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Abstract: We consider simultaneous inference of the time-varying correlation, as a

function of time, between two nonstationary time series, when their trend functions

are unknown. Unlike the stationary setting, where the effect of precentering using

the sample mean is trivially negligible, in the nonstationary setting, it is difficult to

quantify the effect of precentering using nonparametric trend function estimators.

This is mainly because the trend estimators are time-varying across different time

points, which makes it difficult to quantify their cumulative interaction with the

error process in a time series setting. We propose using a centering scheme that,

instead of aligning with the time point at which the data are observed, aligns with

the time point at which the local correlation estimation is performed. We show that

the proposed centering scheme leads to simultaneous confidence bands with a solid

theoretical guarantee for the time-varying correlation between two nonstationary

time series when their trend functions are unknown. Lastly, we demonstrate the

proposed method using numerical examples, including a real-data analysis.

Key words and phrases: Kernel smoothing, local linear estimation, noncentered

data, simultaneous confidence band.

1. Introduction

The correlation coefficient is a popular metric for quantifying the dependence

between two variables. In a time series setting, we can use the correlation between

two observed time series to understand their relationship or co-movement over

time, or the correlation between the time series and its lagged version to study

the underlying dependence structure. The latter is often referred to as the

autocorrelation; see Wu and Xiao (2012). In addition, we can use the correlation

between a time series and the lagged version of another time series to understand

the lagged effect of one on the other, referred to as the Granger causality in time

series analysis. The problem of estimating the correlation and autocorrelation has

been studied extensively for stationary time series; see, for example, Anderson

(1971), Hannan (1976), Hall and Heyde (1980), Priestley (1981), Brockwell and

Davis (1991), Phillips and Solo (1992), Hosking (1996), Wu and Min (2005), Wu

(2009), Wu and Xiao (2012), and the references therein. In the aforementioned
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results, the underlying process is mostly assumed to be stationary, which means

the correlation coefficient is a constant that does not change over time, facilitating

the estimation and statistical inference.

However, in nonstationary time series applications, it is generally expected

that certain aspects of the observed data evolve over time, making it better

to consider time-varying correlations as a function of time. For this, Mallat,

Papanicolaou and Zhang (1998) consider a covariance estimation using a local

cosine basis approximation for locally stationary processes. Dahlhaus (2012)

considers a data tapering method for the covariance estimation of locally station-

ary processes using kernel functions. Fu et al. (2014) estimate the time-varying

covariance between two locally stationary biological processes, and provide an

asymptotic analysis of the resulting estimation bias and variance. Choi and

Shin (2021) consider a nonparametric estimation of the time-varying correlation

coefficient, and establish its asymptotic normality when the joint error process

is strong mixing and stationary, except for a scale difference. Most of the

aforementioned results focus on the estimation or pointwise inference of the time-

varying covariance at a given time point. Few works explore the difficult task of

developing a simultaneous inference procedure for the time-varying correlation as

a function of time.

In an important work, Zhao (2015) provides a solution to this problem by

constructing simultaneous confidence bands for local autocorrelations of locally

stationary time series. However, the theory and methods rely on the assumption

that the mean trend function of the underlying process is known to be uniformly

zero, which the author argues is satisfied, in general, in daily or weekly data on

financial returns. For data with potentially nonzero trend functions, Zhao (2015)

proposes first precentering the data using parametric or nonparametric trend

estimators, and then applying their methods to the residual process. However,

it is nontrivial to quantify the effect of such a precentering procedure on the

subsequent correlation inference procedure, and was left as an open problem; see

the discussion in Section 3.2 of Zhao (2015). In Section 2, we discuss in detail

why the effect of precentering is trivially negligible in the stationary case, but

suddenly becomes difficult to understand in the nonstationary case. We suggest

that this is largely because of the time-varying nature of the trend function, which

makes it difficult to quantify its cumulative interaction with the error process. In

Section 3, we propose the locally homogenized centering method, which alleviates

the problems of traditional centering schemes, and leads to a simultaneous

inference of time-varying correlations with a solid theoretical guarantee when

the underlying trend functions are unknown. In addition to allowing unknown

trend functions, we consider the more general setting in which the time-varying

correlation between two time series can depend on each other in a nontrivial

way. In particular, when one time series is a lagged version of the other, this

reduces to the autocorrelation setting considered in Zhao (2015). Additionally,
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Zhao (2015) requires a geometric moment contraction condition, under which

the dependence decays geometrically quickly, whereas we allow processes with an

algebraic decay; see the discussion in Section 3.3. Numerical examples, including

Monte Carlo simulations and a real-data analysis, are provided in Section 4 to

illustrate the proposed method.

2. Precentering: A Natural Approach, and Its Problem

We first review the stationary case, for which the effect of precentering

using the sample mean is trivially negligible. To illustrate, suppose we observe

stationary time series Xi and Yi, for i = 1, . . . , n. Then, assuming that the

stationary means µx = E(X1) and µy = E(Y1) are known, we can estimate the

covariance by the oracle

γ̃n =
1

n

n∑
i=1

(Xi − µx)(Yi − µy).

When the true means µx and µy are unknown, we can plug in the sample means

X̄n = n−1
∑n

i=1 Xi and Ȳn = n−1
∑n

i=1 Yi, yielding the covariance estimator

γ̂n =
1

n

n∑
i=1

(Xi − X̄n)(Yi − Ȳn).

Now, we can quantify the effect of using the sample mean to replace the true

mean by the difference

γ̂n − γ̃n

= (X̄n − µx)(Ȳn − µy)−
1

n

n∑
i=1

(Xi − µx)(Ȳn − µy)−
1

n

n∑
i=1

(X̄n − µx)(Yi − µy)

= −(X̄n − µx)(Ȳn − µy).

Therefore, if the sample means X̄n − µx = Op(n
−1/2) and Ȳn − µy = Op(n

−1/2)

have the usual parametric rate (Zhang (2018)), then the difference

γ̂n − γ̃n = Op(n
−1),

which is typically of a negligible order for covariance inference.

In the nonstationary case, however, parameters such as the mean or co-

variance do not necessarily stay as constants, and are often treated as unknown

functions of time. For this, a prominent approach is to consider the scaling device

under which

E(Xi) = µx

(
i

n

)
, E(Yi) = µy

(
i

n

)
, cov(Xi, Yi) = γ

(
i

n

)
,
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for some functions µx(t), µy(t), and γ(t), with t ∈ [0, 1]. Note that the scaling

device itself does not impose any additional assumptions on the underlying

dynamics, but it can work well with certain smoothness conditions to provide

an asymptotic justification for nonparametric smoothing estimators; see, for

example, Robinson (1989, 1991), Dahlhaus (1996, 1997), Cai (2007), Zhou and

Wu (2010), Zhang and Wu (2011), and Zhang (2013). If the true mean functions

µx(·) and µy(·) are known, we can follow Zhao (2015), and estimate the covariance

as a function of time by

γ̃n(t) =
1

nbn

n∑
i=1

{
Xi − µx

(
i

n

)}{
Yi − µy

(
i

n

)}
K

(
i/n− t

bn

)
,

where K(·) is a kernel function and bn > 0 is a bandwidth. When the true

mean functions µx(·) and µy(·) are unknown, a natural approach is to plug in

their nonparametric estimators µ̂x(·) and µ̂y(·), respectively, as in the Nadaraya

(1964) and Watson (1964) estimators, the Priestley and Chao (1972) estimator,

and the local linear estimator of Fan and Gijbels (1996). Doing so leads to the

nonparametric covariance estimator

γ̆n(t) =
1

nbn

n∑
i=1

{
Xi − µ̂x

(
i

n

)}{
Yi − µ̂y

(
i

n

)}
K

(
i/n− t

bn

)
. (2.1)

This is the same as using the precentered data Xi − µ̂x(i/n) and Yi − µ̂y(i/n)

to compute the covariance if the trend function is known to be uniformly zero;

see, for example, Zhao (2015). In this case, the effect of using nonparametric

estimators to replace the true means is quantified by the difference

γ̆n(t)− γ̃n(t) =
1

nbn

n∑
i=1

{
µ̂x

(
i

n

)
− µx

(
i

n

)}{
µ̂y

(
i

n

)
− µy

(
i

n

)}
K

(
i/n− t

bn

)

− 1

nbn

n∑
i=1

{
Xi − µx

(
i

n

)}{
µ̂y

(
i

n

)
− µy

(
i

n

)}
K

(
i/n− t

bn

)

− 1

nbn

n∑
i=1

{
µ̂x

(
i

n

)
− µx

(
i

n

)}{
Yi − µy

(
i

n

)}
K

(
i/n− t

bn

)
,

(2.2)

which unfortunately cannot be bounded easily by a negligible stochastic order, as

it can in the stationary case. The main reason is that, owing to the time-varying

nature, the random weight µ̂y(i/n) − µy(i/n) for Xi − µx(i/n) now depends on

the index i, and thus cannot be taken outside of the summation, as it can in the

stationary case. Because µ̂y(i/n)−µy(i/n) and Xi−µx(i/n) can depend on each

other in a nontrivial way, it then becomes unclear whether the local averages

(nbn)
−1

∑n
i=1{Xi − µx(i/n)}{µ̂y(i/n)− µy(i/n)}K{(i/n− t)/bn} will continue to
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obey the square root rate, let alone a uniform rate, over different time points,

which is essential for simultaneous inference. This makes it difficult to obtain a

sharp probabilistic bound on the two cross terms in (2.2), and it remains unknown

whether they can be treated as negligible in a theoretical analysis. Therefore,

although natural, the approach of replacing the unknown mean function with its

nonparametric estimator in covariance inference problems is rather ad hoc, and

the effects can be difficult to understand theoretically; see also the discussion in

Section 3.2 of Zhao (2015). In the following, we propose a solution that enables

us to construct simultaneous confidence bands for the time-varying correlation

between nonstationary time series, with a solid theoretical guarantee, when their

underlying trend functions are unknown.

3. Locally Homogenized Centering: A Fix

3.1. Methodology: The fundamental idea

The main problem with the natural centering scheme in (2.1) for covariance

inference problems is the local inhomogeneity of µ̂x(i/n) and µ̂y(i/n), for i =

1, . . . , n. To solve this problem, we propose a locally homogenized centering

(LHC) method that instead of using the inhomogeneous centering µ̂x(i/n) and

µ̂y(i/n), which align with the time point at which the data are observed, uses

their locally homogenous counterparts µ̂x(t) and µ̂y(t), which align with the

time point at which the local correlation estimation is performed to achieve the

local centering. This leads to the locally homogenized centered nonparametric

covariance estimator

γ̌n(t) =
1

nbn

n∑
i=1

{Xi − µ̂x(t)}{Yi − µ̂y(t)}K
(
i/n− t

bn

)
.

In this case, the centering scheme differs for the time points at which the local

covariance is calculated. The effect of this new centering scheme can now be

quantified by the difference

γ̌n(t)− γ̃n(t) =
1

nbn

n∑
i=1

{
µ̂x(t)− µx

(
i

n

)}{
µ̂y(t)− µy

(
i

n

)}
K

(
i/n− t

bn

)

− 1

nbn

n∑
i=1

{
Xi − µx

(
i

n

)}{
µ̂y(t)− µy

(
i

n

)}
K

(
i/n− t

bn

)

− 1

nbn

n∑
i=1

{
µ̂x(t)− µx

(
i

n

)}{
Yi − µy

(
i

n

)}
K

(
i/n− t

bn

)
.

(3.1)

Compared with the decomposition for the natural centering scheme in (2.2), the

key difference here is that the random weight µ̂y(t) − µy(i/n) for Xi − µx(i/n)
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can now be decomposed into a locally homogeneous random part µ̂y(t) − µy(t),

which can be taken outside of the summation, and a deterministic part µy(t) −
µy(i/n), where we handle the cumulative interaction between the latter part and

Xi − µx(i/n) using a square root stochastic bound.

3.2. Methodology: Derivative adjustment

The fundamental idea of using locally homogenized mean functions to

perform the local centering, as proposed in Section 3.1, enables us to quantify the

effect of centering when the underlying trend functions are unknown, potentially

leading to new inference protocols for the time-varying covariance or correlation

of nonstationary time series. However, this benefit, though crucial and necessary

for covariance inference with unknown trend functions, comes at the price of an

additional bias,

1

nbn

n∑
i=1

{
µx(t)− µx

(
i

n

)}{
µy(t)− µy

(
i

n

)}
K

(
i/n− t

bn

)
,

which is of a comparable order to that of the bias of the mean-oracle estimator

E{γ̃n(t)} − γ(t). We further propose a derivative adjustment method to remove

this additional bias, making the resulting covariance estimator asymptotically

equivalent to its mean-oracle counterpart, such that the effect of centering

becomes theoretically negligible. Let µ̂′
x(t) and µ̂′

y(t) be derivative estimators,

which can be obtained by, for example, the popular local linear method of Fan

and Gijbels (1996). We propose considering the following covariance estimator

with a derivative adjustment:

γ̂n(t) =
1

nbn

n∑
i=1

{
Xi − µ̂x(t)− µ̂′

x(t)

(
i

n
− t

)}{
Yi − µ̂y(t)− µ̂′

y(t)

(
i

n
− t

)}
K

(
i/n− t

bn

)
.

Compared with how we handle the terms in (3.1), here we decompose the random

weight µ̂y(t)+ µ̂′
y(t)(i/n− t)−µy(i/n) into three terms: µ̂y(t)−µy(t), µ̂

′
y(t)(i/n−

t)−µ′
y(t)(i/n− t), and µy(t)+µ′

y(t)(i/n− t)−µy(i/n). The first term is random,

but does not depend on the index i, and thus can be taken out of the summation

for a better bound. The last term depends on the index i, but is deterministic,

and thus can be handled by a bound on linear combinations of nonstationary

processes. The key difference here is the second term, µ̂′
y(t)(i/n− t)−µ′

y(t)(i/n−
t), which is random and involves the summation index i. However, it is still

different to the natural centering scheme in (2.2) in the sense that we can write

it as the product {µ̂′
y(t) − µ′

y(t)} × (i/n − t), where the first part can be taken

out of the summation, and the second part can be combined with Xi − µx(i/n)

into a linear combination of nonstationary processes. This enables us to derive
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an explicit bound on the difference γ̂n(t) − γ̃n(t), and makes it asymptotically

equivalent to the mean-oracle covariance estimator.

We call this the locally homogenized centering with derivative adjustment

(LHC-DA) method, and we can apply it to the time-varying correlation

ρ̂n(t) =
γ̂n(t)

σ̂x,n(t)σ̂y,n(t)
,

where

σ̂2
x,n(t) =

1

nbn

n∑
i=1

{
Xi − µ̂x(t)− µ̂′

x(t)

(
i

n
− t

)}2

K

(
i/n− t

bn

)
,

σ̂2
y,n(t) =

1

nbn

n∑
i=1

{
Yi − µ̂y(t)− µ̂′

y(t)

(
i

n
− t

)}2

K

(
i/n− t

bn

)
.

Note that a time-varying correlation analysis may be more suitable than a

covariance analysis to understand the time-varying relationship between two

nonstationary time series, because a change in the covariance may simply

be because of changes in the variance, whereas the correlation would remain

constant. In the following section, we provide the asymptotic theory for the

proposed LHC-DA covariance and correlation estimators, based on which, we can

construct simultaneous confidence bands as a visualization tool when analyzing

the time-varying covariance or correlation for a general class of nonstationary

processes.

3.3. Asymptotic theory

Suppose we observe the time series Xi and Yi, for i = 1, . . . , n, according to

Xi = G

(
i

n
,F i

)
, Yi = H

(
i

n
,F i

)
, F i = (. . . , ϵi−1, ϵi), (3.2)

where (ϵi) is a sequence of independent and identically distributed innovations,

and G and H are measurable functions that depend on the time points ti,n = i/n,

for i = 1, . . . , n. The framework (3.2) covers a wide range of nonstationary

processes, and naturally extends many existing stationary time series models

to their nonstationary counterparts; see Draghicescu, Guillas and Wu (2009),

Zhou and Wu (2010), Zhang and Wu (2011), Degras et al. (2012), and Zhang

(2015) for additional discussions. Other contributions on nonstationary time

series can be found in Dahlhaus (1997), Cheng and Tong (1998), Nason, Von

Sachs and Kroisandt (2000), Giurcanu and Spokoiny (2004), Ombao, Von Sachs

and Guo (2005), Zhang (2016a), and the references therein. Let (ϵ⋆i ) be a sequence

of random vectors that share the same distribution as, but are independent

of, the sequence (ϵi). Then, we can define the coupled shift process F i,{0} =
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(. . . , ϵ−1, ϵ
⋆
0, ϵ1, . . . , ϵi). For a random vector Z, we write ∥Z∥q = {E(|Z|q)}1/q,

for q > 0, where |Z| is the Euclidean norm, and denote ∥Z∥ = ∥Z∥2. For a generic
process L(t,F i), with t ∈ [0, 1] and i ∈ Z, assuming that supt∈[0,1] ∥L(t,F0)∥q for
some q > 0, we define the dependence measure

θi,q(L) = sup
t∈[0,1]

∥L(t,F i)− L(t,F i,{0})∥q,

which measures the dependence of L(t,F i) on the single innovation ϵ0 over t ∈
[0, 1]. Then, the quantity

Θm,q(L) =
∞∑

i=m

θi,q(L)

measures the cumulative influence of ϵ0 on future observations with a gap at least

m, and we can interpret Θ0,q(L) < ∞ as a short-range dependence condition

(Zhang (2015)). The process L(t,F i), with t ∈ [0, 1] and i ∈ Z, is said to be

stochastic Lipschitz continuous, or L ∈ SLCq, if there exists a constant cq < ∞
such that

∥L(t1,F i)− L(t2,F i)∥q ≤ cq|t1 − t2|

holds for all t1, t2 ∈ [0, 1]. Let

ϖL(t) =
∑
k∈Z

cov{L(t,F0), L(t,Fk)},

which is a well-defined and finite quantity when Θ0,q(L) < ∞, for some q ≥ 2.

Write

µx(t) = E{G(t,F i)}, µy(t) = E{H(t,F i)},
σ2
x(t) = var{G(t,F i)}, σ2

y(t) = var{H(t,F i)},
γ(t) = cov{G(t,F i), H(t,F i)}, ρ(t) = cor{G(t,F i), H(t,F i)},

and denote

U(t,F i) = [G(t,F i)− E{G(t,F i)}][H(t,F i)− E{H(t,F i)}]

and

V (t,F i) =
U(t,F i)

σx(t)σy(t)

−γ(t)

{
[G(t,F i)− E{G(t,F i)}]2

2σ3
x(t)σy(t)

+
[H(t,F i)− E{H(t,F i)}]2

2σx(t)σ3
y(t)

}
.

Throughout this section, we assume that the kernel functionK ∈ K, the collection

of symmetric functions in C1[−1, 1] with
∫ 1

−1
K(v)dv = 1, where Ck denotes the
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collection of functions with k continuous derivatives. Let Tn = [bn, 1 − bn],

κ2 =
∫ 1

−1
v2K(v)dv, and ϕ2 =

∫ 1

−1
K(v)2dv. The following theorem provides the

central limit theorem for the LHC-DA covariance estimator and the asymptotic

distribution of the associated maximal deviation, which is useful for constructing

simultaneous confidence bands for the underlying covariance function.

Theorem 1. Assume that µx, µy, γ ∈ C3, θk,4(G) + θk,4(H) + θk,4(U) = O(k−2),

G,H,U ∈ SLC2, and that ϖU(t) is Lipschitz continuous and bounded away from

zero on [0, 1]. If n−2/5b−1
n (log n)3 + nb7n log n → 0, then

(nbn)
1/2{γ̂n(t)− γ(t)− 2−1κ2b

2
nγ

′′(t)} →d N{0, ϖU(t)ϕ2},

and

pr

{
(nbn)

1/2

ϕ
1/2
2

sup
t∈Tn

∣∣∣∣ γ̂n(t)− γ(t)− 2−1κ2b
2
nγ

′′(t)

ϖU(t)1/2

∣∣∣∣− (−2 log bn)
1/2 − CK

(−2 log bn)1/2

≤ z

(−2 log bn)1/2

}
→ exp{−2 exp(−z)},

where CK = 2−1 log{(4π2ϕ2)
−1

∫ 1

−1
|K ′(v)|2dv}.

Theorem 1 concerns the covariance case. Theorem 2 provides results on the

LHC-DA correlation estimator. Compared with the covariance case, the proof

in the correlation case is more technically involved. The major difference stems

from the fact that, for correlation estimators, the asymptotic behavior is affected

by the covariance part and the variance part, and neither is negligible relative

to the other; see also Zhao (2015), who considers an autocorrelation inference

for processes with a known zero mean and geometrically decaying dependence.

Here, we deal with the more general time-varying correlation for processes with

unknown trend functions and only algebraically decaying dependence.

Theorem 2. Assume that µx, µy, γ, ρ ∈ C3, θk,8(G) + θk,8(H) = O(k−2), G,H ∈
SLC4, and that ϖV (t), σx(t), and σy(t) are Lipschitz continuous and bounded

away from zero on [0, 1]. If n−2/5b−1
n (log n)3 + nb7n log n → 0, then

(nbn)
1/2[ρ̂n(t)− ρ(t)− 2−1κ2b

2
n{σx(t)σy(t)}−1γ′′(t)] →d N{0, ϖV (t)ϕ2},

and

pr

[
(nbn)

1/2

ϕ
1/2
2

sup
t∈Tn

∣∣∣∣ ρ̂n(t)− ρ(t)− 2−1κ2b
2
n{σx(t)σy(t)}−1γ′′(t)

ϖV (t)1/2

∣∣∣∣− (−2 log bn)
1/2

− CK

(−2 log bn)1/2
≤ z

(−2 log bn)1/2

]
→ exp{−2 exp(−z)}.
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4. Numerical Experiments

4.1. Implementation: Algorithm and visualization

In this section, we provide a detailed algorithm that implements the results

in Section 3 to construct simultaneous confidence bands for the time-varying

correlation between Xi and Yi, for i = 1, . . . , n, when their trend functions are

unknown. If one of them is taken as the lagged version of the other, then

the algorithm provides simultaneous confidence bands for the corresponding

autocorrelation. To alleviate the problem of slow convergence to the extreme

value distribution, we also use a simulation-assisted procedure to improve the

finite-sample performance. The detailed implementation is as follows:

(i) Select the bandwidth bn using the dependence-adjusted generalized cross-

validation method of Zhang and Wu (2012) by viewing (2.1) as a kernel

regression on time.

(ii) Compute the trend estimators µ̂x(t) and µ̂y(t) and their derivative estima-

tors µ̂′
x(t) and µ̂′

y(t), respectively, using the local linear method of Fan and

Gijbels (1996), with K(·) being the Epanechnikov kernel.

(iii) Use the LHC-DA method proposed in Section 3 to compute the time-

varying covariance and correlation γ̂n(t) and ρ̂n(t), respectively, for each

time point, and use a higher-order kernel K⋆(v) = 23/2K(21/2v)−K(v) for

bias correction.

(iv) Obtain an estimate ϖ̂V (t) of the asymptotic variance using the banding

estimator of Zhang and Wu (2012); see also Zhang (2016b) for a uniform

consistency result on such a variance estimator.

(v) Generate independent standard normal random variables X⋄
i and Y ⋄

i , for

i = 1, . . . , n, and compute the associated ρ̂⋄n(t) and ϖ̂⋄
V (t) to calculate

T ⋄
n =

(nbn)
1/2(−2 log bn)

1/2

ϕ
1/2
2

sup
t∈Tn

∣∣∣∣ ρ̂⋄n(t)

ϖ⋄
V (t)

1/2

∣∣∣∣ .
(vi) Repeat (v) many times to obtain the (1 − α)th quantile of T ⋄

n , denoted by

q̂⋄1−α.

(vii) Construct the (1− α)th simultaneous confidence band of ρ(t) by

ρ̂n(t)± q̂⋄1−α

ϕ
1/2
2 ϖ̂V (t)

1/2

(nbn)1/2(−2 log bn)1/2
,

which can be visualized by plotting it against time, using a solid curve for

ρ̂n(t) and dashed curves for the upper and lower simultaneous confidence

bands.
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The above algorithm can be implemented for the LHC-DA covariance as

well, if needed, enabling us to examine the time-varying covariance or correlation

when the observed data contain an unknown trend in the mean. Similarly

to the bootstrap method, the simulation-assisted procedure approximates the

distribution of the test statistic using that of generated data. The difference

is that bootstrapped data are often generated by resampling from the original

data, whereas the simulation-assisted procedure generates data as independent

normal random variables. As a result, the correlation ρ⋄(t) between the generated

data (X⋄
i ) and (Y ⋄

i ) holds conveniently at zero under this simulation-assisted

mechanism, which is used in step (v) of the above algorithm. By Theorems 1 and

2, the simulation-assisted procedure may also work when the simulated data are

generated independently using marginal distributions other than the normal; see

also the additional simulation results provided in the Supplementary Material,

which suggest robustness to the distributional choice, as long as the conditions in

Theorems 1 and 2 are satisfied. We use the normal distribution to generate the

simulated data because of the connection with the Gaussian approximation (Wu

(2007); Berkes, Liu andWu (2014)), which states that the partial sum distribution

can be well approximated by that of normal random variables. Such a Gaussian

approximation can improve the finite-sample performance; see, for example, the

discussions in Zhang and Wu (2011), Zhang and Wu (2012) and Zhang (2016b).

4.2. A Monte Carlo simulation study

However, we present a simulation study to examine the finite-sample perfor-

mance of the proposed simulation-assisted LHC-DA method for the simultaneous

inference of time-varying correlations. Let (ϵi,1) be a sequence of independent

standard normal random variables, and let (ϵi,2) be a sequence of independent

Rademacher random variables that is also independent of (ϵi,1). Let

Xi = µx

(
i

n

)
+ 3 sin

(
1.5π

i

n

){
|ϵi,1| −

(
2

π

)1/2}
+2 cos

(
1.5π

i

n

)
ϵi,2 +

∞∑
j=1

j−2ϵi−j,2;

Yi = µy

(
i

n

)
+

{
1.5−

(
i

n

)2}
ϵi,1 +

(
i

n

)
ϵi,2 +

∞∑
j=1

2−jϵi−j,1,

where µx(t) = 2t2+2t and µy(t) = 2{sin(1.5πt)+ t}. We perform a simultaneous

inference on the time-varying covariance and on the correlation between the two

time series; see the Supplementary Material for expressions of these quantities.

Zhao (2015) considers autocorrelations when the underlying trend function is

known to be zero. Here, we consider an inference of the first-order autocorrelation

of (Xi). Note that the method of Zhao (2015) requires that the underlying process
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be precentered using the true mean function. Thus, we precenter the data using

the local linear trend estimate; see the discussion in Section 3.2 of Zhao (2015)

about the theoretical gap of such a heuristic approach. For the proposed method,

precentering is not necessary, because the mean trend is automatically nullified by

the LHC-DA method, with a solid theoretic guarantee. Let n ∈ {500, 1000} and

bn ∈ {0.1, 0.15, 0.2, 0.25, 0.3}; the results are summarized in Tables 1 and 2 for the

correlation case and the autocorrelation case, respectively. The proposed method

can be applied to a general covariance or correlation between two time series,

including when one is the lagged value of the other. In contrast, the method of

Zhao (2015), denoted by Z15, was developed specifically for the autocorrelation,

and is therefore only reported in the second portion of Table 2, when applicable.

We also report results for the LHC method without the derivative adjustment,

as a comparison. Tables 1 and 2 show that the proposed LHC-DA method

performs reasonably well, because the empirical coverage probabilities are mostly

close to their nominal levels when a suitable bandwidth is used. In general, it

outperforms the LHC method, indicating that the derivative adjustment scheme

described in Section 3.2 solves the bias problem from a theoretical point of view,

and improves the finite-sample performance. As discussed in Section 3.2, the

LHC-DA method makes the procedure asymptotically equivalent to that using

the mean-oracle covariance estimators. This is not true of the LHC method,

owing to the existence of an additional bias from the trend estimation. The

method of Zhao (2015) applies only to the autocorrelation part in Table 2, and

does not seem to be very robust with respect to the bandwidth choice when

compared with the proposed LHC-DA method. Therefore, in addition to being

applicable to a broader setting and successfully handling noncentered data, the

proposed LHC-DA method leads to empirical tools that provide more robust

finite-sample performance. Additional simulation results can be found in the

Supplementary Material; these consider different data generations (e.g., time-

varying autoregressions with potentially heavier tails) and produce qualitatively

similar findings, as long as the conditions of Theorems 1 and 2 are satisfied.

4.3. Application to financial data

Correlation analysis between international stock markets is an important

topic in economics and finance, and has been studied by Lin, Engle and Ito

(1994), Longin and Solnik (1995), Karolyi and Stulz (1996), Chesnay and Jondeau

(2001), Engle (2002), Forbes and Rigobon (2002), Evans and McMillan (2009),

and Madaleno and Pinho (2012), among many others. The assumption of a

constant correlation has been challenged, and proven to be unsuitable in many

studies; see, for example, Longin and Solnik (1995), Chesnay and Jondeau (2001),

Engle (2002), Choi and Shin (2021), and the references therein. Here, we focus on

the U.S. and Germany stock markets, and consider weekly return data of the U.S.

S&P 500 index and the Germany DAX index from 01/01/1995 to 12/28/2020,
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Table 1. Empirical coverage probabilities of the simultaneous confidence bands for the
time-varying covariance and time-varying correlation between (Xi) and (Yi) as functions
of time.

Z15 LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99% 90% 95% 99%

covariance

500 0.1 - - - 0.879 0.938 0.979 0.888 0.940 0.978

0.15 - - - 0.879 0.941 0.991 0.899 0.952 0.993

0.2 - - - 0.898 0.952 0.990 0.911 0.957 0.993

0.25 - - - 0.906 0.953 0.990 0.914 0.955 0.992

0.3 - - - 0.909 0.957 0.994 0.916 0.961 0.993

1,000 0.1 - - - 0.884 0.946 0.988 0.901 0.945 0.990

0.15 - - - 0.892 0.943 0.988 0.904 0.951 0.990

0.2 - - - 0.899 0.941 0.989 0.905 0.951 0.991

0.25 - - - 0.909 0.953 0.988 0.926 0.962 0.992

0.3 - - - 0.914 0.960 0.992 0.921 0.966 0.993

correlation

500 0.1 - - - 0.874 0.940 0.987 0.875 0.943 0.985

0.15 - - - 0.839 0.917 0.986 0.852 0.918 0.983

0.2 - - - 0.856 0.916 0.982 0.875 0.925 0.986

0.25 - - - 0.866 0.924 0.985 0.887 0.939 0.989

0.3 - - - 0.881 0.934 0.987 0.900 0.937 0.989

1,000 0.1 - - - 0.851 0.911 0.982 0.852 0.913 0.984

0.15 - - - 0.866 0.922 0.979 0.871 0.930 0.978

0.2 - - - 0.867 0.923 0.974 0.881 0.933 0.976

0.25 - - - 0.878 0.933 0.979 0.897 0.942 0.980

0.3 - - - 0.883 0.942 0.991 0.895 0.950 0.990

with a total of n = 1357 data points. The data are available from Yahoo!

Finance, and a time series plot is given in Figure 1. We allow the underlying

correlation to change over time, and obtain a nonparametric estimate and its

associated simultaneous confidence band for uncertainty quantification. Because

two time series are involved in this application, the method of Zhao (2015) is not

directly applicable. Using the simulation-assisted algorithm in Section 4.1, the

time-varying correlation and its 95% simultaneous confidence band are visualized

in Figure 2, from which we can see that the correlation between the U.S. and

Germany stock markets indeed changes over time. In particular, there is a long-

term increasing trend in the correlation between the two markets, indicating

that the economies of the two countries are, in general, becoming increasingly

interdependent over time; see also the discussion in Longin and Solnik (1995).

The increasing trend peaked around 2008 to 2009, at the time of the financial

crisis, with both countries subsequently relying on their own monetary policies

to recover, which may explain the decrease in the correlation during that period.

https://finance.yahoo.com/
https://finance.yahoo.com/
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Table 2. Empirical coverage probabilities of the simultaneous confidence bands for the
first-order autocovariance and autocorrelation functions of (Xi).

Z15 LHC LHC-DA

n bn 90% 95% 99% 90% 95% 99% 90% 95% 99%

autocovariance

500 0.1 - - - 0.867 0.925 0.960 0.861 0.924 0.957

0.15 - - - 0.868 0.923 0.979 0.876 0.926 0.978

0.2 - - - 0.885 0.933 0.984 0.891 0.937 0.981

0.25 - - - 0.892 0.935 0.991 0.898 0.948 0.991

0.3 - - - 0.897 0.941 0.994 0.903 0.948 0.996

1,000 0.1 - - - 0.912 0.959 0.993 0.919 0.964 0.993

0.15 - - - 0.901 0.955 0.992 0.907 0.957 0.993

0.2 - - - 0.903 0.942 0.994 0.904 0.952 0.996

0.25 - - - 0.905 0.953 0.991 0.921 0.957 0.996

0.3 - - - 0.901 0.953 0.988 0.930 0.962 0.994

autocorrelation

500 0.1 0.891 0.937 0.978 0.911 0.965 0.998 0.908 0.965 0.997

0.15 0.971 0.988 0.999 0.878 0.936 0.993 0.881 0.939 0.991

0.2 1.000 1.000 1.000 0.874 0.939 0.985 0.876 0.946 0.987

0.25 1.000 1.000 1.000 0.860 0.922 0.987 0.879 0.936 0.987

0.3 1.000 1.000 1.000 0.839 0.901 0.979 0.872 0.929 0.988

1,000 0.1 0.905 0.944 0.983 0.871 0.931 0.991 0.873 0.930 0.989

0.15 0.996 1.000 1.000 0.895 0.938 0.989 0.900 0.948 0.992

0.2 1.000 1.000 1.000 0.878 0.948 0.990 0.889 0.952 0.994

0.25 1.000 1.000 1.000 0.861 0.930 0.981 0.887 0.948 0.985

0.3 1.000 1.000 1.000 0.853 0.922 0.977 0.879 0.941 0.981

Once they had recovered, the correlation between the two markets experiences

another increasing trend, similar to that before the financial crisis.

4.4. Application to COVID data

The recent COVID-19 pandemic has become a major concern for policymak-

ers and researchers. Cross-country studies have shown that the virus spread rate

and pattern are affected by local cultures, government responses, and economic

developments, among other factors; see, for example, Balmford et al. (2020),

Middelburg and Rosendaal (2020), Rypdal and Rypdal (2020), Zarikas et al.

(2020), Vampa (2021), and the references therein. Mahmoudi et al. (2021) and

Nobi, Tuhin and Lee (2021) examined the correlation between case numbers

from different countries, and Sulyok, Ferenci and Walker (2021) showed that

the correlation can vary at different times during the pandemic. We model the

underlying correlation as a nonparametric function of time, to be more flexible

and less vulnerable to parametric models, and apply our results to obtain a

simultaneous confidence band to help examine the pattern. For this, we consider

the log daily new cases per million people in Germany and the United Kingdom
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Figure 1. Time series plots for weekly returns of the U.S. S&P 500 index and the Germany
DAX index from 01/01/1995 to 12/28/2020.
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Figure 2. The time-varying correlation (solid curve) and its associated 95% simultaneous
confidence band (dashed curve) between weekly returns of the U.S. S&P 500 index and
the Germany DAX index from 01/01/1995 to 12/28/2020.

from 06/01/2020 to 12/31/2021, with a total of n = 572 data points. The data

are available from Ritchie et al. (2020), and a time series plot is provided in Figure

3. The time-varying correlation and its 95% simultaneous confidence band are

visualized in Figure 4, from which we can see that Germany and the United

Kingdom began with a relatively stable correlation, which then decreased to a

negative value in the early part of 2021. During this period, the number of daily

new COVID-19 cases seems to exhibit an increase in Germany, but continued to
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Figure 3. Time series plots of log daily new COVID-19 cases per million people in
Germany and the United Kingdom from 06/01/2020 to 12/31/2021.

decrease in the United Kingdom, which may be related to the different degrees of

vaccine intervention in the two countries around that time. In particular, during

the first few months of 2021, the United Kingdom experienced a much more

rapid increase in its vaccination rates compared with Germany, which potentially

helped the United Kingdom and differentiated it from Germany when the delta

variant hit both countries around that time. On the other hand, there seems to be

a decrease in the correlation around the end of 2021, as shown in Figure 4. This

time, the number of daily new COVID-19 cases seems to decrease in Germany, but

continued to rise in the United Kingdom, which is the opposite of what happened

in the early part of 2021. This may be related to the different lockdown policies of

the two governments. In particular, Germany cancelled their Christmas markets

and imposed local lockdowns when the highly contagious omicron variant hit

both countries.

5. Conclusion

We have considered a simultaneous inference of the nonparametric correlation

curve between two nonstationary time series. Compared with the result of Zhao

(2015), which was developed specifically for autocorrelations of a univariate time

series, our results can be applied to the broader setting in which one time series

is not necessarily a lagged version of the other. In addition, we address the

problem discussed in Zhao (2015) about how to handle the nuisance unknown

trend function when making an inference about the correlation curve. Unlike

the stationary setting, the straightforward precentering approach in the current

time-varying setting can result in estimators with theoretical properties that are
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Figure 4. The time-varying correlation (solid curve) and its associated 95% simultaneous
confidence band (dashed curve) between log daily new cases per million people in
Germany and the United Kingdom from 06/01/2020 to 12/31/2021.

difficult to understand. To address this, we propose an LHC scheme that, instead

of aligning with the time point at which the data are observed, aligns with the

time point at which the local correlation estimation is performed. Although this

newly proposed centering scheme makes it possible to quantify the effect of trend

estimation in correlation inference, it comes at the cost of an additional bias term,

making the effect of trend estimation not asymptotically negligible. We then

propose a further derivative adjustment scheme, which is able to make the bias

term asymptotically negligible, so that the resulting correlation estimators can

be asymptotically equivalent to the mean-oracle ones, obtained as if we know the

true mean functions. Our simulation results in Section 4.2 show that, in addition

to being applicable to a broader setting and successfully handling noncentered

data, the proposed LHC-DA method delivers an improved and more robust finite-

sample performance. We expect that the proposed method will become a useful

tool for examining correlations that are not constant, but change over time.

Supplementary Material

The online Supplementary Material provides technical proofs of our main

results in Section 3 and additional simulation results for the simulation study in

Section 4.2.
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