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Abstract: We propose a new functional response quantile regression model, and

develop a data-driven estimation procedure to estimate the quantile regression pro-

cesses based on a local linear approximation. Theoretically, we obtain the global

uniform Bahadur representation of the estimator with respect to the time/location

and the quantile level, and show that the estimator converges weakly to a two-

parameter continuous Gaussian process. We then derive the asymptotic bias and

mean integrated squared error of the smoothed individual functions and their uni-

form convergence rates under given quantile levels. Based on the theoretical results,

we introduce a global test for the coefficient functions and discuss how to construct

simultaneous confidence bands. We evaluate our method using simulations and by

applying it to diffusion tensor imaging data and ADHD-200 functional magnetic

resonance imaging data.

Key words and phrases: Functional data, global test statistic, simultaneous confi-

dence band, weak convergence.

1. Introduction

Functional data analysis deals with data in the form of functions, images,

and shapes, as well as more general objects (Wang, Chiou and Müller (2016)).

Functional regression models are widely used to model functional data, and in-

clude the functional linear regression (Ramsay and Dalzell (1991); Ramsay and

Silverman (2005); Yao, Müller and Wang (2005b)) and functional response re-

gression model (Ramsay and Silverman (2005)). The classical functional linear

regression describes the relationship between a scalar response and a functional

predictor. In contrast, a functional response regression characterizes the relation

between a functional response and scalar predictors.

The functional response regression model is defined as independent realiza-

tions of an underlying stochastic process
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yi(s) = xT

i β(s) + ηi(s) (i = 1, . . . , n), (1.1)

where yi(s) denotes a functional response for the ith subject, xi is its associ-

ated p-dimensional covariates of interest, β(s) = {β1(s), . . . , βp(s)}T is a p × 1

unknown smooth function of s ∈ I, and ηi(s) includes individual variation used

to characterize the within-curve dependence. This functional response model can

be used in neuroimaging applications, where researchers use clinical, genetic, and

neuropsychological assessment to predict the time/location of varying brain sig-

nals. This model is also closely connected to various varying-coefficient models

(Hastie and Tibshirani (1993); Shen and Faraway (2004); Zhang and Chen (2007);

Zhang (2011); Zhu, Li and Kong (2012)). Typically, brain signals are distorted

by artifacts and noise, and outliers occur frequently. Studies have found that out-

liers may affect statistical results and conclusions significantly (Krauledat et al.

(2007); Garrido, Sahani and Dolan (2013)). Quantile regression (Koenker and

Bassett (1978)) has emerged as an important statistical methodology that pro-

vides robust statistical results when outliers exist. It allows scientists to make a

statistical inference on the entire conditional distribution by estimating a collec-

tion of conditional quantiles, and does not require specifying an error distribution.

Therefore, it is used widely in disciplines such as biology, medicine, finance, and

economics, especially to model complex data such as longitudinal and functional

data. A comprehensive survey of quantile regression can be found in Koenker

(2005).

To this end, we propose the following functional response quantile regression

model (FRQR):

yi(s) = xT

i β(s, τ) + ηi(s, τ), (i = 1, . . . , n), (1.2)

where τ ∈ (0, 1) is a given quantile level, and ηi(s, τ) is a stochastic process with

covariance function γη(s, t) at each τ . Without loss of generality, we assume that

the τth quantile of ηi(s, τ) is equal to zero, that is, F−1ηi(s,τ)
(τ) = 0, where F−1ηi(s,τ)

is the quantile function of Fηi(s,τ), and Fη(s,τ) denotes the distribution function

of ηi(s, τ), for any s and a given τ . Thus, the τth conditional quantile of yi(s)

given xi can be written as Qyi(s)(τ | xi, s) = xT

i β(s, τ), which is characterized

by the only parameter β(s, τ). In fact, if F−1ηi(s,τ)
(τ) 6= 0, then {xi, yi(s)} obeys

the conditional quantile restriction Qyi(s)(τ | xi, s) = F−1ηi(s,τ)
(τ) + xT

i β(s, τ). In a

quantile regression, each conditional quantile is important for characterizing the

distribution of the response. For a fixed s, the model (1.2) becomes the usual

quantile regression (Koenker (2005)). Therefore, it is identifiable. In addition,

the covariance structure of yi(·) at the τth quantile level is characterized by the
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covariance function of ηi(·, τ). We introduce an efficient estimation procedure for

β(s, τ) based on a local linear approximation, derive the global uniform Bahadur

representation of β̂(s, τ), and establish the weak convergence results of β̂(s, τ).

Based on these results, we propose statistical inference procedures, including a

global test statistic and simultaneous confidence bands (SCBs). The procedure

considers the within-curve dependence structure and the estimation errors of the

underlying unknown data distributions.

The FRQR model (1.2) is receiving increasing attention. Liu, Li and Morris

(2020a) performed a quantile regression on a functional response in a Bayesian

framework, and applied it to mass spectrometry proteomics data, Yang et al.

(2020) proposed a Bayesian quantile functional regression, using the quantile

functions as functional data, to model the entire marginal distribution of the

pixel intensities of tumor images, Zhang et al. (2022) developed a novel spatial

FRQR model to characterize the conditional distribution of an image response on

the whole spatial domain. Liu, Li and Morris (2020b) use a quantile regression

to provide a comprehensive understanding of how scalar predictors influence the

conditional distribution of a functional response, and perform a statistical infer-

ence using asymptotic SCBs. Our work differs substantially from Liu, Li and

Morris (2020b) in the following ways. First, Liu, Li and Morris (2020b) perform

a quantile regression separately at each sampling location to obtain a pointwise

estimator of the coefficient functions, and then construct SCBs based on linear

interpolation (LI). In contrast, we apply kernel smoothing (KS) to estimate the

regression coefficient functions, directly perform the global test for the linear hy-

potheses of the coefficient functions, and construct an SCB for each coefficient

function. The estimation method of Liu, Li and Morris (2020b) is based on two

points on both sides of the point of interest, and so does not use the full infor-

mation from its neighbors. Thus, the SCB obtained using the LI method may

need to be corrected in practice. Second, Liu, Li and Morris (2020b) do not

consider a global hypothesis test. Third, the theoretical development in our work

differs from that of Liu, Li and Morris (2020b), who give a uniform Bahadur

representation of the pointwise estimator on a discrete sampling grid, and derive

a strong Gaussian approximation of the LI estimator over the location s ∈ I for

the fixed quantile level τ ∈ (0, 1). In contrast, we obtain a global uniform Ba-

hadur representation of the KS estimator, and establish a strong two-parameter

Gaussian approximation of the estimator with respect to s ∈ I and τ ∈ (0, 1).

Thus, our theoretical development is more challenging than that of Liu, Li and

Morris (2020b).
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This study makes the following contributions to the literature. First, to the

best of our knowledge, this is the first study to consider a functional response

in a quantile regression. Second, we develop novel theory, including the global

uniform Bahadur representation and the weak convergence of the estimator of

the varying-coefficient function, using advanced empirical process methods. To

validate our inference procedure, we derive the null distribution of the global

test statistic and introduce a wild bootstrap testing procedure with theoretical

guarantees. Third, our approach reveals interesting findings in two applications

to diffusion tensor imaging data and ADHD-200 functional magnetic resonance

imaging data.

2. Estimation Procedure

2.1. Assumptions

Throughout this paper we assume s ∈ [0, 1], but our results can be easily

extended to the unit square, cube, or higher dimensions. We assume that ηi(s, τ)

are independent and identical copies of the stochastic process η(s, τ) with covari-

ance function γη(s, t) at each τ , and with the τth quantile equal to zero. For

imaging data, it is typical for the functional response yi(s) to be measured at

the same location for all subjects. Therefore, yi(s) is measured at the same m

location points 0 = s1 ≤ s2 ≤ · · · ≤ sm = 1, for all i = 1, . . . , n. We also assume

β(·, τ) is twice continuously differentiable.

2.2. Quantile regression estimation

In model (1.2), the conditional quantile function of yi(s) given xi can be

expressed as Qyi(s)(τ | xi, s) = xT

i β(s, τ), for i = 1, . . . , n, each s ∈ I, and any

τ ∈ (0, 1). The main parameter of interest is β(s, τ), which we estimate using a

local polynomial regression (Fan and Gijbels (1996)). In particular, β(sj , τ) can

be locally approximated by a linear function β(sj , τ) ≈ β(s, τ)+ β̇(s, τ)(sj−s) ≡
b1 + b2(sj − s), where β̇(s, τ) = {dβ1(s, τ)/ds, . . . , dβp(s, τ)/ds}T. Let zj(s) =

zh1j(s) = {1, (sj − s)/h1}T, zx,ij(s) = {xT

i , h
−1
1 (sj − s)xT

i }T = zj(s)⊗ xi, where ⊗
is the Kronecker product, b = (bT1 , h1b

T

2)T, K(s) is a kernel function, Kh1j(s) =

h−11 Kj(s) with Kj(s) = K{(sj − s)/h1}, and h1 is a bandwidth. Then, the

estimator β̂(s, τ) can be obtained by minimizing the following locally weighted

quantile regression loss function:∑n
i=1

∑m
j=1 ρτ {yi(sj)− zx,ij(s)b}Kj(s) (2.1)
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where ρτ (u) = u{τ −I(u < 0)} is a check function (Koenker and Bassett (1978)).

Thus, we have

β̂(s, τ) = {(1, 0)⊗ Ip}b̂.

For the choice of h1, we introduce an automatic selection procedure in Section

2.4.

2.3. Data-driven estimation of density and distribution functions

We need to estimate the unknown error densities of η(s) and the unknown

bivariate cumulative distribution of the individual effects η(s) and η(t), for each

s, t ∈ [0, 1]. To do so, we use residual-based empirical distributions. It is useful

to estimate the distribution of the error using the empirical distribution of the

residuals, and then to use this estimated error distribution to develop tests for the

model assumptions (Akritas and Keilegom (2001); Müller, Schick and Wefelmeyer

(2007); Neumeyer and Keilegom (2010)).

Define the bivariate cumulative distribution of the individual effects η(s)

and η(t) as Fη(a1, a2, s, t; τ, ι) = pr{η(s, τ) < a1, η(t, ι) < a2}, and denote fη(a1,

a2, s, t; τ, ι) = ∂2Fη(a1, a2, s, t; τ, ι)/∂a1∂a2. We need to estimate fη(0, s; τ) and

F̂η(0, 0, s, t; τ, ι), for s 6= t, for statistical inference.

First, we can estimate fη(a, s; τ) using kernel methods, such as

f̂η(a, s; τ) = n−1
n∑
i=1

Kh2
{a− η̂i(s, τ)},

with the residuals η̂i(s, τ) = yi(s)− xT

i β̂(s, τ). Thus, we get f̂η(0, s; τ).

Second, we can estimate the multivariate cumulative distribution function

Fη(a1, a2, s, t; τ, ι) using a kernel estimation such as

F̂η(a1, a2, s, t; τ, ι) =

∫ a1

−∞

∫ a2

−∞
f̂η(b1, b2, s, t; τ, ι)db1db2,

for s 6= t, with

f̂η(b1, b2, s, t; τ, ι) = n−1
n∑
i=1

Kh3
{b1 − η̂i(s, τ)}Kh4

{b2 − η̂i(t, ι)}.

This yields F̂η(0, 0, s, t; τ, ι).

For statistical inference, we need to estimate the unknown error density.

Popular ways of doing so include the difference quotient method (Hendricks and

Koenker (1992); Wang, Zhu and Zhou (2009)) and the Nadaraya–Watson or lo-
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cal linear kernel method (Fan, Yao and Tong (1996)). We adopt Nadaraya–

Watson-type estimators for the densities of the error processes fη(·, s; τ) and

fη(·, ·, s, t; τ, ι).

2.4. Automatic bandwidth selection

Bandwidth selection is critical in local smoothing. To implement our estima-

tion method, we need to choose appropriate bandwidths hl (l = 1, . . . , 4), in order

to obtain adequate estimators β̂(s), f̂η(a, s; τ), and f̂η(b1, b2, s, t; τ, ι). Asymptot-

ically, we require that hl (l = 1, . . . , 4) satisfies conditions (C7)–(C9), given in

Section 4. However, it is difficult to use these conditions in practice. A simple

and efficient of obtaining these bandwidths is to use cross-validation (CV) based

on data. For the Nadaraya–Watson estimator of the random error density, band-

width selection often minimizes the least integrated squared CV score (Fan and

Yim (2004); Hall, Racine and Li (2004)). We minimize the sum of the integrated

squared CV score to choose the bandwidth for the Nadaraya–Watson estimator

of the stochastic process density function.

For h1, we minimize the CV score

cv(h1) =

n∑
i=1

m∑
j=1

ρτ{yi(sj)− xT

i β̂(sj , τ, h1)
(−i)},

where β̂(sj , τ, h1)
(−i) is the locally weighted quantile estimator of β(s, τ), with

the bandwidth h1 based on deleting the ith subject from the data.

Following the heuristic suggestions of Rice and Silverman (1991), hl (l =

2, 3, 4) can be chosen using CV. Fan and Yim (2004) and Hall, Racine and

Li (2004) proposed using CV for nonparametric conditional density estimators.

Here, we adopt their method for our estimations of the density functions. For an

estimator f̂η(a, sl; τ) of fη(a, sl; τ), for sl ∈ S and τ ∈ I, define the integrated

squared error

I(sl, τ) =

∫ {
f̂η(a, sl; τ)− fη(a, sl; τ)

}2
da

=

∫
f̂2η (a, sl; τ)da− 2

∫
f̂η(a, sl; τ)fη(a, sl; τ)da+

∫
f2η (a, sl; τ)da

= I1(sl, τ)− I2(sl, τ) + I3(sl, τ).

Note that I3(sl, τ) does not depend on the bandwidth h2, and fη(a, sl; τ) in

I2(sl, τ) is unknown. Thus, the CV estimator of
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Î2(sl, τ) =
2

n

n∑
i=1

f̂ (−i)η {η̂i(sl, τ), sl; τ}

=
2

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

Kh2
{η̂i(sl, τ)− η̂j(sl, τ)},

where f̂
(−i)
η {η̂i(sl, τ), sl, τ} denotes the estimator fη(a, sl; τ) based on the data

with the observations of the ith subject left out at sl.

For h3 and h4, minimize the sum of the integrated squared CV score:

scv(h3, h4) =
m∑

k,l=1

[∫∫
f̂2η (b1, b2, sk, sl; τ, ι)db1db2 −

2

n

n∑
i=1

f̂ (−i)η {η̂i(sk, τ), η̂i(sl, ι), sk, sl; τ, ι}

]

where f̂
(−i)
η {η̂i(sk, τ), η̂i(sl, ι), sk, sl; τ, ι} = (n − 1)−1

∑n
j=1,j 6=iKh3

{η̂i(sk, τ) −
η̂j(sk, ι)}Kh4

{η̂i(sl, τ) − η̂j(sl, ι)}. In practice, we assume that h3 = h4 to save

computational time.

The above bandwidth choice is common in kernel estimation. Based on a

simple grid search, we can adaptively select the bandwidths h1, h2, and h3 one

by one using the above CV methods. In a simulation study, we found that

the bandwidth h1 is slightly sensitive to the estimators, and hl (l = 2, 3) are

not sensitive to statistical inference. On the whole, the results based on a CV

selection in our simulation study and real-data analysis are satisfactory.

Note that the theory developed here does not support a procedure in which

the tuning parameters are selected adaptively.

3. Inference Procedure

3.1. Global test statistic

In this subsection, we propose a global test statistic for the general hypothesis

testing problem

H0 : Cβ(s, τ) = c(s, τ) for all s and τ versus H1 : Cβ(s, τ) 6= c(s, τ), (3.1)

where C is a given r × p full-rank matrix, and c(s, τ) = {c1(s, τ), . . . , cr(s, τ)}T

is a given vector of functions. Denote el,p to be the p-dimensional unit vector

with the lth component equal to one, and all others equal to zero. If we take

C = eT

l,p = (0, . . . , 0, 1, 0, . . . , 0) and c(s, τ) = 0, this tests the significance of the

lth covariate effect on the functional responses; if we take C = (ek,p−el,p)T, k 6= l,
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and c(s, τ) = 0, it tests for an equality βk(s, τ) = βl(s, τ).

From Theorem 1, n1/2[β̂(s, τ) − β(s, τ) − Bias{β̂(s, τ)}] converges weakly

to a centered Gaussian process G(s, τ) with covariance Σ(s, t; τ, ι) = E{G(s, τ)

GT(t, ι)}, indexed by s ∈ [0, 1] and τ ∈ (0, 1). Let the residual process d(s, τ) =

n1/2[C[β̂(s, τ) − Bias{β̂(s, τ)}] − c(s, τ)], and the normalized version dc(s, τ) =

{CΣ̂(s, s; τ, τ)CT}−1/2d(s, τ), where Σ̂(·, ·; ·, ·) is an estimator of Σ(·, ·; ·, ·),
Σ̂(s, t; τ, ι)=(1, 0)Â−1(s, τ)Ĝ(s, t; τ, ι)Â−1(t, ι)(1, 0)T Ω̂−1x , Ω̂x=(1/n)

∑n
i=1 xix

T

i ,

Â(s, τ)=(1/m)
∑m

j=1Kh1j(s)f̂η(0, sj ; τ)zj(s)z
T

j (s), and the 2×2 matrix Ĝ(s, t; τ, ι)

has entries

Ĝkl(s, t; τ, ι) =

{
µ̂k(K; s, h1)µ̂l(K; t, h1)(τ ∧ ι− τι), if s = t,

µ̂k(K; s, h1)µ̂l(K; t, h1){F̂η(0, 0, s, t; τ, ι)− τι}, if s 6= t,

(k, l = 0, 1),

µ̂k(K; s, h1) = m−1
m∑
j=1

Kh1j(s)

(
sj − s
h1

)k
(k = 0, 1, 2).

From the weak convergence and uniform consistency of Σ̂(s, t; τ, ι) in [0, 1]2 ×
(0, 1)2, dc(s, τ) converges weakly to Gc(s, τ) = {CΣ(s, s; τ, τ)CT}−1/2 CG(s, τ),

by Slutsky’s theorem (Kosorok (2008)), where Gc(s, τ) is a centered Gaussian

process.

The global test statistic for the linear hypothesis H0 is defined as follows:

Tn =
∫ 1
0

∫ 1
0 d

T

c (s, τ)dc(s, τ)dsdτ. Let T̃n =
∫ 1
0

∫ 1
0 GT

c (s, τ)Gc(s, τ)dsdτ . We show

in Theorem 3 that Tn converges weakly to T̃n .

Because Bias{β̂(s, τ)} is unknown, we can estimate it by

B̂ias{β̂(s, τ)} =

−(Ip, 0)
{
Â−1(s, τ)⊗ Ω̂−1x

}
(nm)−1

n∑
i=1

m∑
j=1

Kh1j(s)zx,ij(s)êij(s, τ), (3.2)

where êij(s, τ) = −2−1xT

i
ˆ̈
β(s, τ)(sj−s)2−6−1xT

i

.̂..
β (s, τ)(sj−s)3, in which

ˆ̈
β(s, τ)

and
.̂..
β (s, τ) are obtained using a local cubic fit with a selected bandwidth.

In practice, it is difficult to obtain the percentiles of Tn directly, even if

its null distribution is known. Therefore, we use a wild bootstrap method to

approximate the critical values of Tn. In particular, we fit model (1.2) under H0 to

obtain β̂∗(sj , τ) and η̂∗i,0(sj , τ), for i = 1, . . . , n, j = 1, . . . ,m. Then, we generate

a random sample ς̃i(sj) from a standard normal distribution, for i = 1, . . . , n,

j = 1, . . . ,m, and compute ỹi(sj) = xT

i β̂
∗(sj , τ)+ ς̃i(sj)η

∗
i,0(sj , τ). From ỹi(sj), we
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reobtain β̃(s, τ), Bias{β̃(s, τ)}, and d(B)(s, τ) = n1/2(C[β̃(s, τ)−Bias{β̃(s, τ)}]−
c(s, τ)) by using the locally weighted quantile regression loss function (2.1). As

shown in Theorem 1, Bias{β̃(s, τ)} is asymptotically negligible; thus, we drop

the term Bias{β̃(s, τ)} for computational efficiency. Specifically, we calculate

T̃n =
∫ 1
0

∫ 1
0 dc(s, τ)T dc(s, τ)dsdτ, where dc(s, τ) = {CΣ̃(s, s; τ, τ)CT}−1/2d(s, τ).

Repeat M times to have {T̃n,B, B = 1, . . . ,M}, and compute the p-value as

M−1
∑M

B=1 I(T̃n,B ≥ Tn). If the p-value is smaller than a given significance level

α, say 0.05, then we reject H0.

Although we theoretically obtain a global test statistic Tn over s ∈ [0, 1] and

τ ∈ (0, 1), in practice, the required double integration for Tn is computationally

expensive. Thus, we are often more interested in the function of s for a given

τ . Therefore, we consider the global test statistic T ∗n =
∫ 1
0 d

T

c (s, τ)dc(s, τ)ds of

{β̂(s, τ), s ∈ [0, 1]} for a given τ ∈ (0, 1). The null distribution of T ∗n is given

in Theorem 3 (b). A similar wild bootstrap procedure can be implemented to

improve computational efficiency.

3.2. SCBs

For a given quantile τ and a preassigned significance level α, we construct

SCBs of βl(s, τ) for each τ , that is, we find β̂L,αl (s, τ) and β̂U,αl (s, τ), such that

pr{β̂L,αl (s, τ) < βl(s, τ) < β̂U,αl (s, τ), s ∈ [0, 1], τ ∈ (0, 1)} = 1− α (l = 1, . . . , p).

By the weak convergence of β̂(s, τ), we have that sups∈[0,1],τ∈(0,1) |n1/2[β̂l(s, τ)

− βl(s, τ)−Bias{β̂l(s, τ)}]| converges weakly to sups∈[0,1],τ∈(0,1) |Gl(s, τ)|. Define

Cl(α) such that pr{sups∈[0,1],τ∈(0,1) |Gl(s, τ)| ≤ Cl(α)} = 1 − α. The 1 − α SCB

for βl(s, τ) can be written as [β̂l(s, τ) − Bias{β̂l(s, τ)} − Cl(α)n−1/2, β̂l(s, τ) −
Bias{β̂l(s, τ)}+Cl(α)n−1/2], where Bias{β̂l(s, τ)} is given by (3.2). Here, we can

drop the term Bias{β̂l(s, τ)} for computational efficiency.

Now, we approximate Cl(α) using an efficient resampling approach, in line

with Kosorok (2003), Zhu et al. (2007), and Zhu, Li and Kong (2012). We es-

timate η̂i(sj) = yi(sj) − xT

i β̂(sj , τ), for i = 1, . . . , n and j = 1, . . . ,m. For B =

1, . . . ,M , we generate independent samples {ς(B)
i , i = 1, . . . , n} from N(0, 1) and

compute the stochastic process G(B)(s, τ) = −n−1/2m−1(Ip, 0)Š−1nX(s, τ)
∑n

i=1

ς
(B)
i

∑m
j=1Kh1j(s)zx,ij(s)ŵ

∗
ij(s, τ), where ŠnX(s, τ) = (nm)−1

∑n
i=1

∑m
j=1Kh1j(s)

f̂η(0, sj ; τ)zx,ij(s)z
T

x,ij(s) and ŵ∗ij(s, τ) = I{η̂i(sj , τ) ≤ 0} − τ . We calculate

sups∈[0,1],τ∈(0,1) |el,pG(B)(s, τ)|, for all B, and then adopt its 1 − α empirical

percentile as an estimate of Cl(α).
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We are also interested in constructing SCBs for β(s, τ) for a given τ . In

this case, we need to change the previous inference procedure by replacing

sups∈[0,1],τ∈(0,1) |el,pG(B)(s, τ)| with sups∈[0,1] |el,pG(B)(s, τ)|.

4. Theoretical Properties

In this section, we provide theoretical guarantees for the estimators and in-

ference procedures developed in Sections 2 and 3. We first introduce some nota-

tion. For any smooth functions f(s, τ) and g(s, t; τ, ι), let ḟ(s, τ) = df(s, τ)/ds,

f̈(s, τ) = d2f(s, τ)/ds2,
...
f (s, τ) = d3f(s, τ)/ds3, and g(a,b)(s, t) = ∂a+bg(s, t; τ, ι)

/∂as∂bt, where a and b are any nonnegative integers. For a square matrix A,

det(A) denote the determinant of A. Define

µr(K) =

∫
srK(s)ds,

µr

[
K?

{
(s− t)
h

}]
=

∫
urK(u)K

(
u+

s− t
h

)
du,

νr(K) =

∫
srK2(s)ds,

µr(K; s, h) =

∫ 1

0
h−r(u− s)rKh(u− s)du,

where r is any nonnegative integer.

Denote

Φ(s, h) =

{
µ0(K; s, h) µ1(K; s, h)

µ1(K; s, h) µ2(K; s, h)

}
,

µ̃(K, s, h1) =
µ22(K, s, h1)− µ0(K, s, h1)µ3(K, s, h1)
µ0(K, s, h1)µ2(K, s, h1)− µ21(K, s, h1)

.

In this section, we present the conditions needed for the main theorems 1,

3, and 4. The following regularity conditions are sufficient for the asymptotic

properties, although they might not be the weakest possible. Moreover, we do

not distinguish between the differentiation and continuation at the boundary

points and those in the interior of [0, 1]. For example, a function is continuous at

the boundary of [0, 1], which means that the function is left continuous at zero

and right continuous at one.

We require the following technical conditions:
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(C1) The sequence {ηi(s, τ) : s ∈ [0, 1]} is a stochastic process with the τth

quantile conditional on (xi, s) equal to zero.

(C2) The grid points S are prefixed according to π(s) such that
∫ sj
0 π(s)ds = j/m,

for 1 ≤ j ≤ m. Moreover, π(s) > 0, for s ∈ [0, 1], and π(s) has a continuous

second-order derivative on (0, 1).

(C3) The distribution function Fη(a, s; τ) is Lipschitz continuous in a, for each

s and τ , with continuous density fη(a, s; τ) uniformly bounded away from

zero and ∞ that has a continuous second-order derivative at s and is Lip-

schitz continuous in τ . The joint distribution function Fη(a, b, s, t; τ, ι) is

continuous at a and b, and has continuous second-order derivatives at s and

t, with continuous density fη(a, b, s, t; τ, ι) that has continuous second-order

derivatives at s and t.

(C4) βl(s, τ) have continuous second-order derivatives with respect to s for each

τ and all l = 1, . . . , p. Furthermore ∂2βl(s, τ)/∂s2 are Lipschitz continuous

over {(s, τ) : (t−s)/h1 ∈ supp{K(·)}, s, t ∈ I, τ ∈ (0, 1)} for all l = 1, . . . , p.

(C5) The covariates xi are independently and identically distributed (i.i.d.) with

‖xi‖ <∞, and E(xix
T

i ) = Ωx, which is positive definite.

(C6) The kernel function K(·) in Section 2.2 of the main text is a symmetric Lip-

schitz continuous density function with compact support [−1, 1]. Moreover,

infh∈(0,h0],s∈[0,1] det{Φ(s, h)} > 0 for a small scalar h0 > 0.

(C7) The bandwidth h1 satisfies (i) h1 → 0, mh1 →∞ and (ii) m/(nh31) = O(1).

(C8) The density fη(a, s; τ) has bounded continuous third-order partial deriva-

tives with respect to a for all s ∈ [0, 1] and τ ∈ (0, 1). The kernel function

K(·) in Kh2
(·) is third-order continuously differentiable. The bandwidth h2

satisfies nh32 →∞, nh62 → 0, and h−11 h
2/3
2 →∞.

(C9) fη(a, b, s, t; τ, ι) has bounded continuous second-order partial derivatives and

mixed derivatives with respect to a and b for all s, t ∈ [0, 1] and given

τ, ι ∈ (0, 1). The kernel function K(·) in Kh3
(·) and Kh4

(·) is Lipschitz

continuous. The bandwidths h3 and h4 satisfy h1h
−1
l → 0 and nh4l → ∞,

for l = 3, 4.

(C10) For given τ and ι, the function γ̃(s, t) = γ(s, s; τ, τ)−1/2γ(s, t; τ, ι)

γ(t, t; ι, ι)−1/2, s, t ∈ [0, 1], has a finite trace, that is, tr(γ̃) =
∫ 1
0 γ̃(s, s)ds <

∞, where γ(s, t; τ, ι) is defined in Theorem 1 (b).
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Remark 1. Condition (C1) is a general assumption for quantile regression. Con-

ditions (C2) and (C4)–(C7) are used by Zhu, Li and Kong (2012). The condi-

tions of the distribution/density function are necessary for quantile regression

(Koenker (2005); Cai and Xu (2009); Wang, Zhu and Zhou (2009); Chen and

Müller (2012); Kato (2012)). Condition (C3) is a very general assumption for

the distribution/density function, and is specific to a quantile regression for func-

tional response data. Conditions (C8)–(C9) are used to establish the weak con-

sistency of the error densities of η(s, τ), and the unknown bivariate cumulative

distribution of the individual effects η(s, τ) and η(t, ι), for each s, t ∈ [0, 1] and

τ, ι ∈ (0, 1). To obtain a χ2-type mixture distribution of Tn in (3.6), we need

the finite trace of γ̃(s, t) in Condition (C10), which ensures that γ̃(s, t) has the

singular value decomposition defined in (4.1). Condition (C10) is similar to the

conditions used in Theorem 7 of Zhang and Chen (2007).

Remark 2. Conditions (C2) and (C7) are weak conditions on the random grid

points S = {sj : 1, . . . ,m}. Our proof can be easily extended to the case of fixed

grid points.

We first present the global uniform Bahadur representation and weak con-

vergence results of our estimate β̂(s, τ) in the following theorem. The proof of

this theorem is deferred to the Supplementary Material.

Theorem 1. Suppose that Conditions (C1)–(C7) hold. Then, the following re-

sults hold:

(a) (Global uniform Bahadur representation)

√
n

[
β̂(s, τ)− β(s, τ)− 1

2
h21µ̃(K, s, h1)β̈(s, τ){1 + op(1)}

]
= π(s)−1f−1η (0, s; τ)(Ip, 0)

{
Φ−1(s, h1)⊗ Ω−1x

}
×

 1√
nm

n∑
i=1

m∑
j=1

[τ − I{ηi(sj , τ) ≤ 0}] zx,ij(s)Kh1j(s)

 .

(b) (Weak convergence)

√
n

[
β̂(s, τ)− β(s, τ)− 1

2
h21µ̃(K, s, h1)β̈(s, τ){1 + op(1)} : s ∈ [0, 1], τ ∈ (0, 1)

]
converges weakly to a two-parameter centered Gaussian process G(·, ·) with covari-

ance matrix function Σ(s, t; τ, ι) = E{G(s, τ)GT(t, ι)} = γ(s, t; τ, ι)Ω−1x , where

γ(s, t; τ, ι) = (1, 0)A−1(s, τ)G(s, t; τ, ι)A−1(t, ι)(1, 0)T,
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A(s, τ) = fη(0, s; τ)Φ(s, h1),

G(s, t; τ, ι) =

{
G00(s, t; τ, ι) G01(s, t; τ, ι)

G10(s, t; τ, ι) G11(s, t; τ, ι)

}
,

with

Gkl(s, t; τ, ι) =

{
µk(K; s, h1)µl(K; s, h1)(τ ∧ ι− τι), if s = t,

µk(K; s, h1)µl(K; t, h1) {Fη(0, 0, s, t; τ, ι)− τι} , if s 6= t,

(k, l = 0, 1).

Remark 3. Theorem 1 (a) gives a global uniform Bahadur representation of the

local quantile regression estimator {β̂(s, τ) : s ∈ [0, 1], τ ∈ (0, 1)}. Theorem 1 (b)

establishes the weak convergence of {β̂(s, τ) : s ∈ [0, 1], τ ∈ (0, 1)}. For Theorem

1 (b), if s ∈ (0, 1), then
√
n[β̂(s)−β(s)−0.5h21µ2(K)β̈(s){1+op(1)} : s, τ ∈ (0, 1)]

converges weakly to a centered Gaussian process G(·, ·) with covariance matrix

Σ(s, t; τ, ι) = [{Fη(0, 0, s, t; τ, ι)− τι}/{fη(0, s; τ)fη(0, t; ι)}]Ω−1x .

Theorem 2.

(a) Under Conditions (C1)–(C8), we have for s ∈ [0, 1] and τ ∈ (0, 1),

sup
a
|f̂η(a, s; τ)− fη(a, s; τ)|

= Op

{
h22 + h21 + (nh2)

−1/2| log h2|1/2 + n−1/2 + h−42

(
n−3/2 + h61

)}
.

(b) Under Conditions (C1)–(C8) and (C9), we have for s, t ∈ [0, 1] and τ, ι ∈
(0, 1),

sup
b1,b2

|f̂η(b1, b2, s, t; τ, ι)− fη(b1, b2, s, t; τ, ι)|

= Op

{
h23 + h24 +

(
log n

nh3h4

)1/2
}

+Op

{(
h21 + n−1/2

)
(h−23 + h−24 )

}
.

Theorem 2 implies that the estimators of the “error” process densities fη(·, s)
and fη(·, ·, s, t) converge uniformly to their true densities, and gives their rates

of convergence. From Theorem 2, supa,b∈[0,1] |F̂η(a, b, s, t)−Fη(a, b, s, t)| = op(1),

for each s, t ∈ [0, 1], which is used in the inference procedure.

Define γ̃(s, t) = γ(s, s; τ, τ)−1/2γ(s, t; τ, ι)γ(t, t; ι, ι)−1/2, s, t ∈ [0, 1]. By Con-

dition (C10),
∫ 1
0

∫ 1
0 γ̃

2(s, t)dsdt < ∞. By the Cauchy–Schwarz inequality, the
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function γ̃(s, t) has the eigen decomposition

γ̃(s, t) =

l0∑
l=1

κlψl(s)ψl(t),

where the κl are the eigenvalues, in decreasing order, ψl are the associated or-

thonormal eigenfunctions of γ̃(s, t), and l0 is the number of positive eigenvalues.

We next present theorems about our inference procedure. The proofs of the

theorems are deferred to the Supplementary Material.

Theorem 3.

(a) Under Conditions (C1)–(C9), we have

Tn = T̃n + op(1).

(b) In addition, if Condition (C10) holds, then

T ∗n ⇒
l0∑
l=1

κlχ
2
l (r),

where χ2
l (r) is the lth random variable that follows a central χ2-distribution

with r degrees of freedom.

Theorem 4. Under Conditions (C1)–(C10), the bootstrapped process of

{G(B)(s, τ) : s ∈ [0, 1], τ ∈ (0, 1)} converges weakly to G(s, τ) conditioning on

the data, where G(s, τ) is a centered Gaussian process indexed by s ∈ [0, 1] and

τ ∈ (0, 1).

Remark 4. Theorems 3 and 4 present theoretical support for the statistical in-

ference procedure introduced in Section 3. Theorem 3 suggests that Tn asymptot-

ically follows a mixture of chi-square distributions. To use the asymptotic results

for testing, we need to select an integer ι such that the eigenvalues κl (l = 1, . . . , ι)

explain a sufficiently large portion of the total variation tr(γ̃). This threshold is

often difficult to select in practice. Therefore, we use the bootstrap method to ob-

tain approximate critical values of Tn, where Theorem 4 provides the theoretical

guarantee.

Remark 5. The proofs of Theorems 3 and 4 rely on the uniform convergence

rates of f̂η(·, s) and f̂η(·, ·, s, t). These results are developed in Theorem 2.
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5. Simulation Study

In this section, we conduct simulation studies to evaluate our estimation

and inference procedures. In the estimations and the SCBs, we compare the

finite simple performance of our KS wild bootstrap method and the LI random

weighted bootstrap method of Liu, Li and Morris (2020b) (hereafter, denoted by

KS and LI, respectively) in terms of their root mean integrated squared errors,

uniform coverage probabilities, and average coverage widths, as well as providing

a graphical visualization.

The data are generated from the following heteroscedastic model yi(sj) =

xi1β1(sj) + xi2β2(sj) + xi3β3(sj) + ηi(sj , τ), for i = 1, . . . , n, j = 1, . . . ,m, where

xi1 = 1, (xi2, xi3)
T ∼ N{(0, 0)T,diag(1 − 1/

√
2, 1 − 1/

√
2) + 1/

√
2(1, 1)T(1, 1)},

sj ∼ Uniform[0, 1]. To generate ηi(sj , τ), we first let ηi(sj) = vi(sj)+εi(sj), where

{vi(s1), . . . , vi(sm)}T follows a multivariate normal distribution with zero mean,

and its covariance matrix has a first-order autoregressive correlation structure

with corr{vi(sj), vi(sl)} = γ|j−l| with strength γ = 0.5, and εi(sj) ∼ N(0, 0.2).

Because ηi(s1), . . . , ηi(sm) are dependent, we set ηi(sj , τ) = ηi(sj)−F−1(τ), with

F being the marginal density function of ηi(sj). Here, F−1(τ) is subtracted

from ηi(sj) to make the τth quantile of ηi(sj , τ) zero for identifiability. We set

β1(s) = s2, β2(s) = (1 − s)4, and β3(s) = exp(s) − 1. In all our numerical

studies, we use a Gaussian kernel and select the bandwidths using the procedure

in Section 2.4.

We report the root mean integrated squared error, defined as

RMISEτ =

m−1
m∑
j=1

|β̂l(sj , τ)− βl(sj , τ)|2


1/2

(l = 1, 2, 3),

where m is the number of locations. The average root mean integrated squared

errors over 500 Monte Carlo runs for m = 50, 70, 90 are included in Table 1.

The results show that RMISEτ decreases as m increases, which validates the

consistency results of the two estimation methods. KS outperforms LI, having a

much smaller RMISE in most cases.

Second, we test the hypotheses H0 : β1(s, τ) = 0 for all s against H1 :

β1(s, τ) 6= 0 for at least one s, for fixed τ = 0.10, 0.25, 0.50, 0.75 and 0.90. Here, we

do not provide a comparison with LI, because Liu, Li and Morris (2020b) do not

give a global hypothesis test. We set β2(s) = c(1−s)4, with c = 0, 0.2, 0.3, . . . , 3.0,

to examine the power of T ∗n when m = 50 and n = 100. We use B = 200

bootstrap samples, and depict the power curves in Figure 1. The rejection rates
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Table 1. Simulated results for the root mean integrated squared errors for the KS and
LI methods.

m = 50 m = 70 m = 90

Method τ β1(s) β2(s) β3(s) β1(s) β2(s) β3(s) β1(s) β2(s) β3(s)

KS 0.10 0.0139 0.0295 0.0108 0.0110 0.0249 0.0094 0.0081 0.0186 0.0071

0.25 0.0115 0.0291 0.0100 0.0118 0.0287 0.0077 0.0071 0.0173 0.0073

0.50 0.0130 0.0279 0.0129 0.0092 0.0237 0.0115 0.0074 0.0172 0.0086

0.75 0.0147 0.0294 0.0097 0.0140 0.0246 0.0131 0.0079 0.0174 0.0080

0.90 0.0154 0.0308 0.0114 0.0135 0.0288 0.0096 0.0078 0.0183 0.0084

LI 0.10 0.0205 0.0283 0.0235 0.0187 0.0235 0.0200 0.0176 0.0225 0.0222

0.25 0.0142 0.0235 0.0228 0.0144 0.0210 0.0163 0.0091 0.0167 0.0153

0.50 0.0172 0.0195 0.0220 0.0142 0.0212 0.0194 0.0107 0.0156 0.0158

0.75 0.0191 0.0256 0.0266 0.0151 0.0231 0.0225 0.0122 0.0169 0.0160

0.90 0.0203 0.0246 0.0207 0.0264 0.0198 0.0253 0.0226 0.0215 0.0184

Figure 1. Plot of power curves. Rejection rate of T ∗
n based on wild bootstrap methods

at c = 0, 0.2, 0.4, . . . , 3.0 for different quantile levels at significance levels α = 0.05 (real)
and 0.01 (dash).

for T ∗n based on the wild bootstrap method are accurate for the different quantile

levels at both significance levels (α = 0.05 and 0.01). However, the power of the

hypothesis tests at the extreme quantile levels (τ = 0.10 and 0.90) is obviously

weaker than that at moderate levels (τ = 0.25, 0.50, and 0.75).
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Last, we evaluate the coverage probabilities (CPs) and coverage widths (SWs)

of the SCBs for βl(s) (l = 1, 2, 3) using the wild bootstrap procedure, and compare

them with those of the LI method in Liu, Li and Morris (2020b). Both methods

have theoretical guarantees. For the estimation of C(α), Liu, Li and Morris

(2020b) adopt the weighted bootstrap method proposed in Belloni et al. (2019),

and draw random weights from an exponential distribution with parameter one.

In the simulation, we find that the C(α) obtained by Liu, Li and Morris (2020b)

are slightly large, resulting in empirical CPs that are significantly greater than

the given nominal confidence levels and wider SCBs. We do not know why this

is. The SCBs obtained using the LI method may need to be corrected because

of linear interpolation. For comparison, we control the empirical CPs of the LI

method to the given nominal confidence levels by removing some extreme values

generated by the bootstrap method. We set n = 500 and m = 50, 70, 90 for

τ = 0.10, 0.25, 0.50, 0.75 and 0.90, perform 500 runs, and take B = 500 bootstrap

samples for each combination. We consider the confidence levels 95% and 99%,

and list the simulated empirical coverage probabilities and coverage widths in

Tables 2–3, yielding the following findings. (1) Our KS method has a much

smaller RMISE than that of the LI method. (2) At all noise levels, the coverage

probabilities are close to the nominal levels for both methods. (3) The coverage

widths of the SCBs of our KS method become narrower as the number of grid

points m increases, whereas those obtained using the LI method become much

wider. That is, we have tighter SCBs when there are more sampling locations.

For example, when m = 90, our KS method clearly outperforms the LI method,

because our method has tighter SCBs. (4) For each approach and each regression

function, the coverage widths become narrower as the quantile level gets closer

to the median. At the extreme quantile levels τ = 0.10 and 0.90, our KS method

also performs well. However, the LI method has a very wide coverage width

for the given confidence level. In addition, to illustrate the good performance

of our KS method, we plot the SCBs of βi(s) (l = 1, 2, 3) for fixed τ = 0.5 at

confidence levels 95% and 99% in Figure 2. The results again show that the

widths of the SCBs become narrower as the number of grid points m increases.

Figure 3 compares the SCBs of the KS and the LI for βi(s) (l = 1, 2, 3) at the

extreme quantile level τ = 0.90 and confidence level 95%. The figures for other

cases are similar. In summary, our KS method clearly outperforms the LI method

by having a much smaller RMISE and much tighter SCBs, especially for larger

sample locations.
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Table 2. Simulation results for the empirical coverage probability (CP) and coverage
width (CW) of the 95% SCBs for the KS and LI methods. CWs are given in parentheses.

m = 50 m = 70 m = 90

Method τ β1(s) β2(s) β3(s) β1(s) β2(s) β3(s) β1(s) β2(s) β3(s)

KS 0.10 0.972
(0.581)

0.978
(0.825)

0.962
(0.829)

0.964
(0.493)

0.970
(0.701)

0.962
(0.707)

0.990
(0.481)

0.986
(0.681)

0.976
(0.683)

0.25 0.962
(0.518)

0.968
(0.738)

0.944
(0.735)

0.958
(0.439)

0.966
(0.624)

0.956
(0.626)

0.972
(0.426)

0.968
(0.605)

0.952
(0.608)

0.50 0.950
(0.497)

0.950
(0.707)

0.932
(0.706)

0.954
(0.421)

0.962
(0.601)

0.950
(0.601)

0.968
(0.408)

0.968
(0.580)

0.960
(0.583)

0.75 0.954
(0.519)

0.954
(0.739)

0.948
(0.739)

0.930
(0.437)

0.956
(0.623)

0.942
(0.624)

0.972
(0.427)

0.972
(0.605)

0.960
(0.608)

0.90 0.964
(0.587)

0.980
(0.834)

0.970
(0.837)

0.956
(0.494)

0.972
(0.701)

0.970
(0.704)

0.986
(0.480)

0.980
(0.681)

0.968
(0.684)

LI 0.10 0.928
(0.602)

0.980
(0.863)

0.968
(0.862)

0.938
(0.629)

0.972
(0.898)

0.970
(0.900)

0.966
(0.650)

0.990
(0.926)

0.986
(0.928)

0.25 0.926
(0.449)

0.946
(0.654)

0.956
(0.652)

0.952
(0.467)

0.966
(0.679)

0.974
(0.681)

0.950
(0.479)

0.972
(0.698)

0.974
(0.701)

0.50 0.944
(0.406)

0.962
(0.594)

0.968
(0.592)

0.956
(0.421)

0.970
(0.617)

0.968
(0.616)

0.944
(0.433)

0.966
(0.632)

0.968
(0.633)

0.75 0.968
(0.450)

0.960
(0.654)

0.976
(0.653)

0.936
(0.467)

0.958
(0.680)

0.958
(0.680)

0.938
(0.478)

0.964
(0.697)

0.956
(0.699)

0.90 0.942
(0.603)

0.970
(0.864)

0.968
(0.864)

0.946
(0.628)

0.984
(0.901)

0.974
(0.901)

0.970
(0.649)

0.982
(0.929)

0.982
(0.930)

6. Diffusion Tensor Imaging Data Analysis

We analyze imaging data from a neonatal project on early brain development.

The data set consists of 128 healthy infants, including 75 males and 53 females.

The gestational ages of the infants range from 262 to 433 days. The diffusion

tensor imaging and T1-weighted images were acquired for each subject. We have

included the imaging preprocessing steps in the Supplementary Material.

We consider two diffusion properties: fractional anisotropy and mean diffu-

sivity, which are measured at 45 grid points along the genu tract of the corpus

callosum. They measure the inhomogeneous extent of local barriers to water

diffusion and the average magnitude of local water diffusion, respectively. At dif-

ferent quantile levels τ , we use magnetic resonance imaging scanning to explore

the effects of an infant’s gender and gestational age on the fractional anisotropy

and mean diffusivity, and to delineate the tendency of fiber diffusion properties

over time. For τ = 0.25, 0.5, 0.75, we fit our model by taking the fractional

anisotropy and mean diffusivity values as responses, and gender and age as co-

variates. We also include an intercept term. The age, fractional anisotropy,

and mean diffusivity values are standardized before fitting the model (1.2). For
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Table 3. Simulation results for the empirical coverage probability (CP) and coverage
width (CW) of the 99% SCBs for the KS and LI methods. CWs are given in parentheses.

m = 50 m = 70 m = 90

Method τ β1(s) β2(s) β3(s) β1(s) β2(s) β3(s) β1(s) β2(s) β3(s)

KS 0.10 0.994
(0.738)

0.996
(1.049)

0.990
(1.056)

0.992
(0.622)

0.992
(0.887)

1.000
(0.892)

0.998
(0.608)

0.992
(0.863)

0.992
(0.864)

0.25 0.986
(0.658)

0.988
(0.937)

0.978
(0.936)

0.992
(0.554)

0.990
(0.792)

0.988
(0.794)

0.990
(0.539)

0.988
(0.767)

0.996
(0.772)

0.50 0.986
(0.629)

0.986
(0.898)

0.978
(0.900)

0.988
(0.533)

0.986
(0.758)

0.988
(0.761)

0.996
(0.519)

0.990
(0.735)

0.992
(0.738)

0.75 0.992
(0.659)

0.988
(0.942)

0.984
(0.943)

0.988
(0.555)

0.988
(0.788)

0.992
(0.789)

0.992
(0.540)

0.988
(0.763)

0.992
(0.769)

0.90 0.992
(0.743)

0.992
(1.056)

0.994
(1.063)

0.986
(0.626)

0.994
(0.889)

0.994
(0.891)

0.994
(0.607)

0.986
(0.861)

0.990
(0.866)

LI 0.10 0.984
(0.680)

0.992
(0.966)

0.990
(0.964)

0.990
(0.708)

0.996
(1.000)

0.996
(1.001)

0.996
(0.771)

1.000
(1.080)

0.998
(1.082)

0.25 0.972
(0.497)

0.992
(0.726)

0.986
(0.723)

0.986
(0.514)

0.992
(0.749)

0.992
(0.751)

0.996
(0.551)

1.000
(0.803)

0.998
(0.807)

0.50 0.980
(0.448)

0.984
(0.658)

0.998
(0.656)

0.988
(0.462)

0.992
(0.677)

0.990
(0.678)

0.994
(0.494)

0.992
(0.725)

0.996
(0.726)

0.75 0.988
(0.498)

0.990
(0.726)

0.996
(0.724)

0.978
(0.514)

0.992
(0.750)

0.992
(0.751)

0.994
(0.551)

0.996
(0.802)

0.996
(0.805)

0.90 0.984
(0.681)

0.998
(0.968)

0.998
(0.969)

0.990
(0.707)

0.998
(1.004)

0.988
(1.004)

0.996
(0.771)

0.998
(1.083)

1.000
(1.086)

each given τ , we estimate the coefficient function β(s) = {β0(s), β1(s), β2(s)}T,

compute T ∗n for each hypothesis test, and obtain the p-value by applying wild

bootstrap procedures with B = 500 replications.

For the given quantile levels, Figure 4 plots the estimated coefficient func-

tions corresponding to the intercept, gender, and age associated with fractional

anisotropy [panels (a), (b), (c)] and mean diffusivity [panels (d), (e), (f)], and

the p-values of the global test statistics under the null hypothesis H0l : βl(s) =

0 (l = 1, 2, 3). The intercept functions β0(s) [panels (a) and (d)] give the overall

tendency, and are significantly grid-point varying at all quantiles considered at

the 0.01 level. In addition, from panel (d), we see that the intercept function

corresponding to the mean diffusivity in the lower quantile τ = 0.25, that is,

for the group of healthy infants with lower mean diffusivity, is negative, whereas

that corresponding to the group of healthy infants with higher mean diffusivity

is positive. These negative and positive effects would not have been revealed by

methods focusing only on the conditional mean. For gender effects [panels (b)

and (e)], the six p-values are all greater than 0.01, except for the mean diffusivity

when τ = 0.5. This is consistent with the findings in Zhu, Li and Kong (2012)

that gender has a weakly significant effect on fractional anisotropy and mean dif-
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Figure 2. The SCB of three coefficient functions for τ = 0.5 when the nominal levels
are 95% and 99%, based on the KS method. The solid curves are the true coefficient
functions, and the dotted curves and the dash-dot curves are the confidence bands of the
nominal levels 95% and 99%, respectively.

fusivity. Male infants have a relatively bigger average local water diffusion along

the genu tract of the corpus callosum compared with that of female infants for

first five grid points when τ = 0.5. For the gestational age effects [panels (c)

and (f)], the p-value is greater than 0.01 for the fractional anisotropy, but is less

than 0.01 for the mean diffusivity response. This indicates that gestational age

has a weakly significant effect on the fractional anisotropy along the genu tract

of the corpus callosum, and that the mean diffusivity changes noticeably with

gestational age.

7. Discussion

We have proposed a functional response quantile regression model that ex-

plicitly characterizes the conditional distribution of a functional response given

a set of scalar predictors. We have developed a global test statistic for linear

hypotheses of the varying coefficient functions, and constructed an asymptotic

SCB for each regression coefficient function. Simulations and a real-data analysis
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Figure 3. Comparisons of the SCBs of KS and LI for three coefficient functions at the
quantile level τ = 0.90 and nominal level 95%. The solid curves are the true coefficient
functions, and the dotted curves and dash-dot curves are the confidence bands of the KS
and the LI methods, respectively.

show that the FRQR characterizes the effect of scalar predictors on the functional

responses at different quantile levels.

We focus on densely observed functional data in this study. However, in prac-

tice, functional data may be irregularly and sparsely observed. Our method is

not directly applicable to this case because the strong approximation results used

to construct the nonparametric confidence bands, commonly known as “Hungar-

ian embedding,” cannot be applied to irregular and sparse functional data. To

the best of our knowledge, only pointwise confidence bands have been developed

for irregular and sparse functional data (Yao, Müller and Wang (2005a,b); Yao

(2007); Ma, Yang and Carroll (2012); Zheng, Yang and Härdle (2014); Şentürk

and Müller (2010)). In future work, it would be interesting to construct SCBs

for such data, and to develop the theory to support the procedure with tuning

parameters selected adaptively.



2664 ZHOU ET AL.

FA FA

FA MD

MDMD

E
st

im
at

o
r 

o
f 
𝛽
1

E
st

im
at

o
r 

o
f 
𝛽
1

E
st

im
at

o
r 

o
f 
𝛽
2

E
st

im
at

o
r 

o
f 
𝛽
2

E
st

im
at

o
r 

o
f 
𝛽
3

E
st

im
at

o
r 

o
f 
𝛽
3

𝜏=0.25, p=0.000

𝜏=0.5,   p=0.000

𝜏=0.75, p=0.000

𝜏=0.25, p=0.000

𝜏=0.5,   p=0.000

𝜏=0.75, p=0.002

𝜏=0.25, p=0.000

𝜏=0.5,   p=0.000

𝜏=0.75, p=0.000

𝜏=0.25, p=0.700

𝜏=0.5,   p=0.162

𝜏=0.75, p=0.416

𝜏=0.25, p=0.390

𝜏=0.5,   p=0.018

𝜏=0.75, p=0.090

𝜏=0.25, p=0.664

𝜏=0.5,   p=0.010

𝜏=0.75, p=0.640

0  5  10 15 20 25 30 35  40 45 0  5  10 15  20 25 30 35 40 45

0  5 10  15 20 25 30 35 40 45

0 5 10  15 20 25 30 35 40 45

0  5  10  15 20 25 30 35 40 45

0 5  10  15 20 25 30 35 40 45

1.8

1.2

0.2

-0.8

-1.8

0.1

0

-0.1

-0.2

0.05

0

-0.05

-0.1

1.5
1

0.5
0

-0.5
-1

-1.5

0.3

0.2

0.1

0

-0.1

-0.2

1

0.5

0

-0.5

-1

(a) (b)

(c) (d)

(e) (f)

Figure 4. Plot of estimated coefficient functions and p-values of the global test statistics
for the quantile levels τ = 0.25, 0.5, and 0.75 for diffusion tensor imaging data. “FA”
denotes fractional anisotropy, and “MD” denotes mean diffusivity.
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