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Abstract: In this paper we analyze the asymptotic behaviour of Gibbs-type priors,

that represent a natural generalization of the Dirichlet process. After determining

their topological support, we investigate their consistency according to the “what

if”, or frequentist, approach, that postulates the existence of a “true” distribution

P0. We provide a full taxonomy of their limiting behaviours: consistency holds

essentially always for discrete P0, whereas inconsistency may occur for diffuse P0.

Such findings are further illustrated by means of three special cases admitting

closed form expressions and exhibiting a wide range of asymptotic behaviours. For

both Gibbs-type priors and discrete nonparametric priors in general, the possible

inconsistency should not be interpreted as evidence against their use tout court.

It rather represents an indication that they are designed for modeling discrete

distributions and evidence against their use in the case of diffuse P0.
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1. Introduction

In this paper we study the posterior consistency of Gibbs–type priors re-

cently introduced in Gnedin and Pitman (2005). They identify a large class of

discrete nonparametric priors, which means they select almost surely (a.s.) dis-

crete distributions, and represent probably the most natural generalization of

the Dirichlet process, as is argued in Section 2. Several members of this class

of nonparametric priors are widely used in practice, for instance, in the contexts

of mixture models (Ishwaran and James (2001, 2003); Lijoi, Mena and Prünster

(2007c)), linguistics and information retrieval in document modeling (Teh (2006);

Teh and Jordan (2010)), species sampling (Lijoi, Mena and Prünster (2007a,b);

Navarrete, Quintana and Müller (2008)) and, implicitly, in the context of ex-

changeable product partition models (Hartigan (1990); Quintana and Iglesias

(2003)).

A simple way to introduce Gibbs-type priors is through the system of predic-

tive distributions they induce. To this end, we first lay out the basic framework.

http://dx.doi.org/10.5705/ss.2012.047


1300 PIERPAOLO DE BLASI, ANTONIO LIJOI AND IGOR PRÜNSTER

Let (Xn)n≥1 be an (ideally) infinite sequence of observations, with each Xi tak-

ing values in a complete and separable metric space X. Let PX be the set of

all probability measures on X endowed with the topology of weak convergence.

In the most commonly employed Bayesian models, (Xn)n≥1 is assumed to be

exchangeable, so that, for some Q on PX,

Xi|p̃
i.i.d.∼ p̃, p̃ ∼ Q. (1.1)

Hence, p̃ is a random probability measure on X whose probability distributionQ is

termed de Finetti measure and acts as a prior for Bayesian inference. When Q de-

generates on a finite dimensional subspace of PX, the inferential problem is called

parametric. On the other hand, when the support of Q is infinite-dimensional,

one speaks of a nonparametric inferential problem and it is generally agreed (Fer-

guson (1974)) that having a large topological support is a desirable property for

a nonparametric prior: we come back to this point later in Section 2. Given

a sample (X1, . . . , Xn), the predictive distribution coincides with the posterior

expected value of p̃, that is,

P(Xn+1 ∈ · |X1, . . . , Xn) =

∫
PX

p( · )Q(dp|X1, . . . , Xn). (1.2)

We will deal with discrete priors Q, which implies that a sample (X1, . . . , Xn)

features ties with positive probability: X∗
1 , . . . , X

∗
k denote the k ≤ n distinct

observations and n1, . . . , nk their frequencies for which
∑k

i=1 ni = n. Gibbs-type

priors are characterized by predictive distributions (1.2) of the form

P(Xn+1 ∈ · |X1, . . . , Xn) =
Vn+1,k+1

Vn,k
P ∗( · ) +

Vn+1,k

Vn,k

k∑
i=1

(ni − σ)δX∗
i
( · ), (1.3)

where σ ∈ (−∞, 1), P ∗(dx) := E[p̃(dx)] is a diffuse probability measure repre-

senting the prior guess at the shape of p̃ and {Vn,k : k = 1, . . . , n; n ≥ 1} is a set

of non-negative weights satisfying the recursion

Vn,k = (n− σk)Vn+1,k + Vn+1,k+1. (1.4)

Therefore, Gibbs-type priors are characterized by predictive distributions that are

a linear combination of the prior guess and a weighted version of the empirical

measure. The most widely known prior within this class is the Dirichlet process

(Ferguson (1974)).

In this paper we focus on the asymptotic behaviour of Gibbs-type priors

and, in particular, investigate posterior consistency according to the “what

if ” approach of Diaconis and Freedman (1986). Such an approach consists in
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assuming that the data (Xn)n≥1 are independent and identically distributed

from some “ true ” P0 ∈ PX and in verifying whether the posterior distribu-

tion Q( · |X1, . . . , Xn) accumulates in any neighborhood of P0, under a suitable

topology. Since Gibbs-type priors are defined on PX and are discrete, the appro-

priate notion of convergence is convergence in the weak topology. Therefore, we

aim at establishing whether Q(Aϵ|X1, . . . , Xn) → 1, a.s.-P∞
0 , as n → ∞ and for

any ϵ > 0, where Aϵ denotes a weak neighborhood of P0 of radius ε and P∞
0 is

the infinite product measure P0 × P0 × · · · . In pursuing this plan we first show

that “genuinely nonparametric” Gibbs-type priors (a notion that will be clarified

in Section 2) have full weak support. We then prove a general structural result

on Gibbs-type priors showing that the posterior distribution converges to a point

mass at the limiting predictive distribution

αP ∗ + (1− α)P0 α ∈ [0, 1] (1.5)

that is a linear combination of the prior guess P ∗ and the “ true ” distribution P0.

This points out that Gibbs-type priors are well-behaved in the limit in the sense

of convergence taking place rather than implying consistency. As for the latter to

happen, one needs α = 0 in (1.5), a feature clearly satisfied in the Dirichlet case.

Since a few particular cases of Gibbs-type priors with σ ∈ (0, 1) have already

been considered in Jang, Lee, and Lee (2010) and James (2008), attention is

focused on the case of σ ∈ (−∞, 0) for which nothing is known to date and

which yield competitive estimators for species estimation in Ecology (Favaro et

al. (2012)). A full taxonomy of the asymptotic behaviours is provided. In fact,

in deriving the results it is fundamental to distinguish the cases of P0 discrete

and diffuse: in the former case one essentially always has consistency, whereas

in the latter we provide a sufficient condition for consistency that has the merit

of being close to necessary. This is shown by exhibiting specific priors, which,

by a minimal violation of the sufficient condition, already lead to inconsistency.

We provide explicit priors exhibiting the extreme limit behaviours α = 0 and

α = 1. The latter corresponds to the worst case scenario where the posterior

tends to concentrate around the prior guess P ∗ and no learning takes place: we

refer to such a pathological situation as “total” inconsistency. A third specific

prior yields all α ∈ (0, 1) and serves as interpretation of the two extreme cases.

Our results serve two purposes. The first is to provide a comprehensive

analysis of consistency properties of a large and intuitive class of nonparametric

priors. This fills in a gap in the current rapidly growing literature on asymptotic

properties of Bayesian nonparametric procedures, see Ghosal (2010) for a recent

review. We are also concerned with general foundational and methodological

questions. Our asymptotic results highlight the fact that discrete nonparametric
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priors are actually designed to model discrete distributions and are not appro-

priate for data coming from diffuse distributions. The typical full weak support

property of discrete nonparametric priors led to the thinking that they were suit-

able models also for diffuse distributions. Consequently, the famous example

of inconsistency due to Diaconis and Freedman (1986), involving the use of a

Dirichlet process in a semiparametric location problem, was interpreted as an

indication of the fact that one needs to be careful with Bayesian nonparametric

models in general and, more specifically, with modeling diffuse data with the

Dirichlet process. In our opinion, this essentially represented a misunderstand-

ing: its reason probably lies in the fact that the Dirichlet process combines full

weak support with consistency for independent and identically distributed data

generated from a diffuse P0, which is more of a coincidence than a structural

property nonparametric priors should possess. We find it wrong to use discrete

priors in such contexts and hope to demonstrate this with explicit illustrations.

We exhibit a specific nonparametric prior that, in the case of diffuse P0, can

produce either consistency or “total” inconsistency by simply tuning a scalar pa-

rameter. Indeed, consistency is the rule for discrete data generating distributions

P0 or even for diffuse P0 provided the Gibbs-type prior is used as mixing mea-

sure in a hierarchical model; this follows from Ghosal, Ghosh, and Ramamoorthi

(1999); Lijoi, Prünster and Walker (2005).

The outline of the paper is as follows. In Section 2, Gibbs–type priors are

reviewed and their topological support is investigated. Section 3 contains the

general results on the asymptotic behaviour, whereas Section 4 gives specific

priors that highlight the various possible asymptotic regimes. Some concluding

remarks are provided in Section 5. Online available Supplementary Material

provides some technical results, derivations, and proofs.

2. Gibbs-type Priors and Their Topological Support

Modeling data according to a discrete prior Q implies that a sample (X1, . . .,

Xn) has ties with positive probability. Let X∗
1 , . . . , X

∗
k denote the k ≤ n distinct

observations and n1, . . . , nk their frequencies,
∑k

i=1 ni = n. In choosing a specific

predictive structure the key quantity to consider is the probability of obtaining

a new distinct observation

P(Xn+1 = “new” |X1, . . . , Xn). (2.1)

If Θ is a finite-dimensional parameter entering the specification of p̃, there

are three possibilities for modeling (2.1): (i) P(Xn+1 = “new”|X1, . . . , Xn) =

f(n,Θ): the probability of obtaining a new observation depends on the sample
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size n but not on the number of distinct observations k and on their frequen-

cies n1, . . . , nk; (ii) P(Xn+1 = “new”|X1, . . . , Xn) = f(n, k,Θ): dependence is

now on both n and k but not on the frequencies n1, . . . , nk; (iii) P(Xn+1 =

“new”|X1, . . . , Xn) = f(n, k, n1, . . . , nk,Θ): dependence is on all the sample in-

formation. (i) holds if the prior is a Dirichlet process with parameter measure

θP ∗ in which case P(Xn+1 = “new”|X1, . . . , Xn) = f(n,Θ) = θ/(θ + n). Case

(ii) corresponds to Gibbs-type priors for which

P(Xn+1 = “new” |X1, . . . , Xn) =
Vn+1,k+1

Vn,k
(2.2)

with the Vn,k’s satisfying (1.4). In the general situation (iii), serious tractability

issues arise: priors have to be studied on a case-by-case basis and typically lead

to quite complicated expressions (Favaro, Prünster, and Walker (2011)). See

Zabell (1982) and De Blasi et al. (2012) for details on this classification. Thus,

the simplifying assumption underlying Gibbs–type priors seems to represent the

right compromise between flexibility and tractability. In fact, it is only the prob-

ability of obtaining a new observation that does not depend on the frequencies

and not the complete prediction rule (1.3). To clarify this point it is useful to

interpret (1.3) by means of a two step procedure: Xn+1 is new with probability

Vn+1,k+1/Vn,k; given that Xn+1 is new, it is sampled independently from P ∗ and

given that Xn+1 is “ old ”, it coincides with X∗
i with probability (ni−σ)/(n−kσ)

for i = 1, . . . , k, which depends explicitly on n1, . . . , nk. When compared to the

Dirichlet process, the Gibbs–type framework leads to apparent advantages in

species sampling problems (Lijoi, Mena and Prünster (2007a,b)) and also to

more robust estimates of the number of components in mixture models (Lijoi,

Mena and Prünster (2007c)). As for species sampling, think of having samples

of size n with k
′
= 1 and k

′′
= n distinct species: for the Dirichlet process the

probability of observing a new species is θ(θ + n)−1 in both cases, whereas it

explicitly depends on k for other Gibbs-type priors. For instance, if one uses the

two-parameter Poisson-Dirichlet process (Pitman (1996)), a Gibbs-type prior,

one has the modeling possibilities

P(Xn+1 = “new” |X1, . . . , Xn) =
θ + kσ

θ + n
, (2.3)

where σ ∈ [0, 1) and θ > −σ, or σ ∈ (−∞, 0) and θ = x|σ| for some x ∈ N. Here,

(2.3) is monotonically increasing in k for σ ∈ (0, 1) and monotonically decreasing

in k for σ < 0.

We recall some features of the underlying de Finetti measure Q whose pos-

terior expected value yields the predictive distributions (1.2). Gibbs-type priors
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are species sampling models (Pitman (1996)) and can be represented as

p̃( · ) =
∑
i≥1

p̃iδYi( · ), (2.4)

where the weights (p̃n)n≥1 take value on the infinite probability simplex, while the

(Yi)’s are independent and identically distributed from a diffuse P ∗, independent

of the p̃i’s. Clearly, E[p̃( · )] = P ∗( · ) which explains the terminology prior guess

adopted for P ∗. Such a framework allows an alternative definition of Gibbs-

type priors that coincides with the original one in Gnedin and Pitman (2005):

Gibbs-type priors are species sampling models (2.4) for which the probability, of

obtaining in an n sample k distinct observations with frequencies n1, . . . , nk, has

the product form

Vn,k

k∏
i=1

(1− σ)ni−1, (2.5)

for any n ≥ 1, with σ ∈ (−∞, 1), the Vn,k’s satisfying (1.4), and (a)m denoting the

rising factorial (a)m = a(a+1) · · · (a+m−1). Such a distribution is known as an

exchangeable partition probability function. This concept was introduced by J.

Pitman and plays a major role in modern probability theory; see Pitman (2006)

and references therein. The special case of the two-parameter Poisson-Dirichlet

process has

Vn,k =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1
, (2.6)

with σ ∈ [0, 1), θ > −σ, or σ ∈ (−∞, 0), θ = x|σ|, x ∈ N. From (2.6)

one obtains (2.3) via (2.2). The two-parameter Poisson-Dirichlet model with

σ ∈ (−∞, 0), θ = x|σ|, x ∈ N corresponds to an x-variate symmetric Dirichlet

distribution with parameter vector (|σ|, . . . , |σ|).
In Gnedin and Pitman (2005) a complete characterization of the underlying

de Finetti measure Q is provided and distinguishes three cases according to the

value of σ: (i) if σ = 0, p̃ is either a Dirichlet process or a mixture of Dirichlet

processes w.r.t. the total mass parameter θ; (ii) if σ ∈ (0, 1), thenQ is essentially a

Poisson-Kingman model based on the stable random measure; see Pitman (2006)

and references therein; (iii) if σ < 0, Q is a mixture of the two-parameter model

(2.6) with σ ∈ (−∞, 0), θ = |σ|x, x ∈ N,

Vn,k =
∑
x≥k

∏k−1
i=1 (x|σ|+ iσ)

(x|σ|+ 1)n−1
π(x), (2.7)

where π is a probability measure on N and the sum runs over x ≥ k since the

numerator in the summands corresponding to x < k is 0. Therefore, since in the
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case of negative σ the two-parameter model coincides with a x-variate symmetric

Dirichlet distribution, one can describe such Gibbs-type priors in terms of the

mixture model
(p̃1, . . . , p̃k) ∼ Dirichlet(|σ|, . . . , |σ|),

k ∼ π(·). (2.8)

Using the species metaphor (2.7), equivalently (2.8), corresponds to putting a

prior π on the number of species k and, conditionally on the number of species

being x, these are distributed as a x-variate symmetric Dirichlet distribution.

In contrast to the case of σ ≥ 0 where the model assumes the existence of an

infinite number of species, the case of σ < 0 assumes a possibly random but finite

number of species. Therefore, in light of the previous considerations, one deduces

that if the probability of observing a new species is assumed to depend on n and

k but not on n1, . . . , nk and moreover the a priori number of species is assumed

to be finite (either random or not random), then the model is necessarily (2.8).

Henceforth we restrict attention to “ genuinely nonparametric ” Gibbs-type

priors whose almost sure realizations have support containing a finite number of

points that can be equal to any positive integer. These correspond to Gibbs-type

priors with either σ ∈ [0, 1) or σ < 0 such that the support of π in (2.7) is the

whole set of positive integers N. Note that for the “ parametric ” case of σ < 0

and π supported by a finite subset of N, one has consistency for any P0 in its

support by the results of Freedman (1963).

We move on to considering the topological support of Gibbs-type priors. It is

widely accepted (Ferguson (1974)) that nonparametric priors should have a large

topological support. Since we are dealing with a class of discrete nonparametric

priors, this translates to asking Q to have large support in the weak topology.

The next result shows that Gibbs-type priors have full weak support, that is

their topological support coincides with the space of probability measures whose

support is included in the support of the prior guess P ∗. In particular, if the

support of P ∗ coincides with X, the support of Q is the whole space PX. Such

a property is already known in the Dirichlet process case (Ferguson (1973); Ma-

jumdar (1992)) and has been recently extended to a class of predictor-dependent

nonparametric priors in Barrientos, Jara and Quintana (2012).

Proposition 1. Let Q be a Gibbs-type prior with prior guess P ∗ and, in the case

σ < 0, mixing measure π such that π(x) > 0 for any x ∈ N. Then the topological

support of Q is {p ∈ PX : supp(p) ⊂ supp(P ∗)} .

The proof is provided in the Supplementary Material. Thus, when used to

model the data in species sampling contexts, weak neighborhoods of any given

distribution (whose support is included in the support of the prior guess P ∗) have
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a priori positive probability. This is also a desirable property in the context of

mixture models where p̃ acts as a mixing distribution. Indeed, it ensures a high

degree of flexibility of the model for any given kernel, and has implications in

terms of consistency since one can extend results known for Dirichlet mixtures

(Ghosal, Ghosh, and Ramamoorthi (1999); Lijoi, Prünster and Walker (2005)).

3. Posterior Consistency of Gibbs–type Priors

We turn to a study of asymptotic behaviour. We use the notation Qn for

denoting the posterior distribution Q( · | X1, . . . , Xn) of the random probability

measure p̃ in (1.1), conditional on the sample X1, . . . , Xn. Assuming the data

are independent and identically distributed from some “true” distribution P0 in

PX, we are interested in checking whether Qn concentrates, as n increases, in a

weak neighbourhood of some element, say P ′, in PX, almost surely with respect

to the infinite product measure P∞
0 . If A′

ε is a weak neighbourhood of P ′ with

radius ε > 0, we establish conditions under which

Qn(A
′
ε) → 1 a.s.-P∞

0 (3.1)

as n → ∞ and for any ε > 0. More importantly, we identify cases in which

P ′ = P0, which corresponds to Q being weakly consistent in the frequentist

sense.

Weak consistency of the Dirichlet process prior is quite straightforward to

prove by investigating the asymptotic behaviour of the posterior expected value,

the predictive distributions (1.2), and the posterior variance. As the Dirichlet

process prior is a special case of Gibbs-type prior, we adopt a similar strategy in

this more general framework. Since the predictive distributions in (1.3) charac-

terize Gibbs-type priors, the validity of (3.1) depends on the limiting behaviour

of the weights Vn,κn . We use the notation κn to denote the number of blocks

in the partition of the first n observations: κn := 1 +
∑n

j=2 1Dj−1(Xj) with

Dj−1 = {X1, . . . , Xj−1}c and 1A denotes the indicator function of set A. For the

asymptotics of κn with respect P∞
0 , different choices of P0 yield different limiting

behaviours. Thus, if P0 is discrete with N point masses, N ∈ N ∪ {∞}, then
P∞
0 (limn κn = N) = 1 and P∞

0 (limn n
−1κn = 0) = 1 even if N = ∞, while, if

P0 is diffuse, P∞
0 (κn = n) = 1 for any n ≥ 1. Henceforth we focus on these

two cases and adopt the notations κn ≪a.s. n and κn ∼a.s. n, for κn/n → 0 and

κn/n → 1 a.s.-P∞
0 , respectively. See Remark 2 for a discussion of the case where

P0 is a combination of a discrete and a diffuse component.

In order to establish the validity of (3.1), for some P ′, one needs to investi-

gate the asymptotics for Vn+1,κn+1/Vn,κn under P∞
0 . Indeed, in what follows we
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assume that the probability of recording a new distinct observation at step n+1

Vn+1,κn+1

Vn,κn

converges a.s.-P∞
0 (H)

as n → ∞, and that the limit is identified by some constant α ∈ [0, 1]. For all

Gibbs-type priors for which an explicit expression of the Vn,κn ’s is known, (H)

holds true regardless of whether P0 is discrete or diffuse. The role of condition (H)

is also transparent: it determines the asymptotics of the predictive distribution

and identifies the possible element P ′ in PX for which (3.1) holds true.

Theorem 1. Let p̃ be a Gibbs-type prior with prior guess P ∗ = E[p̃], whose

support coincides with X, and assume condition (H) holds true. If (Xi)i≥1 is a

sequence of independent and identically distributed random elements from some

probability distribution P0 that is either discrete or diffuse, then the posterior

converges weakly, a.s.-P∞
0 , to a point mass at αP ∗(·) + (1− α)P0(·).

According to Theorem 1, weak consistency is guaranteed in the trivial case

of P ∗ = P0, which is excluded henceforth, and when α = 0: therefore, it is

sufficient to check whether the probability of obtaining a new observation, given

previously recorded data, converges to 0, a.s.-P∞
0 . One can ask whether there are

circumstances leading to α = 1, which corresponds to the posterior concentrating

around the prior guess P ∗, a situation we refer to as “total” inconsistency. A

specific prior for this is provided in Section 4. Note that Theorem 1 includes,

as a special case, Proposition 1 of James (2008) in which p̃ is a two-parameter

Poisson-Dirichlet process with parameters (σ, θ) such that σ ∈ [0, 1) and θ > −σ.

In fact, in the two-parameter Poisson-Dirichlet case, it is immediate to see from

(2.3) that when P0 is discrete, κn ≪a.s. n, we have α = 0, implying consistency.

When P0 is diffuse, κn ∼a.s. n, we have α = σ, hence inconsistency unless σ = 0,

See also Jang, Lee, and Lee (2010, Thm. 1). Let us now provide a proof of the

stated result. The key ingredient in the proof of Theorem 1 is an upper bound

on the posterior variance Var [p̃(A) | X1, . . . , Xn] that is of independent interest.

See Remark 1.

Proof of Theorem 1. We show that, under (H), the posterior variance of p̃(A),

given a sample X
(n)
κn = (X1, . . . , Xn) featuring κn ≤ n distinct values, converges

to 0, a.s.-P∞
0 . To this end, we establish an upper bound for Var [p̃(A) | X(n)

κn ].

As in Freedman and Diaconis (1983), we consider the class of semi-norms on

PX defined by ∥P1 − P2∥2A =
∑∞

i=1[P1(Ai) − P2(Ai)]
2 for a generating sequence

of measurable partitions A = {Ai}∞i=1 of X. Indeed, convergence under such

semi-norms implies weak convergence. Note that E
[
∥ p̃−E[ p̃|X(n)

κn ] ∥2A |X(n)
κn

]
=
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∑∞
i=1Var [p̃(Ai)|X(n)

κn ]. Hence, we are going to show that

∞∑
i=1

Var [p̃(Ai)|X(n)
κn

] → 0 a.s.-P∞
0

as n → ∞ for any partition A, which implies that the posterior concentrates

in a weak-neighbourhood of the predictive distribution. See also James (2008)

for a similar approach in the specific case of the two-parameter Poisson-Dirichlet

process. Let ga,bc,d(n) = Vn+a,κn+b/Vn+c,κn+d with a, b, c and d non-negative

integers such that a ≥ c and b ≥ d. Exchangeability implies

E[p̃(A)2|X(n)
κn

] =

∫
A
P(Xn+2 ∈ A | X(n)

κn
, Xn+1 = x)P(Xn+1 ∈ dx|X(n)

κn
)

= g1,10,0(n)

∫
A
P(Xn+2 ∈ A | X(n)

κn
, Xn+1 = x) P ∗(dx)

+g1,00,0(n)

κn∑
j=1

δX∗
j
(A) (nj − σ) P(Xn+2 ∈ A | X(n)

κn
, Xn+1=X∗

j )

for any A ∈ X , where X∗
1 , . . . , X

∗
κn

are the κn distinct values that partition X
(n)
κn

and δc is the unit mass concentrated at a point c in X. After some tedious and

lengthy algebra, one gets to

E[p̃(A)2|X(n)
κn

]

=g2,00,0(n)
k∑

i,j=1

(ni−σ)(nj+δi,j−σ)δX∗
i
(A)δX∗

j
(A)+2g2,10,0(n)

κn∑
i=1

(ni−σ)δX∗
i
(A)P ∗(A)

+g2,20,0(n)P
∗(A)2 + g2,10,0(n)(1− σ)P ∗(A),

where δi,j is the Kronecker δ function and note that we have also relied on the

diffuseness of P ∗. If

P̃n,κn =
1

n− κnσ

κn∑
j=1

(nj − σ)δX∗
j

(3.2)

denotes a weighted empirical distribution at the distinct observations, one can
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use the above expression for the posterior second moment of p̃(A) to obtain

Var [p̃(A)|X(n)
κn

] =

(
g2,00,0(n)− (g1,00,0(n))

2

)
(n− σκn)

2P̃n,κn(A)
2

+g2,00,0(n)(n− σκn)P̃n,κn(A)

+2

(
g2,10,0(n)− g1,00,0(n)g

1,1
0,0(n)

)
(n− σκn)P̃n,κn(A)P ∗(A)

+

(
g2,20,0(n)− (g1,10,0(n))

2

)
P ∗(A)2 + g2,10,0(n)(1− σ)P ∗(A).

This can be re-expressed in a more convenient form in terms of

I(n, κn) := 1− Vn+2,κn+1

Vn+1,κn+1

Vn,κn

Vn+1,κn

, (3.3)

thus yielding Var [p̃(A)|X(n)
κn ] = −I(n, κn)

(
E[p̃(A)|X(n)

κn ]
)2

+ Wn,κn(A) where,

using the identities (A1) and (A2) of Lemma 1 in the Supplementary Material,

Wn,κn(A) = g2,10,0(n)(n− σκn)P̃n,κn(A)

×
[
(g2,01,0(n)− g2,11,1(n))(n− σκn)P̃n,κn(A) + g2,01,0(n)

]

+g1,10,0(n)P
∗(A)

[
(g2,21,1(n)− g2,11,0(n))P

∗(A) + g2,11,1(n)(1− σ)

]
= I(n, κn)E[p̃(A)|X(n)

κn
]+g1,10,0(n)(g

2,2
1,1(n)−g2,11,0(n))P

∗(A)
[
P ∗(A)−1

]
+g1,00,0(n)

(
g2,01,0(n)− g2,11,0(n)

)
(n− σκn)

2P̃n,k(A)
[
P̃n,k(A)− 1

]
.

Since (P̃n,k(A) ∨ P ∗(A)) ≤ 1,

Var [p̃(A)|X(n)
κn

] ≤ I(n, κn)E[p̃(A)|X(n)
κn

]
(
1− E[p̃(A)|X(n)

κn
]
)
+ Zn,κn(A),

where

Zn,κn(A) = g1,00,0(n)(n− σκn)
2P̃n,k(A) (g

2,1
1,1(n)− g2,01,0(n))+

+g1,10,0(n)P
∗(A) (g2,11,0(n)− g2,21,1(n))+ (3.4)

and, for any a in R, a+ := max{a, 0}. Use again (A1) and (A2) of Lemma 1 to
get

Zn,κn(A) = g1,00,0(n)(n− σκn)P̃n,κn(A)(g
2,0
1,0(n)− I(n, κn))+

+g1,10,0(n)P
∗(A)(g2,11,1(n)(1− σ)− I(n, κn))+.
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Set now, for any a ∈ R, a− := a− a+ and define

J(n, κn) :=

(
Vn+2,κn+1

Vn+1,κn+1
(1− σ−)− I(n, κn)

)
+

. (3.5)

One notes that (g2,11,1(n)(1− σ)− I(n, κn))+ ≤ J(n, κn), and

(g2,01,0(n)− I(n, κn))+ ≤ (g2,11,1(n)− I(n, κn))+ ≤ J(n, κn).

This implies that Zn,κn(A) ≤ J(n, κn)E[p̃(A)|X(n)
κn ], which in turn yields

Var [p̃(A)|X(n)
κn

] ≤ I(n, κn)E[p̃(A)|X(n)
κn

]
(
1− E[p̃(A)|X(n)

κn
]
)

+J(n, κn)E[p̃(A)|X(n)
κn

] (3.6)

for any A in X . The upper bound (3.6), combined with x(1 − x) ≤ 1 for any

x ∈ [0, 1], leads to

∞∑
i=1

Var [p̃(Ai)|X(n)
κn

] ≤ I(n, κn) + J(n, κn).

We need to show that J(n, κn) + I(n, κn) → 0 a.s.-P∞
0 as n → ∞. In the sequel

we omit the a.s.-P∞
0 specification and explicitly use it when possible confusion

may arise. By virtue of condition (H), with the limit identified by a value α in

[0, 1], one has (Vn+1,κn/Vn,κn)(n− σκn) → (1− α). Hence

1− I(n, κn) =
Vn+2,κn+1/Vn+1,κn+1

Vn+1,κn/Vn,κn

∼ n− κnσ

n+ 1− (κn + 1)σ

and one can conclude that I(n, κn) → 0, as n → ∞. It follows also that J(n, k) →
0 as long as (1 − σ−)Vn+2,κn+1/Vn+1,κn+1 → 0, but the latter is also implied by

condition (H) since Vn+2,κn+1/Vn+1,κn+1 ∼ (1−α)/(n+1−σ(κn+1)). The proof

is completed after noting that, if P0 is either discrete or diffuse, the weighted

empirical distribution P̃n,κn in (3.2) converges uniformly to P0 as n → ∞, a.s.-

P∞
0 , as it can be shown by a suitable adaptation of Glivenko-Cantelli’s theorem.

Remark 1. The upper bound for the posterior variance (3.6) is crucial for the

determination of the asymptotic behaviour of the posterior distribution and it

sheds some light on a distributional property of p̃ that is of independent interest.

Its usefulness is also motivated by the fact that the exact expression of posterior

variances is typically involved. See, e.g., Jang, Lee, and Lee (2010) for species

sampling models and James, Lijoi, and Prünster (2006) for normalized random

measures with independent increments. The bound can be simplified under some
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further assumptions. Indeed, a close inspection of the arguments used in the proof

of Theorem 1 suggests that

Var [p̃(A)|X(n)
κn

] ≤ I(n, κn)E[p̃(A)|X(n)
κn

]
(
1− E[p̃(A)|X(n)

κn
]
)
, (3.7)

whenever one of the following two inequalities is satisfied:

Vn+2,κn

Vn+1,κn

− Vn+2,κn+1

Vn+1,κn+1
≥ 0, (3.8)

Vn+2,κn+2

Vn+1,κn+1
− Vn+2,κn+1

Vn+1,κn

≥ 0. (3.9)

Specifically, (3.8) implies (3.9) when σ ∈ [0, 1), and (3.9) implies (3.8) when

σ < 0 as implied by inequality (A3) of Lemma 1 in the Supplementary Material.

Since Var [p̃(A)|X(n)
κn ] ≤ E[p̃(A)|X(n)

κn ]
(
1−E[p̃(A)|X(n)

κn ]
)
, for any n ≥ 1 and A in

X , the validity of one of (3.8)−(3.9) implies that a sharper bound is obtained

with the addition of the multiplicative factor I(n, κn). Such a simplification

indeed occurs for the two most widely used instances of Gibbs-type priors. For

example, when p̃ is a Dirichlet process with baseline measure θP ∗, then I(n, κn) =

1/(θ + n+ 1) and

Var [p̃(A)|X(n)
κn

] =
1

θ + n+ 1
E[p̃(A)|X(n)

κn
]
(
1− E[p̃(A)|X(n)

κn
]
)

(3.10)

For the two-parameter Poisson-Dirichlet process model with θ > 0 and σ ∈ (0, 1),

we recover the bound given in James (2008) as a special case of our general result.

Indeed, one can easily check that (3.8) is valid, I(n, κn) = 1/(θ+n+1) and (3.10)

holds true with equality replaced by strict inequality.

Remark 2. The case of P0 neither fully discrete nor diffuse is similar to the

case of diffuse P0 since the diffuse part determines the frequentist asymptotic

behaviour by setting the pace of κn. This case has been considered in some

detail in Jang, Lee, and Lee (2010). Let P0 = λP
(d)
0 + (1 − λ)

∑
j≥1 p0,jδzj ,

for any λ ∈ (0, 1), with P
(d)
0 being a diffuse probability measure on X, zj ∈ X,

p0,j ≥ 0 for any j ≥ 1, and
∑

j p0,j = 1. Since in such a case κn/n → λ, P∞
0 –a.s.,

it can be shown that the weighted empirical distribution P̃n,κn defined in (3.2)

converges uniformly to ρP
(d)
0 +(1− ρ)

∑
j≥1 p0,jδzj , where ρ = (λ−λσ)/(1−λσ)

as n → ∞. According to the arguments used in the proof of Theorem 1, the

posterior converges weakly to a point mass at

αP ∗ + (1− α)
(λ− λσ

1− λσ
P

(d)
0 +

1− λ

1− λσ

∑
j≥1

p0,jδzj

)
.
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Excluding, as before, the trivial case P ∗ = P0 or one of its components, consis-

tency is then achieved if α converges to 0 and, at the same time, ρ coincides with

λ. For the latter to happen one either needs λ ∈ {0, 1}, the purely diffuse and

purely discrete cases, or σ = 0.

In order to complete the picture one needs to identify those situations in

which α = 0 so that P ′ = P0 and weak consistency is achieved. For the case

σ ∈ (0, 1), some results for the special instances of Gibbs-type priors admitting

closed form predictive structure have been derived in James (2008) and in Jang,

Lee, and Lee (2010). In contrast, for the case σ < 0, no results are available in the

literature and we focus attention on this subclass of Gibbs-type priors. Theorem 2

gives sufficient conditions for consistency in terms of the tail behaviour of the

mixing distribution π on the positive integers N in (2.8).

Theorem 2. Let p̃ be a Gibbs-type prior with parameter σ < 0, mixing measure

π and prior guess P ∗ whose support coincides with X. Then the posterior is

consistent

(i) at any discrete P0 if for sufficiently large x

π(x+ 1)

π(x)
≤ 1; (T1)

(ii) at any diffuse P0 if for sufficiently large x and for some M < ∞

π(x+ 1)

π(x)
≤ M

x
. (T2)

It is worth noting a few implications of (T1) and (T2). Condition (T1) is an

extremely mild assumption on the regularity of the tail of the mixing π, it requires

x 7→ π(x) to be ultimately decreasing, a condition met by the commonly used

probability measures on N. Nonetheless, one could construct ad hoc examples

where such a condition fails to be true. For instance, the mixture

π(x) = a(1− p1)p
x−1
1 1∪k{2k}(x) + (1− a)(1− p2)p

x−1
2 1∪k{2k+1}(x)

for some a, p1 and p2 in (0, 1), does not satisfy (T1). This is not a sign of incon-

sistency but rather of presumably consistent cases not covered by the sufficient

condition (T1). On the other hand, condition (T2) requires the tail of π to be

sufficiently light. This is indeed a binding condition and is close to being neces-

sary. This will become clear when we deal with some specific priors in Section 4.

As a matter of fact, we describe situations ranging from weak consistency, where

(T2) holds true, to inconsistency and “total” inconsistency according as to the
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heaviness of the tails of the mixing distribution π that is chosen. The heavier

the tails, the further from P0 is the limiting P ′ in (3.1).

Proof of Theorem 2. The proof amounts to showing that (H) holds true with

α = 0 so that consistency follows by Theorem 1. Let Vn,κn =
∑

x≥κn
V σ,x
n,κn π(x)

where

V σ,x
n,κn

=
|σ|k−1

∏k−1
i=1 (x− i)

(x|σ| − 1)n+1
.

Then Vn,κn =
∑

y≥0 vn,κn(y) where

vn,κn(y) =
|σ|κn−n (y + 1)κn−1

(κn + y + 1/|σ|) · · · (κn + y + [(n− 1)/|σ|])
π(y + κn).

After some algebra,

Vn+1,κn+1 =
∑
y≥0

xn,κn(y)
π(κn + y + 1)

π(κn + y)
vn,κn(y), (3.11)

where xn,κn(y) = (κn + y)an,κn(y)/(n/|σ|+ κn + y + 1) and

an,κn(y) =
n−1∏
i=1

(κn + y + i/|σ|)
(κn + y + 1 + i/|σ|)

.

We start by considering discrete P0. This yields κn ≪a.s. n and we assume

P∞
0 [limn κn = ∞] = 1; indeed when P∞

0 [limn κn < ∞] = 1 the proof of Theo-

rem 2(i) is straightforward. For n large enough

Vn+1,κn+1

Vn,κn

≤ 1

Vn,κn

∑
y≥0

xn,κn(y)vn,κn(y)

≤ xn,κn(κn)

∑κn
y=0 vn,κn(y)

Vn,κn

+
∑

y≥κn+1

xn,κn(y)
vn,κn(y)

Vn,κn

≤ xn,κn(κn) +
1

Vn,κn

∑
y≥κn+1

vn,κn(y), (3.12)

where we used (T1) in the first inequality, the monotonicity of y 7→ xn,κn(y)

in the second inequality and xn,κn(y) ≤ 1 in the last inequality. Note that, as

n → ∞,

xn,κn(κn) =
2κn

(n/|σ|) + 2κn + 1
an,κn(κn) → 0 (3.13)
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a.s.-P∞
0 , since an,κn(y) ≤ 1 for any y and n. As for the second summand in

(3.12), note that

1

Vn,κn

∑
y≥κn+1

vn,κn(y) =
vn,κn(κn)

Vn,κn

∑
y≥0

vn,κn(κn + y + 1)

vn,κn(κn)

≤ vn,κn(κn)

vn,κn(κn − 1)

∑
y≥0

y∏
j=0

vn,κn(κn + j + 1)

vn,κn(κn + j)
.

By virtue of
vn,κn(y + 1)

vn,κn(y)
=

κn + y

y + 1
an,κn(y)

π(κn + y + 1)

π(κn + y)

and (T1), for n large enough one has

1

Vn,κn

∑
y≥κn+1

vn,κn(y) ≤ 2an,κn(κn − 1)
∑
y≥0

y∏
j=0

2κn + j

κn + j + 1
an,κn(κn + j).

In view of (3.12) and (3.13) one just needs to prove that

an,κn(κn − 1) → 0 (3.14)

as n → ∞, and ∑
y≥0

y∏
j=0

2κn + j

κn + j + 1
an,κn(κn + j) < ∞ (3.15)

for sufficiently large n. To this aim, note that

an,κn(κn − 1) =

n−1∏
j=1

(
1− |σ|

2κn|σ|+ j

)
.

If Sn,k = |σ|
∑n−1

j=1 (k|σ|+ j)−1, using the inequalities (1−R)x/R ≤ 1− x ≤ e−x

for any 0 ≤ x ≤ R ≤ 1, it easily follows that(
1− 1

2κn

)2κnSn,2κn

≤ an,κn(κn − 1) ≤ e−Sn,2κn . (3.16)

Moreover, (1− 1/(2κn))
2κn → e−1 and, as n → ∞,

Sn,2κn ∼ log

(
n+ 2κn|σ| − 1

2κn|σ|

)|σ|
. (3.17)

These, combined with (3.16), lead to the asymptotic evaluation

an,κn(κn − 1) ∼
(

|σ|2κn
n+ |σ|2κn − 1

)|σ|
(3.18)
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as n → ∞. As for (3.15), the y-th term of the series can be written as φn(0) · · ·
φn(y) where

φn(y) =
2κn + y

κn + y + 1
an,κn(κn + y) =

2κn + y

κn + y + 1

n−1∏
j=1

(
1− |σ|

(2κn + y + 1)|σ|+ j

)
.

Adapting the arguments used in (3.16) and (3.17), it can be shown that

φn(y) ∼
2κn + y

κn + y + 1

(
|σ|(2κn + y + 1)

|σ|(2κn + y + 1) + n− 1

)|σ|

as n → ∞, cfr. (3.18). Next, for y → ∞, a first order Taylor expansion yields

φn(y) ∼
(
1 +

κn − 1

κn + y + 1

)(
1− n− 1

|σ|(2κn + y + 1) + n− 1

)|σ|

=

(
1 +

κn − 1

κn + y + 1

)(
1− |σ|(n− 1)

|σ|(2κn + y + 1) + n− 1

)
+O(y−2)

= 1 +

(
κn − 1

κn + y + 1
− |σ|(n− 1)

|σ|(2κn + y + 1) + n− 1

)
+O(y−2)

= 1− n− κn
y

+O(y−2).

Finally, the series in (3.15) is convergent since n − κn > 0 (Pólya and Szegö

(1978)). This completes the proof of (i).

For diffuse P0 is diffuse, κn = n a.s.-P∞
0 and

Vn+1,n+1

Vn,n
≤ 1

Vn,n

∑
y≥0

xn,n(y)
M

n+ y
vn,n(y)

≤ 1

Vn,n

M

n/|σ|+ n+ 1

∑
y≥0

an,n(y)vn,n(y)

≤ 1

Vn,n

M

n/|σ|+ n+ 1

∑
y≥0

vn,n(y) =
M

n/|σ|+ n+ 1
,

where we used (T2) for x = n + y in the first inequality, n/|σ| + n + y + 1 >

n/|σ|+n+1 in the second inequality and an,n(y) ≤ 1 in the last inequality. Since

the last term goes to 0 as n → ∞, the proof is complete.

4. Illustrations

By Theorem 2 Gibbs-type priors are consistent when P0 is discrete, condition

(T1) being valid for most commonly used mixing measures π. When P0 is diffuse

one needs to closely investigate the tail behaviour of π and check whether (T2)
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holds true. One is then naturally led to ask what happens when (T2) is not

satisfied: may in such a case consistency fail to occur even if the “true” P0 is in

the weak support of p̃?

In this section we consider three Gibbs-type priors with σ = −1, each char-

acterized by a specific choice of the mixing distribution π. We have consistency

at a discrete P0 by Theorem 2(i) and therefore focus on the case of P0 diffuse,

where different conclusions are reached. According to the heaviness of the tails

of π one can move from a situation where α in Theorem 1 is 0, thus yielding

consistency, to a situation where α is arbitrarily close or even equal to α = 1.

The first prior is characterized by a heavy-tailed mixing distribution π, that

does not admit a finite expected value, condition (T2) is not met and α = 1 so

that the posterior concentrates around the prior guess P ∗, “ total ” inconsistency.

The second prior has a mixing π with light tails that satisfy (T2) in Theorem 2,

and results in consistent asymptotic behaviour. In the third case α takes values

over the whole unit interval [0, 1] according to a parameter that determines the

heaviness of the tail of π. The illustration shows that, if the upper bound in (T2)

does not hold, consistency is not achieved and we conclude that (T2) is close to

being necessary.

4.1. Gnedin’s Gibbs–type prior

We consider the family of Gibbs-type priors with σ = −1 recently introduced

in Gnedin (2010). It is characterized by the mixing distribution

π(x) =
γ(1− γ)x−1

x!
1{1,2,...}(x)

for some γ ∈ (0, 1). This distribution arises in discrete renewal theory (Feller

(1971, Chap. XII) and in connection with the two-parameter Poisson-Dirichlet

process (Pitman (2006)). It is characterized by a heavy tail admitting moments

of order less than γ. In order to establish consistency one would like to apply

Theorem 2. For a discrete P0, (T1) clearly holds and weak consistency is achieved.

In contrast, for a diffuse P0, (T2) is not satisfied: π(x+1)/π(x) = (x−γ)/(x+1)

for any positive integer x and is not eventually bounded byM/x for some constant

M . We appeal to a direct calculation to determine consistency or inconsistency.

In Gnedin (2010) it is shown that the Vn,κn ’s admit the simple closed form

expression

Vn,κn =
(κn − 1)!(1− γ)κn−1(γ)n−κn

(n− 1)!(1 + γ)n−1

and, consequently, the weights of the prediction rule simplify to

Vn+1,κn+1

Vn,κn

=
κn(κn − γ)

n(γ + n)
. (4.1)
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From (4.1) it is easy to to see that, if P0 is diffuse, κn = n, condition (H) holds

true with α = 1. By Theorem 1 it follows that the weak limit coincides with the

prior guess P ∗ whatever the “true” distribution of the data P0. In this explicit

setup, it is interesting to have a closer look at the structure of the bound on the

posterior variance discussed in Remark 1. It is easy to check that (3.9) holds and

so the bound (3.10) applies with I(n, κn) = (2n + γ + 1)/[(n + 1)(γ + n + 1)],

which does not depend on κn. Now, since I(n, κn) → 0 as n → ∞, the posterior

concentrates, as n increases, at some P ′ in PX, in accordance with Theorem 1.

Note then that consistency for the case of discrete P0, already established by

means of Theorem 2(i), can be deduced from (4.1) combined with Theorem 1: if

P0 is discrete then κn ≪a.s. n and (4.1) converges to α = 0 implying convergence

to P0 in Theorem 1.

4.2. Gibbs–type prior with Poisson mixing

The second Gibbs-type prior we consider takes σ = −1 and a Poisson mixing

distribution π restricted to the positive integers, with parameter λ > 0

π(x) =
e−λ

1− e−λ

λx

x!
1{1,2,...}(x).

Such a π has light tails and condition (T2) is satisfied since π(x + 1)/π(x) =

λ/(x+ 1). By Theorem 2(ii), the posterior is consistent when P0 is diffuse and,

a fortiori, when P0 is discrete. Given the Gibbs-type prior at issue admits closed

form expressions, the same conclusion can be drawn by direct calculation. The

Vn,κn ’s can be expressed as

Vn,κn = π(κn)V
−1,κn
n,κn 1F1(κn;κn + n;λ),

where 1F1(a; b; z) =
∑

j≥0
(a)j
j! (b)j

zj is, for any a, b and z in R, the confluent

hypergeometric function. Therefore, one has that

Vn+1,κn+1

Vn,κn

=
λκn

(n+ κn + 1)(n+ κn)
1F1(κn;κn + n;λ)

1F1(κn + 1;κn + n+ 2;λ)
. (4.2)

With P0 diffuse, κn = n for any n a.s.–P∞
0 and one has

Vn+1,n+1

Vn,n
∼ λ

2(2n+ 1)
→ 0 (4.3)

as n → ∞. Details for the derivation of (4.3) are provided in the Supplementary

Material. Hence, for the case of diffuse P0, we have shown by direct calculation

that the probability of observing a new species converges to α = 0, which by

Theorem 1 implies consistency. This is clearly in agreement with the conclusion

drawn from Theorem 2(ii) by looking at the tails of the mixing distribution π.
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4.3. Gibbs–type prior with geometric mixing

Another sub-family of Gibbs-type priors with σ = −1 is identified by a

geometric mixing distribution

π(x) = (1− η)ηx−1 1{1,2,...}(x)

for some η ∈ (0, 1). Here π(x+1)/π(x) = η so that (T2) does not hold. One can

only apply Part (i) of Theorem 2 to state consistency for the case of discrete P0.

For the case of diffuse P0 not covered by Theorem 2, direct calculation gives

Vn,κn = π(κn)V
−1,κn
n,κn 2F1(κn, κn + 1;κn + n; η),

where 2F1(a, b; c; z) =
∑

j≥0((a)j(b)j/j!(c)j) z
j for any a, b, and c in R and for

any z such that |z| < 1, is the Gauss hypergeometric function. One has

Vn+1,κn+1

Vn,κn

=
ηκn(κn + 1)

(n+ κn + 1)(n+ κn)
2F1(κn, κn + 1;κn + n; η)

2F1(κn + 1, κn + 2;κn + n+ 2; η)
. (4.4)

With P0 diffuse, one can replace κn with n in this ratio to find

Vn+1,n+1

Vn,n
→ α =

2− η − 2
√
1− η

η
∈ [0, 1]. (4.5)

Details for the derivation of (4.5) are provided in the Supplementary Material.

The limit α in (4.5) can be any point in [0, 1] according to the value of η: by

Theorem 1 it follows that we can obtain the whole spectrum of weak limits

αP ∗(·) + (1 − α)P0(·) ranging from consistency to “ total ” inconsistency. In

particular, α is increasing in η, so the larger η, the heavier the limiting mass

assigned to the prior guess. Small values of η identify a situation similar to the

one discussed in Section 4.2 since they yield a light-tailed π. Conversely, large

values of η give rise to heavy-tailed π. Here a minimal deviation from (T2) can

produce inconsistent behaviours, even extreme ones, suggesting again that (T2)

is close to being a necessary condition.

5. Concluding Remarks

For the validation of a statistical model, and of the corresponding inferences,

consistency plays a major role. Even in a Bayesian framework, an important

prerequisite to any inferential procedure is the specification of a prior that is

consistent according to the frequentist approach. If X is finite, P0 in the weak

support of a discrete nonparametric prior p̃ guarantees consistency (Freedman

(1963)). When X is infinite, inconsistent behaviours can appear. To deal with

this one can try to identify classes of priors that are consistent whatever the
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choice of P0 or try to identify the data generating mechanisms the various classes

of nonparametric priors are designed for and study consistency w.r.t. choices of

P0 that are compatible with such mechanisms. The seminal contribution to the

former is due to Freedman (1963) (see also Fabius (1964)), where the author

identifies a class of nonparametric priors, the family of “ tail-free ” priors, that

are consistent for any P0, discrete or diffuse, in its weak support. Notably, the

Dirichlet process and Pólya-tree priors (Ferguson (1974); Lavine (1992)) belong

to this class. However, ensuring consistency for any P0 is not for free. On

the one hand, all tail-free priors (with the exception of the Dirichlet process),

and the inferential results they yield, depend heavily on the sequence of nested

partitions defining them. On the other hand “ tail-freeness ” appears to be a quite

fragile property: as shown in Freedman and Diaconis (1983) and Diaconis and

Freedman (1986), inconsistency can already appear when one considers mixtures

of the Dirichlet process. Perhaps it is better to establish what kind of inferential

issues a prior can address and study consistency for compatible P0’s, and we have

taken this path in this paper. Gibbs-type priors are discrete nonparametric priors

and therefore consistency has to be investigated w.r.t. discrete P0’s. The answer

we provide is positive in the sense that they are (essentially) always consistent

w.r.t. discrete P0’s. Given the nature of the phenomenon to be studied, one can

establish in advance whether the “true” distribution of the data is discrete or not.

When one considers a diffuse data generating P0, that does not fit a framework

within which Gibbs-type priors are used, inconsistency can arise, even “ total ”

inconsistency. This is not a reason to dismiss Gibbs-type priors. Inconsistent

behaviours, combined with consistency in the case of discrete P0, should rather

be seen as strong general methodological evidence against the use of discrete

nonparametric priors for modeling data generated from diffuse distributions, a

common practice, for instance, in survival analysis applications.

Supplementary Material

Supplementary Material available online includes (i) the proof of Proposi-

tion 1; (ii) an auxiliary technical lemma, that is used in the proof Theorem 1

and provides some useful results on various quantities related to the weights Vn,k

defining the partition distribution induced by Gibbs-type prior; (iii) technical

details on the specific examples considered in Section 4.
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Lavine, M. (1992). Some aspects of Pólya tree distributions for statistical modelling. Ann.
Statist. 20, 1222-1235.

Lijoi, A., Mena, R.H., and Prünster, I. (2007a). Bayesian nonparametric estimation of the
probability of discovering a new species Biometrika. 94 769-786.

Lijoi, A., Mena, R.H., and Prünster, I. (2007b). A Bayesian nonparametric method for predic-
tion in EST analysis. BMC Bioinformatics 8: 339.

Lijoi, A., Mena, R.H., and Prünster, I. (2007c). Controlling the reinforcement in Bayesian non-
parametric mixture models. J. Roy. Statist. Soc. B 69, 715-740.

Lijoi, A., Prünster, I. and Walker, S. G. (2005). On consistency of nonparametric normal mix-
tures for Bayesian density estimation. J. Amer. Statist. Assoc. 100, 1292-1296.

Majumdar, S. (1992). On topological support of Dirichlet prior. Statist. Probab. Lett. 15, 385-
388.

Navarrete, C., Quintana, F. and Müller, P. (2008). Some issues on nonparametric Bayesian
modeling using species sampling models. Stat. Modell. 41, 3-21.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statistics,
Probability and Game Theory (Edited by T. S. Ferguson, L. S. Shapley and J. B. Mac-
Queen), 245-267. IMS Lecture Notes Monogr. Ser., Vol. 30, Hayward.

Pitman, J. (2006). Combinatorial Stochastic Processes. Ecole d’Eté de Probabilités de Saint-
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