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Abstract: We consider simultaneous inference of the time-varying correlation, as a
function of time, between two nonstationary time series, when their trend functions
are unknown. Unlike the stationary setting, where the effect of precentering using
the sample mean is trivially negligible, in the nonstationary setting, it is difficult to
quantify the effect of precentering using nonparametric trend function estimators.
This is mainly because the trend estimators are time-varying across different time
points, which makes it difficult to quantify their cumulative interaction with the
error process in a time series setting. We propose using a centering scheme that,
instead of aligning with the time point at which the data are observed, aligns with
the time point at which the local correlation estimation is performed. We show that
the proposed centering scheme leads to simultaneous confidence bands with a solid
theoretical guarantee for the time-varying correlation between two nonstationary
time series when their trend functions are unknown. Lastly, we demonstrate the
proposed method using numerical examples, including a real-data analysis.

Key words and phrases: Kernel smoothing, local linear estimation, noncentered
data, simultaneous confidence band.

1. Introduction

The correlation coefficient is a popular metric for quantifying the dependence
between two variables. In a time series setting, we can use the correlation between
two observed time series to understand their relationship or co-movement over
time, or the correlation between the time series and its lagged version to study
the underlying dependence structure. The latter is often referred to as the
autocorrelation; see Wu and Xiao (2012). In addition, we can use the correlation
between a time series and the lagged version of another time series to understand
the lagged effect of one on the other, referred to as the Granger causality in time
series analysis. The problem of estimating the correlation and autocorrelation has
been studied extensively for stationary time series; see, for example, |Anderson
(1971), [Hannan| (1976), [Hall and Heyde (1980), Priestley| (1981)), Brockwell and
Davis (1991)), Phillips and Solo| (1992), Hosking (1996), Wu and Min| (2005), [Wu
(2009), Wu and Xiao| (2012), and the references therein. In the aforementioned
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results, the underlying process is mostly assumed to be stationary, which means
the correlation coefficient is a constant that does not change over time, facilitating
the estimation and statistical inference.

However, in nonstationary time series applications, it is generally expected
that certain aspects of the observed data evolve over time, making it better
to consider time-varying correlations as a function of time. For this, Mallat,
Papanicolaou and Zhang) (1998) consider a covariance estimation using a local
cosine basis approximation for locally stationary processes. Dahlhaus| (2012)
considers a data tapering method for the covariance estimation of locally station-
ary processes using kernel functions. [Fu et al.| (2014) estimate the time-varying
covariance between two locally stationary biological processes, and provide an
asymptotic analysis of the resulting estimation bias and variance. |Choi and!
Shin| (2021 consider a nonparametric estimation of the time-varying correlation
coefficient, and establish its asymptotic normality when the joint error process
is strong mixing and stationary, except for a scale difference. Most of the
aforementioned results focus on the estimation or pointwise inference of the time-
varying covariance at a given time point. Few works explore the difficult task of
developing a simultaneous inference procedure for the time-varying correlation as
a function of time.

In an important work, [Zhao| (2015) provides a solution to this problem by
constructing simultaneous confidence bands for local autocorrelations of locally
stationary time series. However, the theory and methods rely on the assumption
that the mean trend function of the underlying process is known to be uniformly
zero, which the author argues is satisfied, in general, in daily or weekly data on
financial returns. For data with potentially nonzero trend functions, |Zhao| (2015)
proposes first precentering the data using parametric or nonparametric trend
estimators, and then applying their methods to the residual process. However,
it is nontrivial to quantify the effect of such a precentering procedure on the
subsequent correlation inference procedure, and was left as an open problem; see
the discussion in Section 3.2 of Zhao| (2015). In Section 2, we discuss in detail
why the effect of precentering is trivially negligible in the stationary case, but
suddenly becomes difficult to understand in the nonstationary case. We suggest
that this is largely because of the time-varying nature of the trend function, which
makes it difficult to quantify its cumulative interaction with the error process. In
Section 3, we propose the locally homogenized centering method, which alleviates
the problems of traditional centering schemes, and leads to a simultaneous
inference of time-varying correlations with a solid theoretical guarantee when
the underlying trend functions are unknown. In addition to allowing unknown
trend functions, we consider the more general setting in which the time-varying
correlation between two time series can depend on each other in a nontrivial
way. In particular, when one time series is a lagged version of the other, this
reduces to the autocorrelation setting considered in Zhao| (2015). Additionally,
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Zhao (2015) requires a geometric moment contraction condition, under which
the dependence decays geometrically quickly, whereas we allow processes with an
algebraic decay; see the discussion in Section 3.3. Numerical examples, including
Monte Carlo simulations and a real-data analysis, are provided in Section 4 to
illustrate the proposed method.

2. Precentering: A Natural Approach, and Its Problem

We first review the stationary case, for which the effect of precentering
using the sample mean is trivially negligible. To illustrate, suppose we observe
stationary time series X; and Y;, for ¢ = 1,...,n. Then, assuming that the
stationary means pu, = E(X;) and p, = E(Y;) are known, we can estimate the

covariance by the oracle

- 1
Tn = n Z(Xz — Ha) (Y — piy).
i=1

When the true means p, and p, are unknown, we can plug in the sample means
X,=n1Y" X;and Y, =n~1Y " |V, yielding the covariance estimator

i=1

Now, we can quantify the effect of using the sample mean to replace the true
mean by the difference
fAYn - :Yn

= (Xn - :ua:)(}_/n - Ny) - % Z(Xz - Nw)(}_/n - My) - %Z(Xn — ) (Yi — My)

i=1 i=1

= _(Xn - Nz)(Yn - :uy)-

Therefore, if the sample means X,, — p, = O,(n~*/?) and Y, — p, = O,(n"/?)
have the usual parametric rate (Zhang| (2018)), then the difference

FAYn - :Yn = Op(n_l)a

which is typically of a negligible order for covariance inference.

In the nonstationary case, however, parameters such as the mean or co-
variance do not necessarily stay as constants, and are often treated as unknown
functions of time. For this, a prominent approach is to consider the scaling device
under which

i i

B = (1), B0 = (L), oy =a (1),

n n n
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for some functions p,(t), p,(t), and ~(¢), with ¢ € [0,1]. Note that the scaling
device itself does not impose any additional assumptions on the underlying
dynamics, but it can work well with certain smoothness conditions to provide
an asymptotic justification for nonparametric smoothing estimators; see, for
example, Robinson (1989} (1991, Dahlhaus (1996, 1997), |Cai (2007)), |Zhou and
Wu| (2010)), |Zhang and Wu/ (2011)), and Zhang| (2013)). If the true mean functions
o (+) and p, () are known, we can follow |Zhao| (2015)), and estimate the covariance
as a function of time by

0= g5 2 i () G 1 (55),

where K(-) is a kernel function and b, > 0 is a bandwidth. When the true
mean functions p,(-) and pu,(-) are unknown, a natural approach is to plug in
their nonparametric estimators fi,(-) and fi,(-), respectively, as in the [Nadaraya
(1964) and Watson, (1964) estimators, the Priestley and Chao (1972) estimator,
and the local linear estimator of |[Fan and Gijbels (1996). Doing so leads to the
nonparametric covariance estimator

ult) = &i{Xﬂ(é)}{Yuy(;>}K (i/zn_t) (2.1)

This is the same as using the precentered data X; — fi,(i/n) and Y; — fi,(i/n)

to compute the covariance if the trend function is known to be uniformly zero;
see, for example, Zhao (2015). In this case, the effect of using nonparametric
estimators to replace the true means is quantified by the difference

a0 5 ()Y (5)
RN ()

R O w5

(2.2)

which unfortunately cannot be bounded easily by a negligible stochastic order, as
it can in the stationary case. The main reason is that, owing to the time-varying
nature, the random weight fi,(i/n) — p,(i/n) for X; — p,(i/n) now depends on
the index 7, and thus cannot be taken outside of the summation, as it can in the
stationary case. Because fi,(i/n) — p,(i/n) and X; — p,(i/n) can depend on each
other in a nontrivial way, it then becomes unclear whether the local averages

(nbn)_l Z?:l{Xi - :ul(z/n)}{ﬂy(l/n) - Ny(z/n)}K{(Z/n - t)/bn} will continue to
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obey the square root rate, let alone a uniform rate, over different time points,
which is essential for simultaneous inference. This makes it difficult to obtain a
sharp probabilistic bound on the two cross terms in , and it remains unknown
whether they can be treated as negligible in a theoretical analysis. Therefore,
although natural, the approach of replacing the unknown mean function with its
nonparametric estimator in covariance inference problems is rather ad hoc, and
the effects can be difficult to understand theoretically; see also the discussion in
Section 3.2 of Zhao| (2015). In the following, we propose a solution that enables
us to construct simultaneous confidence bands for the time-varying correlation
between nonstationary time series, with a solid theoretical guarantee, when their
underlying trend functions are unknown.

3. Locally Homogenized Centering: A Fix
3.1. Methodology: The fundamental idea

The main problem with the natural centering scheme in for covariance
inference problems is the local inhomogeneity of fi,(i/n) and f,(i/n), for i =
1,...,n. To solve this problem, we propose a locally homogenized centering
(LHC) method that instead of using the inhomogeneous centering fi,(i/n) and
fi,(i/n), which align with the time point at which the data are observed, uses
their locally homogenous counterparts fi,(t) and fi,(t), which align with the
time point at which the local correlation estimation is performed to achieve the
local centering. This leads to the locally homogenized centered nonparametric
covariance estimator

) = = S0 = a0} - & ().

In this case, the centering scheme differs for the time points at which the local
covariance is calculated. The effect of this new centering scheme can now be
quantified by the difference

5000 = 300) = 253 {0 = (5) Wm0 - (5) e (45)

Compared with the decomposition for the natural centering scheme in (2.2)), the
key difference here is that the random weight f,(t) — p,(i/n) for X; — p,(i/n)
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can now be decomposed into a locally homogeneous random part fi,(t) — 1, (%),
which can be taken outside of the summation, and a deterministic part p,(t) —
ty(i/n), where we handle the cumulative interaction between the latter part and
X; — p.(i/n) using a square root stochastic bound.

3.2. Methodology: Derivative adjustment

The fundamental idea of using locally homogenized mean functions to
perform the local centering, as proposed in Section 3.1, enables us to quantify the
effect of centering when the underlying trend functions are unknown, potentially
leading to new inference protocols for the time-varying covariance or correlation
of nonstationary time series. However, this benefit, though crucial and necessary
for covariance inference with unknown trend functions, comes at the price of an
additional bias,

nlbn Z: {ux(t) _ (;)}{My(t) - /@(2) }K (Z/T;n t) :

which is of a comparable order to that of the bias of the mean-oracle estimator
E{3,(t)} —~(t). We further propose a derivative adjustment method to remove
this additional bias, making the resulting covariance estimator asymptotically

equivalent to its mean-oracle counterpart, such that the effect of centering
becomes theoretically negligible. Let fi,(t) and [ (t) be derivative estimators,
which can be obtained by, for example, the popular local linear method of [Fan
and Gijbels (1996)). We propose considering the following covariance estimator
with a derivative adjustment:

nlt) = 2 {x - - (2 - Hyi- o - a2 1)}

K (i/rgn_t> .

Compared with how we handle the terms in , here we decompose the random
weight i, (t) + 2, (t)(i/n—t) — p,(i/n) into three terms: fi, (t) — g, (t), fi,, (t)(i/n —
t) =, (t)(i/n —1), and p, (t) + p, (£)(i/n —t) — p, (i/n). The first term is random,
but does not depend on the index 7, and thus can be taken out of the summation
for a better bound. The last term depends on the index ¢, but is deterministic,

and thus can be handled by a bound on linear combinations of nonstationary
processes. The key difference here is the second term, ji; (t)(i/n—t) — u; (t)(i/n—
t), which is random and involves the summation index i. However, it is still
different to the natural centering scheme in (2.2 in the sense that we can write
it as the product {j(t) — pu;,(t)} x (i/n —t), where the first part can be taken
out of the summation, and the second part can be combined with X; — u,(i/n)
into a linear combination of nonstationary processes. This enables us to derive
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an explicit bound on the difference 4, (t) — 4, (t), and makes it asymptotically
equivalent to the mean-oracle covariance estimator.

We call this the locally homogenized centering with derivative adjustment
(LHC-DA) method, and we can apply it to the time-varying correlation

where

7,0 = S Lt - (L) Vi (21
62,.(t) = nlbn Xn: {Y — fu, (t) — () (; — t) }21( (z/rgn t) .

=1

Note that a time-varying correlation analysis may be more suitable than a
covariance analysis to understand the time-varying relationship between two
nonstationary time series, because a change in the covariance may simply
be because of changes in the variance, whereas the correlation would remain
constant. In the following section, we provide the asymptotic theory for the
proposed LHC-DA covariance and correlation estimators, based on which, we can
construct simultaneous confidence bands as a visualization tool when analyzing
the time-varying covariance or correlation for a general class of nonstationary
processes.

3.3. Asymptotic theory

Suppose we observe the time series X; and Y;, for ¢ = 1,...,n, according to
X, = G(Z,Ja), Y, = H(Z,fz), Fi=(..ere) (32
n n

where (€;) is a sequence of independent and identically distributed innovations,
and G and H are measurable functions that depend on the time points ¢; , = i/n,
for ©+ = 1,...,n. The framework covers a wide range of nonstationary
processes, and naturally extends many existing stationary time series models
to their nonstationary counterparts; see Draghicescu, Guillas and Wul (2009),
Zhou and Wu (2010), Zhang and Wu (2011), Degras et al.| (2012)), and Zhang
(2015) for additional discussions. Other contributions on nonstationary time
series can be found in Dahlhaus (1997)), |Cheng and Tong (1998), Nason, Von
Sachs and Kroisandt| (2000), |Giurcanu and Spokoiny| (2004)), Ombao, Von Sachs
and Guo (2005)), Zhang| (2016a), and the references therein. Let (€}) be a sequence
of random vectors that share the same distribution as, but are independent
of, the sequence (€;). Then, we can define the coupled shift process F; (o =
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(...,€_1,€5,€1,...,€). For a random vector Z, we write | Z||, = {E(|Z]7)}'/,
for ¢ > 0, where |Z| is the Euclidean norm, and denote || Z]|| = || Z]|2. For a generic
process L(t, F;), with ¢t € [0,1] and i € Z, assuming that sup,¢( 1 [|L(t, Fo)| 4 for
some ¢ > 0, we define the dependence measure

0iq(L) = sup |[L(t, F:) = L(t, Fi o)) o

te[0,1]

which measures the dependence of L(t,F;) on the single innovation €, over ¢ €
[0,1]. Then, the quantity

em,q(L) = Z gi,q(L)

measures the cumulative influence of €, on future observations with a gap at least
m, and we can interpret Og,(L) < oo as a short-range dependence condition
(Zhang| (2015)). The process L(t,F;), with t € [0,1] and i € Z, is said to be
stochastic Lipschitz continuous, or L € SLC,, if there exists a constant ¢, < oo
such that

| L(tr, Fi) — L(ta, Fi)llg < cqlts — 2]

holds for all ¢;,¢, € [0, 1]. Let

wr(t) = > cov{L(t, Fo), L(t, F)},

keZ

which is a well-defined and finite quantity when ©, ,(L) < oo, for some ¢ > 2.
Write

e (t) = E{G(t, F:)}, py(t) = E{H(t, F:)},
o2(t) = var{G(t, F;)}, az(t) =var{H(t,F,;)},
v(t) = cov{G(t, F,),H(t,F,)}, p(t)=cor{G(t,F,),H(t,F,;)},

and denote

U(t, Fi) = [G(t, Fi) — E{G(t, Fi)}[H(t, Fi) — E{H(t, F:)}]

and
L UF)
Vi F) = 0o,
() G(t,F:) — E{G(t, Fi)}? | [H(t,Fi) — E{H(t,F:)}]?
203(t)o, (1) 20, (t)o3(t)

Throughout this section, we assume that the kernel function K € KC, the collection
of symmetric functions in C'[—1,1] with fjl K(v)dv = 1, where C* denotes the
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collection of functions with k& continuous derivatives. Let 7, = [b,,1 — b,],
Ko = f_ll V2K (v)dv, and ¢y = f_ll K (v)%dv. The following theorem provides the
central limit theorem for the LHC-DA covariance estimator and the asymptotic
distribution of the associated maximal deviation, which is useful for constructing
simultaneous confidence bands for the underlying covariance function.

Theorem 1. Assume that i, jr,,y € C?, 01.4(G) + O 4(H) + 0, 4(U) = O(k™?),
G,H,U € SLC,, and that wy (t) is Lipschitz continuous and bounded away from
zero on [0,1]. If n=2/°b;*(logn)® + nb7 logn — 0, then

(nbn)lm{:}/n(t) —(t) - 27152627”@)} —d N{07 wU(t)¢2}a
and

L 50 = () = 2 by ()
oy teTn wy (t)'/?

<

N (_QIOgbn)l/Q

Ck

— (=21 2 R
(2108 )~ tog b

} — exp{—2exp(—2)},

where Cx = 271 log{(4m%¢p,) ~* fjl |K'(v)|?dv}.

Theorem 1 concerns the covariance case. Theorem 2 provides results on the
LHC-DA correlation estimator. Compared with the covariance case, the proof
in the correlation case is more technically involved. The major difference stems
from the fact that, for correlation estimators, the asymptotic behavior is affected
by the covariance part and the variance part, and neither is negligible relative
to the other; see also [Zhao| (2015), who considers an autocorrelation inference
for processes with a known zero mean and geometrically decaying dependence.
Here, we deal with the more general time-varying correlation for processes with
unknown trend functions and only algebraically decaying dependence.

Theorem 2. Assume that pu, j,,v,p € C*, Oxs(G) + 0xs(H) = O(k™?), G, H €
SLC,, and that wy(t), 0.(t), and o,(t) are Lipschitz continuous and bounded
away from zero on [0,1]. If n=2/5b 1 (logn)? + nb? logn — 0, then

(1) 2P (t) = p(t) — 27 kobl {00 (8o, ()} 7" (1)] =4 N{O, v (£)¢s},
and

n 1/2
. [( b)

1/2
2

Pu(t) = p(t) — 27 ka7 {ou (t)oy (£)} 9" (1)
wy (t)l/Q

sup
teTn

— (—2log bn)l/2

CK z
_ < e,
(—=21og by) /2 = (_QIOgbn)1/2:| — exp{—2exp(—2)}
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4. Numerical Experiments
4.1. Implementation: Algorithm and visualization

In this section, we provide a detailed algorithm that implements the results
in Section 3 to construct simultaneous confidence bands for the time-varying
correlation between X; and Y}, for ¢ = 1,...,n, when their trend functions are
unknown. If one of them is taken as the lagged version of the other, then
the algorithm provides simultaneous confidence bands for the corresponding
autocorrelation. To alleviate the problem of slow convergence to the extreme
value distribution, we also use a simulation-assisted procedure to improve the
finite-sample performance. The detailed implementation is as follows:

(i) Select the bandwidth b, using the dependence-adjusted generalized cross-
validation method of Zhang and Wu| (2012) by viewing (2.1) as a kernel
regression on time.

(ii) Compute the trend estimators fi,(t) and fi,(¢) and their derivative estima-
tors fi,(t) and i, (t), respectively, using the local linear method of [Fan and
Gijbels (1996), with K (-) being the Epanechnikov kernel.

(iii) Use the LHC-DA method proposed in Section 3 to compute the time-
varying covariance and correlation 4,(t) and p,(t), respectively, for each
time point, and use a higher-order kernel K*(v) = 232K (2'/?v) — K (v) for
bias correction.

(iv) Obtain an estimate wy (f) of the asymptotic variance using the banding
estimator of Zhang and Wu| (2012); see also Zhang (2016b]) for a uniform
consistency result on such a variance estimator.

(v) Generate independent standard normal random variables X? and Y;°, for

i=1,...,n, and compute the associated p¢(t) and @y (¢) to calculate
o (B)VA(-2108b,) 1 ()
n ;/2 teT. w;}(t)l/Q ’

(vi) Repeat (v) many times to obtain the (1 — a)th quantile of 7.7, denoted by
(j<1>—a'
(vii) Construct the (1 — «)th simultaneous confidence band of p(¢) by

1/2
pult) £ 7 2 B0
" 1= (nb,)1/2(—21og b, )1/2’

which can be visualized by plotting it against time, using a solid curve for
pn(t) and dashed curves for the upper and lower simultaneous confidence
bands.
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The above algorithm can be implemented for the LHC-DA covariance as
well, if needed, enabling us to examine the time-varying covariance or correlation
when the observed data contain an unknown trend in the mean. Similarly
to the bootstrap method, the simulation-assisted procedure approximates the
distribution of the test statistic using that of generated data. The difference
is that bootstrapped data are often generated by resampling from the original
data, whereas the simulation-assisted procedure generates data as independent
normal random variables. As a result, the correlation p°(t) between the generated
data (X?) and (Y,°) holds conveniently at zero under this simulation-assisted
mechanism, which is used in step (v) of the above algorithm. By Theorems 1 and
2, the simulation-assisted procedure may also work when the simulated data are
generated independently using marginal distributions other than the normal; see
also the additional simulation results provided in the Supplementary Material,
which suggest robustness to the distributional choice, as long as the conditions in
Theorems 1 and 2 are satisfied. We use the normal distribution to generate the
simulated data because of the connection with the Gaussian approximation (Wu
(2007); Berkes, Liu and Wu/ (2014)), which states that the partial sum distribution
can be well approximated by that of normal random variables. Such a Gaussian
approximation can improve the finite-sample performance; see, for example, the
discussions in [Zhang and Wu (2011), |Zhang and Wu| (2012)) and Zhang| (2016b)).

4.2. A Monte Carlo simulation study

However, we present a simulation study to examine the finite-sample perfor-
mance of the proposed simulation-assisted LHC-DA method for the simultaneous
inference of time-varying correlations. Let (e; 1) be a sequence of independent
standard normal random variables, and let (e;2) be a sequence of independent
Rademacher random variables that is also independent of (e; ;). Let

i i 2\ '/
Xi = Uy (n> + 3sin <157Tn> {’61‘,1‘ — <ﬂ_) }

24 o0
2 1.5m— )¢ 26 0;
+ COS( 7Tn>€,2+;] €i—j2

. . 2 . [ee]
1 7 7 4
Y, = ,uy<n) + {1-5 — <n> }€¢,1 + <n>€i,2 + g 277¢€_j1,
=1

where 1, (t) = 2t? + 2t and p,(t) = 2{sin(1.57t) +t}. We perform a simultaneous
inference on the time-varying covariance and on the correlation between the two
time series; see the Supplementary Material for expressions of these quantities.
Zhao (2015)) considers autocorrelations when the underlying trend function is
known to be zero. Here, we consider an inference of the first-order autocorrelation
of (X;). Note that the method of Zhao (2015) requires that the underlying process
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be precentered using the true mean function. Thus, we precenter the data using
the local linear trend estimate; see the discussion in Section 3.2 of [Zhao| (2015))
about the theoretical gap of such a heuristic approach. For the proposed method,
precentering is not necessary, because the mean trend is automatically nullified by
the LHC-DA method, with a solid theoretic guarantee. Let n € {500,1000} and
b, € {0.1,0.15,0.2,0.25,0.3}; the results are summarized in Tables 1 and 2 for the
correlation case and the autocorrelation case, respectively. The proposed method
can be applied to a general covariance or correlation between two time series,
including when one is the lagged value of the other. In contrast, the method of
Zhao| (2015), denoted by Z15, was developed specifically for the autocorrelation,
and is therefore only reported in the second portion of Table 2, when applicable.
We also report results for the LHC method without the derivative adjustment,
as a comparison. Tables 1 and 2 show that the proposed LHC-DA method
performs reasonably well, because the empirical coverage probabilities are mostly
close to their nominal levels when a suitable bandwidth is used. In general, it
outperforms the LHC method, indicating that the derivative adjustment scheme
described in Section 3.2 solves the bias problem from a theoretical point of view,
and improves the finite-sample performance. As discussed in Section 3.2, the
LHC-DA method makes the procedure asymptotically equivalent to that using
the mean-oracle covariance estimators. This is not true of the LHC method,
owing to the existence of an additional bias from the trend estimation. The
method of Zhao (2015)) applies only to the autocorrelation part in Table 2, and
does not seem to be very robust with respect to the bandwidth choice when
compared with the proposed LHC-DA method. Therefore, in addition to being
applicable to a broader setting and successfully handling noncentered data, the
proposed LHC-DA method leads to empirical tools that provide more robust
finite-sample performance. Additional simulation results can be found in the
Supplementary Material; these consider different data generations (e.g., time-
varying autoregressions with potentially heavier tails) and produce qualitatively
similar findings, as long as the conditions of Theorems 1 and 2 are satisfied.

4.3. Application to financial data

Correlation analysis between international stock markets is an important
topic in economics and finance, and has been studied by [Lin, Engle and Ito
(1994)), Longin and Solnik| (1995), Karolyi and Stulz|(1996), Chesnay and Jondeau
(2001)), Engle (2002), Forbes and Rigobon (2002), |Evans and McMillan (2009),
and Madaleno and Pinho| (2012), among many others. The assumption of a
constant correlation has been challenged, and proven to be unsuitable in many
studies; see, for example, Longin and Solnik (1995),|Chesnay and Jondeau| (2001)),
Engle| (2002)), |Choi and Shin| (2021]), and the references therein. Here, we focus on
the U.S. and Germany stock markets, and consider weekly return data of the U.S.
S&P 500 index and the Germany DAX index from 01/01/1995 to 12/28/2020,



TIME-VARYING CORRELATION 2153

Table 1. Empirical coverage probabilities of the simultaneous confidence bands for the
time-varying covariance and time-varying correlation between (X;) and (Y;) as functions
of time.

715 LHC LHC-DA
n bn 90% 95%  99% 90% 95% 99% 90% 95% 99%
covariance
500 0.1 - - - 0.879 0938 0.979 0.888 0.940 0.978
0.15 - - - 0.879 0.941 0.991 0.899 0.952 0.993
0.2 - - - 0.898 0.952 0.990 0.911 0.957 0.993
0.25 - - - 0.906 0.953 0.990 0.914 0.955 0.992
0.3 - - - 0.909 0957 0.994 0.916 0.961 0.993
1,000 0.1 - - - 0.884 0.946 0.988 0.901 0.945 0.990
0.15 - - - 0.892 0943 0.988 0.904 0.951 0.990
0.2 - - - 0.899 0941 0.989 0.905 0.951 0.991
0.25 - - - 0.909 0953 0.988 0.926 0.962 0.992
0.3 - - - 0.914 0.960 0.992 0.921 0.966 0.993
correlation
500 0.1 - - - 0.874 0.940 0.987 0.875 0.943 0.985
0.15 - - - 0.839 0917 0.98 0.852 0.918 0.983
0.2 - - - 0.856 0916 0.982 0.875 0.925 0.986
0.25 - - - 0.866 0.924 0.985 0.887 0.939 0.989
0.3 - - - 0.881 0.934 0.987 0.900 0.937 0.989
1,000 0.1 - - - 0.851 0.911 0.982 0.852 0.913 0.984
0.15 - - - 0.866 0.922 0.979 0.871 0.930 0.978
0.2 - - - 0.867 0.923 0.974 0.881 0.933 0.976
0.25 - - - 0.878 0.933 0.979 0.897 0.942 0.980
0.3 - - - 0.883 0942 0.991 0.895 0.950 0.990

with a total of n = 1357 data points. The data are available from Yahoo!
Finance, and a time series plot is given in Figure 1. We allow the underlying
correlation to change over time, and obtain a nonparametric estimate and its
associated simultaneous confidence band for uncertainty quantification. Because
two time series are involved in this application, the method of |Zhao| (2015) is not
directly applicable. Using the simulation-assisted algorithm in Section 4.1, the
time-varying correlation and its 95% simultaneous confidence band are visualized
in Figure 2, from which we can see that the correlation between the U.S. and
Germany stock markets indeed changes over time. In particular, there is a long-
term increasing trend in the correlation between the two markets, indicating
that the economies of the two countries are, in general, becoming increasingly
interdependent over time; see also the discussion in [Longin and Solnik| (1995).
The increasing trend peaked around 2008 to 2009, at the time of the financial
crisis, with both countries subsequently relying on their own monetary policies
to recover, which may explain the decrease in the correlation during that period.
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Table 2. Empirical coverage probabilities of the simultaneous confidence bands for the
first-order autocovariance and autocorrelation functions of (Xj;).

715 LHC LHC-DA

n b 90% 95% 99% 90% 95% 99% 90% 95% 99%
autocovariance

500 0.1 - - - 0.867 0925 0.960 0.861 0.924 0.957

0.15 - - - 0.868 0.923 0.979 0.876 0.926 0.978

0.2 - - - 0.885 0.933 0.984 0.891 0.937 0.981

0.25 - - - 0.892 0935 0.991 0.898 0.948 0.991

0.3 - - - 0.897 0941 0.994 0903 0.948 0.996

1,000 0.1 - - - 0.912 0959 0.993 0919 0.964 0.993

0.15 - - - 0.901 0955 0.992 0907 0.957 0.993

0.2 - - - 0.903 0942 0.994 0904 0.952 0.996

0.25 - - - 0.905 0.953 0.991 0.921 0.957 0.996

0.3 - - - 0.901 0.953 0.988 0.930 0.962 0.994
autocorrelation

500 0.1 0.891 0937 0978 0911 0965 0.998 0.908 0.965 0.997
0.15 0971 0988 0999 0.878 0.936 0.993 0.881 0.939 0.991

0.2 1.000 1.000 1.000 0.874 0.939 0985 0.876 0.946 0.987

0.25 1.000 1.000 1.000 0.860 0.922 0987 0.879 0.936 0.987

0.3 1.000 1.000 1.000 0.839 0901 0979 0872 0.929 0.988

1,000 0.1 0.905 0944 0983 0871 0931 0.991 0.873 0.930 0.989
0.15 0996 1.000 1.000 0.895 0.938 0.989 0.900 0948 0.992

0.2 1.000 1.000 1.000 0.878 0.948 0990 0.889 0.952 0.994

0.25 1.000 1.000 1.000 0.861 0.930 0.981 0.887 0.948 0.985

0.3 1.000 1.000 1.000 0.853 0.922 0977 0.879 0.941 0.981

Once they had recovered, the correlation between the two markets experiences
another increasing trend, similar to that before the financial crisis.

4.4. Application to COVID data

The recent COVID-19 pandemic has become a major concern for policymak-
ers and researchers. Cross-country studies have shown that the virus spread rate
and pattern are affected by local cultures, government responses, and economic
developments, among other factors; see, for example, Balmford et al. (2020),
Middelburg and Rosendaall (2020)), Rypdal and Rypdal (2020), [Zarikas et al.
(2020), Vampa (2021), and the references therein. |Mahmoudi et al.| (2021)) and
Nobi, Tuhin and Lee (2021) examined the correlation between case numbers
from different countries, and Sulyok, Ferenci and Walker| (2021) showed that
the correlation can vary at different times during the pandemic. We model the
underlying correlation as a nonparametric function of time, to be more flexible
and less vulnerable to parametric models, and apply our results to obtain a
simultaneous confidence band to help examine the pattern. For this, we consider
the log daily new cases per million people in Germany and the United Kingdom
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Figure 1. Time series plots for weekly returns of the U.S. S&P 500 index and the Germany
DAX index from 01/01/1995 to 12/28/2020.
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Figure 2. The time-varying correlation (solid curve) and its associated 95% simultaneous
confidence band (dashed curve) between weekly returns of the U.S. S&P 500 index and
the Germany DAX index from 01/01/1995 to 12/28/2020.

from 06/01/2020 to 12/31/2021, with a total of n = 572 data points. The data
are available from Ritchie et al. (2020)), and a time series plot is provided in Figure
3. The time-varying correlation and its 95% simultaneous confidence band are
visualized in Figure 4, from which we can see that Germany and the United
Kingdom began with a relatively stable correlation, which then decreased to a
negative value in the early part of 2021. During this period, the number of daily
new COVID-19 cases seems to exhibit an increase in Germany, but continued to
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Figure 3. Time series plots of log daily new COVID-19 cases per million people in
Germany and the United Kingdom from 06/01/2020 to 12/31/2021.

decrease in the United Kingdom, which may be related to the different degrees of
vaccine intervention in the two countries around that time. In particular, during
the first few months of 2021, the United Kingdom experienced a much more
rapid increase in its vaccination rates compared with Germany, which potentially
helped the United Kingdom and differentiated it from Germany when the delta
variant hit both countries around that time. On the other hand, there seems to be
a decrease in the correlation around the end of 2021, as shown in Figure 4. This
time, the number of daily new COVID-19 cases seems to decrease in Germany, but
continued to rise in the United Kingdom, which is the opposite of what happened
in the early part of 2021. This may be related to the different lockdown policies of
the two governments. In particular, Germany cancelled their Christmas markets
and imposed local lockdowns when the highly contagious omicron variant hit
both countries.

5. Conclusion

We have considered a simultaneous inference of the nonparametric correlation
curve between two nonstationary time series. Compared with the result of [Zhao
(2015), which was developed specifically for autocorrelations of a univariate time
series, our results can be applied to the broader setting in which one time series
is not necessarily a lagged version of the other. In addition, we address the
problem discussed in |Zhao| (2015) about how to handle the nuisance unknown
trend function when making an inference about the correlation curve. Unlike
the stationary setting, the straightforward precentering approach in the current
time-varying setting can result in estimators with theoretical properties that are
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Figure 4. The time-varying correlation (solid curve) and its associated 95% simultaneous
confidence band (dashed curve) between log daily new cases per million people in
Germany and the United Kingdom from 06/01/2020 to 12/31/2021.

difficult to understand. To address this, we propose an LHC scheme that, instead
of aligning with the time point at which the data are observed, aligns with the
time point at which the local correlation estimation is performed. Although this
newly proposed centering scheme makes it possible to quantify the effect of trend
estimation in correlation inference, it comes at the cost of an additional bias term,
making the effect of trend estimation not asymptotically negligible. We then
propose a further derivative adjustment scheme, which is able to make the bias
term asymptotically negligible, so that the resulting correlation estimators can
be asymptotically equivalent to the mean-oracle ones, obtained as if we know the
true mean functions. Our simulation results in Section 4.2 show that, in addition
to being applicable to a broader setting and successfully handling noncentered
data, the proposed LHC-DA method delivers an improved and more robust finite-
sample performance. We expect that the proposed method will become a useful
tool for examining correlations that are not constant, but change over time.

Supplementary Material

The online Supplementary Material provides technical proofs of our main
results in Section 3 and additional simulation results for the simulation study in
Section 4.2.
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