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Abstract: To protect the confidentiality of survey respondents’ identities and sensi-

tive attributes, statistical agencies can release data in which confidential values are

replaced with multiple imputations. These are called synthetic data. We propose

a two-stage approach to generating synthetic data that enables agencies to release

different numbers of imputations for different variables. Generation in two stages

can reduce computational burdens, decrease disclosure risk, and increase inferen-

tial accuracy relative to generation in one stage. We present methods for obtaining

inferences from such data. We describe the application of two stage synthesis to

creating a public use file for a German business database.
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1. Introduction

Many national statistical agencies, survey organizations, and researchers–
henceforth called agencies–disseminate microdata, i.e., data on individual units in
public use files. These agencies strive to release files that are (i) safe from attacks
by ill-intentioned data users seeking to learn respondents’ identities or attributes,
(ii) informative for a wide range of statistical analyses, and (iii) easy for users
to analyze with standard statistical methods. Doing this well is a difficult task.
The proliferation of publicly available databases and improvements in record
linkage technologies have increased the risk of disclosure to the point where most
agencies alter microdata before release (Reiter (2004a)). For example, agencies
globally recode variables, such as releasing ages in five year intervals or top-
coding incomes above 100,000 as “100,000 or more”; they swap data values for
randomly selected units; or, they add random noise to data values. When applied
with high intensity, these strategies reduce the utility of the released data, making
some analyses impossible and severely distorting the results of others. They also
complicate secondary analyses: adjusting inferences for data alterations may be
beyond some public data users’ statistical capabilities.

An alternative approach to disseminating public use data was suggested by
Rubin (1993): release multiply-imputed, synthetic data sets. Specifically, he
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proposed that agencies (i) randomly and independently sample units from the
sampling frame to comprise each synthetic data set, (ii) impute unknown data
values for units in the synthetic samples using models fit with the original sur-
vey data, and (iii) release multiple versions of these data sets to the public.
A related approach was suggested by Fienberg (1994). These are called fully
synthetic data sets. Releasing fully synthetic data can protect confidentiality,
since identification of the sampled units and their sensitive data is very difficult
when the released data are not the original records and do not contain collected
values. Furthermore, with appropriate synthetic data generation and the infer-
ential methods developed by Raghunathan, Reiter and Rubin (2003) and Reiter
(2005c), users can make valid inferences for a variety of estimands using stan-
dard, complete-data statistical methods and software. Other attractive features
of fully synthetic data are described by Rubin (1993), Little (1993), Fienberg,
Makov and Steele (1998), Raghunathan et al. (2003), and Reiter (2002, 2005b).

Some agencies have adopted a variant of Rubin’s original approach, suggested
by Little (1993): release data sets comprising the units originally surveyed with
some collected values, such as sensitive values at high risk of disclosure or values
of key identifiers, replaced with multiple imputations. These are called partially
synthetic data sets. For example, the U.S. Federal Reserve Board protects data in
the Survey of Consumer Finances by replacing large monetary values with mul-
tiple imputations (Kennickell (1997)). The U.S. Bureau of the Census (Abowd
and Woodcock (2001, 2004)) protects data in longitudinal data sets by replac-
ing all values of sensitive variables with multiple imputations and leaving other
variables at their actual values. Little, Liu and Raghunathan (2004) present an
algorithm, named SMIKe, for simulating multiple values of key identifiers for
selected units. Partially synthetic, public use data are being developed for the
U.S. for the Survey of Income and Program Participation, the Longitudinal Busi-
ness Database, the Longitudinal Employer-Household Dynamics survey, and the
American Community Survey group quarters data.

Partial synthesis is appealing because it promises to maintain the primary
benefits of full synthesis–protecting confidentiality while allowing users to make
inferences without learning complicated statistical methods or software–with de-
creased sensitivity to the specification of imputation models. Valid inferences
from partially synthetic data sets can be obtained using the methods developed
by Reiter (2003, 2005c), whose rules for combining point and variance estimates
differ from those of Rubin (1987) and also from those of Raghunathan et al.
(2003). Methods for handling missing data simultaneously with partially syn-
thetic data are developed in Reiter (2004b). Other illustrations of partially syn-
thetic data include Reiter (2005d) and Mitra and Reiter (2006).

Fully and partially synthetic data have a key difference. Each fully syn-
thetic data set comprises independent samples of records off the frame, whereas
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each partially synthetic data set comprises the original records. Essentially, full
synthesis simulates repeated sampling of the population, and partial synthesis
modifies collected values for the original records.

In this article, we present a two-stage approach to generating fully and par-
tially synthetic data in which agencies impute some variables only a few times
and other variables many times. Two stage synthesis can have advantages over
one-stage synthesis. In some settings, it reduces disclosure risks while increasing
data usefulness. For example, agencies may want to release only a few imputed
values of quasi-identifiers or sensitive variables, since intruders can use informa-
tion from multiple data sets to refine guesses of the true values (Little et al.
(2004), Reiter (2005d), and Mitra and Reiter (2006)), but they may want to
release large numbers of imputations for other variables to drive down the vari-
ance introduced by imputation. In other settings, it reduces the labor needed
to generate synthetic data. This is the case for the two-stage synthesis of the
public release data for the German Institute for Employment Research (IAB)
Establishment Panel, which is described in Section 2. A related approach, called
nested multiple imputation (Shen (2000), Harel and Schafer (2003), and Rubin
(2003)), has been used to reduce labor in the context of imputation for missing
data.

The remainder of this article is organized as follows. Section 2 motivates the
usefulness of two-stage synthetic data for reducing disclosure risks or decreasing
agencies’ labor. Section 3 presents methods for obtaining inferences from two-
stage synthetic data. Section 4 illustrates the performance of these methods via
simulation studies. Section 5 concludes with general remarks about synthetic
data.

2. Motivation for Two-Stage Synthesis

We first review evidence from the literature on the implications for disclosure
risk and inferential accuracy of releasing many synthetic data sets. Two-stage
synthesis allows agencies to compromise on the risk-accuracy trade-off. We then
describe the synthesis of data from the IAB Establishment Panel, for which one-
stage synthesis demands too high labor cost.

2.1. Implications of releasing many synthetic data sets

From the perspective of the data analyst, there are benefits when agencies
release a large number of synthetic data sets. The variability in point estimates
decreases with the number of replicates. The reduction can be substantial when
many values are synthesized. For example, Reiter (2002) finds a 30% increase
in the variance of survey-weighted estimates of population means when dropping
from one hundred to five fully synthetic data sets. Reiter (2003) finds nearly a
100% increase in the variance of regression coefficients when going from fifty to
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two partially synthetic data sets in which all values of a dependent variable are
replaced with imputations. Increasing the number of replicates also reduces the
variability in estimators of variance. This variability can be large when many
values are synthesized; in fact, for fully synthetic data, Reiter (2005b) finds that
some variance estimators computed with ten fully synthetic data sets are so poor
as to be essentially worthless. Those variance estimators have acceptable prop-
erties with one hundred replicates. The incremental benefits become minimal as
the number of replicates gets large.

From the perspective of the agency, there are risks to releasing a large num-
ber of synthetic data sets. Increasing the number of replicates provides more
information for intruders to estimate the original data values. To illustrate this,
we extend the partial synthesis done by Mitra and Reiter (2006), which used
the 1987 U.S. Survey of Youth in Custody. The survey interviewed youths in
juvenile facilities about their family background, previous criminal history, and
drug and alcohol use. The sample contains 2,621 youths in 50 facilities. Mitra
and Reiter (2006) consider facility membership to be potentially identifying in-
formation. Therefore, they generated new facility identifiers for all youths. This
was done by (i) fitting multinomial regressions of facility identifiers on the survey
variables, (ii) drawing new values of parameters for the regressions and comput-
ing the resulting predicted probabilities, and (iii) simulating new identifiers from
the multinomial distributions based on the predicted probabilities. To assess
disclosure risk, they assumed that the intruder uses the mode of each youth’s
multiply-imputed facility as the best guess of the youth’s actual facility. When
no unique mode exists, they randomly select one value. We followed the same
procedures for different numbers of synthetic data sets. With three replicates,
approximately 17% of intruders’ guesses were correct. With ten replicates, this
increases to 20%. With fifty replicates, this increases to 24%. While perhaps
not alarming, the increasing identification rates certainly would push agencies to
minimize the number of imputations of facilities.

For fully synthetic data, there has been little work on the impacts on dis-
closure risk of releasing many replicates. In part, this is because identification
disclosure risks are low for fully synthetic data. Each data set contains differ-
ent samples of records, and all survey variables are synthesized. However, the
risks are not zero. When the imputation models are highly detailed, the imputa-
tions could reproduce combinations of quasi-identifiers for real records. Intruders
might interpret this to mean that real-data records with those characteristics were
in the original sample, which could result in identification disclosures if some of
those records are unique in the population. This risk could be magnified when
releasing multiple synthetic data sets, because (i) there are several opportunities
to impute such records, and (ii) there could be repetitions of realistic synthetic
records that might strengthen the intruder’s confidence that a similar real record
was in the original data.
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Ideally, when considering the release of public use data, the agency bal-
ances confidentiality protection and inferential accuracy; see, for example, Dun-
can, Keller-McNulty and Stokes (2001), Reiter (2005a), Gomatam, Karr, Reiter
and Sanil (2005), and Karr, Kohnen, Oganian, Reiter and Sanil (2006). Con-
fidentiality concerns often trump accuracy concerns. With one-stage synthesis,
favoring confidentiality over accuracy could lead agencies to release few repli-
cates. With two-stage synthesis, agencies can compromise on the risk-accuracy
trade-off. Agencies can release few imputations of quasi-identifiers or other con-
fidential variables to reduce disclosure risks, and release many imputations of
other variables to enable analysts to improve precision for analyses involving
those variables.

2.2. Synthesis of the IAB establishment panel

The IAB Establishment Panel, conducted since 1993, contains detailed in-
formation about German firms’ personnel structure, development, and policy.
Considered one of most important business panels in Germany, there is high de-
mand for access to these data from external researchers. Because of the sensitive
nature of the data, researchers desiring direct access to the data have to work on
site at the IAB. Alternatively, researchers can submit code for statistical analy-
ses to the IAB research data center, whose staff run the code on the data, and
send the results to the researchers. To help researchers develop code, the IAB
provides remote access to a publicly available “dummy data set” with the same
structure as the Establishment Panel. The dummy data set comprises random
numbers generated without attempts to preserve the distributional properties of
the variables in the Establishment Panel data. For all analyses done with the
genuine data, researchers can publicize their analyses only after IAB staff check
for potential violations of confidentiality.

Releasing public use files of the Establishment Panel would allow more re-
searchers to access the data with fewer burdens, stimulating research on German
business data. It also would free up staff time from running code and conducting
confidentiality checks. Because there are so many sensitive variables in the data
set, standard disclosure limitation methods like swapping or microaggregation
would have to be applied with high intensity, which would severely compromise
the utility of the released data. Therefore, the IAB decided to develop synthetic
data, specifically (at this stage) fully synthetic data.

Each synthetic data set comprises establishments sampled from the sampling
frame for the Establishment Panel. Records are sampled according to the de-
sign of the Establishment Panel–stratifying by region, establishment size, and
industry–to take advantage of the efficiency gained by the original stratification.
Let X be the variables corresponding to the stratum indicators.
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Values of the Establishment Panel survey variables, Yb, are imputed for all
establishments in the synthetic data samples. These models are developed as
follows. First, for all records in the original panel, establishment-level data, Ya,
are obtained from the German Social Security Data (GSSD). The GSSD contains
information on individuals covered by social security, including data on their
employer such as demographic characteristics and average wages of its employees.
The employers are identified by the establishment identification numbers used in
the Establishment Panel, which enables direct matching between the two data
sources. Second, a statistical model relating Yb to (X,Ya) is estimated using the
data from the original panel. Third, for each synthetic sample, the newly drawn
establishments are matched to the GSSD and values of Ya are appended to the
synthetic data. Fourth, values of Yb are simulated from f(Yb|X,Ya), using the X

and the appended values of Ya for the new establishments. After the imputation,
all variables in Ya are deleted for confidentiality reasons. The result is a synthetic
data set that mimics the structure of the Establishment Panel, comprising the
stratification indicators X and the imputed survey variables Yb.

Previous research has shown that releasing large numbers of fully synthetic
data sets improves synthetic data inferences (Reiter (2005b)). The usual advice
from multiple imputation for missing data–release five multiply-imputed data
sets–tends not to work well for fully synthetic data because the fractions of
“missing” information are large. Following Reiter (2005b), the IAB desired to
generate and release one hundred fully synthetic data sets. However, doing so
requires matching to the GSSD one hundred times and imputing Yb for each
matched sample. These are very labor intensive tasks; the matching has to
be checked and corrected if necessary each time, and the matched data need
to be transferred to different software platforms to impute Yb. Furthermore,
each matched data file is re-configured manually to implement the imputation
routines.

This led the IAB synthesis team to adopt a two-stage approach to synthe-
sis. Only ten synthetic samples are drawn, thus requiring only ten iterations
of matching and data processing to obtain Ya. For each sample, Yb is imputed
another ten times, resulting in one hundred data sets. This two-stage method
reduces the labor by a factor of ten while allowing the release of one hundred data
sets containing information about Yb, as opposed to only ten. For more details
about the imputation models in the synthesis, based on the sequential multivari-
ate regression imputation strategy of Raghunathan, Lepkowski van Hoewyk and
Solenberger (2001), see Drechsler, Dundler, Bender, Rässler and Zwick (2008).

The ten sets of Yb for each sample are correlated. Existing inferential meth-
ods for synthetic data do not account for this correlation. We present inferential
methods that do so for both full and partial two-stage synthesis in Section 3. The
methods are presented assuming all variables are released, but they apply when
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some variables are suppressed as in the synthesis of the Establishment Panel. The
methods also assume for generality that (Ya, Yb) is known only for the sampled
records.

3. Inferences with Two-Stage Synthetic Data

For a finite population of size N , let Il = 1 if unit l is included in the survey,
and Il = 0 otherwise, where l = 1, . . . , N . Let I = (I1, . . . , IN ), and let the
sample size s =

∑
Il. Let X be the N × d matrix of sampling design variables,

e.g. stratum or cluster indicators or size measures. We assume that X is known
approximately for the entire population, for example from census records or the
sampling frame(s). Let Y be the N ×p matrix of survey data for the population.
Let Yinc = (Yobs, Ymis) be the s × p sub-matrix of Y for all units with Il = 1,
where Yobs is the portion of Yinc that is observed, and Ymis is the portion of Yinc

that is missing due to nonresponse. Let R be an N × p matrix of indicators
such that Rlk = 1 if the response for unit l to item k is recorded, and Rlk = 0
otherwise. The observed data is thus Dobs = (X,Yobs, I, R).

3.1. Fully synthetic data

Let Ya be the values simulated in stage 1, and let Yb be the values simulated
in stage 2. The agency seeks to release fewer replications of Ya than of Yb, yet do
so in a way that enables the analyst of the data to obtain valid inferences with
standard complete data methods. To do so, the agency generates synthetic data
sets in a three-step process. First, the agency fills in the unobserved values of Ya

by drawing values from f(Ya | Dobs), creating a partially completed population.
This is repeated independently m times to obtain Y

(i)
a , for i = 1, . . . ,m. Second,

in each partially completed population defined by nest i, the agency generates
the unobserved values of Yb by drawing from f(Yb | Dobs, Y

(i)
a ), thus completing

the rest of the population values. This is repeated independently r times for
each nest to obtain Y

(i,j)
b for i = 1, . . . ,m and j = 1, . . . , r. The result is M =

mr completed populations, P (i,j) = (Dobs, Y
(i)
a , Y

(i,j)
b ), where i = 1, . . . ,m and

j = 1, . . . , r. Third, the agency takes a simple random sample of size nsyn from
each completed population P (i,j) to obtain D(i,j). These M samples, Dsyn =
{D(i,j) : i = 1, . . . ,m; j = 1, . . . , r}, are released to the public. Each released
D(i,j) includes a label indicating its value of i, i.e. an indicator for its nest.

The agency can sample from each P (i,j) using designs other than simple ran-
dom samples, such as the stratified sampling in the IAB Establishment Panel
synthesis. A complex design can improve efficiency and ensure adequate repre-
sentation of important sub-populations for analyses. When synthetic data are
generated using complex samples, analysts should account for the design in in-
ferences, for example with survey-weighted estimates. One advantage of simple
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random samples is that analysts can make inferences with techniques appropriate
for simple random samples.

The agency could simulate Y for all N units, thereby avoiding the release of
actual values of Y . In practice, it is not necessary to generate completed-data
populations for constructing the D(i,j); the agency need only generate values of Y

for units in the synthetic samples. The formulation of completing the population,
then sampling from it, aids in deriving inferential methods.

Let Q be the estimand of interest, such as a population mean or a regres-
sion coefficient. The analyst of synthetic data seeks f(Q|Dsyn). The three-step
process for creating Dsyn suggests that

f(Q|Dsyn) =
∫

f(Q|Dobs, Psyn, Dsyn)f(Dobs|Psyn, Dsyn)

×f(Psyn|Dsyn)dDobsdPsyn, (3.1)

where Psyn = {P (i,j) : i = 1, . . . ,m; j = 1, . . . , r}. As in other applications
of multiple imputation approaches, we find each component of this integral by
assuming that the analyst’s distributions are identical to those used by the agency
for creating Dsyn. We also assume that the sample sizes are large enough to
permit normal approximations for these distributions. Thus, we require only the
first two moments for each distribution, which can be derived using standard
large sample Bayesian arguments. Diffuse priors are assumed for all parameters.

Integration can be carried out numerically, as we describe in the Supple-
ment to the on-line version of the article (http://www.stat.sinica.edu.tw/
statistica). Here, we present an approximation that can be easily computed
by analysts using Dsyn. Its derivation also is in the Supplement. For all (i, j),
let q(i,j) be the estimate of Q, and let u(i,j) be the estimate of the variance
associated with q(i,j). The q(i,j) and u(i,j) are computed based on the design
used to sample from P (i,j). Note that when nsyn = N , the u(i,j) = 0. Let
q̄
(i)
r =

∑
j q(i,j)/r, and q̄M =

∑
i q̄

(i)
r /m. Let bM =

∑
i(q̄

(i)
r − q̄M )2/(m − 1), and

w
(i)
r =

∑
j(q

(i,j) − q̄
(i)
r )2/(r − 1). Finally, let ūM =

∑
i,j u(i,j)/(mr).

For large m and r, we approximate f(Q|Dsyn) by a normal distribution with
E(Q|Dsyn) = q̄M and V ar(Q|Dsyn) = (1 + m−1)bM + (1 − 1/r)w̄M − ūM = Tf .
For modest m and r, we obtain inferences by using a t-distribution, (q̄M −Q) ∼
tνf

(0, Tf ). The degrees of freedom, νf , are

νf =

(
((1 + 1/m)bM )2

(m − 1)T 2
f

+
((1 − 1/r)w̄M )2

(m(r − 1))T 2
f

)−1

.

The degrees of freedom are derived by matching the first two moments of Tf to a
chi-squared distribution with νf degrees of freedom, as shown in the Supplement.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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It is possible that Tf < 0, particularly for small values of m and r. Generally,
negative values of Tf can be avoided by making nsyn or m and r large. To
adjust for negative variances, one approach is to use the always positive variance
estimator, T ∗

f = Tf + λūM , where λ = 1 when Tf ≤ 0 and λ = 0 when Tf > 0.
When Tf < 0, using νf is overly conservative, since T ∗

f tends to be conservative
when λ = 1. To avoid excessively wide intervals, analysts can base inferences on
t-distributions with degrees of freedom ν∗

f = νf + λ∞.
Rather than t-approximations, analysts willing to use Monte Carlo methods

can simulate f(Q|Dsyn) directly; see the Supplement. This can be done for any
(m, r) and avoids adjustments for negative variance estimates. Agencies could
disseminate software routines to facilitate such simulations.

3.2. Partially synthetic data

We assume that Yinc = Yobs, i.e., there is no missing data. Methods for han-
dling missing data and one stage of partial synthesis simultaneously are presented
by Reiter (2004b).

The agency generates the partially synthetic data in two stages. Let Y
(i)
a be

the values imputed in the first stage in nest i, where i = 1, . . . ,m. Let Y
(i,j)
b be

the values imputed in the second stage in data set j in nest i, where j = 1, . . . , r.
Let Ynrep be the values of Yobs that are not replaced with synthetic data and
hence are released as is. Let Za,l = 1 if unit l, for l = 1, . . . , s, is selected to have
any of its first-stage data replaced, and let Za,l = 0 otherwise. Let Zb,l be defined
similarly for the second-stage values. Let Z = (Za,1, . . . , Za,s, Zb,1, . . . , Zb,s).

To create Y
(i)
a for those records with Za,l = 1, first the agency draws from

f(Ya | Dobs, Z), conditioning only on values not in Yb. Second, in each nest, the
agency generates Y

(i,j)
b for those records with Zb,l = 1 by drawing from f(Y (i,j)

b |
Dobs, Z, Y

(i)
a ). Each synthetic data set D(i,j) = (X,Y

(i)
a , Y

(i,j)
b , Ynrep, I, Z). The

entire collection of M = mr data sets, Dsyn = {D(i,j), i = 1, . . . ,m; j = 1, . . . , r},
with labels indicating the nests, is released to the public.

To obtain inferences from nested partially synthetic data, we assume the
analyst acts as if each D(i,j) is a sample according to the original design. We
require the integral

f(Q|Dsyn) =
∫

f(Q|Dobs, Dsyn)f(Dobs|Dsyn)dDobs. (3.2)

Unlike in fully synthetic data, there is no intermediate step of completing pop-
ulations. This integral can be approximated numerically using the approach
described in the Supplement. Here we present a straightforward approxima-
tion. For large m and r, we approximate (3.2) with a normal distribution with
E(Q|Dsyn) = q̄M and variance Tp = ūM + bM/m. For small m and r, we can
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use a t-distribution for inferences, (q̄M −Q) ∼ tνp(0, Tp). The degrees of freedom
νp = (m−1)(1+mūM/bM )2. This is derived by matching the first two moments
of Tp to a chi-squared distribution with νp degrees of freedom, as shown in the
Supplement. We note that Tp > 0 always, so that negative variance estimates do
not arise in two-stage partial synthesis.

4. Illustrative Simulations

Given Dsyn, analysts can use Monte Carlo methods to approximate
f(Q|Dsyn). However, as with other multiple imputation settings, many would
prefer to use the simpler combining rules presented in Section 3. Therefore, it
is important to evaluate the frequentist properties of these methods, which we
do with simulation studies. We simulate from correct predictive distributions in
these studies to focus on the properties of the approximations. Of course, for
genuine data the larger issue is the validity of the synthesis models themselves.
We discuss this further in Section 5.

We generated a population of N = 100, 000 records comprising five variables,
Y1, . . . , Y5. The (Y1, Y2) were drawn from a joint t-distribution with 20 degrees
of freedom and a correlation of 0.5. The (Y3, Y4, Y5) were drawn from the normal
distribution N(µ,Σ), where µ1 = 1.5Y1+1.5Y2, µ1 = 2.5Y1+2.5Y2, µ3 = −3.0Y1−
3.0Y2, and Σ has variance elements equal to 30 and covariance elements equal to
15. The observed data, Dobs, comprised the values of (Y1, . . . , Y5) for a simple
random sample of s = 1, 000 records from this population. We repeated the
simulation 5,000 times for both partial and full synthesis, each time drawing a
new Dobs from the population.

We estimate five quantities: the population mean of Y3 (Ȳ3), the regression
coefficients of Y1 (β1) and of Y5 (β5) in a regression of Y3 on all other variables,
and the regression coefficients of Y2 (α2) and of Y5 (α5) in a regression of Y1

on all other variables. For simplicity, we do not use finite population correction
factors when computing the u(i,j).

4.1. Results for partial synthesis

For the partial synthesis simulation, Y1 and Y2 were fixed at their original
values. We treated Ya = (Y3, Y4) as the first stage variables and Yb = Y5 as the
second stage variable. For each synthetic data set D(i,j), where i = 1, . . . ,m

and j = 1, . . . , r, we generated Y
(i)
a by sampling from f(Y3, Y4|Dobs), and we

simulated Y
(i,j)
b by sampling from f(Y5|Dobs, Y

(i)
a ), with noninformative prior

distributions on all parameters. The released data comprised the mr copies of
(Y (i)

a , Y
(i,j)
b ).

Table 1 summarizes the results for several combinations of (m, r). The av-
erages of the q̄M across the iterations are within simulation error of their cor-
responding population values; we do not report them in the table. For most
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Table 1. Simulation results for two-stage partially synthetic data.

95% CI Cov.
(m, r) Q Var(q̄M ) Avg. Tp Synthetic Observed
3, 3 Ȳ3 0.0588 0.0572 94.0 95.2

β1 0.0648 0.0666 95.2 95.1
β5 0.00115 0.00116 95.0 95.0
α2 0.00118 0.00109 93.9 93.6
α5 0.0000165 0.0000156 94.3 94.4

5, 5 Ȳ3 0.0499 0.0494 95.1 94.9
β1 0.0553 0.0565 94.9 95.1
β5 0.00103 0.00102 94.7 94.9
α2 0.00108 0.00101 94.4 94.4
α5 0.0000151 0.0000141 94.3 94.3

5, 20 Ȳ3 0.0471 0.0494 95.9 95.6
β1 0.0560 0.0554 94.6 95.0
β5 0.000955 0.000972 95.2 94.9
α2 0.00106 0.000989 93.9 94.0
α5 0.0000146 0.0000137 94.2 94.0

20, 5 Ȳ3 0.0391 0.0404 95.6 95.1
β1 0.0474 0.0472 94.9 94.7
β5 0.000917 0.000921 94.7 94.8
α2 0.00107 0.000974 93.5 93.6
α5 0.0000142 0.0000132 94.4 94.7

20, 20 Ȳ3 0.0396 0.0403 95.3 95.2
β1 0.0459 0.0470 95.4 95.2
β5 0.000879 0.000911 95.3 95.2
α2 0.00104 0.000968 94.4 94.0
α5 0.0000141 0.0000131 93.9 93.7

estimands, Tp is nearly unbiased for V ar(q̄M ). The coverage rates for the 95%
confidence intervals based on the methods in Section 3.2 are within simulation
error of those based on Dobs. The methods have good frequentist properties in
this simulation.

4.2. Results for full synthesis

For the full synthesis simulation, we assumed that (Y1, Y2) were known for
all N records and that (Y3, Y4, Y5) were known only for the s sampled records.
Using an analogy with the IAB Establishment Panel synthesis, the (Y1, Y2) are
like variables found in the German Social Security Data; the (Y3, Y4, Y5) are
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like variables only found in the Establishment Panel; and, concatenating all five
variables for the s records is like matching the information from the GSSD for
the Establishment Panel respondents. For simplicity, we did not use stratified
sampling.

We treated Ya = (Y1, Y2) as the first stage variables and Yb = (Y3, Y4, Y5) as
the second stage variables. For each synthetic data set D(i,j), where i = 1, . . . ,m
and j = 1, . . . , r, we generated Y

(i)
a by taking a random sample of nsyn = 1, 000

records from the population and using their values of (Y1, Y2). We generated Y
(i,j)
b

for these records by sampling from f(Y3, Y4, Y5|Dobs, Y
(i)
a ), with noninformative

prior distributions on all parameters. The released data comprise the mr copies
of the (Y (i)

a , Y
(i,j)
b ). By including the imputations for the first stage variables

in the released data, we deviate from the IAB Establishment Panel synthesis.
However, this enables evaluations of relationships between variables imputed at
different stages.

Table 2 summarizes the results for several combinations of m and r. The
averages of q̄M across the iterations are again within simulation error of their cor-
responding population values and not reported. For most estimands, Tf is nearly
unbiased for V ar(q̄M ). For m = r = 3, the values of Tf are frequently negative.
This results from high variability in bM and w̄M . Negative variance estimates be-
come less frequent as M increases, since the variability in bM and w̄M decreases.
The always positive variance estimator T ∗

f is, as expected, conservative.
The column labeled “95% CI Cov∗” displays the coverage rates of synthetic

95% confidence intervals based on T ∗
f and on the t-distributions with ν∗

f degrees of
freedom. When m or r is small, the intervals have greater than nominal coverage
rates. This is primarily due to the conservatism of T ∗

f . It also results from small
values of ν∗

f , sometimes less than one, that arise because of inadequacies in the
approximations for modest m and r. To avoid unrealistically small values, we
tried a modified degrees of freedom, ν∗∗

f = max{(m−1), ν∗
f}. As displayed in the

column labeled “95% CI Cov∗∗,” this results in coverage rates closer to 95%. The
adjustments used to obtain T ∗

f and ν∗∗
f are somewhat ad hoc, and the properties of

these simple fixes need to be studied further. We note that confidence intervals
based on normal distributions for all iterations led to consistently lower than
nominal coverage rates.

We also examined the variance estimator for one-stage fully synthetic data
developed by Raghunathan et al. (2003). That is, we ignored the nesting. The
one-stage variance estimator tends to underestimate variances. This underesti-
mation becomes less severe as m and r increase.
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Table 2. Simulation results for two-stage fully synthetic data.

(m, r) Q Var(q̄M ) Avg. Tf %Tf < 0 Avg. T ∗
f 95% CI Cov∗ 95% CI Cov∗∗

3, 3 Ȳ3 0.0409 0.0389 15.7 0.0448 97.6 95.2

β1 0.0537 0.0533 12.3 0.0587 98.0 95.9

β5 0.00108 0.00106 12.2 0.00117 98.0 96.2

α2 0.000766 0.000850 24.8 0.00109 97.6 96.3

α5 0.0000121 0.0000126 19.3 0.0000151 97.8 95.7

5, 5 Ȳ3 0.0327 0.0335 3.6 0.0349 99.2 95.5

β1 0.0458 0.0471 1.8 0.0479 98.8 96.0

β5 0.000929 0.000942 1.8 0.000958 98.8 95.8

α2 0.000615 0.000686 12.1 0.000802 99.6 95.0

α5 0.00000980 0.0000109 6.0 0.0000116 99.6 95.6

5, 20 Ȳ3 0.0319 0.0319 0.0 0.0319 95.6 95.4

β1 0.0448 0.0449 0.0 0.0449 95.4 95.4

β5 0.000878 0.000901 0.0 0.000901 95.8 95.7

α2 0.000581 0.000662 4.1 0.000701 99.1 95.0

α5 0.00000925 0.0000103 0.4 0.0000103 97.3 96.0

20, 5 Ȳ3 0.0303 0.0308 0.0 0.0308 95.9 94.8

β1 0.0454 0.0450 0.0 0.0450 95.1 94.9

β5 0.000885 0.000890 0.0 0.000890 95.1 94.8

α2 0.000501 0.000576 0.7 0.000582 98.4 94.1

α5 0.00000870 0.0000953 0.1 0.00000955 96.9 95.0

20, 20 Ȳ3 .0312 .0305 0.0 0.0305 94.6 94.6

β1 0.0426 0.0444 0.0 0.0444 95.5 95.5

β5 0.000850 0.000885 0.0 0.000885 95.6 95.6

α2 0.000492 0.000573 0.0 0.000573 96.6 95.9

α5 0.00000869 0.00000946 0.0 0.00000946 96.0 96.0

5. Concluding Remarks

The key to any synthetic data approach is the imputation models. For full
synthesis or partial synthesis with high fractions of replacement, the validity of
inferences depends critically on the validity of the models used to generate the
synthetic data. When the models fail to reflect certain relationships accurately,
analysts’ inferences also do not reflect those relationships. Similarly, incorrect
distributional assumptions built into the models are passed on to users’ analyses.
On the other hand, for partial synthesis that replaces only a modest fraction of
values and leaves many original values on the file, inferences are less sensitive to
the assumptions of the imputation models.

Agencies need to release information that helps analysts decide whether or
not the synthetic data are reliable for their analyses, especially with high fractions
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of synthesis. For example, agencies might include the code for synthetic data
generation with public releases of data. Or, they might include generic statements
that describe the imputation models, such as “Main effects for age, sex, and race
are included in the imputation models for education.” Analysts who desire finer
detail than afforded by the imputations may have to apply for special access to
the observed data.

Many analysts of public use data files estimate domain means and basic re-
gressions, whereas agencies generate imputations from more complicated models.
Such mismatches have been termed uncongeniality in the literature on multiple
imputation for missing data (Meng (1994, 2002)). There has been little theo-
retical work on the consequences of uncongeneality for synthetic data. However,
frequentist evaluations based on simulated data (Reiter (2002, 2003)) suggest
that one-stage synthetic data inferences have good properties–in the sense that
coverage rates of confidence intervals are near or exceed nominal rates–when the
analysts’ inferences can be embedded in the imputation models. The simulation
results in Section 4 are in accord with these findings. Empirical investigations of
frequentist properties based on genuine data tell basically the same story (Reiter
(2005b,d)).

For any particular setting, the agency can evaluate the synthetic data models
by comparing inferences made with synthetic data to those made with observed
data. Thus, evaluating imputation models for disclosure limitation is conceptu-
ally more straightforward than evaluating imputation models for missing data
(Reiter (2004b)).

The most extensive testing of the analytical validity of synthetic data has
been done for the Survey of Income and Program Participation (SIPP). In 2001,
the Census Bureau, the Internal Revenue Service, and the Social Security Ad-
ministration decided to supplement the information on SIPP panels from 1990
- 1996 with detailed earnings and Social Security benefits histories. The three
agencies agreed to release a version of the linked data only if all but four out
of over 600 variables were synthesized. To evaluate the synthesis, Abowd, Stin-
son and Benedetto (2006) compared inferences from the observed and synthetic
data for a large number of estimands. The synthesis models reproduced the
observed data univariate distributions for all variables but the highly skewed
wealth-related variables, and resulted in synthetic data confidence intervals very
similar to the corresponding observed data intervals for summary statistics for
important earnings and benefit measures (e.g., work histories, annual earnings)
for all major demographic subgroups. The models had mixed success with lin-
ear and logistic regression coefficients: synthetic and observed data confidence
intervals were similar for some coefficients but not for others.

Such empirical evidence aside, some inferences will deteriorate significantly
because of imperfect imputation models. When simulating high fractions of data,
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even small biases can cause substantial reductions in frequentist validity. These
biases may be hard to detect from any meta-data released by the agency describ-
ing the synthesis process. For this reason, it is arguably essential that agencies
develop ways to provide feedback to users about the quality of the synthetic data
inferences for specific estimands. One possibility is to build a verification server,
as suggested by Reiter, Oganian and Karr (2009). The basic idea is as follows.
The data user performs an analysis of the synthetic data, using whatever soft-
ware she wishes. She then submits a description of the analysis to the verification
server; for example, regress attribute 5 on attributes 1, 2, 4 and the logarithm of
attribute 6. The verification server performs the analysis on both the confidential
and synthetic data, and from the results calculates analysis-specific measures of
the fidelity of the one to the other. For example, for any regression coefficient,
measure the overlap in its confidence intervals (Karr et al. (2006)) computed
from the confidential and synthetic data. The verification server returns the
value of the fidelity measure to the user. If the user feels that the intervals over-
lap adequately, the synthetic data have high utility for their analysis. With such
feedback, analysts can avoid publishing–in the broad sense–results with poor
quality, and be confident about results with good quality.

Verification servers are not a panacea. As illustrated by Reiter et al. (2009),
fidelity measures provide intruders with information about the real data, albeit in
a convoluted form, that could be used for disclosure attacks. It may be possible
to blunt these attacks by providing coarse fidelity measures or by limiting the
types of queries that the server answers. Assessing and reducing the risks of
providing fidelity measures are topics of ongoing research.

Additional topics for future research specific to two-stage synthesis include
methods for selecting m and r based on risk-utility evaluations, for using the
M data sets to do significance tests of multi-component hypotheses and other
multivariate inference, and for handling missing data and confidentiality simul-
taneously, perhaps in a three-stage imputation procedure.

For many data sets, concerns over confidentiality make it nearly impossible
to release public use data as is. As resources available to malicious data users at-
tempting re-identifications continue to expand, the alterations needed to protect
data with traditional disclosure limitation techniques–such as swapping, adding
noise, or microaggregation–may become so extreme that, for many analyses, the
released data are no longer useful. Synthetic data, on the other hand, have the
potential to enable data dissemination while preserving data utility. By synthe-
sizing in two stages, data producers can improve the risk-utility profile, or reduce
the labor costs, of their data releases.
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