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Abstract: In inverse regression-based methodologies for sufficient dimension reduc-

tion, ellipticity (or slightly more generally, the linearity condition) of the predictor

vector is a widely used condition, though there is concern over its restrictiveness. In

this paper, Stein’s Lemma is generalized to the class of mixture multivariate skew-

elliptical distributions in different scenarios to identify and estimate the central

subspace. Within this class, necessary and sufficient conditions are explored for the

simple covariance between the response (or its function) and the predictor vector to

identify the central subspace. Further, we provides a way to do adjustments such

that the central subspace can still be identifiable when this simple covariance fails

to work. Simulations are used to assess the performance of the results and compare

with existing methods. A data example is analysed for illustration.
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1. Introduction

Consider the regression of a response Y on a vector of p predictors X =

(X1, . . . , Xp)
τ . Sufficient dimension reduction (SDR) identifies several linear

combinations of {X1, . . . , Xp} to model the regression of Y |X without losing

information. To be specific, for an p×K matrix B = (b1, · · · , bK), a conditional

independence holds:

Y⊥⊥X|BτX, (1.1)

where ⊥⊥ means “independent of”. The smallest column spaces SY |X spanned by

B is called the central subspace (CS, Cook (1998a)). When the conditional inde-

pendence is between Y and E(Y |X), BτX given, the subspace spanned by B is

called the central mean subspace (CMS, Cook and Li (2002)) which is a subspace

of CS. K is called the structural dimension of the central subspace (or the central

mean subspace). In SDR, several inverse regression-based methodologies are used

for identifying and estimating CMS and CS. First-order methods include least

squares (LS, Duan and Li (1991)) and sliced inverse regression (SIR, Li (1991)),

second-order methods cover principal Hessian directions (pHd, Li (1992)) and
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sliced average variance estimation (SAVE, Cook and Weisberg (1991)). A hy-

brid of first-order and second-order methods is directional regression (DR, Li and

Wang (2007)). Examples of recent improvements are discretization-expectation

estimation (DEE, Zhu, Zhu and Wang (2010)) and cumulative slicing estimation

(CSE, Zhu, Zhu and Feng (2010)).

Current methods require strong assumptions on the predictor vector X.

First-order methods such as SIR require that: the conditional mean E(X|BτX)

is linear in BτX, and second-order methods such as SAVE require linearity and

the conditional variance var(X|BτX) be a constant matrix. It is known that

the linearity condition is slightly weaker than the ellipticity of X, and that the

constant conditional variance assumption is close to the normality. As Cook and

Nachtsheim (1994) pointed out, when the distribution of X deviates substan-

tially from elliptical symmetry, present methods can produce misleading results.

To relax these conditions, Cook and Nachtsheim (1994) suggested a re-weighting

approach to achieve elliptically symmetric covariates through trimming off some

data. In the framework of SIR and SAVE, Li and Dong (2009) and Dong and Li

(2010) proposed the central solution space (CSS) method to relax the linearity

condition and/or constant conditional variance condition. They proved that CSS

is a subspace of CS, and is equal to CS in some cases where the linearity condition

(for SIR) and the constant conditional variance condition (for SAVE) are vio-

lated. For some skewed X, CSS can still be identified when SIR or SAVE is used.

Yet, it is still unclear what kinds of skew distributions satisfy the conditions for

CSS to be contained in CS, even be equal to CS, when the linearity condition

or/and the constant conditional variance condition is/are violated. Another rel-

evant reference is Cook and Li (2009). Feng, Wang and Zhu (2014) provided a

necessary and sufficient condition for the least squares formulation to identify

the single index, involving the inverse regression function. But, to the best of

our knowledge, there is no published answer this question.

To attack the problem, we revisit Stein’s Lemma. Stein’s Lemma and Hessian

matrix were applied in pHd for normal X (Li (1992)). Cook (1998b) extended its

use, and LS can also be regarded as an application of Stein’s Lemma. The key

feature is that Stein’s Lemma successfully links the covariance between Y and

X to CS. This makes estimating CS easy. Later, it was shown that the linearity

condition and the constant conditional variance condition can, respectively, make

LS and pHd feasible, see Yin and Cook (2002), and Zhu and Zhu (2009). In this

paper, we explore the use of Stein’s Lemma for multivariate skew-elliptical dis-

tributions and, more generally, mixture multivariate skew-elliptical distributions.

These classes include elliptical distributions and mixture elliptical distributions

as special cases. They are important in such fields as Bayesian statistics (Azzalini

(1985); O’Hagan and Leonhard (1976)), engineering, environmetrics, economics,
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and the biomedical sciences (Genton (2004)). The feasibility of SDR for these

distributions is of importance as breakthroughs could make the SDR theory more

widely applied. To this end, we investigate a generalized Stein’s Lemma. Within

these classes of distributions, we provide insights on how much the ellipticity

can be violated with the central subspace can still identified. A necessary and

sufficient condition is provided in Corollary 2.

We note that pHd (Li (1992)) can only identify CMS though it is based on

Stein’s Lemma. In the present paper, we see that for any single function m(Y ),

the generalized Stein’s Lemma can only identify one vector in CS. Without using

Hessian matrix, the Stein’s Lemma-based method can, at most identify one vector

in CMS. We suggest a matrix that integrates all matrices according to a class

of functions m(·) of Y , each of which can identify one vector. Such classes of

functions were discussed in Yin and Cook (2002), Wu and Li (2011). A very brief

description of the algorithm is in Section 3.3. There are several proposals that

use different families of functions m(·): LS uses the identity function, Zhu and

Zhu (2009) uses distribution function of Y , Zhu and Zeng (2006) and Zeng and

Zhu (2010) use the characteristic function, and Zhu, Zhu and Wang (2010) use

the indicator function. Yin and Li (2011) provide a summary.

This paper is organized as follows. Section 2 discusses mixture multivariate

skew-elliptical distribution and their special cases. Section 3 presents the general-

ized Stein’s Lemma for some classes of distributions for recovering CS. Section 4

uses stimulations to compare with existing methods. A data example is analysed

as illustration in Section 5. Some concluding remarks are in Section 6. Proofs of

theorems and propositions are in the Appendix.

2. Mixture Multivariate Skew-elliptical Distributions

A general class of multivariate skew-elliptical distributions can be written as

fX(x) = c · fp(x) · Fq(t(x)), (2.1)

where fp(x) is the pdf of a p-dimensional elliptical distribution, Fq(t(x)) is the

cumulative distribution function (cdf) of t(x), having a q-dimensional elliptical

distribution and a symmetric function of x, and c is a positive scalar guaranteeing

that fX(x) is a pdf (Branco and Dey (2001)).

Definition 1 (Multivariate elliptical distribution (ME)). A p−dimension ran-

dom vector X = (X1, . . . , Xp)
τ is said to have multivariate elliptical distribution,

X ∼ MEp(µ,Σ, g
(p)), if it is continuous with pdf

fX(x) = ψp(x;µ,Σ, g
(p)) = |Σ|−1/2g(p){Q(x)}, x ∈ Ω ⊆ Rp,

where Q(x) = (x − µ)τΣ−1(x − µ) and Ω is support set of fX(x). The density

generator function g(p)(u), u ≥ 0, satisfies
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∫ ∞

0
up/2−1g(p)(u)du =

Γ(p/2)

πp/2
.

Multivariate elliptical distributions include the multivariate normal, the mul-
tivariate t, and Pearson type II distributions as special cases.

Definition 2 (Mixture multivariate elliptical distribution (MME)). If X(j) =

(X
(j)
1 , . . . , X

(j)
p )τ is MEp(µj ,Σj , g

(p)
j ) with density function ψp(x

(j);µj ,Σj , g
(p)
j )

(j = 1, . . . ,m). X follows the mixture multivariate elliptical distribution if its
probability density function (pdf) is

fX(x) �
m∑
j=1

wjψp(x;µj ,Σj , g
(p)
j ) =

m∑
j=1

wj |Σj |−1/2g
(p)
j {Qj(x)}, x ∈ Ω ⊆ Rp,

where Qj(x) = (x−µj)
τΣ−1

j (x−µj), and weights wj ≥ 0 are such that Σm
j=1wj =

1. In particularly, if X(j) is Np(µj ,Σj) (j = 1, . . . ,m), then the pdf of a mixture
multivariate normal is

fX(x) =

m∑
j=1

wj |Σj |−1/2(2π)−p/2 exp{−1

2
Qj(x)}, x ∈ Rp.

Remark 1. For m ≥ 2, an MME distribution is not an ME distribution. For
example, it is easy to see that the pdf of a mixture multivariate normal is mul-
timodal, whereas the pdf of a multivariate normal is unimodal.

Definition 3 (Mixture multivariate skew-elliptical distribution (MMSE)). Sup-

pose X(j) = (X
(j)
1 , . . . , X

(j)
p )τ is MSEp,q(µj ,Σj , Cj , g

(p+q)
j , νj , Dj) (j = 1, . . . ,m)

with the density

f (j)
p,q (x

(j);MSE) = ψp(x
(j);µj ,Σj , g

(p)
j )

Ψq(C
τ
j x

(j) + νj ;Dj , g
(q)

Qj(x(j))
)

Ψq(νj ;Dj + Cτ
j Σ̄jCj , g

(q)
j )

,

x(j) ∈ Ωj ⊆ Rp,

where Qj(x
(j)) = (x(j) − µj)

τΣ−1
j (x(j) − µj) and ψp(x

(j);µj ,Σj , g
(p)
j ) = |Σj |−1/2

×g
(p)
j {Qj(x

(j))}, the correlation matrix Σ̄j = σ−1
j Σjσ

−1
j , σj is a diagonal ma-

trix formed by the standard deviations of Σj , and Ωj is the support set of

f
(j)
p,q (x(j);MSE). The function Ψq(z;D, g

(q)
Q(x)) denotes the q-dimensional cen-

tered elliptical cumulative distribution with q × q dispersion matrix D and den-
sity generator g(q), and g

(q)
Q(x) = g(p+q){z + Q(x)}/g(p){Q(x)}. A mixture MSE

(MMSE) vector X has the pdf:

fX(x) =
m∑
j=1

wj · f (j)
p,q (x;MSE), wj ≥ 0,

m∑
j=1

wj = 1.
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We list some special cases.

(1) When m = 1, and C = 0, X has a multivariate elliptical distribution

MEp(µ,Σ, g
(p)).

(2) When m = 1, MMSE reduces to a multivariate skew-elliptical distribution

(MSE), see Arellano-Valle and Genton (2010a). The mean vector and covari-

ance matrix of MSEp,q(µ,Σ, C, g
(p+q), ν,D) are usually not equal to µ and

Σ in the corresponding ME distribution, unless C = 0.

(3) When m = 1, a simple multivariate skew normal (MSN) distribution was

introduced by Azzalini and Dalla-Valle (1996), where X follows SNp(µ,Σ, C)

with the pdf

fX(x, SN) = 2ϕp(x;µ,Σ)Φ(C
τ (x− µ)), x ∈ Rp,

Φ(t) being the cdf of a standard normal. The vector C controls the shape

and the special case C = 0 corresponds to Np(µ,Σ).

(4) X(j) = (X
(j)
1 , . . . , X

(j)
p )τ is multivariate skew normal MSNp,q(µj ,Σj , Cj , νj ,

Dj) for j = 1, . . . ,m with the pdf

f j
p,q(x

(j);MSN) = ϕp(x
(j);µj ,Σj)

Φq(C
τ
j (x− µj) + νj ;Dj)

Φq(νj ;Dj + Cτ
j Σ̄

−1
j Cj)

, x(j) ∈ Rp,

where ϕp(x
(j);µj ,Σj) is the pdf of Np(µj ,Σj) and Φq(C

τ
j (x − µj) + νj ;Dj)

is the cdf value of the normal distribution Nq(C
τ
j (x− µj) + νj , Dj) at point

Cτ
j (x

(j) − µj) + νj . Then vector X is mixture multivariate skew normal

(MMSN) with the pdf

fX(x) =
m∑
j=1

wj · f j
p,q(x

(j);MSN), wj ≥ 0,
m∑
j=1

wj = 1.

There are other special case. See Arellano-Valle and Genton (2010a,b) for

recent developments in this area.

3. Generalized Stein’s Lemma

3.1. A brief review of Stein’s Lemma

We start with a brief description. SupposeX andU are jointly normally, h(·)
is a differentiable function satisfying E{|[H(X) − E(H(X))][U − E(U)]|} < ∞
and E(|∂H(X)/∂X|) < ∞. Then Stein’s Lemma has

Cov(H(X),U) = Cov(X,U)E
[∂H(X)

∂X

]
, (3.1)
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where the gradient operator ∂
∂X = ( ∂

∂X1
, . . . , ∂

∂Xp
)τ , X = (X1, . . . , Xp)

τ , and the

superscript “τ” is the transpose operator. When U = X, (3.1) reduces to

E{H(X)[X− E(X)]} = Cov(X)E
[∂H(X)

∂X

]
= Cov(X)E

[∂H(X)

∂X

]
, (3.2)

When we use a transformation m(·) of Y , and H(X) = E(m(Y )|X) = h(BτX),

E{m(Y )[X− E(X)]} = Cov(X)BE
[∂h(BτX)

∂BτX

]
. (3.3)

A similar relationship holds when the underlying distribution of X is elliptically

symmetric, see for example Yin and Cook (2002) and Zhu and Zhu (2009). There-

fore, Cov(X)−1E{m(Y )[X − E(X)]} can be used to identify one base vector in

CS. Estimating this vector is simple and computationally efficient. We general-

ize this to mixture multivariate skew-elliptical distributions, and discuss several

special scenarios.

3.2. Generalized Stein’s Lemma for mixture multivariate skew-elliptical

distributions

We generalize Stein’s Lemma to handle mixture multivariate skew-elliptical

distributions (MMSE). Stein’s Lemma for multivariate elliptical distribution was

derived by Landsman and Neslehováb (2008).

Theorem 1 (Stein’s Lemma for MMSE). Let X be MMSE, G
(p)
j (u) =

∫ +∞
u (1/2)

g
(p)
j (t)dt for u ∈ (0,∞) and j = 1, . . . ,m. For given differentiable functions H(·)
and m(·), take H(X) = E[m(Y )|X] � h(BτX). If

G
(p)
j {Qj(x

(j)
i )} ·H(x

(j)
i )|

x
(j)
i ∈∂Ω = 0,

Ω =
m∪
j=1

Ωj ⊆ Rp, i = 1, . . . , p, j = 1, . . . ,m, (3.4)

then
m∑
j=1

wjEX(j) [
G

(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂H(X(j))

∂X(j)
]

=

m∑
j=1

wjΣjBEX(j) [
∂h(BτX(j))

∂BτX(j)

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

]

= EX[m(Y )(X− µ∗)]

−
m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]
,

(3.5)
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where µ∗ =
∑m

j=1EX(j) [H(X(j))]/EX[H(X)]wjµj =
∑m

j=1wjµj. When X(j) ∼
SNp,q(µj ,Σj , Cj , νj , Dj) for j = 1, . . . ,m, we have

m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

]
(3.6)

= EX[m(Y )(X− µ∗)]−
m∑
j=1

wjΣjEX(j)

[
m(Y )

∂{lnΦq(C
τ
j X

(j) + νj ; 0, Dj)}
∂X(j)

]
.

Here µ∗ = E(X) when the distribution is elliptical or mixture elliptical.

From this result, we have several formulas under special cases.

Corollary 1. (1) If X(j) ∼ SNp,q(µj ,Σj , Cj , νj , Dj) (j = 1, . . . ,m), then

G(p){Q(X(j))}/g(p){Q(X(j))} = 1 and

EX[m(Y )(X− µ∗)] =
m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

]

+
m∑
j=1

wjΣjEX(j)

[
m(Y )

∂{lnΦq(C
τ
j X

(j) + νj ; 0, Dj)}
∂X(j)

]
; (3.7)

(2) if X(j) ∼ MEp(µj ,Σj , g
(p)
j ) (j = 1, . . . ,m), then

EX[m(Y )(X− E(X))] =
m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

]
; (3.8)

(3) if X(j) ∼ Np(µj ,Σj) (j = 1, . . . ,m), then

EX[m(Y )(X− E(X))] =

m∑
j=1

wjΣjBEX(j)

[∂h(BτX(j))

∂BτX(j)

]
. (3.9)

If all Σj = cjΣ for constants cj and a matrix Σ, (3.9) reduces to

Σ−1EX[m(Y )(X− E(X))] = B
m∑
j=1

wjcjEX(j)

[∂h(BτX(j))

∂BτX(j)

]
. (3.10)

(4) For a MSE distribution (with m = 1), we have

Σ−1EX[m(Y )(X− µ)]

=B · EX

[
G(p){Q(x)}
g(p){Q(x)}

∂h(BτX)

∂BτX

]
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where the gradient operator ∂
∂X = ( ∂

∂X1
, . . . , ∂

∂Xp
)τ , X = (X1, . . . , Xp)

τ , and the

superscript “τ” is the transpose operator. When U = X, (3.1) reduces to
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[∂H(X)

∂X

]
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]
, (3.2)
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]
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fore, Cov(X)−1E{m(Y )[X − E(X)]} can be used to identify one base vector in

CS. Estimating this vector is simple and computationally efficient. We general-

ize this to mixture multivariate skew-elliptical distributions, and discuss several

special scenarios.

3.2. Generalized Stein’s Lemma for mixture multivariate skew-elliptical

distributions

We generalize Stein’s Lemma to handle mixture multivariate skew-elliptical

distributions (MMSE). Stein’s Lemma for multivariate elliptical distribution was

derived by Landsman and Neslehováb (2008).

Theorem 1 (Stein’s Lemma for MMSE). Let X be MMSE, G
(p)
j (u) =

∫ +∞
u (1/2)

g
(p)
j (t)dt for u ∈ (0,∞) and j = 1, . . . ,m. For given differentiable functions H(·)
and m(·), take H(X) = E[m(Y )|X] � h(BτX). If

G
(p)
j {Qj(x

(j)
i )} ·H(x

(j)
i )|

x
(j)
i ∈∂Ω = 0,

Ω =
m∪
j=1

Ωj ⊆ Rp, i = 1, . . . , p, j = 1, . . . ,m, (3.4)

then
m∑
j=1

wjEX(j) [
G

(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂H(X(j))

∂X(j)
]

=

m∑
j=1

wjΣjBEX(j) [
∂h(BτX(j))

∂BτX(j)

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

]

= EX[m(Y )(X− µ∗)]

−
m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]
,

(3.5)
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where µ∗ =
∑m

j=1EX(j) [H(X(j))]/EX[H(X)]wjµj =
∑m

j=1wjµj. When X(j) ∼
SNp,q(µj ,Σj , Cj , νj , Dj) for j = 1, . . . ,m, we have

m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

]
(3.6)

= EX[m(Y )(X− µ∗)]−
m∑
j=1

wjΣjEX(j)

[
m(Y )

∂{lnΦq(C
τ
j X

(j) + νj ; 0, Dj)}
∂X(j)

]
.

Here µ∗ = E(X) when the distribution is elliptical or mixture elliptical.

From this result, we have several formulas under special cases.

Corollary 1. (1) If X(j) ∼ SNp,q(µj ,Σj , Cj , νj , Dj) (j = 1, . . . ,m), then

G(p){Q(X(j))}/g(p){Q(X(j))} = 1 and

EX[m(Y )(X− µ∗)] =
m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

]

+
m∑
j=1

wjΣjEX(j)

[
m(Y )

∂{lnΦq(C
τ
j X

(j) + νj ; 0, Dj)}
∂X(j)

]
; (3.7)

(2) if X(j) ∼ MEp(µj ,Σj , g
(p)
j ) (j = 1, . . . ,m), then

EX[m(Y )(X− E(X))] =
m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

]
; (3.8)

(3) if X(j) ∼ Np(µj ,Σj) (j = 1, . . . ,m), then

EX[m(Y )(X− E(X))] =

m∑
j=1

wjΣjBEX(j)

[∂h(BτX(j))

∂BτX(j)

]
. (3.9)

If all Σj = cjΣ for constants cj and a matrix Σ, (3.9) reduces to

Σ−1EX[m(Y )(X− E(X))] = B
m∑
j=1

wjcjEX(j)

[∂h(BτX(j))

∂BτX(j)

]
. (3.10)

(4) For a MSE distribution (with m = 1), we have

Σ−1EX[m(Y )(X− µ)]

=B · EX

[
G(p){Q(x)}
g(p){Q(x)}

∂h(BτX)

∂BτX

]
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+EX

[
m(Y )

G(p){Q(x)}
g(p){Q(x)}

∂{lnΨq(C
τX+ ν;D, g

(q)
Q(X))}

∂X

]
. (3.11)

Particularly, for the ME distibution MEp(µ,Σ, g
(p)), we have

Σ−1EX[m(Y )(X− E(X))] = B · EX

[
G(p){Q(x)}
g(p){Q(x)}

∂h(BτX)

∂BτX

]
. (3.12)

Corollary 2. From Case (4) of Corollary 1, for a MSE distribution, Σ−1EX

[m(Y )(X−µ)] can identify a vector in CS if and only if either C = 0 or C = B×O

for a K ×K matrix O. From Theorem 1, for a MMSE distribution, there exists

a positive definite matrix Σ such that Σ−1EX[m(Y )(X− µ∗)] identifies a vector

in CS if and only if Σj = cjΣ for constants cj and a matrix Σ,or Ci are equal to

either 0 or B×Oj where Oj’s are K ×K matrices.

Remark 2. For a MSE distribution, that the distribution is either elliptical or

skewed towards the directions CS contains. For a MMSE distribution, Corollary 2

has all the variance matrices Σj ’s in the elliptical components proportional, and

the distribution is either mixture elliptical or skewed toward the directions CS

contains.

Remark 3. When the necessary and sufficient conditions are not satisfied, we use

(3.5) to identify the CS. For this purpose, the following terms must be estimable:

µ∗ and

m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]
.

Write the right side of (3.5) as M(α), where α records all the unknown param-

eters, except for Cj if it is equal to BOj . When µ∗ and α are estimable, one

vector in CS is estimable. We discuss in Subsection 3.3 the cases where this is

realistic.

3.3. Exhaustive Identification of SY |X

Although the generalized Stein’s Lemma can only identify a base vector in

SY |X for any function m(·), it still can be used to identify the central subspace

SY |X by the following integrated approach.

By Yin and Li (2011), we can use a class of functions such as the characteristic

function family ℑ = {eity : t ∈ R} or the indicator function family ℑ = {IY≤t :

t ∈ R} (see Zhu, Zhu and Wang (2010)) to identify CS. Under certain regularity

conditions, an integral of matrices can exhaustively identify CS. Writem(·, t) as a
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function in the family for any t, and the corresponding h(X, t) = E(m(Y, t)|X).

We use the result in Case (4) of Corollary 1 for the MSE distribution as an

example.

Theorem 2. Write z(t) = EX[G(p){Q(X)}/g(p){Q(X)} ∂h(BτX, t)/∂BτX] and

Z =
∫
z(t)z(t)τd FY (t). Write the right side of (3.5) as M(t, α) for any func-

tion m(Y, t), where α records all the unknown parameters. Then the subspace

span(M(α)), spanned by M(α) =
∫
M(t, α)M(t, α)τd FY (t), lies in the central

subspace SY |X, where FY is the marginal distribution of Y . If Z is non-singular,

span(M(α)) = SY |X.

3.4. Estimation and implementation

Consider the multivariate skew-elliptical distribution. When the conditions

in Corollary 2 are satisfied, Theorem 2 shows that CS can be identified through

the integrated matrix M by all Σ−1EX[m(Y, t)(X − µ)] for all t. Its sample

version can serve as an estimate.

Estimation of M(α). When the density and distribution functions are known

up to some unknown parameter α, this matrix and then the base vectors in

span(M(α)) can be estimated by simply replacing the distribution of Y by

its empirical distribution to get Mn(α̂) = 1/n
∑n

j=1Mn(Yj , α̂)Mn(Yj , α̂)
τ where

Mn(t, α̂) is the sample average of M(t, α) with an estimate α̂ of α. For para-

metric distributions, α̂ can often have root-n consistency. In general, for MMSE

distributions with given density and distribution functions, the parameter α can

be estimated by the expectation-maximization (EM) algorithm, see Dempster,

Laird and Rubin (1977), Lin (2009) and Cabral, Lachos and Prates (2012) for

detail.

We give two examples of multivariate skew-elliptical distributions in which

the term v(X) = [G(p){Q(X)}/g(p){Q(X)}] [∂{lnΨq(C
τX+ ν;D, g

(q)
Q(x))}/∂X]

can be estimated by the method of moments, without the help from the EM

algorithm. The root-n consistency is then easy to derive.

Example 1. X is multivariate skew-normal, SNp(Σ, C), with the density

fX(x) = 2ϕp(x; Σ)Φ(C
τx), (x ∈ Rp). (3.13)

The mean vector and variance matrix of X are

E(X) =

√
2

π
[1 + CτΣC]−1/2ΣC, V ar(X) = Σ− E(X)Eτ (X),
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+EX

[
m(Y )

G(p){Q(x)}
g(p){Q(x)}

∂{lnΨq(C
τX+ ν;D, g

(q)
Q(X))}

∂X

]
. (3.11)

Particularly, for the ME distibution MEp(µ,Σ, g
(p)), we have

Σ−1EX[m(Y )(X− E(X))] = B · EX

[
G(p){Q(x)}
g(p){Q(x)}

∂h(BτX)

∂BτX

]
. (3.12)

Corollary 2. From Case (4) of Corollary 1, for a MSE distribution, Σ−1EX

[m(Y )(X−µ)] can identify a vector in CS if and only if either C = 0 or C = B×O

for a K ×K matrix O. From Theorem 1, for a MMSE distribution, there exists

a positive definite matrix Σ such that Σ−1EX[m(Y )(X− µ∗)] identifies a vector

in CS if and only if Σj = cjΣ for constants cj and a matrix Σ,or Ci are equal to

either 0 or B×Oj where Oj’s are K ×K matrices.

Remark 2. For a MSE distribution, that the distribution is either elliptical or

skewed towards the directions CS contains. For a MMSE distribution, Corollary 2

has all the variance matrices Σj ’s in the elliptical components proportional, and

the distribution is either mixture elliptical or skewed toward the directions CS

contains.

Remark 3. When the necessary and sufficient conditions are not satisfied, we use

(3.5) to identify the CS. For this purpose, the following terms must be estimable:

µ∗ and

m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]
.

Write the right side of (3.5) as M(α), where α records all the unknown param-

eters, except for Cj if it is equal to BOj . When µ∗ and α are estimable, one

vector in CS is estimable. We discuss in Subsection 3.3 the cases where this is

realistic.

3.3. Exhaustive Identification of SY |X

Although the generalized Stein’s Lemma can only identify a base vector in

SY |X for any function m(·), it still can be used to identify the central subspace

SY |X by the following integrated approach.

By Yin and Li (2011), we can use a class of functions such as the characteristic

function family ℑ = {eity : t ∈ R} or the indicator function family ℑ = {IY≤t :

t ∈ R} (see Zhu, Zhu and Wang (2010)) to identify CS. Under certain regularity

conditions, an integral of matrices can exhaustively identify CS. Writem(·, t) as a
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function in the family for any t, and the corresponding h(X, t) = E(m(Y, t)|X).

We use the result in Case (4) of Corollary 1 for the MSE distribution as an

example.

Theorem 2. Write z(t) = EX[G(p){Q(X)}/g(p){Q(X)} ∂h(BτX, t)/∂BτX] and

Z =
∫
z(t)z(t)τd FY (t). Write the right side of (3.5) as M(t, α) for any func-

tion m(Y, t), where α records all the unknown parameters. Then the subspace

span(M(α)), spanned by M(α) =
∫
M(t, α)M(t, α)τd FY (t), lies in the central

subspace SY |X, where FY is the marginal distribution of Y . If Z is non-singular,

span(M(α)) = SY |X.

3.4. Estimation and implementation

Consider the multivariate skew-elliptical distribution. When the conditions

in Corollary 2 are satisfied, Theorem 2 shows that CS can be identified through

the integrated matrix M by all Σ−1EX[m(Y, t)(X − µ)] for all t. Its sample

version can serve as an estimate.

Estimation of M(α). When the density and distribution functions are known

up to some unknown parameter α, this matrix and then the base vectors in

span(M(α)) can be estimated by simply replacing the distribution of Y by

its empirical distribution to get Mn(α̂) = 1/n
∑n

j=1Mn(Yj , α̂)Mn(Yj , α̂)
τ where

Mn(t, α̂) is the sample average of M(t, α) with an estimate α̂ of α. For para-

metric distributions, α̂ can often have root-n consistency. In general, for MMSE

distributions with given density and distribution functions, the parameter α can

be estimated by the expectation-maximization (EM) algorithm, see Dempster,

Laird and Rubin (1977), Lin (2009) and Cabral, Lachos and Prates (2012) for

detail.

We give two examples of multivariate skew-elliptical distributions in which

the term v(X) = [G(p){Q(X)}/g(p){Q(X)}] [∂{lnΨq(C
τX+ ν;D, g

(q)
Q(x))}/∂X]

can be estimated by the method of moments, without the help from the EM

algorithm. The root-n consistency is then easy to derive.

Example 1. X is multivariate skew-normal, SNp(Σ, C), with the density

fX(x) = 2ϕp(x; Σ)Φ(C
τx), (x ∈ Rp). (3.13)

The mean vector and variance matrix of X are

E(X) =

√
2

π
[1 + CτΣC]−1/2ΣC, V ar(X) = Σ− E(X)Eτ (X),
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and it is easy to compute that v(X) = Σ−1X + [ϕ(CτX)/Φ(CτX)] C. With X̄

and XXτ the sample mean vector and second order moment matrix of X, the

moment estimates of Σ and C are:

Σ̂ = XXτ , Ĉ =

√
π

2− πX̄τ Σ̂−1X̄
Σ̂−1X̄.

Then v(X) can be estimated by

v̂(X) = Σ̂−1X+
ϕ(ĈτX)

Φ(ĈτX)
Ĉ.

Example 2. X is multivariate skew-t distribution, Stp(Σ, C, γ), with the density:

fX(x) = 2tp(; Σ, γ)T

(
Cτ

[ γ + p

xτΣ−1 + p

]1/2
; γ + p

)
, (x ∈ Rp), (3.14)

where t(·) is a t density and T (·) is a cumulative t distribution function, γ is the

degrees of freedom, and the p× p matrix Σ has 1 as diagonal elements. Then

E(X) = bγC, V ar(X) =
γ

γ − 2
Σ− E(X)Eτ (X),

where bγ = (γ/π)1/2[Γ((γ − 1)/2)/Γ(γ/2)] (γ > 1). The matrix [γ/(γ − 2)]Σ has

trace p[γ/(γ − 2)]. Let X̄ and XXτ be the sample mean vector and second order

moment matrix of X. Then an estimate of γ is

γ̂ = round
( 2

1− p/[trace(XXτ )]

)
,

where round(c) rounds the element c to the nearest integer, and

Σ̂ = (1− 2

γ̂
)XXτ , Ĉ =

(π
γ̂

)1/2 Γ(γ̂/2)

Γ((γ̂ − 1)/2)
X̄.

Eventually,

v(X) = Σ−1X+
γ+Q(X)

γ+p−2
(

γ+p

Q(X)+p
)1/2

t(CτX((γ + p)/(Q(X) + p))1/2; γ + p)

T (Cτy((γ + p)/(Q(y) + p))1/2; γ + p)
C

is estimable.

3.5. Determination of structural dimension

A target matrix M(α) has been constructed and estimated. Based on exist-

ing methodologies, such as a criterion of BIC type (see, e.g., Zhu, Miao and Peng

(2006)) that work through determining the non-zero eigenvalues of the estimated

M(α), we can determine the structural dimension K. We omit these details here.
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4. Simulation Studies

In this section, the generalized Stein’s Lemma-based method, StI, that uses

the indicator function family {IY≤t : t ∈ R} identifies CS, as discussed in Sec-

tion 3.3. Several simulation studies were conducted to assess the performance of

StI, with methods such as SIR, DEE-SIR, SAVE, DR, and pHd used for compar-

ison. Li and Dong (2009) and Dong and Li (2010) showed that under some cases,

SIR and SAVE could be still applicable when the linearity condition or/and con-

stant conditional variance condition is violated. Therefore, another purpose of

the simulations was to explore their robustness to the ellipticity violation.

The paper mainly concerns the application of the generalized Stein’s Lemma,

so here the structural dimension is assumed to be given. To measure esti-

mation accuracy, we adopted the distance criterion proposed by Ferré (1998).

The distance between spaces spanned by A and B is defined as D(A,B) =

tr[(A(AτA)−1Aτ )(B(BτB)−1Bτ )/K], with values in [0, 1]. The larger the D(A,

B) value is, the better the similarity between S(A) and S(B)).

Of the several proposals of distributions that extend the normal by intro-

ducing skewness, we chose distribution with density

SNp(µ,Σ, C) = 2ϕp(µ,Σ)Φ(C
τ (y − µ)),

where µ is a p× 1 location vector, Σ is a p× p positive definite dispersion matrix

and C is a p × 1 skewness parameter vector. Let λ = Σ1/2C. We generated

predictors from: (
X

Z

)
∼ Np+1

((
µ

0

)
,

(
Σ Σ1/2δ

δτΣ1/2 1

))

with X � (X|Z > 0) and δ = λ/(1 + λτλ). For a mixture multivariate skew

normal distribution, we used the skew-normal distribution for mixture compo-

nents and adopted the EM-type algorithm for maximum likelihood estimation as

proposed by Cabral, Lachos and Prates (2012).

Example 3 (Single-index models). Consider the models:

Y = βτX+ ε, (4.1)

Y = exp
(βτX

2
+ 2 ∗ ε

)
, (4.2)

Y = sin
(βτX

3
+ ε

)
, (4.3)

where β = (1, 1, 1, 1, 0, . . . , 0)τ , and ε ∼ N(0, 1). Let p = 10 and the number of

slices h = 10 for slicing estimation in SIR, SAVE, and DR. We took X as follows.

(1.1) X ∼ Np(0, Ip).
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and it is easy to compute that v(X) = Σ−1X + [ϕ(CτX)/Φ(CτX)] C. With X̄

and XXτ the sample mean vector and second order moment matrix of X, the

moment estimates of Σ and C are:

Σ̂ = XXτ , Ĉ =

√
π

2− πX̄τ Σ̂−1X̄
Σ̂−1X̄.

Then v(X) can be estimated by

v̂(X) = Σ̂−1X+
ϕ(ĈτX)

Φ(ĈτX)
Ĉ.

Example 2. X is multivariate skew-t distribution, Stp(Σ, C, γ), with the density:

fX(x) = 2tp(; Σ, γ)T

(
Cτ

[ γ + p

xτΣ−1 + p

]1/2
; γ + p

)
, (x ∈ Rp), (3.14)

where t(·) is a t density and T (·) is a cumulative t distribution function, γ is the

degrees of freedom, and the p× p matrix Σ has 1 as diagonal elements. Then

E(X) = bγC, V ar(X) =
γ

γ − 2
Σ− E(X)Eτ (X),

where bγ = (γ/π)1/2[Γ((γ − 1)/2)/Γ(γ/2)] (γ > 1). The matrix [γ/(γ − 2)]Σ has

trace p[γ/(γ − 2)]. Let X̄ and XXτ be the sample mean vector and second order

moment matrix of X. Then an estimate of γ is

γ̂ = round
( 2

1− p/[trace(XXτ )]

)
,

where round(c) rounds the element c to the nearest integer, and

Σ̂ = (1− 2

γ̂
)XXτ , Ĉ =

(π
γ̂

)1/2 Γ(γ̂/2)

Γ((γ̂ − 1)/2)
X̄.

Eventually,

v(X) = Σ−1X+
γ+Q(X)

γ+p−2
(

γ+p

Q(X)+p
)1/2

t(CτX((γ + p)/(Q(X) + p))1/2; γ + p)

T (Cτy((γ + p)/(Q(y) + p))1/2; γ + p)
C

is estimable.

3.5. Determination of structural dimension

A target matrix M(α) has been constructed and estimated. Based on exist-

ing methodologies, such as a criterion of BIC type (see, e.g., Zhu, Miao and Peng

(2006)) that work through determining the non-zero eigenvalues of the estimated

M(α), we can determine the structural dimension K. We omit these details here.

MIXTURE MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS 11

4. Simulation Studies

In this section, the generalized Stein’s Lemma-based method, StI, that uses

the indicator function family {IY≤t : t ∈ R} identifies CS, as discussed in Sec-

tion 3.3. Several simulation studies were conducted to assess the performance of

StI, with methods such as SIR, DEE-SIR, SAVE, DR, and pHd used for compar-

ison. Li and Dong (2009) and Dong and Li (2010) showed that under some cases,

SIR and SAVE could be still applicable when the linearity condition or/and con-

stant conditional variance condition is violated. Therefore, another purpose of

the simulations was to explore their robustness to the ellipticity violation.

The paper mainly concerns the application of the generalized Stein’s Lemma,

so here the structural dimension is assumed to be given. To measure esti-

mation accuracy, we adopted the distance criterion proposed by Ferré (1998).

The distance between spaces spanned by A and B is defined as D(A,B) =

tr[(A(AτA)−1Aτ )(B(BτB)−1Bτ )/K], with values in [0, 1]. The larger the D(A,

B) value is, the better the similarity between S(A) and S(B)).

Of the several proposals of distributions that extend the normal by intro-

ducing skewness, we chose distribution with density

SNp(µ,Σ, C) = 2ϕp(µ,Σ)Φ(C
τ (y − µ)),

where µ is a p× 1 location vector, Σ is a p× p positive definite dispersion matrix

and C is a p × 1 skewness parameter vector. Let λ = Σ1/2C. We generated

predictors from: (
X

Z

)
∼ Np+1

((
µ

0

)
,

(
Σ Σ1/2δ

δτΣ1/2 1

))

with X � (X|Z > 0) and δ = λ/(1 + λτλ). For a mixture multivariate skew

normal distribution, we used the skew-normal distribution for mixture compo-

nents and adopted the EM-type algorithm for maximum likelihood estimation as

proposed by Cabral, Lachos and Prates (2012).

Example 3 (Single-index models). Consider the models:

Y = βτX+ ε, (4.1)

Y = exp
(βτX

2
+ 2 ∗ ε

)
, (4.2)

Y = sin
(βτX

3
+ ε

)
, (4.3)

where β = (1, 1, 1, 1, 0, . . . , 0)τ , and ε ∼ N(0, 1). Let p = 10 and the number of

slices h = 10 for slicing estimation in SIR, SAVE, and DR. We took X as follows.

(1.1) X ∼ Np(0, Ip).
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Table 1. The means and standard deviations (in parentheses)of 100·D(A,B)
for Example 3 (single-index model).

X model StI SIR DEE-SIR SAVE DR pHd

Case (1.1) (4.1) 84.56( 6.64) 82.52( 9.16) 85.12( 7.08) 6.28( 7.61) 49.52(26.73) 13.64(15.45)
normal (4.2) 95.37( 2.18) 95.56( 2.02) 95.14( 2.30) 7.10(11.97) 93.14( 3.55) 48.90(20.96)

(4.3) 87.64( 5.36) 85.06( 6.68) 85.93( 6.27) 6.13( 7.97) 51.31(25.33) 9.53(13.28)

Case (1.2) (4.1) 97.88( 1.07) 98.15( 0.92) 97.26( 1.16) 3.31( 4.47) 94.04( 3.44) 25.43(20.85)
chi-square (4.2) 99.06( 0.51) 99.38( 0.33) 98.43( 0.69) 9.61(20.34) 97.45( 1.56) 51.48(16.00)

(4.3) 61.42(18.58) 45.22(24.72) 54.76(20.25) 10.97(14.27) 11.37(13.25) 8.21(14.10)

Case (1.3) (4.1) 87.07( 6.66) 77.59(16.47) 71.64(13.75) 15.77(16.29) 37.67(29.62) 33.52(29.57)
skew normal (4.2) 96.23( 1.73) 95.81( 2.09) 90.97( 4.37) 11.72(14.60) 89.10(12.75) 73.39(22.84)

parallel (4.3) 89.19( 6.23) 75.77(18.69) 68.26(14.13) 14.38(15.74) 33.79(27.39) 18.62(18.54)

Case (1.4) (4.1) 82.64(10.17) 79.94(13.31) 81.59( 8.60) 7.53( 7.95) 41.77(27.47) 15.32(15.49)
skew normal (4.2) 94.12( 4.94) 95.11( 2.54) 92.61( 3.22) 8.18(11.86) 91.60( 5.21) 54.25(20.94)
unparallel (4.3) 85.61( 8.64) 83.97( 9.63) 81.70( 8.33) 4.99( 6.24) 43.50(27.88) 12.23(14.54)

Case (1.5) (4.1) 82.57( 8.73) 91.01( 4.38) 90.39( 4.12) 5.96( 7.68) 63.74(25.71) 13.04(14.60)
MMN (4.2) 91.42( 5.11) 97.72( 1.12) 96.94( 1.31) 40.51(30.70) 96.34( 1.65) 64.33(17.81)

(4.3) 84.61( 8.42) 92.32( 3.79) 90.08( 4.96) 7.65( 9.73) 62.71(25.78) 12.06(14.94)

Case (1.6) (4.1) 98.73( 0.57) 90.88( 4.57) 70.76( 7.64) 23.88(23.55) 80.55(14.78) 52.64(20.06)
MMSN (4.2) 98.45( 0.62) 97.49( 1.14) 74.86( 4.10) 63.21(25.66) 95.40( 2.52) 57.65(24.86)

(4.3) 98.12( 1.10) 90.52( 4.79) 68.96( 8.43) 19.60(18.11) 72.22(20.88) 36.84(21.58)

(1.2) X = (X1, . . . , Xp)
τ , X1, . . . , Xp i.i.d. ∼ χ2(5) − 5, i = 1, 2, . . . , p. This

is not an elliptical distribution, but it is not very seriously skewed as the

degrees of freedom is 5.

(1.3) X ∼ SNp(Ip, C) where C = β. Here the skewness parameter is in the space

spanned by β;

(1.4) X ∼ SNp(Ip, C) where C = [1, 1, 0, 0, 1, 1, 0, . . .]. The skewness parameter

is not in the space spanned by β, but not orthogonal to it.

(1.5) X ∼ 0.5N(µ1, Ip) + 0.3N(µ2, Ip) + 0.2N(µ3, Ip) is a mixture multivariate

normal, where µ1 = [3, 3, 3, 0, . . . , 0]τ , µ2 = [3, 0, 3, 3, . . . , 0]τ , and µ3 =

[3, 0, 0, 3, 3, 0, . . . , 0]τ .

(1.6) X ∼ 0.5SNp(µ1, Ip, C1) + 0.3SNp(µ2, Ip, C2) + 0.2SNp(µ3, Ip, C3) is a mix-

ture multivariate skew normal, where µ1, µ2, µ3 are same as in Case(1.5);

C1 = β, C2 = 3β, and C3 = [1, 1, 0, 0, 0, 0, 1, 1, 0, 0]τ .

Based on experience with single-index models, the sample size n = 250 can

be regarded as large enough to alleviate random variability in the simulation.

We took n = 250 for Cases (1.1), (1.2), (1.3) and (1.4), and n = 400 for Cases

(1.5) and (1.6). We assume the number of mixture components known, though

it is a crucial parameter in practice. We did 100 replications. The results are in

Table 1.
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In Case (1.1), SIR and DEE-SIR work well, sometimes better than the new

method StI. In Case (1.5), SIR and DEE-SIR outperform StI. It seems that,

in normal cases, the traditional methods have good performance even when the

ellipticity is violated slightly. However, in most cases, StI is the winner and is

robust to non-ellipticity. In Case (1.1), StI performs well, and SIR and DEE-

SIR are competitive. In Case (1.2), StI, SIR, DEE-SIR, and DR all have good

performance for Models (4.1) and (4.2), suggesting robustness to non-ellipticity.

For Model (4.3), StI does much better than the others. In Case (1.3), StI shows

its strong adaptability for non-elliptical distributions, while SIR and DEE-SIR

lag in both estimation accuracy and stability. Case (1.6) is much the same. Case

(1.4) was to examine the robustness of StI when the skew parameter is not in the

space spanned by β. SIR and DEE-SIR also work here, but for Models (4.1) and

(4.3), they are not better than StI. For Case (1.5), before performing StI we need

to complement an EM algorithm to estimate proportion, mean, covariance, and

skew parameters in each simple distribution. The performance of StI is hampered

by estimating too many parameters, a poor estimator will notably weaken the

power of StI. Traditional methods avoid this question. In Case (1.6), skewness

causes no unified effects on the performance of traditional methods, and here StI

performs better than its competitors.

Example 4. Consider the bi-index models

Y = exp
(βτ

1X

2

)
+ sin

(βτ
2X

2

)
+ 0.5ε, (4.4)

Y =
βτ
1X+ 0.3ε

2 + |βτ
2X− 4 + ε|

, (4.5)

Y = sin
(βτ

1X

4

)
+ exp

(βτ
2X

2

)
ε, (4.6)

Y = βτ
1X+

���β
τ
2X

2

���+ 0.5ε, (4.7)

where β1 = (1, 1, 1, 1, 0, . . . , 0)τ , β2 = (1, 1, 0, 0, 1, 1, 0, . . . , 0)τ , ε ∼ N(1, 0). Let

p = 10, the number of slices for SIR, SAVE and DR was h = 10. We took X as

follows:

(2.1) X ∼ Np(0, Ip).

(2.2) X = (X1, . . . , Xp)
τ , X1, . . . , Xp i.i.d X1 ∼ χ2(1)− 1.

(2.3) X ∼ SNp(Ip, C) where C1 = (β1 + β2)/2. Here C is in the space spanned

by B.

(2.4) X ∼ SNp(Ip, C), where C = [1, 1, 0, 0, 1, 1, 0, 0, 1, 1]τ/2. The skewness

parameter C is not in the space spanned by B, but not orthogonal to it.
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Table 1. The means and standard deviations (in parentheses)of 100·D(A,B)
for Example 3 (single-index model).

X model StI SIR DEE-SIR SAVE DR pHd

Case (1.1) (4.1) 84.56( 6.64) 82.52( 9.16) 85.12( 7.08) 6.28( 7.61) 49.52(26.73) 13.64(15.45)
normal (4.2) 95.37( 2.18) 95.56( 2.02) 95.14( 2.30) 7.10(11.97) 93.14( 3.55) 48.90(20.96)

(4.3) 87.64( 5.36) 85.06( 6.68) 85.93( 6.27) 6.13( 7.97) 51.31(25.33) 9.53(13.28)

Case (1.2) (4.1) 97.88( 1.07) 98.15( 0.92) 97.26( 1.16) 3.31( 4.47) 94.04( 3.44) 25.43(20.85)
chi-square (4.2) 99.06( 0.51) 99.38( 0.33) 98.43( 0.69) 9.61(20.34) 97.45( 1.56) 51.48(16.00)

(4.3) 61.42(18.58) 45.22(24.72) 54.76(20.25) 10.97(14.27) 11.37(13.25) 8.21(14.10)

Case (1.3) (4.1) 87.07( 6.66) 77.59(16.47) 71.64(13.75) 15.77(16.29) 37.67(29.62) 33.52(29.57)
skew normal (4.2) 96.23( 1.73) 95.81( 2.09) 90.97( 4.37) 11.72(14.60) 89.10(12.75) 73.39(22.84)

parallel (4.3) 89.19( 6.23) 75.77(18.69) 68.26(14.13) 14.38(15.74) 33.79(27.39) 18.62(18.54)

Case (1.4) (4.1) 82.64(10.17) 79.94(13.31) 81.59( 8.60) 7.53( 7.95) 41.77(27.47) 15.32(15.49)
skew normal (4.2) 94.12( 4.94) 95.11( 2.54) 92.61( 3.22) 8.18(11.86) 91.60( 5.21) 54.25(20.94)
unparallel (4.3) 85.61( 8.64) 83.97( 9.63) 81.70( 8.33) 4.99( 6.24) 43.50(27.88) 12.23(14.54)

Case (1.5) (4.1) 82.57( 8.73) 91.01( 4.38) 90.39( 4.12) 5.96( 7.68) 63.74(25.71) 13.04(14.60)
MMN (4.2) 91.42( 5.11) 97.72( 1.12) 96.94( 1.31) 40.51(30.70) 96.34( 1.65) 64.33(17.81)

(4.3) 84.61( 8.42) 92.32( 3.79) 90.08( 4.96) 7.65( 9.73) 62.71(25.78) 12.06(14.94)

Case (1.6) (4.1) 98.73( 0.57) 90.88( 4.57) 70.76( 7.64) 23.88(23.55) 80.55(14.78) 52.64(20.06)
MMSN (4.2) 98.45( 0.62) 97.49( 1.14) 74.86( 4.10) 63.21(25.66) 95.40( 2.52) 57.65(24.86)

(4.3) 98.12( 1.10) 90.52( 4.79) 68.96( 8.43) 19.60(18.11) 72.22(20.88) 36.84(21.58)

(1.2) X = (X1, . . . , Xp)
τ , X1, . . . , Xp i.i.d. ∼ χ2(5) − 5, i = 1, 2, . . . , p. This

is not an elliptical distribution, but it is not very seriously skewed as the

degrees of freedom is 5.

(1.3) X ∼ SNp(Ip, C) where C = β. Here the skewness parameter is in the space

spanned by β;

(1.4) X ∼ SNp(Ip, C) where C = [1, 1, 0, 0, 1, 1, 0, . . .]. The skewness parameter

is not in the space spanned by β, but not orthogonal to it.

(1.5) X ∼ 0.5N(µ1, Ip) + 0.3N(µ2, Ip) + 0.2N(µ3, Ip) is a mixture multivariate

normal, where µ1 = [3, 3, 3, 0, . . . , 0]τ , µ2 = [3, 0, 3, 3, . . . , 0]τ , and µ3 =

[3, 0, 0, 3, 3, 0, . . . , 0]τ .

(1.6) X ∼ 0.5SNp(µ1, Ip, C1) + 0.3SNp(µ2, Ip, C2) + 0.2SNp(µ3, Ip, C3) is a mix-

ture multivariate skew normal, where µ1, µ2, µ3 are same as in Case(1.5);

C1 = β, C2 = 3β, and C3 = [1, 1, 0, 0, 0, 0, 1, 1, 0, 0]τ .

Based on experience with single-index models, the sample size n = 250 can

be regarded as large enough to alleviate random variability in the simulation.

We took n = 250 for Cases (1.1), (1.2), (1.3) and (1.4), and n = 400 for Cases

(1.5) and (1.6). We assume the number of mixture components known, though

it is a crucial parameter in practice. We did 100 replications. The results are in

Table 1.

MIXTURE MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS 13

In Case (1.1), SIR and DEE-SIR work well, sometimes better than the new

method StI. In Case (1.5), SIR and DEE-SIR outperform StI. It seems that,

in normal cases, the traditional methods have good performance even when the

ellipticity is violated slightly. However, in most cases, StI is the winner and is

robust to non-ellipticity. In Case (1.1), StI performs well, and SIR and DEE-

SIR are competitive. In Case (1.2), StI, SIR, DEE-SIR, and DR all have good

performance for Models (4.1) and (4.2), suggesting robustness to non-ellipticity.

For Model (4.3), StI does much better than the others. In Case (1.3), StI shows

its strong adaptability for non-elliptical distributions, while SIR and DEE-SIR

lag in both estimation accuracy and stability. Case (1.6) is much the same. Case

(1.4) was to examine the robustness of StI when the skew parameter is not in the

space spanned by β. SIR and DEE-SIR also work here, but for Models (4.1) and

(4.3), they are not better than StI. For Case (1.5), before performing StI we need

to complement an EM algorithm to estimate proportion, mean, covariance, and

skew parameters in each simple distribution. The performance of StI is hampered

by estimating too many parameters, a poor estimator will notably weaken the

power of StI. Traditional methods avoid this question. In Case (1.6), skewness

causes no unified effects on the performance of traditional methods, and here StI

performs better than its competitors.

Example 4. Consider the bi-index models

Y = exp
(βτ

1X

2

)
+ sin

(βτ
2X

2

)
+ 0.5ε, (4.4)

Y =
βτ
1X+ 0.3ε

2 + |βτ
2X− 4 + ε|

, (4.5)

Y = sin
(βτ

1X

4

)
+ exp

(βτ
2X

2

)
ε, (4.6)

Y = βτ
1X+

���β
τ
2X

2

���+ 0.5ε, (4.7)

where β1 = (1, 1, 1, 1, 0, . . . , 0)τ , β2 = (1, 1, 0, 0, 1, 1, 0, . . . , 0)τ , ε ∼ N(1, 0). Let

p = 10, the number of slices for SIR, SAVE and DR was h = 10. We took X as

follows:

(2.1) X ∼ Np(0, Ip).

(2.2) X = (X1, . . . , Xp)
τ , X1, . . . , Xp i.i.d X1 ∼ χ2(1)− 1.

(2.3) X ∼ SNp(Ip, C) where C1 = (β1 + β2)/2. Here C is in the space spanned

by B.

(2.4) X ∼ SNp(Ip, C), where C = [1, 1, 0, 0, 1, 1, 0, 0, 1, 1]τ/2. The skewness

parameter C is not in the space spanned by B, but not orthogonal to it.
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Table 2. The means and standard deviations (in parentheses)of 100·D(A,B)
for Example 4 (two directions model).

X model StI SIR DEE-SIR SAVE DR pHd

Case (2.1) (4.4) 79.08( 9.94) 73.27(12.22) 75.97(10.02) 54.23( 6.96) 67.75(12.21) 44.39( 8.17)
normal (4.5) 87.08( 6.11) 82.23(10.48) 88.37( 4.91) 54.51( 6.03) 77.50(10.97) 50.71(15.51)

(4.6) 86.14( 5.46) 83.08( 8.55) 82.85( 7.64) 28.66(13.51) 72.15(12.62) 36.84( 9.32)
(4.7) 73.28(11.21) 67.35(12.98) 76.69(10.00) 59.24(11.25) 68.83(13.14) 48.06(13.92)

Case (2.2) (4.4) 77.89( 8.44) 75.15(10.04) 71.40(11.32) 11.79( 5.60) 53.44( 4.99) 39.83( 9.38)
chi-square (4.5) 81.83( 7.90) 76.34(10.75) 80.39( 6.27) 11.12( 6.38) 53.55( 7.62) 34.26( 8.46)

(4.6) 81.74( 8.03) 80.90( 8.53) 73.99(13.16) 13.87( 7.64) 54.35(10.27) 35.40( 8.66)
(4.7) 65.02(10.85) 59.91( 9.72) 62.98(10.59) 16.38( 7.40) 56.59( 6.08) 36.25(10.02)

Case (2.3) (4.4) 81.28( 7.99) 66.86(12.09) 75.74( 9.36) 55.62( 7.83) 63.03(12.33) 53.11( 8.27)
skew normal (4.5) 84.10( 8.32) 85.99( 7.81) 87.51( 5.51) 55.73( 8.06) 82.53(10.06) 63.82(14.49)

parallel (4.6) 77.19(10.41) 65.83(12.82) 66.78(12.21) 25.24(12.98) 59.68(12.20) 42.57(11.01)
(4.7) 61.46( 9.97) 62.73(12.29) 71.46(10.32) 59.43(11.24) 66.29(12.58) 55.13(10.76)

Case (2.4) (4.4) 86.41( 6.65) 76.87(12.79) 79.16( 8.61) 54.88( 6.66) 69.77(13.24) 49.69(10.51)
skew normal (4.5) 85.49( 7.37) 81.49(10.41) 84.31( 6.26) 56.95( 8.75) 77.03(12.92) 50.75(13.48)
unparallel (4.6) 78.84( 7.78) 70.36(11.89) 72.92(10.48) 25.18(14.42) 58.65(10.53) 39.20( 9.76)

(4.7) 69.18(11.71) 62.23(11.84) 68.95(11.45) 58.57(10.26) 65.26(12.17) 45.99(12.59)

Case (2.5) (4.4) 75.60( 8.63) 73.64( 4.25) 68.06(10.29) 69.87(10.61) 76.11(10.59) 55.87( 6.71)
MMN (4.5) 51.28( 1.58) 51.59( 2.39) 50.91( 1.36) 76.20(10.47) 50.26( 2.11) 45.49(13.81)

(4.6) 60.09(11.63) 65.56( 8.08) 59.44(11.03) 52.95( 8.29) 66.06( 8.60) 31.22( 9.40)
(4.7) 56.31( 5.03) 53.76( 4.88) 60.78( 8.50) 56.07( 8.17) 55.00( 6.44) 24.16( 9.85)

Case (2.6) (4.4) 95.60( 2.12) 73.15( 3.61) 51.48( 1.91) 65.06( 5.30) 63.12( 4.84) 49.73( 7.21)
MMSN (4.5) 95.83( 2.10) 56.20( 5.68) 55.82( 2.50) 80.42(10.48) 53.16( 4.48) 50.06( 8.95)

(4.6) 98.60( 0.60) 52.52( 3.75) 51.21( 4.79) 53.97(13.15) 59.51( 6.12) 36.97(10.47)
(4.7) 93.19( 3.18) 76.47( 4.37) 73.90( 9.14) 83.58(10.29) 84.55( 4.77) 32.37(12.21)

(2.5) X ∼ 0.5N(µ1, Ip) + 0.3N(µ2, Ip) + 0.2N(µ3, Ip) is a mixture multivariate
normal, where µ1 = [3, 3, 3, 3, 0, . . . , 0]τ , µ2 = [3, 0, 0, 3, 3, 0, . . . , 0]τ , and
µ3 = [3, 3, 0, 0, 3, 3, 0, . . . , 0]τ .

(2.6) X ∼ 0.5SNp(µ1, Ip, C1) + 0.3SNp(µ2, Ip, C2) + 0.2SNp(µ3, Ip, C3) is a mix-
ture multivariate skew normal, where µ1, µ2, µ3 are same as in (2.5), C1 =
2β, C2 = 3β, and C3 = [−1,−1, 0, 0, 0, 0,−1,−1, 0, 0]τ .

We again took n = 250 for the simple distributions and n = 400 for the
mixed distributions to alleviate random variability in the simulation. We did 100
replications. The results are reported in Table 2. In Case (2.1), StI performs
well and DEE-SIR also works well in some cases. As to the slightly skewed
distribution in Case (2.2), StI begins to show its superiority when compared to
the other methods. In Case (2.3), StI is dominant in two models while SIR and
DEE-SIR work better under the other two models. For the skewed distributions
with nonparallel locations, StI works best. Comparing the results of Case (2.5)
to that of Case (1.5), we find that the results for the synthetic model are not
as distinguishable as those for the single-index model. In this case, SIR, DEE-
SIR, and DR work better than StI, though slightly. For Case (2.6), the results
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indicate that StI works much better than its competitors. These observations

suggest that StI has the advantages in handling non-elliptical distributions, while

SIR-based methods are also robust to non-ellipticity to some extent. SAVE is

not a good method in these settings, and, consequently DR is not being in effect,

a combination of SIR and SAVE.

Sliced inverse regression and directional regression are, to some extent, robust

against non-elliptical distributions, as demonstrated in Li and Dong (2009) and

Dong and Li (2010). But the Stein’s Lemma-based method generally works

well, and in most cases better when compared with these methods for mixture

multivariate skew-elliptical distributions, even when there are parameters to be

estimated. Unlike traditional methods, StI is widely tolerant of both elliptical

and non-elliptical distribution. The results of Cases (1.6) and (2.6) suggest that

StI has advantages for distributions beyond the elliptical.

5. Data Example: Handwritten Digital Data

The University of California at Irvine machine-learning repository

(ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits/)

contains 10,992 samples of handwritten digits (0, 1, . . . , 9) from 44 different writ-

ers. Each digit is stored as a 16-dimensional vector, regarded as the predictor,

with 16 digits 0, 1, . . . , 9 as the response variable values. Zhu and Hastie (2003)

divided the dataset into a learning set (7,494 cases) and a testing set (3,498

cases), then investigated and found important discriminant directions. Later,

Li and Wang (2007), and Dong and Li (2010) studied the data for sufficient

dimension reduction.

Among digits 0 to 9, we consider 0, 6 and 9 because they are easily confused.

We used the dimension reduction methods StI, SIR, SAVE, and DR to identify

dimension reduction directions. The learning set contains 780, 720, and 719 sam-

ple points for digits 0, 6, 9 respectively, and the testing set contains 363, 336, and

336 sample points accordingly. With p = 16, (16+5)2 = 441, the sample size was

taken to be n = 450. We randomly drew n = 450 points from the learning set,

then applied StI, SIR, SAVE, and DR to identify central subspaces B when the

structural dimension was set to be K = 2, and 3. Figures 1 and 2 show the data

structure of X when one random sampling was performed. It is clear that the

data have three groups and are not elliptically symmetric. When the data were

projected onto the respective central subspaces B, SIR and DR got data clouds

with a certain symmetry: three groups put the data cloud in a triangular pat-

tern. This was seen before, see Dong and Li (2010). SAVE did not separate the

three groups well. In Figure 1, the data cloud determined by StI shows that the

three groups are significantly separated, and that the points with the response

value 0 form a half-circle around the other two groups. Previous studies did not
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Table 2. The means and standard deviations (in parentheses)of 100·D(A,B)
for Example 4 (two directions model).

X model StI SIR DEE-SIR SAVE DR pHd

Case (2.1) (4.4) 79.08( 9.94) 73.27(12.22) 75.97(10.02) 54.23( 6.96) 67.75(12.21) 44.39( 8.17)
normal (4.5) 87.08( 6.11) 82.23(10.48) 88.37( 4.91) 54.51( 6.03) 77.50(10.97) 50.71(15.51)

(4.6) 86.14( 5.46) 83.08( 8.55) 82.85( 7.64) 28.66(13.51) 72.15(12.62) 36.84( 9.32)
(4.7) 73.28(11.21) 67.35(12.98) 76.69(10.00) 59.24(11.25) 68.83(13.14) 48.06(13.92)

Case (2.2) (4.4) 77.89( 8.44) 75.15(10.04) 71.40(11.32) 11.79( 5.60) 53.44( 4.99) 39.83( 9.38)
chi-square (4.5) 81.83( 7.90) 76.34(10.75) 80.39( 6.27) 11.12( 6.38) 53.55( 7.62) 34.26( 8.46)

(4.6) 81.74( 8.03) 80.90( 8.53) 73.99(13.16) 13.87( 7.64) 54.35(10.27) 35.40( 8.66)
(4.7) 65.02(10.85) 59.91( 9.72) 62.98(10.59) 16.38( 7.40) 56.59( 6.08) 36.25(10.02)

Case (2.3) (4.4) 81.28( 7.99) 66.86(12.09) 75.74( 9.36) 55.62( 7.83) 63.03(12.33) 53.11( 8.27)
skew normal (4.5) 84.10( 8.32) 85.99( 7.81) 87.51( 5.51) 55.73( 8.06) 82.53(10.06) 63.82(14.49)

parallel (4.6) 77.19(10.41) 65.83(12.82) 66.78(12.21) 25.24(12.98) 59.68(12.20) 42.57(11.01)
(4.7) 61.46( 9.97) 62.73(12.29) 71.46(10.32) 59.43(11.24) 66.29(12.58) 55.13(10.76)

Case (2.4) (4.4) 86.41( 6.65) 76.87(12.79) 79.16( 8.61) 54.88( 6.66) 69.77(13.24) 49.69(10.51)
skew normal (4.5) 85.49( 7.37) 81.49(10.41) 84.31( 6.26) 56.95( 8.75) 77.03(12.92) 50.75(13.48)
unparallel (4.6) 78.84( 7.78) 70.36(11.89) 72.92(10.48) 25.18(14.42) 58.65(10.53) 39.20( 9.76)

(4.7) 69.18(11.71) 62.23(11.84) 68.95(11.45) 58.57(10.26) 65.26(12.17) 45.99(12.59)

Case (2.5) (4.4) 75.60( 8.63) 73.64( 4.25) 68.06(10.29) 69.87(10.61) 76.11(10.59) 55.87( 6.71)
MMN (4.5) 51.28( 1.58) 51.59( 2.39) 50.91( 1.36) 76.20(10.47) 50.26( 2.11) 45.49(13.81)

(4.6) 60.09(11.63) 65.56( 8.08) 59.44(11.03) 52.95( 8.29) 66.06( 8.60) 31.22( 9.40)
(4.7) 56.31( 5.03) 53.76( 4.88) 60.78( 8.50) 56.07( 8.17) 55.00( 6.44) 24.16( 9.85)

Case (2.6) (4.4) 95.60( 2.12) 73.15( 3.61) 51.48( 1.91) 65.06( 5.30) 63.12( 4.84) 49.73( 7.21)
MMSN (4.5) 95.83( 2.10) 56.20( 5.68) 55.82( 2.50) 80.42(10.48) 53.16( 4.48) 50.06( 8.95)

(4.6) 98.60( 0.60) 52.52( 3.75) 51.21( 4.79) 53.97(13.15) 59.51( 6.12) 36.97(10.47)
(4.7) 93.19( 3.18) 76.47( 4.37) 73.90( 9.14) 83.58(10.29) 84.55( 4.77) 32.37(12.21)

(2.5) X ∼ 0.5N(µ1, Ip) + 0.3N(µ2, Ip) + 0.2N(µ3, Ip) is a mixture multivariate
normal, where µ1 = [3, 3, 3, 3, 0, . . . , 0]τ , µ2 = [3, 0, 0, 3, 3, 0, . . . , 0]τ , and
µ3 = [3, 3, 0, 0, 3, 3, 0, . . . , 0]τ .

(2.6) X ∼ 0.5SNp(µ1, Ip, C1) + 0.3SNp(µ2, Ip, C2) + 0.2SNp(µ3, Ip, C3) is a mix-
ture multivariate skew normal, where µ1, µ2, µ3 are same as in (2.5), C1 =
2β, C2 = 3β, and C3 = [−1,−1, 0, 0, 0, 0,−1,−1, 0, 0]τ .

We again took n = 250 for the simple distributions and n = 400 for the
mixed distributions to alleviate random variability in the simulation. We did 100
replications. The results are reported in Table 2. In Case (2.1), StI performs
well and DEE-SIR also works well in some cases. As to the slightly skewed
distribution in Case (2.2), StI begins to show its superiority when compared to
the other methods. In Case (2.3), StI is dominant in two models while SIR and
DEE-SIR work better under the other two models. For the skewed distributions
with nonparallel locations, StI works best. Comparing the results of Case (2.5)
to that of Case (1.5), we find that the results for the synthetic model are not
as distinguishable as those for the single-index model. In this case, SIR, DEE-
SIR, and DR work better than StI, though slightly. For Case (2.6), the results

MIXTURE MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS 15

indicate that StI works much better than its competitors. These observations

suggest that StI has the advantages in handling non-elliptical distributions, while

SIR-based methods are also robust to non-ellipticity to some extent. SAVE is

not a good method in these settings, and, consequently DR is not being in effect,

a combination of SIR and SAVE.

Sliced inverse regression and directional regression are, to some extent, robust

against non-elliptical distributions, as demonstrated in Li and Dong (2009) and

Dong and Li (2010). But the Stein’s Lemma-based method generally works

well, and in most cases better when compared with these methods for mixture

multivariate skew-elliptical distributions, even when there are parameters to be

estimated. Unlike traditional methods, StI is widely tolerant of both elliptical

and non-elliptical distribution. The results of Cases (1.6) and (2.6) suggest that

StI has advantages for distributions beyond the elliptical.

5. Data Example: Handwritten Digital Data

The University of California at Irvine machine-learning repository

(ftp://ftp.ics.uci.edu/pub/machine-learning-databases/pendigits/)

contains 10,992 samples of handwritten digits (0, 1, . . . , 9) from 44 different writ-

ers. Each digit is stored as a 16-dimensional vector, regarded as the predictor,

with 16 digits 0, 1, . . . , 9 as the response variable values. Zhu and Hastie (2003)

divided the dataset into a learning set (7,494 cases) and a testing set (3,498

cases), then investigated and found important discriminant directions. Later,

Li and Wang (2007), and Dong and Li (2010) studied the data for sufficient

dimension reduction.

Among digits 0 to 9, we consider 0, 6 and 9 because they are easily confused.

We used the dimension reduction methods StI, SIR, SAVE, and DR to identify

dimension reduction directions. The learning set contains 780, 720, and 719 sam-

ple points for digits 0, 6, 9 respectively, and the testing set contains 363, 336, and

336 sample points accordingly. With p = 16, (16+5)2 = 441, the sample size was

taken to be n = 450. We randomly drew n = 450 points from the learning set,

then applied StI, SIR, SAVE, and DR to identify central subspaces B when the

structural dimension was set to be K = 2, and 3. Figures 1 and 2 show the data

structure of X when one random sampling was performed. It is clear that the

data have three groups and are not elliptically symmetric. When the data were

projected onto the respective central subspaces B, SIR and DR got data clouds

with a certain symmetry: three groups put the data cloud in a triangular pat-

tern. This was seen before, see Dong and Li (2010). SAVE did not separate the

three groups well. In Figure 1, the data cloud determined by StI shows that the

three groups are significantly separated, and that the points with the response

value 0 form a half-circle around the other two groups. Previous studies did not
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Figure 1. Plots for the handwritten digits data with methods StI, SIR, SAVE
and DR and K = 2. ·, + and ◦ respectively denote the digits 0, 6 and 9.

Figure 2. Plots for the handwritten digits data with methods StI, SIR, SAVE
and DR and K = 3. ·, + and ◦ respectively denote the digits 0, 6 and 9.

find this. In Figure 2 with K = 3, we see that the points with the response

value 0 form a crescent apart from the other two groups. Together with the
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Table 3. The means and standard deviations (in parentheses) of 100R2 and
100R2

w for handwritten digits.

Fitted Model K StI SIR SAVE DR

Nonparametric regression K = 2 99.91(0.13) 99.96(0.11) 28.96(5.09) 86.84(2.15)
K=3 99.99(0.01) 99.99(0.06) 37.42(3.65) 88.38(2.05)

Logistic regression K = 2 99.43(0.72) 99.69(0.34) 1.70(1.69) 99.44(0.64)
K=3 99.41(0.89) 99.78(0.36) 2.07(1.96) 99.65(0.57)

data structure that SIR and DR found, classification can work better. To show

the fitting effect, we first blindly estimated a nonparametric regression function

without taking the central subspaces into account. To perform this, n = 450

observations were randomly sampled from the test set, then projected onto the

corresponding central subspaces B. A kernel smoother was used to estimate the

nonparametric regression function E(Y |X) = G(BTX),

ŷi =

∑n
j=1 yjKh(B̂

τxj − B̂τxi)∑n
j=1Kh(B̂τxj − B̂τxi)

, (i = 1, 2, . . . , n). (5.1)

Here the kernel function is the standard Gaussian function with bandwidth h

selected by cross-validation, and (xj , yj)’s the sample points from the test set.

Then the R2 value was computed,

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

, (5.2)

where ȳ = n−1Σn
i=1yi. The responses yi are discrete, we applied logistic regression

to these test samples projected onto the corresponding central subspaces B. The

Matlab function “mnrfit(x,y)” was called to obtain the predicted values ŷi. Then

R2 was computed.

The procedure was repeated 100 times to compute the mean and standard

deviation of R2. The results are reported in Table 3. We see that the central

subspaces determined by StI, SIR and DR aid good model fitting, whereas SAVE

did not work well. SIR again shows its robustness to the underlying distribution.

6. Concluding Remarks

In the paper, Stein’s Lemma is revisited to see how it handles multivariate

mixture skew-elliptical distributions. As a by-product, we give some results to

see how the ellipticity (or the linearity condition) is close to a necessary and

sufficient condition for a Stein’s Lemma-based method to identify the central

subspace. This idea could be extended to consider a pHd-type method related

to the second derivative of conditional expectation of Y given X. Also, it would
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Figure 1. Plots for the handwritten digits data with methods StI, SIR, SAVE
and DR and K = 2. ·, + and ◦ respectively denote the digits 0, 6 and 9.

Figure 2. Plots for the handwritten digits data with methods StI, SIR, SAVE
and DR and K = 3. ·, + and ◦ respectively denote the digits 0, 6 and 9.

find this. In Figure 2 with K = 3, we see that the points with the response

value 0 form a crescent apart from the other two groups. Together with the

MIXTURE MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS 17

Table 3. The means and standard deviations (in parentheses) of 100R2 and
100R2

w for handwritten digits.

Fitted Model K StI SIR SAVE DR

Nonparametric regression K = 2 99.91(0.13) 99.96(0.11) 28.96(5.09) 86.84(2.15)
K=3 99.99(0.01) 99.99(0.06) 37.42(3.65) 88.38(2.05)

Logistic regression K = 2 99.43(0.72) 99.69(0.34) 1.70(1.69) 99.44(0.64)
K=3 99.41(0.89) 99.78(0.36) 2.07(1.96) 99.65(0.57)

data structure that SIR and DR found, classification can work better. To show

the fitting effect, we first blindly estimated a nonparametric regression function

without taking the central subspaces into account. To perform this, n = 450

observations were randomly sampled from the test set, then projected onto the

corresponding central subspaces B. A kernel smoother was used to estimate the

nonparametric regression function E(Y |X) = G(BTX),

ŷi =

∑n
j=1 yjKh(B̂

τxj − B̂τxi)∑n
j=1Kh(B̂τxj − B̂τxi)

, (i = 1, 2, . . . , n). (5.1)

Here the kernel function is the standard Gaussian function with bandwidth h

selected by cross-validation, and (xj , yj)’s the sample points from the test set.

Then the R2 value was computed,

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳ)2

, (5.2)

where ȳ = n−1Σn
i=1yi. The responses yi are discrete, we applied logistic regression

to these test samples projected onto the corresponding central subspaces B. The

Matlab function “mnrfit(x,y)” was called to obtain the predicted values ŷi. Then

R2 was computed.

The procedure was repeated 100 times to compute the mean and standard

deviation of R2. The results are reported in Table 3. We see that the central

subspaces determined by StI, SIR and DR aid good model fitting, whereas SAVE

did not work well. SIR again shows its robustness to the underlying distribution.

6. Concluding Remarks

In the paper, Stein’s Lemma is revisited to see how it handles multivariate

mixture skew-elliptical distributions. As a by-product, we give some results to

see how the ellipticity (or the linearity condition) is close to a necessary and

sufficient condition for a Stein’s Lemma-based method to identify the central

subspace. This idea could be extended to consider a pHd-type method related

to the second derivative of conditional expectation of Y given X. Also, it would
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be possible to study for which skew distributions the linearity could be removed

when SIR or MAVE is applied. These researches are ongoing.

In practice, the testing of distributions is in needed. From the second part

of Corollary 2, when its conditions are not satisfied, the covariance between Y

and X is not enough for identifying the central subspace and the term
m∑
j=1

wjΣjEX(j)

[
m(Y )

∂{lnΦq(C
τ
j X

(j) + νj ; 0, Dj)}
∂X(j)

]

needs to be estimated. When the generalized Stein’s Lemma is applied in this

case, we should check whether the underlying distribution is a MMSE distribu-

tion. This is an issue for existing SDR methods, for which the testing of ellipticity

is required. In our case, only skewness testing is needed; this is a ongoing project.

Acknowledgement

The research described here was supported by a grant from the Research

Council of Hong Kong, and a grant from Hong Kong Baptist University, Hong

Kong. The authors thank the Editor, an Associate editor and two referees for

their constructive comments that led to an improvement of an early manuscript.

The first two coauthors share the first authorship due to their contributions in

the original and later revisions, respectively.

Appendix: Proofs of Theorems and Propositions

Lemma A.1 (Integration by parts). Let X = (X1, X2, · · · , Xp)
τ ∈ Rp. Suppose

that functions H(x) and J(x) are weakly differentiable. Then∫

Ω
H(x)

∂J(x)

∂x
dx+

∫

Ω
J(x)

∂H(x)

∂x
dx =

∫

Ω

∂{H(x)J(x)}
∂x

dx, (A.1)

provided that all integrals exist, where the set Ω ⊆ Rp is a given domain. When

H(x)J(x) satisfies that, at the boundary Ω∗ of Ω, H(xi)J(xi) |xi∈Ω∗= 0 for all

i = 1, . . . , p, then

−
∫

Ω
H(x)

∂J(x)

∂x
dx

∫

Ω
J(x)

∂H(x)

∂x
dx. (A.2)

Proof of Theorem 1. First, consider an MSE distribution with dG(p)(u)/du =

(−1/2)g(p)(u) for u ∈ (0,+∞) and dQ(x)/dx = 2Σ−1(x − µ). We then have,

invoking Lemma A.1,

Σ−1EX[m(Y )(X− µ)] = Σ−1EX[H(X)(X− µ)]

=

∫

Ω
H(x) Σ−1(x− µ) cE |Σ|−1/2g(p){Q(x)}Ψq(Cx+ ν;D, g

(q)
Q(x)) dx
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= −cE |Σ|−1/2

∫

Ω
H(x) Ψq(Cx+ ν;D, g

(q)
Q(x)) dG

(p){Q(x)}

= cE |Σ|−1/2

∫

Ω

[∂H(x)

∂x
Ψq(Cx+ ν;D, g

(q)
Q(x)) +H(x)

∂Ψq(Cx+ ν;D, g
(q)
Q(x))

∂x

]

×G(p){Q(x)}dx

= EX

[
∂H(X)

∂X
· G

(p){Q(X)}
g(p){Q(X)}

]

+EX

[
H(X) · G

(p){Q(X)}
g(p){Q(X)}

·
∂{lnΨq{CX+ ν;D, g

(q)
Q(X)}

∂X

]

= EX

[
∂h(BτX)

∂BτX
· G

(p){Q(X)}
g(p){Q(X)}

]

+EX

[
m(Y ) · G

(p){Q(X)}
g(p){Q(X)}

·
∂{lnΨq{CX+ ν;D, g

(q)
Q(X)}

∂X

]
,

provided H(X) = E(m(Y )|X), where cE = [Ψq(ν;D + CΣ̄Cτ , g(q))]−1. Since

the distribution function Ψq(CX+ ν;D, g
(q)
Q(x)) ∈ [0, 1], the boundary conditions

G(p){Q(xi)} ·Ψq(C
τX+ ν;D, g

(q)
Q(X)) ·H(x)|xi∈∂Ω = 0 simplified to G(p){Q(xi)} ·

H(xi)|xi∈∂Ω = 0 for all i = 1, . . . , p.

Now we show (3.5) for MMSE distributions. From their definition and the

above proof for MSE distributions, we see that

EX[m(Y )(X− µ∗)]

=

m∑
j=1

wjEX(j)

[
G

(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂H(X(j))

∂X(j)

]

+
m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]

=
m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

]

+

m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]
.

Here µ∗ =
∑m

j=1{EX(j) [H(X(j))]/EX[H(X)]}wjµj =
∑m

j=1wjµj , because

EX(j) [H(X(j))] = EX[H(X)] = E(m(Y )) for any 1 ≤ j ≤ m. The proof is

finished.
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be possible to study for which skew distributions the linearity could be removed

when SIR or MAVE is applied. These researches are ongoing.

In practice, the testing of distributions is in needed. From the second part

of Corollary 2, when its conditions are not satisfied, the covariance between Y

and X is not enough for identifying the central subspace and the term
m∑
j=1

wjΣjEX(j)

[
m(Y )

∂{lnΦq(C
τ
j X

(j) + νj ; 0, Dj)}
∂X(j)

]

needs to be estimated. When the generalized Stein’s Lemma is applied in this

case, we should check whether the underlying distribution is a MMSE distribu-

tion. This is an issue for existing SDR methods, for which the testing of ellipticity

is required. In our case, only skewness testing is needed; this is a ongoing project.
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Appendix: Proofs of Theorems and Propositions

Lemma A.1 (Integration by parts). Let X = (X1, X2, · · · , Xp)
τ ∈ Rp. Suppose

that functions H(x) and J(x) are weakly differentiable. Then∫

Ω
H(x)

∂J(x)

∂x
dx+

∫

Ω
J(x)

∂H(x)

∂x
dx =

∫

Ω

∂{H(x)J(x)}
∂x

dx, (A.1)

provided that all integrals exist, where the set Ω ⊆ Rp is a given domain. When

H(x)J(x) satisfies that, at the boundary Ω∗ of Ω, H(xi)J(xi) |xi∈Ω∗= 0 for all

i = 1, . . . , p, then

−
∫

Ω
H(x)

∂J(x)

∂x
dx

∫

Ω
J(x)

∂H(x)

∂x
dx. (A.2)

Proof of Theorem 1. First, consider an MSE distribution with dG(p)(u)/du =

(−1/2)g(p)(u) for u ∈ (0,+∞) and dQ(x)/dx = 2Σ−1(x − µ). We then have,

invoking Lemma A.1,

Σ−1EX[m(Y )(X− µ)] = Σ−1EX[H(X)(X− µ)]

=

∫

Ω
H(x) Σ−1(x− µ) cE |Σ|−1/2g(p){Q(x)}Ψq(Cx+ ν;D, g

(q)
Q(x)) dx
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= −cE |Σ|−1/2

∫

Ω
H(x) Ψq(Cx+ ν;D, g

(q)
Q(x)) dG

(p){Q(x)}

= cE |Σ|−1/2

∫

Ω

[∂H(x)

∂x
Ψq(Cx+ ν;D, g

(q)
Q(x)) +H(x)

∂Ψq(Cx+ ν;D, g
(q)
Q(x))

∂x

]

×G(p){Q(x)}dx

= EX

[
∂H(X)

∂X
· G

(p){Q(X)}
g(p){Q(X)}

]

+EX

[
H(X) · G

(p){Q(X)}
g(p){Q(X)}

·
∂{lnΨq{CX+ ν;D, g

(q)
Q(X)}

∂X

]

= EX

[
∂h(BτX)

∂BτX
· G

(p){Q(X)}
g(p){Q(X)}

]

+EX

[
m(Y ) · G

(p){Q(X)}
g(p){Q(X)}

·
∂{lnΨq{CX+ ν;D, g

(q)
Q(X)}

∂X

]
,

provided H(X) = E(m(Y )|X), where cE = [Ψq(ν;D + CΣ̄Cτ , g(q))]−1. Since

the distribution function Ψq(CX+ ν;D, g
(q)
Q(x)) ∈ [0, 1], the boundary conditions

G(p){Q(xi)} ·Ψq(C
τX+ ν;D, g

(q)
Q(X)) ·H(x)|xi∈∂Ω = 0 simplified to G(p){Q(xi)} ·

H(xi)|xi∈∂Ω = 0 for all i = 1, . . . , p.

Now we show (3.5) for MMSE distributions. From their definition and the

above proof for MSE distributions, we see that

EX[m(Y )(X− µ∗)]

=

m∑
j=1

wjEX(j)

[
G

(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂H(X(j))

∂X(j)

]

+
m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]

=
m∑
j=1

wjΣjBEX(j)

[
∂h(BτX(j))

∂BτX(j)

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

]

+

m∑
j=1

wjΣjEX(j)

[
m(Y )

G
(p)
j {Qj(X

(j))}

g
(p)
j {Qj(X(j))}

∂{lnΨq(C
τ
j X

(j) + νj ;Dj , g
(q)

Qj(X(j))
)}

∂X(j)

]
.

Here µ∗ =
∑m

j=1{EX(j) [H(X(j))]/EX[H(X)]}wjµj =
∑m

j=1wjµj , because

EX(j) [H(X(j))] = EX[H(X)] = E(m(Y )) for any 1 ≤ j ≤ m. The proof is

finished.
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Proof of Theorem 2. Write the right side of (4.4) as M(t) for any function

m(Y, t). We know thatM(t)=B·z(t) where z(t)=EX[{G(p){Q(X)}/g(p){Q(X)}}
×{∂h(BτX, t)/∂BτX}] is a K × 1 vector. Thus M(t) lies in SY |X, the corre-

sponding eigenvector associated with the nonzero eigenvalue of M(t)M(t)τ lies

in SY |X. Then the corresponding eigenvectors associated with the nonzero eigen-

values of M =
∫
M(t)M(t)τd FY (t) lie in SY |X, span(M) ⊆ SY |X. On the other

hand, when Z =
∫
z(t)z(t)τd FY (t) is non-singular, M = BZBτ has K nonzero

eigenvalues, so span(M) = SY |X.
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Ferré, L. (1998). Determing the dimension in sliced inverse regression and related methods. J.

Amer. Statist. Assoc. 93, 132-140.

MIXTURE MULTIVARIATE SKEW-ELLIPTICAL DISTRIBUTIONS 21

Genton, M. G. (ed.) (2004). Skew-elliptical Distributions and Their Applications: A Journey
Beyond Normality. Chapman & Hall/CRC, Boca Raton, Florida.
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