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Abstract: We develop a multiscale spatial kernel convolution technique that employs

higher-order functions to capture fine-scale local features, and lower-order terms to

capture large-scale features. To achieve parsimony, the coefficients in the proposed

model are assigned a new class of “tree shrinkage prior” distributions. Tree shrink-

age priors exert increasing shrinkage on the coefficients as the resolution increases,

enabling them to adapt to the necessary degree of resolution at any sub-domain. In

contrast to existing multiscale approaches, our approach auto-tunes the degree of

resolution necessary to model a subregion in the domain, and achieves scalability

by parallelizing the local updating of the parameters. The empirical performance

of the proposed method is illustrated using several simulation experiments and a

geostatistical analysis of sea surface temperature data from the Pacific Ocean.
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modeling, sea surface temperature, tree shrinkage prior.

1. Introduction

The ubiquity of spatially indexed data sets in various disciplines (Gelfand

et al. (2010); Cressie and Wikle (2015); Banerjee, Carlin and Gelfand (2014))

has motivated researchers to develop a variety of methods and models related

to spatial statistics. Most spatial applications focus on producing estimates of

the mean function and the uncertainty intervals across the entire area. In many

instances, spatial data exhibit global features accompanied by local variations.

For example, when modeling sea surface temperature data from the Eastern

Pacific, we must consider large-scale features, such as temperature off the shore

of Canada being lower than that off the west coast of the United States, as

well as a number of local variations, such as the variation in temperature due

to upwelling along the California coast. Thus, models built upon such data

should capture both large-scale spatial variations and features at the local scale.

Gaussian processes offer a rich modeling framework, and are widely employed

to help researchers comprehend complex spatial phenomena. However, Gaussian
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process likelihood computations involve matrix factorizations (e.g., Cholesky)

and determinant computations for large spatial covariance matrices that have

no computationally exploitable structure. This incurs an onerous computational

burden for big data, and is referred to as the “Big-N” problem in spatial statistics.

We provide a brief review of the literature on big spatial data; Heaton et al.

(2018) for a more comprehensive review. There are, broadly speaking, two dif-

ferent premises for modeling large spatial datasets: “sparsity,” and “dimension-

reduction.” The sparse methods include covariance tapering (see, e.g., Furrer,

Genton and Nychka (2006); Kaufman, Schervish and Nychka (2008); Du, Zhang

and Mandrekar (2009); Shaby and Ruppert (2012)), which introduces sparsity

into a covariance matrix using compactly supported covariance functions. This

is effective for fast parameter estimation and interpolations of the response, but

is less suited to more general inferences on residual or latent processes, owing

to the exorbitantly expensive determinant computation of the sparse covariance

matrix. An alternative approach introduces sparsity into an inverse of the co-

variance matrix (precision matrix) using conditional independence assumptions

or composite likelihoods (e.g., Vecchia (1988); Rue, Martino and Chopin (2009);

Stein, Chi and Welty (2004); Eidvisk et al. (2014); Datta et al. (2016); Guinness

(2016)). In related literature pertaining to computer experiments, localized ap-

proximations of Gaussian process models have been proposed; see, for example,

Gramacy and Apley (2015).

Dimension-reduction methods subsume the popular “low-rank” models, which

express realizations of a Gaussian process as a linear combination of r basis func-

tions (see, e.g., Higdon (2002); Stein (2007); Banerjee et al. (2008); Cressie and

Johannesson (2008); Finley et al. (2009); Lemos and Sanso (2009); Guhaniyogi

et al. (2011)), where r << n. The algorithmic cost of model fitting decreases

from O(n3) to O(nr2 + r3). However, when n is large, empirical investigations

suggest that r must be fairly large to adequately approximate the parent process,

in which case, nr2 flops becomes exorbitant. Furthermore, low-rank models per-

form poorly when neighboring observations are strongly correlated and the spatial

signal dominates the noise (Stein (2014)). Variants of the dimension-reduction

methods partition large spatial data into subsets containing fewer observations,

fit Gaussian processes to different subsets in parallel, and then combine the in-

ferences from the subsets; see, for example Guhaniyogi and Banerjee (2017);

Guhaniyogi et al. (2018). These methods allow an approximation of a full Gaus-

sian process to be fit to very large data sets. Another important aspect of spatial

modeling is the treatment of nonstationary covariance functions, which allows
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the variability to change over space. Modeling explicitly the changing covariance

structure in space is a desirable feature of nonstationary processes.

Multiresolution process models have been proposed in the literature on the

layering of multiple processes, usually nonstationary, at different resolutions.

Here, higher-resolution layers capture small-scale behavior, while the lower res-

olution layers capture large-scale behavior. Several approaches model spatial

surfaces at multiple scales (Liang et al. (2008); Banerjee and Finley (2007));

however, there remains a lack of research on Bayesian multiscale spatial models

for big data.

Our approach combines the representation of a random field using compactly

supported, multiresolution basis functions with the basis coefficients modeled

using a newly developed multiscale tree shrinkage prior. This shrinkage prior

imparts increasing shrinkage on the basis coefficients as the resolution increases.

This effectively leads to a continuous analogue of selecting the number of reso-

lutions necessary to model a given sub-domain. The framework proposed in this

paper allows the higher resolutions to have a large effect in some subsets of the

space, and close to no effect in other locations. This is desirable if the small-scale

behavior exists in part of the field only, and if the field is nonstationary. The

compactly supported basis functions and the computational strategy described

in Section 3.1 yield a fast Bayesian estimation that only requires the inversion of

a large number of small matrices in parallel. The proposed tree shrinkage prior,

which effectively shrinks a class of parameters that have an inherent tree struc-

ture, is novel in its own right, with possible applications in statistical genomics

and neuroscience, for example, identifying main effects versus interaction effects

in genetic studies.

Several other important works on multiscale spatial models for big data have

appeared in the literature; see, for example, Nychka et al. (2015); Katzfuss (2017),

and the references therein. Although our approach shares some similarities with

the recently developed LatticeKrig model (LK) (Nychka et al. (2015)), there are

important differences between these two classes of models. First, whereas LK

constrains the total contribution to the variance from the basis functions cor-

responding to the rth resolution to be of order r−v, we propose using a novel

shrinkage prior distribution on the basis coefficients to achieve similar goals. Both

Nychka et al. (2015) and Katzfuss (2017) allow for nonstationary covariance func-

tions, but enforce the same multiresolution structure across the entire field. In

contrast, our framework allows for differential shrinkage of the basis coefficients

in different sub-domains. Second, unlike LK, the proposed multiscale approach
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incorporates a data-dependent choice of kernel width. Third, the proposed mul-

tiscale model can be embedded naturally within a hierarchical structure in order

to model non-Gaussian data; see Section 4 and the online Supplementary Mate-

rial. To the best of our knowledge, LK with non-Gaussian data remains largely

unexplored. A Bayesian implementation of our approach leads naturally to an ef-

fective characterization of uncertainty. Finally, the simple structure of our model

means we can show both the large-support property and posterior consistency

for the proposed approach. These desirable theoretical properties remain largely

unexplored for most other multiresolution models.

The remainder of the paper proceeds as follows. Section 2 outlines the mul-

tiscale kernel convolution model, including the choices of knots, basis functions,

basis coefficients, and priors. Section 3 discusses posterior computation strategies

and computational complexity. Detailed simulation studies using Gaussian and

non-Gaussian data are presented in Section 4. In Section 5 we apply the pro-

posed model to large data on temperatures in the surface of the Pacific Ocean.

Finally, Section 6 concludes the paper, and proposes a number of possible future

directions. Theoretical insights and extensions to the binary regression case are

provided in the online Supplementary Material.

2. Multiscale Spatial Kriging

2.1. Kernel convolutions as approximations to Gaussian processes

Let {w(s) : s ∈ D} be a spatial field of interest in the continuous domain

D ⊆ Rd, for d ∈ N+. Here we focus on d = 1, 2. We assume the spatial process

w(s) follows a Gaussian process. We construct a Gaussian process w(s) over D
by convolving a continuous white noise process u(s), for s ∈ D, with a smoothing

kernel K(s, φ) (φ might be space varying), such that w(s) =
∫
K(s−z, φ)u(z)dz,

as proposed by Higdon (2002). The resulting covariance function for w(s) is fully

determined by the kernel K(·). We can obtain a discrete approximation of this

process by sampling the convolved processes on a grid. Letting s∗1, . . . , s
∗
J be a

set of knots in D, a discrete approximation of w(s) is given by

θ(s) =

J∑
j=1

K(s− s∗j , φ)uj , (2.1)

where uj denotes a basis coefficient. The J knots are typically placed in a grid in

D, though other placements of knots have appeared in the literature. By varying
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the kernel functions and coefficients uj , a rich variety of processes emerge from

(2.1). Following Lemos and Sanso (2009), we refer to (2.1) as a discrete convo-

lutions of terms (DCT). When J is small, a DCT provides a computationally

convenient approximation of the Gaussian process w(s). However, a smaller J

would provide a poor approximation, and a moderately large J would exacerbate

the computational burden. These computational challenges can not be solved by

the brute-force use of high-performance computing systems; thus approximations

or simplifying assumptions are necessary. Using a DCT at multiple scales offers

a compelling way to both reduce the computation requirements and increase the

approximation accuracy. In the next few sections, we develop a multiscale DCT

(MDCT) model.

2.2. Partition of domain and choice of knots

To define the MDCT, we partition D into mutually exclusive and exhaustive

sub-domains at resolution 1. At resolution 2, each sub-domain is partitioned

further into mutually exclusive and exhaustive sub-domains; this process contin-

ues up to resolution R. At the lowest level, we partition D into J(1) subsets

D1, . . . ,DJ(1). At the second level, each Di undergoes P partitions such that

the total number of partitions is PJ(1). Similarly, at the (r − 1)th level, the

set of partitions is given by {Di1,...,ir−1
: i1 ∈ {1, 2, . . . , J(1)}, i2, . . . , ir−1 ∈

{1, . . . , P}}. At the rth level, each Di1,...,ir−1
is partitioned into P subsets

Di1,...,ir−1,1, . . . ,Di1,...,ir−1,P , such thatDi1,...,ir−1
=
⋃P
ir=1Di1,...,ir−1,ir ,Di1,...,ir−1,s

⋂
Di1,...,ir−1,s′ = φ, ∀s 6= s′. Therefore, the number of partitions at the rth resolution

is J(r) = P r−1J(1). In the one-dimensional (d = 1), case Di1,...,ir−1,ir typically

denotes an interval, and we use the bisection method to partition each interval

into equal-sized subintervals for the next resolution; that is P = 2. This natu-

rally implies that the number of partitions at the rth level is J(r) = 2r−1J(1).

In the two-dimensional examples, any subset at a given resolution is typically a

rectangle (though other choices are also possible), each of which is divided into

four equal-sized subsets; that is P = 4 and J(r) = 4r−1J(1). This is a common

method used to divide a domain into sub-domains; see, for example Katzfuss

(2017). Partitioning a domain can be envisioned as forming a tree, with the sub-

domains Di1,...,ir as nodes of the tree. Lower and higher resolutions correspond

to the upper and lower nodes, respectively, of this tree. D1,. . . ,DJ(1) correspond

to the uppermost nodes of the tree. Then P branches emerge from each of these

nodes; leading to P 2 nodes at the second level of the tree, and so on. Indeed, for
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any i1, . . . , ir, 1 ≤ r ≤ R, we define Subtree(Di1,...,ir) by

Subtree(Di1,...,ir) ={Di1,...,ir} ∪R−r−1
j=1 {Di1,...,ir,ir+1,...,ir+j

: ir+1, . . . , ir+j

∈ {1, . . . , P}} ∪ {Di1,...,iR}. (2.2)

Subtree(Di1,...,ir) consists of all sub-domains of Di1,...,ir higher than the rth res-

olution, including itself. Clearly, Subtree(Di1,...,iR) = Di1,...,iR . We define the

father node of Di1,...,ir as the node Di1,...,ir−1
.

Defining the MDCT also requires choosing a set of knot points at every level.

The knots s1
1, . . . , s

1
J(1) at the first level are placed at the centers of D1, . . . ,DJ(1).

Similarly, the knots sr1, . . . , s
r
J(r) are positioned at the centers of the partitions at

the rth level. Technically, knots can be placed at any point in the sub-domains.

However, the parallel computation for the proposed model becomes easier when

the knots are placed at the centers of the intervals; see Section 3.1 which describes

the computational complexity of the method when using parallelization.

There is a one-to-one correspondence between the set of knots and the set of

partitions of D. Henceforth, we refer to the Subtree and Father of a sub-domain

with Subtree and Father of the knot that resides at the midpoint of that sub-

domain interchangeably. For example, if srj ∈ Di1,...,ir , then Subtree(srj) and

Father(srj) are synonymous with Subtree(Di1,...,ir) and Father(Di1,...,ir), respec-

tively. Note that the indexing set of knots is a bit different from the indexing set

of partitions. The jth knot at the rth resolution srj , for j = 1, . . . , J(r), belongs

to Di1,...,ir if j =
∑r−1

l=1 (il − 1)P r−l + ir. Using this notation, sr−1
k is the father

node of srj iff k =
∑r−2

l=1 (il − 1)P r−l + ir−1; that is k = b(j − 1)/P c + 1, where

bxc is the greatest integer less than x.

As examples of domain partitioning and knots for d = 2, let the domain of

interest be [h1, h2]×[h3, h4]. The first resolution divides the area into hx×hy equi-

dimensional rectangles, with the knots placed at the center of each rectangle. The

number of knots at the first resolution is J(1) = hx × hy. At resolution 2, every

rectangle at the first resolution is divided into four congruent rectangles. The

knots at the second resolution are placed at the centers of these new rectangles.

Clearly, the distances between two horizontally and two vertically adjacent knots

are (h2−h1)/hx and (h4−h3)/hy, respectively, at the first resolution. At the rth

resolution, these distances decrease to 2−r+1(h2−h1)/hx and 2−r+1(h4−h3)/hy,

respectively.

Figure 1 shows the domain partitioning and the set of knots for two- dimen-

sional applications. For the visual illustration, we restrict R = 2, hx = 4, hy =
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● ● ● ●

● ● ● ●

● ● ● ●

● ● ● ●

(a) knot placement: resolution 1 (2d)

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

(b) knot placement: resolution 2 (2d)

Figure 1. (a) The placement of knots at resolution 1 for two dimensions; (b) the place-
ment of knots at resolution 2 for two dimensions. For better visualization, we keep
R = 2, and J(1) = 16 in two dimensions.

4, h1 = 0, h3 = 0, h2 = 10, h4 = 10, and J(1) = 16 for two-dimensional surfaces.

Henceforth, the domain partitions and the placement and number of knots in

each partition remains the same.

2.3. Multiscale spatial process with radial basis functions

We model the spatial effects using a MDCT with R resolutions, where the

rth resolution is modeled by a DCT with kernel K(·, ·, φr), knots sr1, . . . , s
r
J(r),

and coefficients βr1, . . . , β
r
J(r), for r = 1, . . . , R. The spatial surface w(s) is written

as w(s) =
∑R

r=1wr(s),

wr(s) =

J(r)∑
j=1

K(s, srj , φr)β
r
j , (2.3)

where φr represents the scale parameter for the rth resolution. The choice of

φr is discussed further later. The multiscale model represents a spatial effect

using basis functions at multiple scales. The basis functions at lower resolutions

have range parameters φr, that are larger than those of lower resolutions; as such,

they capture variability at large distances. On the other hand, the basis functions

corresponding to higher resolutions have range parameters that are small enough

to describe the variability at a local level. We formally discuss the choice of basis

functions and the corresponding range parameters φr below.

The choice of the kernel function K(·, ·, φr) is crucial for estimating the spa-

tial variability at multiple scales. The literature on conventional one-resolution
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kernel convolutions, advocates using either a Gaussian kernel or the more so-

phisticated Bezier kernels (Lemos and Sanso (2009); Cressie and Johannesson

(2008)); which are continuous, but not differentiable for the whole family. In

the multiscale literature, Nychka et al. (2015) use a Wendland kernel that is

four times continuously differentiable. Let κ be a Wendland polynomial function

(Wendland (2004)), supported on [0,1], and given by κ(z) = (1−z)l+1
+ (1+(l+1)z),

where (1− z)+ = (1− z) if 0 < z < 1, and zero otherwise, where l = bd/2c+ 2.

For our proposed approach, we choose a kernel function K, defined as

K(s, srj , φr) = κ

( ||s− srj ||
φr

)
=

(
1−
||s− srj ||

φr

)l+1

+

[
1 + (l + 1)

||s− srj ||
φr

]
.

(2.4)

Geometrically, the kernel function consists of bumps centered at the node points,

with the interpolation of the spatial surface at s at the rth resolution governed

by knots located in Bφr
(s), where Bν(s) is the Euclidean ball of radius ν around

s.. Section 3.1 describes the computational advantages derived from the compact

support of this kernel.

Note that κ is a Wendland polynomial function supported on [0, 1], and is

the positive-definite, compactly-supported polynomial of minimal degree, for a

given dimension d that possesses continuous derivatives up to the second order

(Wendland (2004)). Theorem 1 characterizes the space of functions of the form

wr(s) spanned by the basis functions K(s, ·, φr). The proof of the Theorem 1 is

given in the Supplementary Material.

Theorem 1. Consider the reproducing kernel Hilbert space (RKHS) of the space

of functions Hr = Span {K(s, ·, φr)}, spanned by the kernel at the rth resolution.

Then, Hr = Sd/2+3/2(Rd), where Sd/2+3/2(Rd) = {f ∈ L2(Rd)∩C(Rd) : f̂(·)(1+

|| · ||2)(d+3)/4 ∈ L2(Rd)}, is the Sobolev space of order d/2 + 3/2, and f̂(·) is

the Fourier transform of f(·). L2(Rd) and C(Rd) denote the sets of all square

integrable functions and all continuous functions, respectively.

Remark 1. Roughly speaking, this result establishes that the sample paths

of wr(s) ought to provide continuously differentiable realizations of the spatial

surface, a priori.

The choice of the scale parameter φr for the rth resolution follows from

several considerations. First, because the kernels at lower resolutions are meant

to capture long-range variability, we impose the constraint φ1 > φ2 > · · · > φR >
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0. Second, given βrj , for j = 1, . . . , J(r), r = 1, . . . , R, φr determines the set of

knots in the neighborhood of s used to interpolate the spatial surface at s.. We

could keep φr as a parameter, and update it as part of the MCMC sampling.

However, we found that this adds an unnecessary computational burden, with

no substantial inferential advantage. Therefore, we set φr = η||srj − srj−1||, for

η > 0, where η is a tuning parameter. We do not make full Bayesian inference

on η. Rather, at each step of the MCMC iteration, the posterior likelihood is

maximized over a grid of η. We elaborate on this point in Section 3.1.

2.4. Multiscale spatial regression model

Our proposed multiscale spatial model typically assumes, at location s ∈ D,

a response variable y(s) ∈ R, along with a p × 1 vector of spatially referenced

predictors x(s), which are associated through a spatial regression model, as fol-

lows:

y(s) = x(s)′γ +

R∑
r=1

J(r)∑
j=1

K(s, srj , φr)β
r
j + ε(s), ε(s) ∼ N(0, σ2), (2.5)

where γ is a p×1 vector of regression coefficients. The medium- and short-range

spatial variability of y(s) is determined by the MDCT term, whereas ε(s) adds

a jitter that corresponds to unexplained micro-scale variability, or measurement

errors with variance σ2.

2.5. Multiscale shrinkage prior on βrj

Now that the model formulation is complete, we assign prior distributions

to βrj ,γ, and σ2. Whereas the prior specification on γ and σ2 is straightforward,

where γ is assigned a noninformative prior and σ2 ∼ IG(c, d), defining a prior

distribution on βrj requires a bit of reflection. Note that the local variability

within the spatial domain varies in relation to the sub-domains. Some regions

exhibit small-scale spatial variability, while spatial variability is less prominent

in other regions, which essentially do not require higher resolution terms. Math-

ematically, this amounts to setting βrj = 0 in those regions. Furthermore, it is

natural to assume that if the rth resolution is deemed unnecessary to model the

surface in a sub-domain, any lth resolution, for l > r, should be unnecessary as

well, in terms of modeling for the same subregion. For srj ∈ Di1,...,ir , define,

BSubtreej,r =
{
βlk : l ≥ r, slk ∈ Subtree(Di1,...,ir)

}
.
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Thus, BSubtreej,r is the set of coefficients corresponding to basis functions centered

at knots in Subtree(Di1,...,ir). This requirement leads to condition C.

Condition C: βrj = 0 implies βlk = 0, where βlk ∈ BSubtreej,r .

The problem of estimating βrj finds equivalence in the variable selection litera-

ture on high-dimensional regression where the goal is to identify predictors not

related to the response or, equivalently, the predictors with coefficients equal to

zero. To do so, numerous methods have been proposed, including penalized op-

timization methods, such as the Lasso (Tibshirani (1996)) and elastic net (Zou

and Hastie (2005)), Bayesian variable selection methods and shrinkage methods.

The Bayesian approach is attractive due to its probabilistic characterization of

the uncertainty for regression coefficients, and the resulting predictive variability,

in high dimensions.

Many Bayesian shrinkage priors have been proposed for ordinary high-dimen-

sional regressions with a scalar/vector response on high-dimensional vector pre-

dictors; see, for example, Armagan, Dunson and Lee (2013), Hans (2009), Park

and Casella (2008), Polson and Scott (2012), Carvalho, Polson and Scott (2009),

and the references therein. The most popular and scalable class of high-dimen-

sional shrinkage priors does not set predictor coefficients to zero a posteriori.

Rather, these shrinkage priors are based on the principle of shrinking predictor

coefficients of unimportant predictors to zero, while maintaining proper estima-

tion and uncertainty of the important predictor coefficients. Note that a con-

tinuous analogue of Condition C would require that the prior impose greater

shrinkage on coefficients in higher resolutions a priori. However, there is lack

of research on such priors. Therefore, we propose the following multiscale tree

shrinkage prior to achieve this objective:

βrj ∼ N(0, αrj); α
1
j = δ−1

1 , α2
j = δ−1

1 δ−1
j,2 , α

r
j = αr−1

b(j−1)/P c+1δ
−1
j,r ;

δ1 ∼ Gamma(2, 1), δj,r ∼ Gamma(c, 1), c > 2, (2.6)

where δ−1
j,r is stochastically smaller than one, implying increasing shrinkage, a

priori, along a branch. In fact, E[βrj ] = 0 and V ar[βrj ] = 1/(c − 1)r−1 → 0, as

r →∞, a priori. Thus, the prior distribution imposes a strong a priori belief in a

parsimonious model with a small number of resolutions. The proposed prior offers

easy posterior updating, with closed-form conditional posterior distributions for

all parameters, as is discussed in the next section.
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3. Posterior Computation and Inference

This section describes the posterior computation and inference for the MDCT.

The main inferential task is that of obtaining the posterior distribution of the

unknown coefficients βrj and δj,r, for j = 1, . . . , J(r) and r = 1, . . . , R, γ, and σ2.

The MDCT formulation is simple, so that all parameters allow Gibbs sampling

updates. The computations for the full conditional distributions of the param-

eters are presented in the Supplementary Material. Samples of the posterior

distribution of the parameters, obtained from the proposed sampling scheme,

are used to interpolate the residual surface and perform spatial predictions. By

exploiting the conditional independence between several of the parameters and

the multiresolution structure of the problem, we obtain a method that makes

very efficient use of computing time and memory (see Sections 3.1 and 4), and

takes full advantage of distributed-memory systems with a large number of nodes

(Section 3.1), and, thus, is scalable to large spatial data sets.

3.1. Distributed computation, surface interpolation, and prediction

An important advantage of the MDCT is that it facilitates distributed com-

putation, with little communication overhead, over a large number of nodes,

each processing only a small subset of the data. Section 1 in the Supplemen-

tary Material shows that posterior updating of γ, σ2, δj,r, and δ1 can be car-

ried out rapidly without having to store the entire data set in centralized pro-

cessing unit. The main computational difficulty comes from updating β. Sin-

gle updating of βrj introduces too much autocorrelation, while joint updating

of β requires inverting a (
∑R

r=1 J(r)) × (
∑R

r=1 J(r)) matrix, which is infeasi-

ble. The use of compactly supported basis functions offers an excellent solu-

tion by carefully exploiting conditional independence between blocks of β. For

m = 1, . . . , J(1), define the neighborhood function N (m) of m by N (m) =

{j : ||s1
j − s1

m|| < 2η}. Similarly, the neighborhood data function is defined

as ND(m) = {j : ||s1
j − s1

m|| < η}. Let βSubtreej,r be a vector composed of all ele-

ments in BSubtreej,r , β = (βSubtree1,1 , . . . ,βSubtreeJ(1),1 )′. Exploiting the fact that knots are

placed at the midpoints of every sub-domain at each resolution, and that the ba-

sis functions are compactly supported, we obtain βSubtreem,1 |− L
= βSubtreem,1 |yND(m),

βSubtreeN (m),1 ,m = 1, . . . , J(1).

Algorithm 1 describes the proposed computation strategy. The computa-

tion involves J(1) nodes, with the mth node storing {yND(m),XND(m)} and

executing posterior updates of βSubtreem,1 . The main computation cost for the
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Algorithm 1 Distributed computing of the posterior distribution of β,γ, σ2, δj,r

a. No. of nodes used: Use J(1) nodes for computation.

b. MCMC initialization: Initialize all parameters.

c. At the tth iteration, MCMC iterates are given by (βSubtreem,1 )(t), m = 1, . . . , J(1),

σ2(t),γ(t), δ
(t)
j,r, j = 2, . . . , J(r); r = 1, . . . , R and δ

(t)
1 .

d. Maximize posterior likelihood w.r.t. η ∈ {1, . . . , hη}. Compute (yND(m),XND(m))
according to the maximized η. At the tth iteration store (yND(m),XND(m)) in the
mth node.

e. Form = 1 : J(1) in parallel in J(1) different nodes (i.) (t+1) iterate of (βSubtreem,1 )(t+1)

is obtained by drawing from βSubtreem,1 |(βSubtreeN (m),1 )(t).

f. Form = 1 : J(1) in parallel in J(1) different nodes (i.) CalculateX ′
mXm, ym−Kmβ,

where Km = (K(s, s11, φ1), . . . ,K(s, sRJ(R), φR)), s ∈ Dm.

g. Use the fact that
∑J(1)
m=1X

′
mXm = X ′X and y − Kβ = (y1 − K1β, . . . ,yJ(1) −

KJ(1)β)′ to update from the full condition of γ.

h. Update δ
(t+1)
j,r and δ

(t+1)
1 at the (t+ 1)th iteration.

mth node lies in computing the Cholesky decomposition of a dim(βSubtreeN (m),1) ×
dim(βSubtreeN (m),1) matrix and multiplying a dim(ND(m)) × (

∑R
r=1 J(r)) matrix by

a vector of dimension (
∑R

r=1 J(r)). The computation complexity of these op-

erations is of O(dim(N (m))3) and O(dim(ND(m))
∑R

r=1 J(r)), respectively. As

dim(βSubtreeN (m),1) = ((2d)R−1)/(2d−1), the computation time for the former is low.

Choosing J(1) sufficiently large can reduce the computation time for the latter

as well. The storage complexity is also dominated by dim(ND(m)).

Let s0 be any location in the domain, where we seek to predict y(s0), based

on a given vector of predictors x(s0)′. The spatial prediction at s0 proceeds from

the posterior predictive distribution

p(y(s0) |y) =

∫
p(y(s0) |y,Θ)p(Θ |y) dΘ, (3.1)

using composition sampling, where Θ = (σ2,γ, (βrj )
J(r),R
j,r=1 , (δj,r)

J(r),R
j,r=1 ). For each

MCMC iteration {Θ(t)}, for t = 1, 2, . . . , L, obtained from the posterior distri-

bution p(Θ |y), draw y(s0)(t) from p(y(s0) |Θ(t)). The resulting y(s0)(t), for

t = 1, 2, . . . , L, are samples from (3.1). This is especially simple for the MDCT
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as p(y(s0) |Θ) is a normal distribution.

For the MDCT, a full Bayesian inference on the residual spatial surface at any

unobserved location s0 is trivially obtained. For each posterior sample {Θ(t)},
for t = 1, 2, . . . , L, compute w(s0)(t) =

∑R
r=1

∑J(r)
j=1 K(s0 − srj , φr)(βrj )(t). Here

w(s0)(t) denotes a sample from the posterior distribution of the residual process.

Surface interpolation is then straightforward.

4. Simulation Studies

This section uses synthetic datasets to assess the proposed model’s performance

in terms of interpolating an unobserved residual spatial surface and predicting

at new locations. First, we present a one-dimensional simulation experiment on

a large data set. This experiment informs our intuitive understanding of how

different resolutions capture large- and small-scale variabilities, including the ad-

vantage of using a tree shrinkage prior. Next, we present a two-dimensional

example in which we compare the computation time and performance of MDCT

with that of state-of-the-art and popular spatial models for big data. The meth-

ods are implemented in a nondistributed environment in R, version 3.3.1, on a

16-core processor (Intel Xeon 2.90 GHz) with 64 GB of RAM.

4.1. One-dimensional example

For the one-dimensional example, we simulated a data set of size n = 20,000

from the likelihood N(y|Xγ + w0, σ
2), with a spatial function w0(s) in [0, 10]

given by

w0(s) =


sin(2πs)s, if 0 ≤ s < 2,

|sin(s− 3)|3, if 2 ≤ s < 4,

5|s− 5|, if 4 ≤ s < 6,

sin(2πs)s, if 6 ≤ s < 10.

(4.1)

Here, s1, . . . , sn are the set of spatial locations, w0 = (w0(s1), . . . , w0(sn))′, γ =

(γ0, γ1), y = (y(s1), . . . , y(sn))′, and X = (x(s1)′ : . . . : x(sn)′]′, where x(si) =

(1, x(si)). x(si) is independent and identically distributed (i.i.d.) from N(0,1).

A plot of the true spatial function w0(s) is provided in Figure 2. The function is

piecewise differentiable, which makes the estimation challenging.

We fit the MDCT with J(1) = 30 to this data set. As competing methods,

we implement the following:

DCT-GDP: DCT-GDP uses the same basis functions as the MDCT does, but
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replaces the multiscale tree shrinkage prior with a generalized double Pareto

(GDP, Armagan, Dunson and Lee (2013)) shrinkage prior on the basis coeffi-

cients.

DCT-Normal: DCT-Normal again uses the same basis functions, with the prior

on the basis coefficients given i.i.d. normal distributions.

DCT-GDP and DCT-Normal are used to compare the inferential advantage

of the tree shrinkage prior over those of the ordinary shrinkage prior and normal

prior distributions, respectively. Additionally, we fit the MDCT using one and

two resolutions (MDCT(1) and MDCT(2), respectively) to assess how the choice

of R = 3 affects the inference.

Figure 2 reveals the role played by each of the three resolutions in estimating

w0(s). Resolution 1 mostly captures the positive side of the sinusoidal curve,

and the negative extremities of the sinusoidal curve are mostly reconstructed by

Resolution 2. Resolution 3 captures the local variability in the interval [4,10].

The inferential performance of the MDCT is evaluated by estimating the

spatial surface using the mean squared error (MSE). Specifically, let ŵ(si) be the

posterior median of w(si). Define the MSE MSE = (1/n)
∑n

i=1(ŵ(si)−w0(si))
2.

Figure 2 shows the average MSE and associated standard errors over multiple

simulations for the three competing models. The figures show clearly that the

MDCT, with the same number of knots and the same basis functions, provides a

better inference, owing to the implementation of a structured prior distribution

on the basis coefficients. The computation times for the three methods are simi-

lar, with one MCMC iteration in the MDCT taking approximately 0.33 seconds

to run the full-scale inference. Additionally, there appears to be a substantial im-

provement in terms of the MSE with increasing resolutions, though performance

stabilizes after R = 3.

The one-dimensional exploration of the MDCT shows that multiscaling is

able to capture local features succinctly, yielding a superior inference to that of a

single-scale DCT, with a similar number of knots and the same basis functions.

In addition, the computational advantage of the MDCT is significant, given that

a full Bayesian inference can be performed using a series of local computations.

Moreover, the architecture of the MDCT allows us to store subsets of data on

different processors. In the next section, we compare the MDCT and several

popular competitors in the context of two-dimensional spatial examples.
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Figure 2. (a) Estimated mean function at different resolutions; (b) shows the true vs.
the estimated functions for R = 3 resolutions. The true function is shown in bold in the
middle and the estimated function is shown in overlaid. The 95% confidence bands for
the estimated function are displayed by the band around it. (c) shows the MSE with
associated standard errors for all competitors.

4.2. Two-dimensional example

4.2.1. Two-dimensional example with Gaussian data

This section uses two-dimensional synthetic data sets to compare the per-

formance of the MDCT with that of popular models for large spatial data. For

the sake of our exposition, the MDCT is implemented with three resolutions and

2,100 basis functions. As competitors to the MDCT we implement the following:

(1) Modified predictive process (MPP): The MPP (Finley et al. (2009);

Banerjee et al. (2010)) is a low-rank method implemented using the package
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spBayes in R.

(2) LatticeKrig: The LatticeKrig package in R is employed for non-Bayesian

implementation of LK (Nychka et al. (2015)), with three resolutions and

12,678 basis functions.

(3) Local approximate Gaussian process (LaGP): The LaGP was devised

by Gramacy and Apley (2015) to perform fast local-neighborhood kriging

with Gaussian processes. The LaGP is not designed to provide a full-scale

Bayesian inference on parameters, and is only employed to compare the pre-

dictive inference with that of the other competitors. The laGP package is

implemented in R. All interpolated spatial surfaces are obtained using the R

package MBA.

To illustrate the performance of the competitors, 10,500 locations s1, . . . , sn
are drawn uniformly from within the [0, 1] × [0, 1] domain. Observations are

generated at these 10,500 locations from a mixture model, given by

y(s) =x(s)′γ+w1(s)I(s1 < 0.5, s2 < 0.5)+w2(s)I(s1 < 0.5, s2 > 0.5) +w3(s)

I(s1 > 0.5, s2 < 0.5)+w4(s)I(s1 > 0.5, s2 > 0.5)+ε(s), ε(s) ∼ N(0, σ2).

The model includes an intercept γ0 and a predictor x(s), drawn i.i.d. from

N(0, 1), with the corresponding coefficient γ1. We denote γ = (γ0, γ1). Here,

wj(s), for j = 1, . . . , 4, follows a Gaussian process with mean zero and covari-

ance kernel υ(s, s′, θ1, θ2, ν)) chosen from the popular Matern class of correlation

functions given by

υ(s, s′, θ1, θ2j , ν) =
θ1

2ν−1Γ(ν)
(||s− s′||θ2j)

νKν(||s− s′||θ2j); θ2j > 0, ν > 0,

(4.2)

where θ2j and ν control the spatial decay and process smoothness, respectively,

Γ is the Gamma function, and Kν is a modified Bessel function of the second

kind, with order ν (Stein (2012)). We fixed ν = 0.5, which reduces to the

exponential covariance kernel, and generates continuous but, nondifferentiable

sample paths. Additionally, wj(s) is assigned various spatial decay parameters,

with θ21 = 1.5, θ22 = 0.1, θ23 = 1, and θ24 = 0.5. Of the the 10,500 observations,

10,000 are selected randomly for model fitting, and the rest are employed as a

test data set to assess predictive inference.

Figure 3 presents the true data-generating surface and the estimated residual
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(a) True surface
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(b) LatticeKrig
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Figure 3. (a) True data-generation surface and the posterior mean residual surface from
the (b) LK, (c) modified predictive process, and (d) MDCT ; (e) and (f) show the
estimated 95% upper and lower quantile surfaces.

surfaces for LK, MDCT, and MPP. Here MPP shows little oversmoothing, and

LK and the MDCT yield an essentially equivalent degree of precision in terms of

the residual surface estimation. The 95% credible interval for the residual surface

of the MDCT fits tightly around the median surface.

Next, we examine the predictive inference of the competing methods on

the basis of their ability to produce accurate point predictions and predictive

uncertainties. Point prediction is evaluated using the mean squared prediction

error (MSPE) metric. For the Bayesian methods (i.e. the MDCT and MPP), the

predictive uncertainties are characterized by the length and coverage of the 95%

predictive intervals. The frequentist implementation of LK provides predictive

point estimates and standard errors, and LaGP yields a posterior predictive

mean and a standard error (SE) for each unobserved location. Thus, for these

two competitors, the approximate 95% predictive intervals are constructed by

considering the predictive point estimate ±1.96 SE.

Figure 4 shows that the MDCT yields an MSPE that is essentially equivalent
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Figure 4. The left plot shows a boxplot of MSPE for each method, over a few replications.
The center and right plots show the coverage and the lengths of the 95% predictive
intervals, respectively, for the various methods over the same number of replications.

Table 1. Average MSPE for the MDCT with R = 3, 4, 5. Subscripts provide the associ-
ated standard errors over five repeated simulations.

MDCT R = 3 R = 4 R = 5
MSPE 1.630.03 1.620.02 1.590.02

to those of LK and LaGP. Interestingly, the MDCT with R = 3 resolution shows

significantly improved performance (MSPE of 1.63) over that of the MDCT with

R = 1 (MSPE of 1.98) and R = 2 (MSPE of 1.85). Intuitively, we can explain

this performance improvement by noting that the true surface is generated as

a mixture of four region-specific Gaussian processes, with three out of four re-

gions exhibiting significant local behavior. In terms of predictive uncertainty, the

MDCT exhibits marginal over-coverage, with wider 95% credible intervals than

those of the competitors. This is not surprising, given the degree of complexity

embedded in the MDCT model with a large number of parameters. MPP shows

a little under-coverage, with a narrower predictive intervals than those of the

other methods. LK and LaGP also show competitive performance, with close to

the nominal coverage, even though the 95% predictive intervals of LK correspond

to a normal approximation.

To check the sensitivity with respect to the choice of R, we run our analysis

with R = 4 and 5 and compare the results with the MSPE obtained from R = 3.

Table 1 shows that beyond R = 3, the improvement in MSPE performance is

not commensurate with the increase in computation cost. We found that this

conclusion holds across a number of simulation studies. Therefore, R = 3 is used

henceforth.

A few remarks are in order. Note that the MDCT and LK share similarities
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in terms of their multiscale structure, the only difference being the distribution

of the basis coefficients. Our investigation reveals that tree shrinkage priors on

basis coefficients are appropriately calibrated to yield similar point estimates

to those of LK, but using far fewer basis functions. Most importantly, while

the Gaussian Markov random fields (GMRF) prior distributions, used in LK,

may not be conducive to parallel computation, the MDCT is able to draw a

full scale Bayesian inference using a series of parallelizable local computations.

Furthermore, LaGP may not be easily extendable to non-Gaussian data or to

hierarchical models, as it is not model based. While the implementation of LK

to non-Gaussian data is possible, but remains unexplored, the MDCT can be

embedded readily into a hierarchical structure to model non-Gaussian spatial

data, or to merge different sources of information, as described in the next section

and in the Supplementary Material.

4.2.2. Two-dimensional example with nonGaussian data

This section briefly describes the performance of the MDCT in the presence

of a nonGaussian heavy-tailed data distribution. For this simulation, 10,500 lo-

cations s1, . . . , sn are drawn uniformly from a [0, 1]× [0, 1] domain. Observations

are generated at these 10,500 locations from a mixture model, given by

y(s) = x(s)′γ + w1(s)I(s1 < 0.5) + w2(s)I(s1 > 0.5) + ε(s), ε(s) ∼ ST2(0, σ2),

where ST2(0, σ2) denotes a Student-t distribution with two degrees of freedom

and scaling parameter σ. Here, w1(s) and w2(s) are independent Gaussian pro-

cesses with exponential covariance functions that have range parameters of 1.5

and 0.3, respectively. These simulations mimic the possible behavior of a ran-

dom field from a variable that exhibits a distribution with long tails, over an

area with sharp geographical boundaries, such as a coastline, a river, or moun-

tain ridge. For these data, we fit an MDCT, where the error follows a Student’s-t

distribution,

yi = x(si)
′γ +

R∑
r=1

J(r)∑
j=1

K(s, srj , φr)β
r
j + εi, εi

i.i.d.∼ ST2(0, σ2), i = 1, . . . , n.

(4.3)

Note that the Student’s-t distribution can be represented as a scale mixture of

normals. We exploit this fact to derive an efficient Gibbs sampler for the MDCT

in Equation (4.3). Details of the posterior computations are presented in the
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− − − − − −

Figure 5. Left to right: True surface, median posterior surface of the MDCT, mean
surface of LK, respectively.

Table 2. MSPE, length, and coverage of 95% predictive intervals of the MDCT, LaGP
and LK.

MDCT LaGP LK
MSPE 1.43 1.54 1.49

Length of 95% PI 9.93 6.37 5.42
Coverage of 95% PI 0.98 0.92 0.92

Supplementary Material.

In the absence of an open source implementation of LK and LaGP for non-

Gaussian data, we fit the ordinary LK and LaGP to assess the performance of the

MDCT. Figure 5 shows the estimated mean residual surface for the MDCT and

LK, and the true surface. As expected, the MDCT is able to identify local spatial

variation in the surface. Table 2 displays the MSPE, coverage, and length of the

95% predictive intervals for the three methods. Here, LaGP and LK, fitted using

the normal error assumption, and the results show some under-coverage with

predictive intervals narrower than those of the MDCT. In fact, the MDCT shows

wider predictive intervals with little over-coverage. The MDCT slightly outper-

forms LK and LaGP in terms of the MSPE. The results have two important

implications. First, the implementation of the MDCT can be straightforward

and accurate, even with nonGaussian errors. Second, and most importantly, the

Bayesian implementation of the MDCT under nonGaussian errors yields infer-

ential advantages over its competitors. An implementation of the MDCT using

a binary spatial model is given in the Supplementary Material.

Computation time: The MDCT in this example takes approximately 3.07 seconds

per iteration for the non-optimized, non-parallel R implementation, whereas the

MPP implemented in C++ takes close to 7.2 seconds to run one MCMC itera-
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tion. However, MPP estimates the basis functions, whereas the MDCT assumes

a fixed form, using the empirical Bayes estimate of η at every iteration. Here, a

more elaborate inference on the kernel parameters of the MDCT might improve

the predictive performance of the model. However, this would come at the cost

of increased computational complexity; thus, the benefits of such an extension

are not justified. In this example, the MDCT is implemented for J(1) = 100.

To examine how the computation time of the MDCT varies in relation to that

of MPP with changing n and J(1), we implement both MPP and the MDCT

with J(1) = 52, and 102 for different sample sizes. Figure 6 reports the compu-

tation times for the various methods using the R function Sys.time. Note that

the MDCT can be implemented either by sequentially updating J(1) blocks of

parameters, or by updating these J(1) blocks independently in parallel in J(1)

nodes. Thus, the figure shows the computation time for both parallel and non-

parallel implementations of the MDCT model. Clearly, the computation time

for the MDCT increases linearly with n for both cases, and the MDCT with

J(1) = 52 is between four and five times faster than with J(1) = 102. The in-

crease in computation time is due to the sequential updating of the parameters

in the J(1) blocks. However, with a proper parallelized implementation of the

MDCT, the increase in computation time from J(1) = 52 to J(1) = 102 may be

minimal. We find that a practical implementation of MPP becomes prohibitive,

owing to its significant memory requirement and computation time for n above

100,000. Note that the nonBayesian implementations of LK and LaGP draw

inferences for a point estimate within a few minutes. In summary, 2D simula-

tion examples comprehensively establish the MDCT as an effective tool for fast

Bayesian implementations of large-scale spatial data.

5. Analysis of Sea Surface Temperature Data

Being able to describe the evolution and dynamics of the oceans’ temperature

is a key component of the study of the Earth’s climate. Historical records of

ocean data have been collected to better understand the properties of water

masses and their changes over time. They are also used to assess, initialize, and

constrain numerical models of the Earth’s climate. Increasingly, sophisticated

climatological research requires not only a description of the mean state and

the relevant trends in ocean data, but also a careful quantification of the data

variability at different spatial and temporal scales. A number of works have

addressed this issue; see, for example, Higdon (1998), Lemos and Sanso (2009),
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Figure 6. Computation time for MPP with 200 knots, and the MDCT with J(1) = 25
and J(1) = 100. Computation times per MCMC iteration are presented for both the
MDCT and MPP.

Lemos and Sanso (2006), Berliner, Wikle and Cressie (2000), and Wikle and

Holan (2011).

We consider the problem of capturing the spatial trend and characterizing

the uncertainties in the sea surface temperature (SST) off the west coast of the

United States, Canada, and Alaska between 30◦ and 60◦ N latitude, and 122◦

and 152◦ W longitude. The data set is obtained from the NODC World Ocean

Database 2016, and we use the data collected for October. Note that, for this

example, we ignore the temporal component. We screen the data to ensure

quality control and then choose a random subset of 113,412 spatial observations

over the domain of interest. Of the total observations, about 90%, (or 100,000)

observations are used for model fitting; the remainder are used for prediction. We

replicate this procedure five times to eliminate any chance factor in our analysis.

The domain of interest is sufficiently large to allow considerable spatial variation

in SST from north to south, and provides an important first step to extend these

models for analyses of the SST database at a global scale.

The plot of the SST are shown in Figure 7a. The data show a clear decreasing

SST trend with increasing latitude. Consequently, we add latitude and longitude

as linear predictors to explain the long-range directional variability in the SST.

We fitted a nonspatial model with latitude and longitude as linear predictors

using ordinary least squares (OLS) method, and find spatial dependence with

no obvious pattern of anisotropy. Thus the MDCT model with latitude and

longitude as predictors seems appropriate for these data.

The proposed MDCT model for the training data uses R = 3 resolutions,
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Figure 7. (a) SST in October 2016 for a portion of the North Pacific. Panels (b), (c),
and (f) show the estimated mean predictive surfaces for the three competing models.
Figures (d) and (e) present the pointwise predictive bands for the MDCT. Temperatures
are shown in degrees centigrade.

with the first resolution having J(1) = 100 knots. To minimize edge effects, some

knots are also kept on land. We implement Algorithm 1 and run it for 2,000 iter-

ations, finding that η = 1 appears significantly often among the iterations. Thus,

to reduce unnecessary storage complexity and to speed up the computations for

a dataset of this scale, we run the remaining iterations with η = 1. The model is

then run for 5,000 additional iterations. Convergence diagnostics are performed

using the coda package in R, which indicates that 2,000 iterations are sufficient

as a burn-in to achieve practical convergence. As competitors to the MDCT, we

fitted LK and LaGP to the data. MPP is computationally prohibitive for the

size of the data set and is omitted from the comparison.

The predictive power of the proposed model, along with that of its com-

petitors, is assessed based on the MSPE, coverage, and length of 95% predictive

intervals. The nonspatial model and MDCT yield an MSPE of 1.34 and 0.18

respectively. The significant improvement in the MSPE is due to the inclusion of
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Table 3. MSPE, length, and coverage of 95% predictive intervals of MDCT, MDCT(1),
MDCT(2), LaGP, and LK.

MDCT MDCT(1) MDCT(2) laGP LatticeKrig

MSPE 0.18 0.52 0.36 0.11 0.10
Length of 95% PI 2.49 2.38 2.42 1.26 1.41

Coverage of 95% PI 0.98 0.95 0.97 0.93 0.93

a spatial structure, as is evident from Table 3. In fact, there is a strong spatial

dependence in the field that can not be explained by a linear effect of longitude

and latitude. From the results in Table 3 we observe that LaGP exhibits slightly

better predictive performance than that of the MDCT. The smallest MSPE in the

table corresponds to LK, fitted with R = 3 resolutions. Overall, the MDCT with

R = 3 resolutions is competitive in terms of predictive inference. Importantly,

even with non-parallel implementation, the MDCT takes about 26 seconds to

run one iteration. As shown in Figure 6, the computation time can be reduced

multiple times using an efficient parallel implementation. In contrast, even the

frequentist implementation of LK takes about two hours. Thus, the MDCT

with R = 3 resolutions outperforms MDCT(1) and MDCT(2). However, fitting

the MDCT beyond R = 3 unnecessarily exacerbates the computational burden,

without a significant improvement in inferential and predictive performance.

6. Conclusion

We propose a novel multiscale kriging model for spatial data sets. The model

represents the unknown spatial surface as a sum of processes at different scales,

and is able to approximate a broad class of spatial processes with various degrees

of smoothness. A key component of our multiscale model is the kernel convolu-

tion, with its compactly supported kernel of minimal degree and knots placed in

a regular grid at every resolution. Theoretically, this allows us to characterize

completely the space of functions generated from the multiscale spatial model.

Another important contribution is that we propose a new class of multiscale tree

shrinkage prior distributions for the basis coefficients. The construction of a tree

shrinkage prior is introduced under the assumption that, as the model moves to

higher resolutions, increasing numbers of basis coefficients become irrelevant.

In addition to the important methodological and theoretical contributions

of this study, an equally important contribution is related to computational ef-

ficiency for large data sets. The research on multiscale spatial models is largely

motivated by the need to build complex and flexible spatial models that pro-



MULTISCALE SPATIAL SHRINKAGE 2047

vide accurate spatial inferences and predictions for massive datasets, together

with rapid Bayesian computations. The compactly supported kernel and the

multiscale shrinkage priors satisfy those desiderata, providing efficient MCMC

sample-based inference.

Note that the current framework for multiscale Bayesian modeling of spatial

data sets can be extended readily to a spatio-temporal setting. Additionally,

the recent idea of spatial meta kriging (SMK) (Guhaniyogi and Banerjee (2017))

allows scalability by fitting a spatial model independently on partitions (disjoint

subsets) of big data, after which, the inferences from the subsets are combined.

The proposed multiscale framework is able to scale up to approximately half a

million spatial locations, but may struggle with tens of millions of locations. If we

have resources to run an MDCT on, say, H different subsets with n data points

each, then SMK can yield full Bayesian inference on nH locations. Finally,

we have proposed to use a rectangular partition of the domain. There is a

scope for future research to examine how adaptive partitioning of the domain

can be implemented using techniques such as the Voronoi tesselation. Adaptive

partitioning with an appropriate placement of knots might significantly reduce

the number of knots required to yield an accurate inference. We leave these

topics to future research.

Supplementary Material

The online supplementary material includes the following:

1. Posterior computation for the MDCT with Gaussian model.

2. Posterior computation for the MDCT with nonGaussian data.

3. Two-dimensional example of the MDCT with binary spatial data.

4. Theoretical properties.
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Appendix

Proof of Theorem 1:
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Use the fact that κ is a compactly supported polynomial of minimal degree

for two dimensions that possesses continuous derivatives upto second order. By

Theorem 10.10 and 10.35 in Wendland (2004), we obtain that the Fourier trans-

form of κ, denoted by κ̂ satisfies c1(1 + ||ω||2)−d−3 ≤ κ̂(ω) ≤ c2(1 + ||ω||2)−d−3,

for some c1, c2 > 0. The result now follows using Corollary 10.13 in Wendland

(2004).
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