FUNCTIONAL RESPONSE QUANTILE REGRESSION MODEL

Xingcai Zhou¹, Dehan Kong², A. B. Kashlak³, Linglong Kong³, R. Karunamuni³ and Hongtu Zhu⁴

¹Nanjing Audit University, ²University of Toronto, ³University of Alberta and ⁴University of North Carolina at Chapel Hill

Abstract: We propose a new functional response quantile regression model, and develop a data-driven estimation procedure to estimate the quantile regression processes based on a local linear approximation. Theoretically, we obtain the global uniform Bahadur representation of the estimator with respect to the time/location and the quantile level, and show that the estimator converges weakly to a two-parameter continuous Gaussian process. We then derive the asymptotic bias and mean integrated squared error of the smoothed individual functions and their uniform convergence rates under given quantile levels. Based on the theoretical results, we introduce a global test for the coefficient functions and discuss how to construct simultaneous confidence bands. We evaluate our method using simulations and by applying it to diffusion tensor imaging data and ADHD-200 functional magnetic resonance imaging data.

Key words and phrases: Functional data, global test statistic, simultaneous confidence band, weak convergence.

1. Introduction

Functional data analysis deals with data in the form of functions, images, and shapes, as well as more general objects (Wang, Chiou and Müller (2016)). Functional regression models are widely used to model functional data, and include the functional linear regression (Ramsay and Dalzell (1991); Ramsay and Silverman (2005); Yao, Müller and Wang (2005b)) and functional response regression model (Ramsay and Silverman (2005)). The classical functional linear regression describes the relationship between a scalar response and a functional predictor. In contrast, a functional response regression characterizes the relation between a functional response and scalar predictors.

The functional response regression model is defined as independent realizations of an underlying stochastic process

Corresponding author: Linglong Kong, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. E-mail: lkong@ualberta.ca.

ZHOU ET AL.

$$y_i(s) = x_i^{\mathrm{T}}\beta(s) + \eta_i(s) \quad (i = 1, \dots, n),$$
 (1.1)

where $y_i(s)$ denotes a functional response for the *i*th subject, x_i is its associated *p*-dimensional covariates of interest, $\beta(s) = \{\beta_1(s), \ldots, \beta_p(s)\}^{\mathrm{T}}$ is a $p \times 1$ unknown smooth function of $s \in \mathcal{I}$, and $\eta_i(s)$ includes individual variation used to characterize the within-curve dependence. This functional response model can be used in neuroimaging applications, where researchers use clinical, genetic, and neuropsychological assessment to predict the time/location of varying brain signals. This model is also closely connected to various varying-coefficient models (Hastie and Tibshirani (1993); Shen and Faraway (2004); Zhang and Chen (2007); Zhang (2011); Zhu, Li and Kong (2012)). Typically, brain signals are distorted by artifacts and noise, and outliers occur frequently. Studies have found that outliers may affect statistical results and conclusions significantly (Krauledat et al. (2007); Garrido, Sahani and Dolan (2013)). Quantile regression (Koenker and Bassett (1978)) has emerged as an important statistical methodology that provides robust statistical results when outliers exist. It allows scientists to make a statistical inference on the entire conditional distribution by estimating a collection of conditional quantiles, and does not require specifying an error distribution. Therefore, it is used widely in disciplines such as biology, medicine, finance, and economics, especially to model complex data such as longitudinal and functional data. A comprehensive survey of quantile regression can be found in Koenker (2005).

To this end, we propose the following *functional response quantile regression* model (FRQR):

$$y_i(s) = x_i^{\mathrm{T}} \beta(s, \tau) + \eta_i(s, \tau), \quad (i = 1, \dots, n),$$
 (1.2)

where $\tau \in (0, 1)$ is a given quantile level, and $\eta_i(s, \tau)$ is a stochastic process with covariance function $\gamma_{\eta}(s, t)$ at each τ . Without loss of generality, we assume that the τ th quantile of $\eta_i(s, \tau)$ is equal to zero, that is, $F_{\eta_i(s,\tau)}^{-1}(\tau) = 0$, where $F_{\eta_i(s,\tau)}^{-1}$ is the quantile function of $F_{\eta_i(s,\tau)}$, and $F_{\eta(s,\tau)}$ denotes the distribution function of $\eta_i(s,\tau)$, for any s and a given τ . Thus, the τ th conditional quantile of $y_i(s)$ given x_i can be written as $Q_{y_i(s)}(\tau \mid x_i, s) = x_i^{\mathrm{T}}\beta(s,\tau)$, which is characterized by the only parameter $\beta(s,\tau)$. In fact, if $F_{\eta_i(s,\tau)}^{-1}(\tau) \neq 0$, then $\{x_i, y_i(s)\}$ obeys the conditional quantile restriction $Q_{y_i(s)}(\tau \mid x_i, s) = F_{\eta_i(s,\tau)}^{-1}(\tau) + x_i^{\mathrm{T}}\beta(s,\tau)$. In a quantile regression, each conditional quantile is important for characterizing the distribution of the response. For a fixed s, the model (1.2) becomes the usual quantile regression (Koenker (2005)). Therefore, it is identifiable. In addition, the covariance structure of $y_i(\cdot)$ at the τ th quantile level is characterized by the

covariance function of $\eta_i(\cdot, \tau)$. We introduce an efficient estimation procedure for $\beta(s, \tau)$ based on a local linear approximation, derive the global uniform Bahadur representation of $\hat{\beta}(s, \tau)$, and establish the weak convergence results of $\hat{\beta}(s, \tau)$. Based on these results, we propose statistical inference procedures, including a global test statistic and simultaneous confidence bands (SCBs). The procedure considers the within-curve dependence structure and the estimation errors of the underlying unknown data distributions.

The FRQR model (1.2) is receiving increasing attention. Liu, Li and Morris (2020a) performed a quantile regression on a functional response in a Bayesian framework, and applied it to mass spectrometry proteomics data, Yang et al. (2020) proposed a Bayesian quantile functional regression, using the quantile functions as functional data, to model the entire marginal distribution of the pixel intensities of tumor images, Zhang et al. (2022) developed a novel spatial FRQR model to characterize the conditional distribution of an image response on the whole spatial domain. Liu, Li and Morris (2020b) use a quantile regression to provide a comprehensive understanding of how scalar predictors influence the conditional distribution of a functional response, and perform a statistical inference using asymptotic SCBs. Our work differs substantially from Liu, Li and Morris (2020b) in the following ways. First, Liu, Li and Morris (2020b) perform a quantile regression separately at each sampling location to obtain a pointwise estimator of the coefficient functions, and then construct SCBs based on linear interpolation (LI). In contrast, we apply kernel smoothing (KS) to estimate the regression coefficient functions, directly perform the global test for the linear hypotheses of the coefficient functions, and construct an SCB for each coefficient function. The estimation method of Liu, Li and Morris (2020b) is based on two points on both sides of the point of interest, and so does not use the full information from its neighbors. Thus, the SCB obtained using the LI method may need to be corrected in practice. Second, Liu, Li and Morris (2020b) do not consider a global hypothesis test. Third, the theoretical development in our work differs from that of Liu, Li and Morris (2020b), who give a uniform Bahadur representation of the pointwise estimator on a discrete sampling grid, and derive a strong Gaussian approximation of the LI estimator over the location $s \in \mathcal{I}$ for the fixed quantile level $\tau \in (0, 1)$. In contrast, we obtain a global uniform Bahadur representation of the KS estimator, and establish a strong two-parameter Gaussian approximation of the estimator with respect to $s \in \mathcal{I}$ and $\tau \in (0, 1)$. Thus, our theoretical development is more challenging than that of Liu, Li and Morris (2020b).

This study makes the following contributions to the literature. First, to the best of our knowledge, this is the first study to consider a functional response in a quantile regression. Second, we develop novel theory, including the global uniform Bahadur representation and the weak convergence of the estimator of the varying-coefficient function, using advanced empirical process methods. To validate our inference procedure, we derive the null distribution of the global test statistic and introduce a wild bootstrap testing procedure with theoretical guarantees. Third, our approach reveals interesting findings in two applications to diffusion tensor imaging data and ADHD-200 functional magnetic resonance imaging data.

2. Estimation Procedure

2.1. Assumptions

Throughout this paper we assume $s \in [0, 1]$, but our results can be easily extended to the unit square, cube, or higher dimensions. We assume that $\eta_i(s, \tau)$ are independent and identical copies of the stochastic process $\eta(s, \tau)$ with covariance function $\gamma_{\eta}(s, t)$ at each τ , and with the τ th quantile equal to zero. For imaging data, it is typical for the functional response $y_i(s)$ to be measured at the same location for all subjects. Therefore, $y_i(s)$ is measured at the same mlocation points $0 = s_1 \leq s_2 \leq \cdots \leq s_m = 1$, for all $i = 1, \ldots, n$. We also assume $\beta(\cdot, \tau)$ is twice continuously differentiable.

2.2. Quantile regression estimation

In model (1.2), the conditional quantile function of $y_i(s)$ given x_i can be expressed as $Q_{y_i(s)}(\tau \mid x_i, s) = x_i^{\mathsf{T}}\beta(s, \tau)$, for $i = 1, \ldots, n$, each $s \in \mathcal{I}$, and any $\tau \in (0, 1)$. The main parameter of interest is $\beta(s, \tau)$, which we estimate using a local polynomial regression (Fan and Gijbels (1996)). In particular, $\beta(s_j, \tau)$ can be locally approximated by a linear function $\beta(s_j, \tau) \approx \beta(s, \tau) + \dot{\beta}(s, \tau)(s_j - s) \equiv$ $b_1 + b_2(s_j - s)$, where $\dot{\beta}(s, \tau) = \{d\beta_1(s, \tau)/ds, \ldots, d\beta_p(s, \tau)/ds\}^{\mathsf{T}}$. Let $z_j(s) =$ $z_{h_1j}(s) = \{1, (s_j - s)/h_1\}^{\mathsf{T}}, z_{x,ij}(s) = \{x_i^{\mathsf{T}}, h_1^{-1}(s_j - s)x_i^{\mathsf{T}}\}^{\mathsf{T}} = z_j(s) \otimes x_i$, where \otimes is the Kronecker product, $b = (b_1^{\mathsf{T}}, h_1 b_2^{\mathsf{T}})^{\mathsf{T}}$, K(s) is a kernel function, $K_{h_1j}(s) =$ $h_1^{-1}K_j(s)$ with $K_j(s) = K\{(s_j - s)/h_1\}$, and h_1 is a bandwidth. Then, the estimator $\hat{\beta}(s, \tau)$ can be obtained by minimizing the following locally weighted quantile regression loss function:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \rho_{\tau} \left\{ y_i(s_j) - z_{x,ij}(s)b \right\} K_j(s)$$
(2.1)

where $\rho_{\tau}(u) = u\{\tau - I(u < 0)\}$ is a check function (Koenker and Bassett (1978)). Thus, we have

$$\hat{\beta}(s,\tau) = \{(1,0) \otimes I_p\}\hat{b}.$$

For the choice of h_1 , we introduce an automatic selection procedure in Section 2.4.

2.3. Data-driven estimation of density and distribution functions

We need to estimate the unknown error densities of $\eta(s)$ and the unknown bivariate cumulative distribution of the individual effects $\eta(s)$ and $\eta(t)$, for each $s, t \in [0, 1]$. To do so, we use residual-based empirical distributions. It is useful to estimate the distribution of the error using the empirical distribution of the residuals, and then to use this estimated error distribution to develop tests for the model assumptions (Akritas and Keilegom (2001); Müller, Schick and Wefelmeyer (2007); Neumeyer and Keilegom (2010)).

Define the bivariate cumulative distribution of the individual effects $\eta(s)$ and $\eta(t)$ as $F_{\eta}(a_1, a_2, s, t; \tau, \iota) = \operatorname{pr}\{\eta(s, \tau) < a_1, \eta(t, \iota) < a_2\}$, and denote $f_{\eta}(a_1, a_2, s, t; \tau, \iota) = \partial^2 F_{\eta}(a_1, a_2, s, t; \tau, \iota) / \partial a_1 \partial a_2$. We need to estimate $f_{\eta}(0, s; \tau)$ and $\hat{F}_{\eta}(0, 0, s, t; \tau, \iota)$, for $s \neq t$, for statistical inference.

First, we can estimate $f_{\eta}(a, s; \tau)$ using kernel methods, such as

$$\hat{f}_{\eta}(a,s;\tau) = n^{-1} \sum_{i=1}^{n} K_{h_2} \{ a - \hat{\eta}_i(s,\tau) \},\$$

with the residuals $\hat{\eta}_i(s,\tau) = y_i(s) - x_i^{\mathrm{T}}\hat{\beta}(s,\tau)$. Thus, we get $\hat{f}_{\eta}(0,s;\tau)$.

Second, we can estimate the multivariate cumulative distribution function $F_{\eta}(a_1, a_2, s, t; \tau, \iota)$ using a kernel estimation such as

$$\hat{F}_{\eta}(a_1, a_2, s, t; \tau, \iota) = \int_{-\infty}^{a_1} \int_{-\infty}^{a_2} \hat{f}_{\eta}(b_1, b_2, s, t; \tau, \iota) db_1 db_2,$$

for $s \neq t$, with

$$\hat{f}_{\eta}(b_1, b_2, s, t; \tau, \iota) = n^{-1} \sum_{i=1}^{n} K_{h_3}\{b_1 - \hat{\eta}_i(s, \tau)\} K_{h_4}\{b_2 - \hat{\eta}_i(t, \iota)\}.$$

This yields $\hat{F}_{\eta}(0, 0, s, t; \tau, \iota)$.

For statistical inference, we need to estimate the unknown error density. Popular ways of doing so include the difference quotient method (Hendricks and Koenker (1992); Wang, Zhu and Zhou (2009)) and the Nadaraya–Watson or local linear kernel method (Fan, Yao and Tong (1996)). We adopt Nadaraya– Watson-type estimators for the densities of the error processes $f_{\eta}(\cdot, s; \tau)$ and $f_{\eta}(\cdot, \cdot, s, t; \tau, \iota)$.

2.4. Automatic bandwidth selection

Bandwidth selection is critical in local smoothing. To implement our estimation method, we need to choose appropriate bandwidths h_l (l = 1, ..., 4), in order to obtain adequate estimators $\hat{\beta}(s)$, $\hat{f}_{\eta}(a, s; \tau)$, and $\hat{f}_{\eta}(b_1, b_2, s, t; \tau, \iota)$. Asymptotically, we require that h_l (l = 1, ..., 4) satisfies conditions (C7)–(C9), given in Section 4. However, it is difficult to use these conditions in practice. A simple and efficient of obtaining these bandwidths is to use cross-validation (CV) based on data. For the Nadaraya–Watson estimator of the random error density, bandwidth selection often minimizes the least integrated squared CV score (Fan and Yim (2004); Hall, Racine and Li (2004)). We minimize the sum of the integrated squared CV score to choose the bandwidth for the Nadaraya–Watson estimator of the stochastic process density function.

For h_1 , we minimize the CV score

$$CV(h_1) = \sum_{i=1}^n \sum_{j=1}^m \rho_\tau \{ y_i(s_j) - x_i^{\mathrm{T}} \hat{\beta}(s_j, \tau, h_1)^{(-i)} \},\$$

where $\hat{\beta}(s_j, \tau, h_1)^{(-i)}$ is the locally weighted quantile estimator of $\beta(s, \tau)$, with the bandwidth h_1 based on deleting the *i*th subject from the data.

Following the heuristic suggestions of Rice and Silverman (1991), h_l (l = 2, 3, 4) can be chosen using CV. Fan and Yim (2004) and Hall, Racine and Li (2004) proposed using CV for nonparametric conditional density estimators. Here, we adopt their method for our estimations of the density functions. For an estimator $\hat{f}_{\eta}(a, s_l; \tau)$ of $f_{\eta}(a, s_l; \tau)$, for $s_l \in S$ and $\tau \in \mathcal{I}$, define the integrated squared error

$$\begin{split} I(s_l,\tau) &= \int \left\{ \hat{f}_{\eta}(a,s_l;\tau) - f_{\eta}(a,s_l;\tau) \right\}^2 da \\ &= \int \hat{f}_{\eta}^2(a,s_l;\tau) da - 2 \int \hat{f}_{\eta}(a,s_l;\tau) f_{\eta}(a,s_l;\tau) da + \int f_{\eta}^2(a,s_l;\tau) da \\ &= I_1(s_l,\tau) - I_2(s_l,\tau) + I_3(s_l,\tau). \end{split}$$

Note that $I_3(s_l, \tau)$ does not depend on the bandwidth h_2 , and $f_{\eta}(a, s_l; \tau)$ in $I_2(s_l, \tau)$ is unknown. Thus, the CV estimator of

$$\hat{I}_{2}(s_{l},\tau) = \frac{2}{n} \sum_{i=1}^{n} \hat{f}_{\eta}^{(-i)} \{ \hat{\eta}_{i}(s_{l},\tau), s_{l};\tau \}$$
$$= \frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} K_{h_{2}} \{ \hat{\eta}_{i}(s_{l},\tau) - \hat{\eta}_{j}(s_{l},\tau) \}$$

where $\hat{f}_{\eta}^{(-i)}\{\hat{\eta}_i(s_l,\tau), s_l,\tau\}$ denotes the estimator $f_{\eta}(a, s_l;\tau)$ based on the data with the observations of the *i*th subject left out at s_l .

For h_3 and h_4 , minimize the sum of the integrated squared CV score:

$$scv(h_3, h_4) = \sum_{k,l=1}^{m} \left[\iint \hat{f}_{\eta}^2(b_1, b_2, s_k, s_l; \tau, \iota) db_1 db_2 - \frac{2}{n} \sum_{i=1}^{n} \hat{f}_{\eta}^{(-i)} \{ \hat{\eta}_i(s_k, \tau), \hat{\eta}_i(s_l, \iota), s_k, s_l; \tau, \iota \} \right]$$

where $\hat{f}_{\eta}^{(-i)}\{\hat{\eta}_{i}(s_{k},\tau),\hat{\eta}_{i}(s_{l},\iota),s_{k},s_{l};\tau,\iota\} = (n-1)^{-1}\sum_{j=1,j\neq i}^{n} K_{h_{3}}\{\hat{\eta}_{i}(s_{k},\tau) - \hat{\eta}_{j}(s_{k},\iota)\}K_{h_{4}}\{\hat{\eta}_{i}(s_{l},\tau) - \hat{\eta}_{j}(s_{l},\iota)\}.$ In practice, we assume that $h_{3} = h_{4}$ to save computational time.

The above bandwidth choice is common in kernel estimation. Based on a simple grid search, we can adaptively select the bandwidths h_1 , h_2 , and h_3 one by one using the above CV methods. In a simulation study, we found that the bandwidth h_1 is slightly sensitive to the estimators, and h_l (l = 2, 3) are not sensitive to statistical inference. On the whole, the results based on a CV selection in our simulation study and real-data analysis are satisfactory.

Note that the theory developed here does not support a procedure in which the tuning parameters are selected adaptively.

3. Inference Procedure

3.1. Global test statistic

In this subsection, we propose a global test statistic for the general hypothesis testing problem

$$H_0: C\beta(s,\tau) = c(s,\tau)$$
 for all s and τ versus $H_1: C\beta(s,\tau) \neq c(s,\tau)$, (3.1)

where C is a given $r \times p$ full-rank matrix, and $c(s,\tau) = \{c_1(s,\tau), \ldots, c_r(s,\tau)\}^{\mathrm{T}}$ is a given vector of functions. Denote $e_{l,p}$ to be the p-dimensional unit vector with the *l*th component equal to one, and all others equal to zero. If we take $C = e_{l,p}^{\mathrm{T}} = (0, \ldots, 0, 1, 0, \ldots, 0)$ and $c(s,\tau) = 0$, this tests the significance of the *l*th covariate effect on the functional responses; if we take $C = (e_{k,p} - e_{l,p})^{\mathrm{T}}, k \neq l$,

and $c(s,\tau) = 0$, it tests for an equality $\beta_k(s,\tau) = \beta_l(s,\tau)$.

From Theorem 1, $n^{1/2}[\hat{\beta}(s,\tau) - \beta(s,\tau) - \operatorname{Bias}\{\hat{\beta}(s,\tau)\}]$ converges weakly to a centered Gaussian process $\mathbb{G}(s,\tau)$ with covariance $\Sigma(s,t;\tau,\iota) = E\{\mathbb{G}(s,\tau) \\ \mathbb{G}^{\mathrm{T}}(t,\iota)\}$, indexed by $s \in [0,1]$ and $\tau \in (0,1)$. Let the residual process $d(s,\tau) = n^{1/2}[C[\hat{\beta}(s,\tau) - \operatorname{Bias}\{\hat{\beta}(s,\tau)\}] - c(s,\tau)]$, and the normalized version $d_c(s,\tau) = \{C\hat{\Sigma}(s,s;\tau,\tau)C^{\mathrm{T}}\}^{-1/2}d(s,\tau)$, where $\hat{\Sigma}(\cdot,\cdot;\cdot,\cdot)$ is an estimator of $\Sigma(\cdot,\cdot;\cdot,\cdot)$, $\hat{\Sigma}(s,t;\tau,\iota) = (1,0)\hat{A}^{-1}(s,\tau)\hat{G}(s,t;\tau,\iota)\hat{A}^{-1}(t,\iota)(1,0)^{\mathrm{T}} \hat{\Omega}_x^{-1}$, $\hat{\Omega}_x = (1/n)\sum_{i=1}^n x_i x_i^{\mathrm{T}}$, $\hat{A}(s,\tau) = (1/m)\sum_{j=1}^m K_{h_1j}(s)\hat{f}_{\eta}(0,s_j;\tau)z_j(s)z_j^{\mathrm{T}}(s)$, and the 2×2 matrix $\hat{G}(s,t;\tau,\iota)$ has entries

$$\begin{split} \hat{G}_{kl}(s,t;\tau,\iota) &= \begin{cases} \hat{\mu}_k(K;s,h_1)\hat{\mu}_l(K;t,h_1)(\tau\wedge\iota-\tau\iota), & \text{if } s=t, \\ \hat{\mu}_k(K;s,h_1)\hat{\mu}_l(K;t,h_1)\{\hat{F}_\eta(0,0,s,t;\tau,\iota)-\tau\iota\}, & \text{if } s\neq t, \\ (k,l=0,1), \\ \hat{\mu}_k(K;s,h_1) &= m^{-1}\sum_{j=1}^m K_{h_1j}(s)\left(\frac{s_j-s}{h_1}\right)^k \quad (k=0,1,2). \end{split}$$

From the weak convergence and uniform consistency of $\hat{\Sigma}(s,t;\tau,\iota)$ in $[0,1]^2 \times (0,1)^2$, $d_c(s,\tau)$ converges weakly to $\mathbb{G}_c(s,\tau) = \{C\Sigma(s,s;\tau,\tau)C^{\mathrm{T}}\}^{-1/2} C\mathbb{G}(s,\tau)$, by Slutsky's theorem (Kosorok (2008)), where $\mathbb{G}_c(s,\tau)$ is a centered Gaussian process.

The global test statistic for the linear hypothesis H_0 is defined as follows: $T_n = \int_0^1 \int_0^1 d_c^{\mathrm{T}}(s,\tau) d_c(s,\tau) ds d\tau$. Let $\tilde{T}_n = \int_0^1 \int_0^1 \mathbb{G}_c^{\mathrm{T}}(s,\tau) \mathbb{G}_c(s,\tau) ds d\tau$. We show in Theorem 3 that T_n converges weakly to \tilde{T}_n .

Because Bias{ $\beta(s, \tau)$ } is unknown, we can estimate it by

$$\widehat{\text{Bias}}\{\hat{\beta}(s,\tau)\} = -(I_p,0)\left\{\hat{A}^{-1}(s,\tau)\otimes\hat{\Omega}_x^{-1}\right\}(nm)^{-1}\sum_{i=1}^n\sum_{j=1}^m K_{h_1j}(s)z_{x,ij}(s)\hat{e}_{ij}(s,\tau), \quad (3.2)$$

where $\hat{e}_{ij}(s,\tau) = -2^{-1}x_i^{\mathrm{T}}\hat{\beta}(s,\tau)(s_j-s)^2 - 6^{-1}x_i^{\mathrm{T}}\hat{\beta}(s,\tau)(s_j-s)^3$, in which $\hat{\beta}(s,\tau)$ and $\hat{\beta}(s,\tau)$ are obtained using a local cubic fit with a selected bandwidth.

In practice, it is difficult to obtain the percentiles of T_n directly, even if its null distribution is known. Therefore, we use a wild bootstrap method to approximate the critical values of T_n . In particular, we fit model (1.2) under H_0 to obtain $\hat{\beta}^*(s_j, \tau)$ and $\hat{\eta}^*_{i,0}(s_j, \tau)$, for $i = 1, \ldots, n, j = 1, \ldots, m$. Then, we generate a random sample $\tilde{\varsigma}_i(s_j)$ from a standard normal distribution, for $i = 1, \ldots, n$, $j = 1, \ldots, m$, and compute $\tilde{y}_i(s_j) = x_i^{\mathrm{T}} \hat{\beta}^*(s_j, \tau) + \tilde{\varsigma}_i(s_j) \eta^*_{i,0}(s_j, \tau)$. From $\tilde{y}_i(s_j)$, we

reobtain $\tilde{\beta}(s,\tau)$, Bias $\{\tilde{\beta}(s,\tau)\}$, and $d^{(B)}(s,\tau) = n^{1/2}(C[\tilde{\beta}(s,\tau) - \text{Bias}\{\tilde{\beta}(s,\tau)\}] - c(s,\tau))$ by using the locally weighted quantile regression loss function (2.1). As shown in Theorem 1, Bias $\{\tilde{\beta}(s,\tau)\}$ is asymptotically negligible; thus, we drop the term $\text{Bias}\{\tilde{\beta}(s,\tau)\}$ for computational efficiency. Specifically, we calculate $\tilde{T}_n = \int_0^1 \int_0^1 d_c(s,\tau)^{\text{T}} d_c(s,\tau) ds d\tau$, where $d_c(s,\tau) = \{C\tilde{\Sigma}(s,s;\tau,\tau)C^{\text{T}}\}^{-1/2}d(s,\tau)$. Repeat M times to have $\{\tilde{T}_{n,B}, B = 1, \ldots, M\}$, and compute the p-value as $M^{-1}\sum_{B=1}^M I(\tilde{T}_{n,B} \geq T_n)$. If the p-value is smaller than a given significance level α , say 0.05, then we reject H_0 .

Although we theoretically obtain a global test statistic T_n over $s \in [0, 1]$ and $\tau \in (0, 1)$, in practice, the required double integration for T_n is computationally expensive. Thus, we are often more interested in the function of s for a given τ . Therefore, we consider the global test statistic $T_n^* = \int_0^1 d_c^{\mathsf{T}}(s,\tau) d_c(s,\tau) ds$ of $\{\hat{\beta}(s,\tau), s \in [0,1]\}$ for a given $\tau \in (0,1)$. The null distribution of T_n^* is given in Theorem 3 (b). A similar wild bootstrap procedure can be implemented to improve computational efficiency.

3.2. SCBs

For a given quantile τ and a preassigned significance level α , we construct SCBs of $\beta_l(s,\tau)$ for each τ , that is, we find $\hat{\beta}_l^{L,\alpha}(s,\tau)$ and $\hat{\beta}_l^{U,\alpha}(s,\tau)$, such that

$$\operatorname{pr}\{\hat{\beta}_{l}^{L,\alpha}(s,\tau) < \beta_{l}(s,\tau) < \hat{\beta}_{l}^{U,\alpha}(s,\tau), s \in [0,1], \tau \in (0,1)\} = 1 - \alpha \quad (l = 1, \dots, p).$$

By the weak convergence of $\hat{\beta}(s,\tau)$, we have that $\sup_{s\in[0,1],\tau\in(0,1)} |n^{1/2}[\hat{\beta}_l(s,\tau) - \beta_l(s,\tau) - \operatorname{Bias}\{\hat{\beta}_l(s,\tau)\}]|$ converges weakly to $\sup_{s\in[0,1],\tau\in(0,1)} |\mathbb{G}_l(s,\tau)|$. Define $C_l(\alpha)$ such that $\operatorname{pr}\{\sup_{s\in[0,1],\tau\in(0,1)} |\mathbb{G}_l(s,\tau)| \leq C_l(\alpha)\} = 1 - \alpha$. The $1 - \alpha$ SCB for $\beta_l(s,\tau)$ can be written as $[\hat{\beta}_l(s,\tau) - \operatorname{Bias}\{\hat{\beta}_l(s,\tau)\} - C_l(\alpha)n^{-1/2}, \hat{\beta}_l(s,\tau) - \operatorname{Bias}\{\hat{\beta}_l(s,\tau)\} + C_l(\alpha)n^{-1/2}]$, where $\operatorname{Bias}\{\hat{\beta}_l(s,\tau)\}$ is given by (3.2). Here, we can drop the term $\operatorname{Bias}\{\hat{\beta}_l(s,\tau)\}$ for computational efficiency.

Now, we approximate $C_l(\alpha)$ using an efficient resampling approach, in line with Kosorok (2003), Zhu et al. (2007), and Zhu, Li and Kong (2012). We estimate $\hat{\eta}_i(s_j) = y_i(s_j) - x_i^{\mathsf{T}}\hat{\beta}(s_j,\tau)$, for $i = 1, \ldots, n$ and $j = 1, \ldots, m$. For B = $1, \ldots, M$, we generate independent samples $\{\varsigma_i^{(B)}, i = 1, \ldots, n\}$ from N(0, 1) and compute the stochastic process $\mathbb{G}^{(B)}(s,\tau) = -n^{-1/2}m^{-1}(I_p,0)\check{S}_{nX}^{-1}(s,\tau)\sum_{i=1}^n \varsigma_i^{(B)}\sum_{j=1}^m K_{h_1j}(s)z_{x,ij}(s)\hat{w}_{ij}^*(s,\tau)$, where $\check{S}_{nX}(s,\tau) = (nm)^{-1}\sum_{i=1}^n \sum_{j=1}^m K_{h_1j}(s)$ $\hat{f}_{\eta}(0,s_j;\tau)z_{x,ij}(s)z_{x,ij}^{\mathsf{T}}(s)$ and $\hat{w}_{ij}^*(s,\tau) = I\{\hat{\eta}_i(s_j,\tau) \leq 0\} - \tau$. We calculate $\sup_{s\in[0,1],\tau\in(0,1)} |e_{l,p}\mathbb{G}^{(B)}(s,\tau)|$, for all B, and then adopt its $1 - \alpha$ empirical percentile as an estimate of $C_l(\alpha)$. We are also interested in constructing SCBs for $\beta(s,\tau)$ for a given τ . In this case, we need to change the previous inference procedure by replacing $\sup_{s\in[0,1],\tau\in(0,1)} |e_{l,p}\mathbb{G}^{(B)}(s,\tau)|$ with $\sup_{s\in[0,1]} |e_{l,p}\mathbb{G}^{(B)}(s,\tau)|$.

4. Theoretical Properties

In this section, we provide theoretical guarantees for the estimators and inference procedures developed in Sections 2 and 3. We first introduce some notation. For any smooth functions $f(s,\tau)$ and $g(s,t;\tau,\iota)$, let $\dot{f}(s,\tau) = df(s,\tau)/ds$, $\ddot{f}(s,\tau) = d^2 f(s,\tau)/ds^2$, $\ddot{f}(s,\tau) = d^3 f(s,\tau)/ds^3$, and $g^{(a,b)}(s,t) = \partial^{a+b}g(s,t;\tau,\iota)$ $/\partial^a s \partial^b t$, where a and b are any nonnegative integers. For a square matrix A, $\det(A)$ denote the determinant of A. Define

$$\mu_r(K) = \int s^r K(s) ds,$$

$$\mu_r \left[K^* \left\{ \frac{(s-t)}{h} \right\} \right] = \int u^r K(u) K \left(u + \frac{s-t}{h} \right) du,$$

$$\nu_r(K) = \int s^r K^2(s) ds,$$

$$\mu_r(K; s, h) = \int_0^1 h^{-r} (u-s)^r K_h(u-s) du,$$

where r is any nonnegative integer.

Denote

$$\Phi(s,h) = \begin{cases} \mu_0(K;s,h) & \mu_1(K;s,h) \\ \mu_1(K;s,h) & \mu_2(K;s,h) \end{cases},$$
$$\tilde{\mu}(K,s,h_1) = \frac{\mu_2^2(K,s,h_1) - \mu_0(K,s,h_1)\mu_3(K,s,h_1)}{\mu_0(K,s,h_1)\mu_2(K,s,h_1) - \mu_1^2(K,s,h_1)}.$$

In this section, we present the conditions needed for the main theorems 1, 3, and 4. The following regularity conditions are sufficient for the asymptotic properties, although they might not be the weakest possible. Moreover, we do not distinguish between the differentiation and continuation at the boundary points and those in the interior of [0, 1]. For example, a function is continuous at the boundary of [0, 1], which means that the function is left continuous at zero and right continuous at one.

We require the following technical conditions:

- (C1) The sequence $\{\eta_i(s,\tau) : s \in [0,1]\}$ is a stochastic process with the τ th quantile conditional on (x_i, s) equal to zero.
- (C2) The grid points S are prefixed according to $\pi(s)$ such that $\int_0^{s_j} \pi(s) ds = j/m$, for $1 \le j \le m$. Moreover, $\pi(s) > 0$, for $s \in [0, 1]$, and $\pi(s)$ has a continuous second-order derivative on (0, 1).
- (C3) The distribution function $F_{\eta}(a, s; \tau)$ is Lipschitz continuous in a, for each s and τ , with continuous density $f_{\eta}(a, s; \tau)$ uniformly bounded away from zero and ∞ that has a continuous second-order derivative at s and is Lipschitz continuous in τ . The joint distribution function $F_{\eta}(a, b, s, t; \tau, \iota)$ is continuous at a and b, and has continuous second-order derivatives at s and t, with continuous density $f_{\eta}(a, b, s, t; \tau, \iota)$ that has continuous second-order derivatives at s and t.
- (C4) $\beta_l(s,\tau)$ have continuous second-order derivatives with respect to s for each τ and all l = 1, ..., p. Furthermore $\partial^2 \beta_l(s,\tau)/\partial s^2$ are Lipschitz continuous over $\{(s,\tau): (t-s)/h_1 \in \text{supp}\{K(\cdot)\}, s,t \in \mathcal{I}, \tau \in (0,1)\}$ for all l = 1, ..., p.
- (C5) The covariates x_i are independently and identically distributed (i.i.d.) with $||x_i|| < \infty$, and $E(x_i x_i^{T}) = \Omega_x$, which is positive definite.
- (C6) The kernel function $K(\cdot)$ in Section 2.2 of the main text is a symmetric Lipschitz continuous density function with compact support [-1, 1]. Moreover, $\inf_{h \in (0,h_0], s \in [0,1]} \det \{\Phi(s,h)\} > 0$ for a small scalar $h_0 > 0$.
- (C7) The bandwidth h_1 satisfies (i) $h_1 \to 0$, $mh_1 \to \infty$ and (ii) $m/(nh_1^3) = O(1)$.
- (C8) The density $f_{\eta}(a, s; \tau)$ has bounded continuous third-order partial derivatives with respect to a for all $s \in [0, 1]$ and $\tau \in (0, 1)$. The kernel function $K(\cdot)$ in $K_{h_2}(\cdot)$ is third-order continuously differentiable. The bandwidth h_2 satisfies $nh_2^3 \to \infty$, $nh_2^6 \to 0$, and $h_1^{-1}h_2^{2/3} \to \infty$.
- (C9) $f_{\eta}(a, b, s, t; \tau, \iota)$ has bounded continuous second-order partial derivatives and mixed derivatives with respect to a and b for all $s, t \in [0, 1]$ and given $\tau, \iota \in (0, 1)$. The kernel function $K(\cdot)$ in $K_{h_3}(\cdot)$ and $K_{h_4}(\cdot)$ is Lipschitz continuous. The bandwidths h_3 and h_4 satisfy $h_1h_l^{-1} \to 0$ and $nh_l^4 \to \infty$, for l = 3, 4.
- (C10) For given τ and ι , the function $\tilde{\gamma}(s,t) = \gamma(s,s;\tau,\tau)^{-1/2}\gamma(s,t;\tau,\iota)$ $\gamma(t,t;\iota,\iota)^{-1/2}, s,t \in [0,1]$, has a finite trace, that is, $\operatorname{tr}(\tilde{\gamma}) = \int_0^1 \tilde{\gamma}(s,s) ds < \infty$, where $\gamma(s,t;\tau,\iota)$ is defined in Theorem 1 (b).

Remark 1. Condition (C1) is a general assumption for quantile regression. Conditions (C2) and (C4)–(C7) are used by Zhu, Li and Kong (2012). The conditions of the distribution/density function are necessary for quantile regression (Koenker (2005); Cai and Xu (2009); Wang, Zhu and Zhou (2009); Chen and Müller (2012); Kato (2012)). Condition (C3) is a very general assumption for the distribution/density function, and is specific to a quantile regression for functional response data. Conditions (C8)–(C9) are used to establish the weak consistency of the error densities of $\eta(s, \tau)$, and the unknown bivariate cumulative distribution of the individual effects $\eta(s, \tau)$ and $\eta(t, \iota)$, for each $s, t \in [0, 1]$ and $\tau, \iota \in (0, 1)$. To obtain a χ^2 -type mixture distribution of T_n in (3.6), we need the finite trace of $\tilde{\gamma}(s, t)$ in Condition (C10), which ensures that $\tilde{\gamma}(s, t)$ has the singular value decomposition defined in (4.1). Condition (C10) is similar to the conditions used in Theorem 7 of Zhang and Chen (2007).

Remark 2. Conditions (C2) and (C7) are weak conditions on the random grid points $S = \{s_j : 1, ..., m\}$. Our proof can be easily extended to the case of fixed grid points.

We first present the global uniform Bahadur representation and weak convergence results of our estimate $\hat{\beta}(s,\tau)$ in the following theorem. The proof of this theorem is deferred to the Supplementary Material.

Theorem 1. Suppose that Conditions (C1)–(C7) hold. Then, the following results hold:

(a) (Global uniform Bahadur representation)

$$\sqrt{n} \left[\hat{\beta}(s,\tau) - \beta(s,\tau) - \frac{1}{2} h_1^2 \tilde{\mu}(K,s,h_1) \ddot{\beta}(s,\tau) \{1 + o_p(1)\} \right]
= \pi(s)^{-1} f_\eta^{-1}(0,s;\tau) (I_p,0) \left\{ \Phi^{-1}(s,h_1) \otimes \Omega_x^{-1} \right\}
\times \left\{ \frac{1}{\sqrt{nm}} \sum_{i=1}^n \sum_{j=1}^m \left[\tau - I\{\eta_i(s_j,\tau) \le 0\} \right] z_{x,ij}(s) K_{h_1j}(s) \right\}.$$

(b) (Weak convergence)

$$\sqrt{n} \left[\hat{\beta}(s,\tau) - \beta(s,\tau) - \frac{1}{2} h_1^2 \tilde{\mu}(K,s,h_1) \ddot{\beta}(s,\tau) \{1 + o_p(1)\} : s \in [0,1], \tau \in (0,1) \right]$$

converges weakly to a two-parameter centered Gaussian process $\mathbb{G}(\cdot, \cdot)$ with covariance matrix function $\Sigma(s, t; \tau, \iota) = E\{\mathbb{G}(s, \tau)\mathbb{G}^{\mathsf{T}}(t, \iota)\} = \gamma(s, t; \tau, \iota)\Omega_x^{-1}$, where

$$\gamma(s,t;\tau,\iota) = (1,0)A^{-1}(s,\tau)G(s,t;\tau,\iota)A^{-1}(t,\iota)(1,0)^{\mathrm{T}},$$

$$A(s,\tau) = f_{\eta}(0,s;\tau)\Phi(s,h_1),$$

$$G(s,t;\tau,\iota) = \left\{ \begin{array}{l} G_{00}(s,t;\tau,\iota) \ G_{01}(s,t;\tau,\iota) \\ G_{10}(s,t;\tau,\iota) \ G_{11}(s,t;\tau,\iota) \end{array} \right\},$$

with

$$G_{kl}(s,t;\tau,\iota) = \begin{cases} \mu_k(K;s,h_1)\mu_l(K;s,h_1)(\tau \wedge \iota - \tau\iota), & \text{if } s = t, \\ \mu_k(K;s,h_1)\mu_l(K;t,h_1) \left\{ F_\eta(0,0,s,t;\tau,\iota) - \tau\iota \right\}, & \text{if } s \neq t, \\ (k,l = 0,1). \end{cases}$$

Remark 3. Theorem 1 (a) gives a global uniform Bahadur representation of the local quantile regression estimator $\{\hat{\beta}(s,\tau):s\in[0,1],\tau\in(0,1)\}$. Theorem 1 (b) establishes the weak convergence of $\{\hat{\beta}(s,\tau):s\in[0,1],\tau\in(0,1)\}$. For Theorem 1 (b), if $s\in(0,1)$, then $\sqrt{n}[\hat{\beta}(s)-\beta(s)-0.5h_1^2\mu_2(K)\ddot{\beta}(s)\{1+o_p(1)\}:s,\tau\in(0,1)]$ converges weakly to a centered Gaussian process $\mathbb{G}(\cdot,\cdot)$ with covariance matrix $\Sigma(s,t;\tau,\iota) = [\{F_{\eta}(0,0,s,t;\tau,\iota)-\tau\iota\}/\{f_{\eta}(0,s;\tau)f_{\eta}(0,t;\iota)\}]\Omega_x^{-1}$.

Theorem 2.

(a) Under Conditions (C1)–(C8), we have for $s \in [0,1]$ and $\tau \in (0,1)$,

$$\sup_{a} |\hat{f}_{\eta}(a,s;\tau) - f_{\eta}(a,s;\tau)| = O_{p} \left\{ h_{2}^{2} + h_{1}^{2} + (nh_{2})^{-1/2} |\log h_{2}|^{1/2} + n^{-1/2} + h_{2}^{-4} \left(n^{-3/2} + h_{1}^{6} \right) \right\}.$$

(b) Under Conditions (C1)–(C8) and (C9), we have for $s, t \in [0,1]$ and $\tau, \iota \in (0,1)$,

$$\sup_{b_1, b_2} |\hat{f}_{\eta}(b_1, b_2, s, t; \tau, \iota) - f_{\eta}(b_1, b_2, s, t; \tau, \iota)| = O_p \left\{ h_3^2 + h_4^2 + \left(\frac{\log n}{nh_3h_4} \right)^{1/2} \right\} + O_p \left\{ \left(h_1^2 + n^{-1/2} \right) \left(h_3^{-2} + h_4^{-2} \right) \right\}.$$

Theorem 2 implies that the estimators of the "error" process densities $f_{\eta}(\cdot, s)$ and $f_{\eta}(\cdot, \cdot, s, t)$ converge uniformly to their true densities, and gives their rates of convergence. From Theorem 2, $\sup_{a,b\in[0,1]} |\hat{F}_{\eta}(a,b,s,t) - F_{\eta}(a,b,s,t)| = o_p(1)$, for each $s, t \in [0,1]$, which is used in the inference procedure.

Define $\tilde{\gamma}(s,t) = \gamma(s,s;\tau,\tau)^{-1/2} \gamma(s,t;\tau,\iota) \gamma(t,t;\iota,\iota)^{-1/2}, s,t \in [0,1]$. By Condition (C10), $\int_0^1 \int_0^1 \tilde{\gamma}^2(s,t) ds dt < \infty$. By the Cauchy–Schwarz inequality, the

function $\tilde{\gamma}(s,t)$ has the eigen decomposition

$$\tilde{\gamma}(s,t) = \sum_{l=1}^{l_0} \kappa_l \psi_l(s) \psi_l(t),$$

where the κ_l are the eigenvalues, in decreasing order, ψ_l are the associated orthonormal eigenfunctions of $\tilde{\gamma}(s,t)$, and l_0 is the number of positive eigenvalues.

We next present theorems about our inference procedure. The proofs of the theorems are deferred to the Supplementary Material.

Theorem 3.

(a) Under Conditions (C1)–(C9), we have

$$T_n = T_n + o_p(1).$$

(b) In addition, if Condition (C10) holds, then

$$T_n^* \Rightarrow \sum_{l=1}^{l_0} \kappa_l \chi_l^2(r)$$

where $\chi_l^2(r)$ is the lth random variable that follows a central χ^2 -distribution with r degrees of freedom.

Theorem 4. Under Conditions (C1)–(C10), the bootstrapped process of $\{\mathbb{G}^{(B)}(s,\tau) : s \in [0,1], \tau \in (0,1)\}$ converges weakly to $\mathbb{G}(s,\tau)$ conditioning on the data, where $\mathbb{G}(s,\tau)$ is a centered Gaussian process indexed by $s \in [0,1]$ and $\tau \in (0,1)$.

Remark 4. Theorems 3 and 4 present theoretical support for the statistical inference procedure introduced in Section 3. Theorem 3 suggests that T_n asymptotically follows a mixture of chi-square distributions. To use the asymptotic results for testing, we need to select an integer ι such that the eigenvalues κ_l $(l = 1, \ldots, \iota)$ explain a sufficiently large portion of the total variation $tr(\tilde{\gamma})$. This threshold is often difficult to select in practice. Therefore, we use the bootstrap method to obtain approximate critical values of T_n , where Theorem 4 provides the theoretical guarantee.

Remark 5. The proofs of Theorems 3 and 4 rely on the uniform convergence rates of $\hat{f}_{\eta}(\cdot, s)$ and $\hat{f}_{\eta}(\cdot, \cdot, s, t)$. These results are developed in Theorem 2.

5. Simulation Study

In this section, we conduct simulation studies to evaluate our estimation and inference procedures. In the estimations and the SCBs, we compare the finite simple performance of our KS wild bootstrap method and the LI random weighted bootstrap method of Liu, Li and Morris (2020b) (hereafter, denoted by KS and LI, respectively) in terms of their root mean integrated squared errors, uniform coverage probabilities, and average coverage widths, as well as providing a graphical visualization.

The data are generated from the following heteroscedastic model $y_i(s_j) = x_{i1}\beta_1(s_j) + x_{i2}\beta_2(s_j) + x_{i3}\beta_3(s_j) + \eta_i(s_j,\tau)$, for $i = 1, \ldots, n, j = 1, \ldots, m$, where $x_{i1} = 1, (x_{i2}, x_{i3})^{\mathrm{T}} \sim N\{(0, 0)^{\mathrm{T}}, \operatorname{diag}(1 - 1/\sqrt{2}, 1 - 1/\sqrt{2}) + 1/\sqrt{2}(1, 1)^{\mathrm{T}}(1, 1)\}$, $s_j \sim \operatorname{Uniform}[0, 1]$. To generate $\eta_i(s_j, \tau)$, we first let $\eta_i(s_j) = v_i(s_j) + \varepsilon_i(s_j)$, where $\{v_i(s_1), \ldots, v_i(s_m)\}^{\mathrm{T}}$ follows a multivariate normal distribution with zero mean, and its covariance matrix has a first-order autoregressive correlation structure with $\operatorname{corr}\{v_i(s_j), v_i(s_l)\} = \gamma^{|j-l|}$ with strength $\gamma = 0.5$, and $\varepsilon_i(s_j) \sim N(0, 0.2)$. Because $\eta_i(s_1), \ldots, \eta_i(s_m)$ are dependent, we set $\eta_i(s_j, \tau) = \eta_i(s_j) - F^{-1}(\tau)$, with F being the marginal density function of $\eta_i(s_j)$. Here, $F^{-1}(\tau)$ is subtracted from $\eta_i(s_j)$ to make the τ th quantile of $\eta_i(s_j, \tau)$ zero for identifiability. We set $\beta_1(s) = s^2$, $\beta_2(s) = (1 - s)^4$, and $\beta_3(s) = \exp(s) - 1$. In all our numerical studies, we use a Gaussian kernel and select the bandwidths using the procedure in Section 2.4.

We report the root mean integrated squared error, defined as

RMISE_{\tau} =
$$\left\{ m^{-1} \sum_{j=1}^{m} |\hat{\beta}_l(s_j, \tau) - \beta_l(s_j, \tau)|^2 \right\}^{1/2} (l = 1, 2, 3),$$

where m is the number of locations. The average root mean integrated squared errors over 500 Monte Carlo runs for m = 50, 70, 90 are included in Table 1. The results show that RMISE_{τ} decreases as m increases, which validates the consistency results of the two estimation methods. KS outperforms LI, having a much smaller RMISE in most cases.

Second, we test the hypotheses H_0 : $\beta_1(s,\tau) = 0$ for all s against H_1 : $\beta_1(s,\tau) \neq 0$ for at least one s, for fixed $\tau = 0.10, 0.25, 0.50, 0.75$ and 0.90. Here, we do not provide a comparison with LI, because Liu, Li and Morris (2020b) do not give a global hypothesis test. We set $\beta_2(s) = c(1-s)^4$, with $c = 0, 0.2, 0.3, \ldots, 3.0$, to examine the power of T_n^* when m = 50 and n = 100. We use B = 200bootstrap samples, and depict the power curves in Figure 1. The rejection rates

		m = 50			m = 70			m = 90		
Method	au	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$
KS	0.10	0.0139	0.0295	0.0108	0.0110	0.0249	0.0094	0.0081	0.0186	0.0071
	0.25	0.0115	0.0291	0.0100	0.0118	0.0287	0.0077	0.0071	0.0173	0.0073
	0.50	0.0130	0.0279	0.0129	0.0092	0.0237	0.0115	0.0074	0.0172	0.0086
	0.75	0.0147	0.0294	0.0097	0.0140	0.0246	0.0131	0.0079	0.0174	0.0080
	0.90	0.0154	0.0308	0.0114	0.0135	0.0288	0.0096	0.0078	0.0183	0.0084
LI	0.10	0.0205	0.0283	0.0235	0.0187	0.0235	0.0200	0.0176	0.0225	0.0222
	0.25	0.0142	0.0235	0.0228	0.0144	0.0210	0.0163	0.0091	0.0167	0.0153
	0.50	0.0172	0.0195	0.0220	0.0142	0.0212	0.0194	0.0107	0.0156	0.0158
	0.75	0.0191	0.0256	0.0266	0.0151	0.0231	0.0225	0.0122	0.0169	0.0160
	0.90	0.0203	0.0246	0.0207	0.0264	0.0198	0.0253	0.0226	0.0215	0.0184

Table 1. Simulated results for the root mean integrated squared errors for the KS and LI methods.

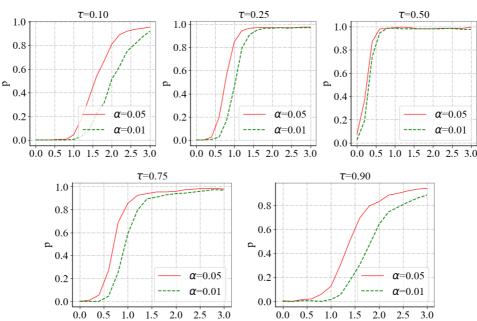


Figure 1. Plot of power curves. Rejection rate of T_n^* based on wild bootstrap methods at $c = 0, 0.2, 0.4, \ldots, 3.0$ for different quantile levels at significance levels $\alpha = 0.05$ (real) and 0.01 (dash).

for T_n^* based on the wild bootstrap method are accurate for the different quantile levels at both significance levels ($\alpha = 0.05$ and 0.01). However, the power of the hypothesis tests at the extreme quantile levels ($\tau = 0.10$ and 0.90) is obviously weaker than that at moderate levels ($\tau = 0.25$, 0.50, and 0.75).

of the SCBs for $\beta_l(s)$ (l = 1, 2, 3) using the wild bootstrap procedure, and compare them with those of the LI method in Liu, Li and Morris (2020b). Both methods have theoretical guarantees. For the estimation of $C(\alpha)$, Liu, Li and Morris (2020b) adopt the weighted bootstrap method proposed in Belloni et al. (2019), and draw random weights from an exponential distribution with parameter one. In the simulation, we find that the $C(\alpha)$ obtained by Liu, Li and Morris (2020b) are slightly large, resulting in empirical CPs that are significantly greater than the given nominal confidence levels and wider SCBs. We do not know why this is. The SCBs obtained using the LI method may need to be corrected because of linear interpolation. For comparison, we control the empirical CPs of the LI method to the given nominal confidence levels by removing some extreme values generated by the bootstrap method. We set n = 500 and m = 50, 70, 90 for $\tau = 0.10, 0.25, 0.50, 0.75$ and 0.90, perform 500 runs, and take B = 500 bootstrap samples for each combination. We consider the confidence levels 95% and 99%, and list the simulated empirical coverage probabilities and coverage widths in Tables 2–3, yielding the following findings. (1) Our KS method has a much smaller RMISE than that of the LI method. (2) At all noise levels, the coverage probabilities are close to the nominal levels for both methods. (3) The coverage widths of the SCBs of our KS method become narrower as the number of grid points m increases, whereas those obtained using the LI method become much wider. That is, we have tighter SCBs when there are more sampling locations. For example, when m = 90, our KS method clearly outperforms the LI method, because our method has tighter SCBs. (4) For each approach and each regression function, the coverage widths become narrower as the quantile level gets closer to the median. At the extreme quantile levels $\tau = 0.10$ and 0.90, our KS method also performs well. However, the LI method has a very wide coverage width for the given confidence level. In addition, to illustrate the good performance of our KS method, we plot the SCBs of $\beta_i(s)$ (l = 1, 2, 3) for fixed $\tau = 0.5$ at confidence levels 95% and 99% in Figure 2. The results again show that the widths of the SCBs become narrower as the number of grid points m increases. Figure 3 compares the SCBs of the KS and the LI for $\beta_i(s)$ (l = 1, 2, 3) at the extreme quantile level $\tau = 0.90$ and confidence level 95%. The figures for other cases are similar. In summary, our KS method clearly outperforms the LI method by having a much smaller RMISE and much tighter SCBs, especially for larger sample locations.

ZHOU ET AL.

		m = 50			m = 70			m = 90		
Method	au	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$
KS	0.10	0.972	0.978	0.962	0.964	0.970	0.962	0.990	0.986	0.976
		(0.581)	(0.825)	(0.829)	(0.493)	(0.701)	(0.707)	(0.481)	(0.681)	(0.683)
	0.25	0.962	0.968	0.944	0.958	0.966	0.956	0.972	0.968	0.952
		(0.518)	(0.738)	(0.735)	(0.439)	(0.624)	(0.626)	(0.426)	(0.605)	(0.608)
	0.50	0.950	0.950	0.932	0.954	0.962	0.950	0.968	0.968	0.960
		(0.497)	(0.707)	(0.706)	(0.421)	(0.601)	(0.601)	(0.408)	(0.580)	(0.583)
	0.75	0.954	0.954	0.948	0.930	0.956	0.942	0.972	0.972	0.960
		(0.519)	(0.739)	(0.739)	(0.437)	(0.623)	(0.624)	(0.427)	(0.605)	(0.608)
	0.90	0.964	0.980	0.970	0.956	0.972	0.970	0.986	0.980	0.968
		(0.587)	(0.834)	(0.837)	(0.494)	(0.701)	(0.704)	(0.480)	(0.681)	(0.684)
LI	0.10	0.928	0.980	0.968	0.938	0.972	0.970	0.966	0.990	0.986
		(0.602)	(0.863)	(0.862)	(0.629)	(0.898)	(0.900)	(0.650)	(0.926)	(0.928)
	0.25	0.926	0.946	0.956	0.952	0.966	0.974	0.950	0.972	0.974
		(0.449)	(0.654)	(0.652)	(0.467)	(0.679)	(0.681)	(0.479)	(0.698)	(0.701)
	0.50	0.50 0.944	0.962	0.968	0.956	0.970	0.968	0.944	0.966	0.968
		(0.406)	(0.594)	(0.592)	(0.421)	(0.617)	(0.616)	(0.433)	(0.632)	(0.633)
	0.75	0.968	0.960	0.976	0.936	0.958	0.958	0.938	0.964	0.956
		(0.450)	(0.654)	(0.653)	(0.467)	(0.680)	(0.680)	(0.478)	(0.697)	(0.699)
	0.90	0.942	0.970	0.968	0.946	0.984	0.974	0.970	0.982	0.982
		(0.603)	(0.864)	(0.864)	(0.628)	(0.901)	(0.901)	(0.649)	(0.929)	(0.930)

Table 2. Simulation results for the empirical coverage probability (CP) and coverage width (CW) of the 95% SCBs for the KS and LI methods. CWs are given in parentheses.

6. Diffusion Tensor Imaging Data Analysis

We analyze imaging data from a neonatal project on early brain development. The data set consists of 128 healthy infants, including 75 males and 53 females. The gestational ages of the infants range from 262 to 433 days. The diffusion tensor imaging and T1-weighted images were acquired for each subject. We have included the imaging preprocessing steps in the Supplementary Material.

We consider two diffusion properties: fractional anisotropy and mean diffusivity, which are measured at 45 grid points along the genu tract of the corpus callosum. They measure the inhomogeneous extent of local barriers to water diffusion and the average magnitude of local water diffusion, respectively. At different quantile levels τ , we use magnetic resonance imaging scanning to explore the effects of an infant's gender and gestational age on the fractional anisotropy and mean diffusivity, and to delineate the tendency of fiber diffusion properties over time. For $\tau = 0.25, 0.5, 0.75$, we fit our model by taking the fractional anisotropy and mean diffusivity values as responses, and gender and age as covariates. We also include an intercept term. The age, fractional anisotropy, and mean diffusivity values are standardized before fitting the model (1.2). For

Table 3. Simulation results for the empirical coverage probability (CP) and coverage width (CW) of the 99% SCBs for the KS and LI methods. CWs are given in parentheses.

		m = 50			m = 70			m = 90		
Method	au	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$	$\beta_1(s)$	$\beta_2(s)$	$\beta_3(s)$
KS	0.10	0.994	0.996	0.990	0.992	0.992	1.000	0.998	0.992	0.992
		(0.738)	(1.049)	(1.056)	(0.622)	(0.887)	(0.892)	(0.608)	(0.863)	(0.864)
	0.25	0.986	0.988	0.978	0.992	0.990	0.988	0.990	0.988	0.996
		(0.658)	(0.937)	(0.936)	(0.554)	(0.792)	(0.794)	(0.539)	(0.767)	(0.772)
	0.50	0.986	0.986	0.978	0.988	0.986	0.988	0.996	0.990	0.992
		(0.629)	(0.898)	(0.900)	(0.533)	(0.758)	(0.761)	(0.519)	(0.735)	(0.738)
	0.75	0.992	0.988	0.984	0.988	0.988	0.992	0.992	0.988	0.992
		(0.659)	(0.942)	(0.943)	(0.555)	(0.788)	(0.789)	(0.540)	(0.763)	(0.769)
	0.90	0.992	0.992	0.994	0.986	0.994	0.994	0.994	0.986	0.990
		(0.743)	(1.056)	(1.063)	(0.626)	(0.889)	(0.891)	(0.607)	(0.861)	(0.866)
LI	0.10	0.984	0.992	0.990	0.990	0.996	0.996	0.996	1.000	0.998
		(0.680)	(0.966)	(0.964)	(0.708)	(1.000)	(1.001)	(0.771)	(1.080)	(1.082)
	0.25	0.972	0.992	0.986	0.986	0.992	0.992	0.996	1.000	0.998
		(0.497)	(0.726)	(0.723)	(0.514)	(0.749)	(0.751)	(0.551)	(0.803)	(0.807)
	0.50	0.50 0.980	0.984	0.998	0.988	0.992	0.990	0.994	0.992	0.996
		(0.448)	(0.658)	(0.656)	(0.462)	(0.677)	(0.678)	(0.494)	(0.725)	(0.726)
	0.75	0.988	0.990	0.996	0.978	0.992	0.992	0.994	0.996	0.996
		(0.498)	(0.726)	(0.724)	(0.514)	(0.750)	(0.751)	(0.551)	(0.802)	(0.805)
	0.90	0.984	0.998	0.998	0.990	0.998	0.988	0.996	0.998	1.000
		(0.681)	(0.968)	(0.969)	(0.707)	(1.004)	(1.004)	(0.771)	(1.083)	(1.086)

each given τ , we estimate the coefficient function $\beta(s) = \{\beta_0(s), \beta_1(s), \beta_2(s)\}^{\mathsf{T}}$, compute T_n^* for each hypothesis test, and obtain the *p*-value by applying wild bootstrap procedures with B = 500 replications.

For the given quantile levels, Figure 4 plots the estimated coefficient functions corresponding to the intercept, gender, and age associated with fractional anisotropy [panels (a), (b), (c)] and mean diffusivity [panels (d), (e), (f)], and the *p*-values of the global test statistics under the null hypothesis $H_{0l} : \beta_l(s) =$ $0 \ (l = 1, 2, 3)$. The intercept functions $\beta_0(s)$ [panels (a) and (d)] give the overall tendency, and are significantly grid-point varying at all quantiles considered at the 0.01 level. In addition, from panel (d), we see that the intercept function corresponding to the mean diffusivity in the lower quantile $\tau = 0.25$, that is, for the group of healthy infants with lower mean diffusivity, is negative, whereas that corresponding to the group of healthy infants with higher mean diffusivity is positive. These negative and positive effects would not have been revealed by methods focusing only on the conditional mean. For gender effects [panels (b) and (e)], the six *p*-values are all greater than 0.01, except for the mean diffusivity when $\tau = 0.5$. This is consistent with the findings in Zhu, Li and Kong (2012) that gender has a weakly significant effect on fractional anisotropy and mean dif-

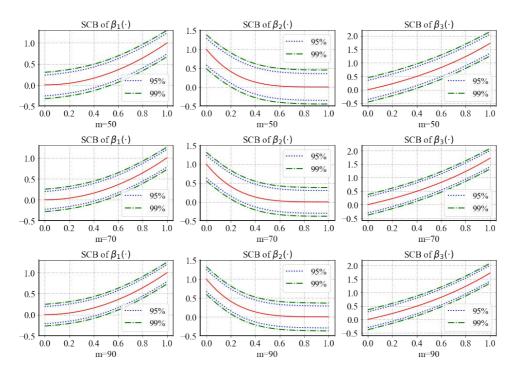


Figure 2. The SCB of three coefficient functions for $\tau = 0.5$ when the nominal levels are 95% and 99%, based on the KS method. The solid curves are the true coefficient functions, and the dotted curves and the dash-dot curves are the confidence bands of the nominal levels 95% and 99%, respectively.

fusivity. Male infants have a relatively bigger average local water diffusion along the genu tract of the corpus callosum compared with that of female infants for first five grid points when $\tau = 0.5$. For the gestational age effects [panels (c) and (f)], the *p*-value is greater than 0.01 for the fractional anisotropy, but is less than 0.01 for the mean diffusivity response. This indicates that gestational age has a weakly significant effect on the fractional anisotropy along the genu tract of the corpus callosum, and that the mean diffusivity changes noticeably with gestational age.

7. Discussion

We have proposed a functional response quantile regression model that explicitly characterizes the conditional distribution of a functional response given a set of scalar predictors. We have developed a global test statistic for linear hypotheses of the varying coefficient functions, and constructed an asymptotic SCB for each regression coefficient function. Simulations and a real-data analysis

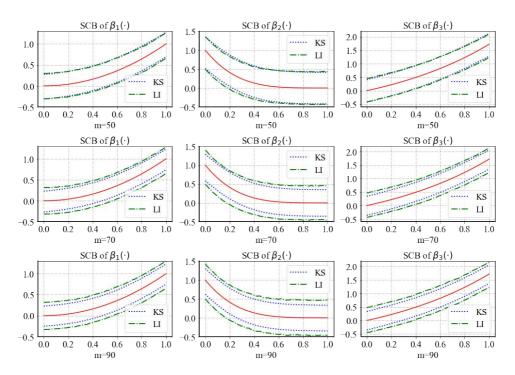


Figure 3. Comparisons of the SCBs of KS and LI for three coefficient functions at the quantile level $\tau = 0.90$ and nominal level 95%. The solid curves are the true coefficient functions, and the dotted curves and dash-dot curves are the confidence bands of the KS and the LI methods, respectively.

show that the FRQR characterizes the effect of scalar predictors on the functional responses at different quantile levels.

We focus on densely observed functional data in this study. However, in practice, functional data may be irregularly and sparsely observed. Our method is not directly applicable to this case because the strong approximation results used to construct the nonparametric confidence bands, commonly known as "Hungarian embedding," cannot be applied to irregular and sparse functional data. To the best of our knowledge, only pointwise confidence bands have been developed for irregular and sparse functional data (Yao, Müller and Wang (2005a,b); Yao (2007); Ma, Yang and Carroll (2012); Zheng, Yang and Härdle (2014); Şentürk and Müller (2010)). In future work, it would be interesting to construct SCBs for such data, and to develop the theory to support the procedure with tuning parameters selected adaptively.

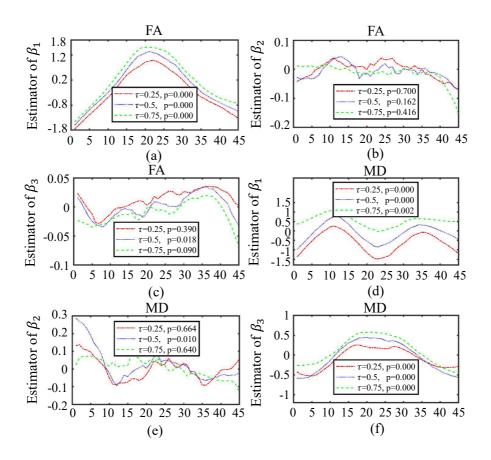


Figure 4. Plot of estimated coefficient functions and *p*-values of the global test statistics for the quantile levels $\tau = 0.25$, 0.5, and 0.75 for diffusion tensor imaging data. "FA" denotes fractional anisotropy, and "MD" denotes mean diffusivity.

Supplementary Material

The online Supplementary Material includes all proofs and technical details.

Acknowledgments

Dr. Zhou was supported by the National Social Science Fund of China (19BTJ034) and the National Natural Science Foundation of China (12171242, 11971235). We are grateful to the editor, associate editor, and anonymous referees for their many helpful comments and suggestions. Dr. Kong, Dr. Kashlak, Dr. Kong, and Dr. Karunamuni were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Dr. Kong was also supported by Canada Research Chair in Statistical Learning and Canada CIFAR AI

Chair. Dr. Zhu's work was partially supported by NIH grants R01MH086633 and R01MH116527.

References

- Akritas, M. and Keilegom, I. V. (2001). Nonparametric estimation of the residual distribution. Scand. J. Statist. 28, 549–567.
- Belloni, A., Chernozhukov, V., Chetverikov, D. and Fernández-Val, I. (2019). Conditional quantile processes based on series or many regression. J. Econometrics 213, 4–29.
- Cai, Z. and Xu, X. (2009). Nonparametric quantile estimations for dynamic smooth coefficient models. J. Am. Statist. Assoc. 104, 371–383.
- Chen, K. and Müller, H. (2012). Conditional quantile analysis when covariates are functions with application to growth data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74, 1–23.
- Şentürk, D. and Müller, H.-G. (2010). Functional varying coefficient models for longitudinal data. J. Amer. Statist. Assoc. 105, 1256–1264.
- Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman & Hall, London.
- Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. *Biometrika* 83, 189–206.
- Fan, J. and Yim, T. (2004). A data-driven method for estimating conditional densities. *Biometrika* 91, 819–834.
- Garrido, M. I., Sahani, M. and Dolan, R. J. (2013). Outlier responses reflect sensitivity to statistical structure in the human brain. *PLoS Comp. Biology* 9, e1002999.
- Hall, P., Racine, J. and Li, Q. (2004). Cross-validation and the estimation of conditional probability densities. J. Amer. Statist. Assoc. 99, 1015–1026.
- Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 55, 757–796.
- Hendricks, W. and Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. J. Amer. Statist. Assoc. 87, 58–68.
- Kato, K. (2012). Estimation in functional linear quantile regression. Ann. Statist. 40, 3108–3136.
- Koenker, R. (2005). Quantile Regression. Cambridge University Press, Cambridge.
- Koenker, R. and Bassett, G. J. R. (1978). Regression quantiles. Econometrica 46, 33-50.
- Kosorok, M. (2008). Introduction to Empricial Processes and Semiparametric Inference. Springer, New York.
- Kosorok, M. R. (2003). Bootstraps of sums of independent but not identically distributed stochastic processes. J. Multivariate Anal. 84, 299–318.
- Krauledat, M., Dornhege, G., Blankertz, B. and Müller, K.-R. (2007). Robustifying EEG data analysis by removing outliers. *Chaos and Complex. Letters* 2, 259–274.
- Liu, Y., Li, M. and Morris, J. (2020a). Function-on-scalar quantile regression with application to mass spectrometry proteomics data. Ann. Appl. Stat. 14, 521–541.
- Liu, Y., Li, M. and Morris, J. (2020b). On function-on-scalar quantile regression. arXiv: 2002.03355v1.
- Ma, S., Yang, L. and Carroll, R. J. (2012). A simultaneous confidence band for sparse longitudinal regression. *Statist. Sinica* 22, 95–122.

- Müller, U. U., Schick, A. and Wefelmeyer, W. (2007). Estimating the error distribution function in semiparametric regression. *Statistics & Decisions* 25, 1–18.
- Neumeyer, N. and Keilegom, I. V. (2010). Estimating the error distribution in nonparametric multiple regression with applications to model testing, *J. Multivariate Anal.* 101, 1067– 1078.
- Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis (with discussion). J. R. Stat. Soc. Ser. B. Stat. Methodol. 53, 539–572.
- Ramsay, J. O. and Silverman, B. W. (2005). *Functional Data Analysis*. 2nd Edition. Springer, New York.
- Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc. Ser. B. Stat. Methodol. 53, 233–243.
- Shen, Q. and Faraway, J. (2004). An f test for linear models with functional responses. Statist. Sinica 14, 1239–1257.
- Wang, H., Zhu, Z. and Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. Ann. Statist. 37, 3841–3866.
- Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016). Functional data analysis. Annu. Rev. Stat. Appl. 3, 257–295.
- Yang, H., Baladandayuthapani, V., Rao, A. and Morris, J. (2020). Quantile function on scalar regression analysis for distributional data. J. Amer. Statist. Assoc. 115, 90–106.
- Yao, F. (2007). Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data. J. Multivariate Anal. 98, 40–56.
- Yao, F., Müller, H. G. and Wang, J. L. (2005a). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100, 577–590.
- Yao, F., Müller, H. G. and Wang, J. L. (2005b). Functional linear regression analysis for longitudinal data. Ann. Statist. 33, 2873–2903.
- Zhang, J. T. (2011). Statistical inference for linear models with functional responses. Statist. Sinica 21, 1431–1451.
- Zhang, J. T. and Chen, J. (2007). Statistical inferences for functional data. Ann. Statist. 35, 1052–1079.
- Zhang, Z., Wang, X., Kong, L. and Zhu, H. (2022). High-dimensional spatial quantile functionon-scalar regression. J. Amer. Statist. Assoc. 117, 1563–1578.
- Zheng, S., Yang, L. and Härdle, W. (2014). A smooth simultaneous confidence corridor for the mean of sparse functional data. J. Amer. Statist. Assoc. 109, 661–673.
- Zhu, H., Ibrahtm, J. G., Tang, N., Rowe, D. B., Hao, X., Bansal, R. et al. (2007). A statistical analysis of brain morphology using wild bootstrapping. *IEEE Trans. Med. Imaging* 26, 954– 966.
- Zhu, H. T., Li, R. and Kong, L. (2012). Multivariate varying coefficient model for functional responses. Ann. Statist. 40, 2634–2666.

Xingcai Zhou

School of Statistics and Data Science, Nanjing Audit University, Nanjing 211815, China.

E-mail: xczhou@nuaa.edu.cn

Dehan Kong

Department of Statistical Sciences, University of Toronto, Toronto, Ontario M5S 3G3, Canada. E-mail: kongdehan@utstat.toronto.edu A. B. Kashlak

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. E-mail: kashlak@ualberta.ca Linglong Kong Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada E-mail: lkong@ualberta.ca R. Karunamuni Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada. E-mail: r.j.karunamuni@ualberta.ca Hongtu Zhu Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA. E-mail: hzhu@bios.unc.edu

(Received April 2021; accepted February 2022)