)
21 −C

(1)
21 (C

(11)
11 )−1C

(12)
11 )

(
C

(22)
11 −C

(21)
11 (C

(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )‖max ≤ 1−ξ,

(A.9)

where ‖ · ‖max denotes the max norm of a matrix. Based the definition of C, we

have the following element wise inequalities ‖C(12)
11 ‖max ≤ cn,p,α, ‖C(21)

11 ‖max ≤
cn,p,α. Here cn,p,α is the pairwise correlation screening bound. Since C

(11)
11 is

positive definite, there exists an orthogonal matrixQ s.t. C
(11)
11 = QΛQT , where Λ

is a diagonal matrix consists of the eigenvalues of C
(11)
11 . By assumption, we have

λmin(C
(11)
11 ) ≥ λ0. Therefore ‖C(21)

11 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−10 c2n,p,αs

2
1. Under the

assumption that log(p)/n→ 0, cn,p,α = on(1). It follows that λ−10 c2n,p,αs
2
1 = on(1).

By assumption (B2), ‖C(1)
21 ‖max ≤ η. Thus ‖C(1)

21 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−10 η

cn,p,αs
2
1, then ‖C(1)

21 (C
(11)
11 )−1C

(12)
11 ‖max = op(1) as n→∞. Therefore

‖(C(2)
21 − C

(1)
21 (C

(11)
11 )−1C

(12)
11 )

(
C

(22)
11 − C

(21)
11 (C

(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )
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−C(2)
21 (C

(22)
11 )−1sign(β

(2)
1 )‖max

= ‖
(
C

(2)
21 (C

(22)
11 )−1C

(21)
11 (C

(11)
11 )−1C

(12)
11 − C

(1)
21 (C

(11)
11 )−1C

(12)
11

)(
C

(22)
11 − C

(21)
11 (C

(11)
11 )−1C

(12)
11

)−1
sign(β

(2)
1 )‖max.

Write A = C
(2)
21 (C

(22)
11 )−1C

(21)
11 (C

(11)
11 )−1C

(12)
11 , B = C

(1)
21 (C

(11)
11 )−1C

(12)
11 , D =

C
(21)
11 (C

(11)
11 )−1C

(12)
11 , and Y = sign(β

(2)
1 ). Then the above term becomes ‖(A −

B)(C
(22)
11 −D)−1Y ‖max. Moreover, we have

‖(A−B)(C
(22)
11 −D)−1Y ‖max ≤ (s− s1)‖A−B‖max‖(C(22)

11 −D)−1Y ‖max.

Since ‖A‖max ≤ λ−10 (s−s0)2‖C(2)
21 ‖max‖C(21)

11 (C
(11)
11 )−1C

(12)
11 ‖max ≤ λ−20 ηc2n,p,αs

2
1(s−

s1)
2, ‖B‖max ≤ λ−10 ηcn,p,αs

2
1, and

‖(C(22)
11 −D)−1Y ‖max ≤ (s−s1)‖(C(22)

11 −D)−1‖max ≤ (s−s1)(λ0−λ−10 c2n,p,αs
2
1)
−1.

Therefore we have

‖(A−B)(C
(22)
11 −D)−1Y ‖max ≤ (s− s0)2(λ−20 ηc2n,p,αs

2
1(s− s1)2 + λ−10 ηcn,p,αs

2
1)

(λ0 − λ−10 c2n,p,αs
2
1)
−1

= op(1),

as n → ∞. It follows that C
(2)
21 (C

(22)
11 )−1sign(β

(2)
1 ) < 1 − ξ/2 with probability

tending to 1 as n→∞ which concludes the proof if we take δ = ξ/2.
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