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Abstract: We assume a spatial blind source separation model in which the observed

multivariate spatial data are a linear mixture of latent spatially uncorrelated random

fields containing a number of pure white noise components. We propose a test on

the number of white noise components, and obtain the asymptotic distribution of

its statistic for a general domain. We also demonstrate how computations can

be facilitated in the case of gridded observation locations. Based on this test,

we obtain a consistent estimator of the true dimension. Simulation studies and

an environmental application provided in the Supplementary Material demonstrate

that our test is at least comparable to, and often outperforms bootstrap-based

techniques.
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1. Introduction

Advances in technology have led to massive amounts of multivariate spatial

data being collected, for example, in the geographical, ecological (Legendre and

Legendre (2012)), and atmospheric (von Storch and Zwiers (2001)) sciences. A

domain expert analyzes such data by investigating and interpreting at least p

maps (for the p measured variables), which might be contaminated by various

sources of noise, such as measurement inconsistencies or errors. Moreover, it

may be difficult to interpret the raw data because the original variable reflects

a mixture of physical processes that are actually of interest. As such, we also

need to investigate the dependencies between measurements. From a statisticians

perspective, these spatially correlated data sets contain dependencies, both within

and among the individual data processes, which makes statistical modeling

of the data challenging, especially when the dimensionality p is large. With

a data set of size n, it takes cp(p + 1)/2 parameters to describe the full

covariance and cross-covariance structure of the model, where c is the number

of characteristic parameters per covariance and cross-covariance. Furthermore,

it requires a computational cost of O(n3p3) for prediction using optimal linear

predictors and for Gaussian likelihood evaluation; see Cressie (1993, Sec. 3) and
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Legendre and Legendre (2012).

One way to approach the problems arising from spatial cross-dependencies

is to use the spatial blind source separation (SBSS) framework; see Nordhausen

et al. (2015) and Bachoc et al. (2020b). Blind source separation (BSS) is a

well-studied multivariate procedure used to recover latent variables when only a

linear mixture of them is observed; see, for example, Comon and Jutten (2010)

and Nordhausen and Oja (2018). A common assumption for BSS is that the

latent variables are second-order stationary and uncorrelated. That is, we assume

x(s) = Ωz(s), where x(s) ∈ Rp is the observed p-variate measurement at location

s ∈ Rd, z(s) ∈ Rp is a latent second-order stationary p-variate source with

uncorrelated components, and Ω ∈ Rp×p is an unknown full-rank mixing matrix.

To estimate the unmixing matrix Γ, that is, Ω−1, Nordhausen et al. (2015)

propose an estimator based on the simultaneous diagonalization of two scatter

matrices. Bachoc et al. (2020b) extended this method to jointly diagonalize

more than two scatter matrices for multivariate spatial data. Preprocessing

the data using an SBSS method is appealing from a practitioners perspective,

because the latent components are more likely to reflect the physical nature

of the processes that generated the data. For example, Nordhausen et al.

(2015) found six meaningful physical latent components in a geostatistical

data set that were not easily detectable in the original data. Moreover, it

suffices to investigate only p maps, because the resulting latent components are

spatially uncorrelated. Common tasks, such as modeling the spatial covariance

or predictions of the original data, are again modified, because the statistical

analysis can be performed using univariate tools on the latent components. The

results for the latent components are transferred back to the original data because

the transformation is linear in nature. Muehlmann, Nordhausen and Yi (2021)

investigate this procedure in the context of geostatistical prediction. Building p

univariate models rather than one multivariate model simplifies the given tasks

significantly. Nevertheless, if the dimension p is still high, a further reduction

may be possible if not all of the p components are of interest.

The SBSS model of Nordhausen et al. (2015) gives no preference to any of

the latent components, with all p of them essentially of equal interest, from a

statistical perspective. However, in practical cases of BSS, it is often assumed

that only a few components are of interest and regarded as the signal, whereas

the remaining components are discarded as noise. This can be represented in the

statistical BSS model by supposing that the latent components consist of two

parts, z = (zTs , z
T
w)

T , where zs ∈ Rq is the signal and zw ∈ Rp−q is the noise.

Matilainen, Nordhausen and Virta (2018), Virta and Nordhausen (2021), and

Nordhausen and Virta (2018) all consider components with serial dependence as

signals in a time series context. Identifying and discarding the noise part leads to

fewer components needing to be investigated and modeled, which simplifies the

analysis.
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We consider an SBSS model in which the signals are characterized as

components with second-order spatial dependence. We derive a test for the

signal dimension q based on the joint diagonalization of two or more scatter

matrices that are specified by kernel functions. We then provide the asymptotic

distribution of the test statistic. This asymptotic result enables us to extend

the framework of Bachoc et al. (2020b) to the case where the signal and noise

components are not all asymptotically identifiable and their distributions are

not necessarily Gaussian. We develop new proof techniques to obtain these

two extensions. The first extension generalizes arguments made by Virta and

Nordhausen (2021) to a spatial setting, and he second extends the arguments in

Bachoc et al. (2020a) beyond the case of transformed Gaussian processes.

In addition, we demonstrate that introducing new scatter matrices compared

with the one used by Bachoc et al. (2020b) enables us to obtain a neater

asymptotic distribution of the test statistic (see Remark 1). Based on the

test, we then provide a consistent estimator of the unknown signal dimension.

Furthermore, the detection of the noise components results in a significant

computational cost reduction for subsequent multivariate spatial modeling that

uses only the signal components.

We propose several bootstrap versions of the test. For both the asymptotic

and the bootstrap tests, we demonstrate computational gains when the observa-

tion locations are gridded. In an extensive simulation study, we show that the

various tests already have levels close to the nominal level, for small to moderate

sample sizes, and provide an accurate estimation of the signal dimension. We

conclude that the asymptotic test is comparable to, and often outperforms the

bootstrap tests, while being computationally less demanding. Employing an

environmental application, we show that our methods enable the reduction of

the dimension of a multivariate spatial data set, retaining the most interpretable

and informative estimated independent components, and discarding the unusable

ones as noise.

The remainder of the paper is organized as follows. In Section 2, we introduce

the statistical setting of the problem and present our test statistic. The methods

and main results are described in Section 3, and the simulation results are

reported in Section 4. Section 5 concludes the paper. The proofs of the theoretical

results and the environmental application are presented in the Supplementary

Material.

2. Setup and Model

Suppose our data consist of a p-dimensional multivariate random field x(s) =

{x1(s), . . . , xp(s)}T , s ∈ S, where S ⊆ Rd is a region of interest. The covariance

and cross-covariance functions of x, defining its second-order structure, are some

of its central characteristics; see De Iaco et al. (2013), Genton and Kleiber (2015),
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and Gneiting, Kleiber and Schlather (2010) for an introduction and various

approaches to modeling these functions.

Here, the second-order structure of x is assumed to obey an SBSS model,

x(s) = Ωz(s), (2.1)

where Ω is a p × p unknown invertible matrix, and z(s) = {z1(s), . . . , zp(s)}T is

the latent field with independent components, with Cov(z(s)) = Ip for all s ∈ S.
The SBSS model is related to a popular multivariate covariance model, namely,

the linear model of coregionalization (LMC), which is expressed as

CLMC(h) =
r∑

m=1

Tmρm(h).

Here, Tm are nonnegative definite p × p coregionalization matrices, and ρm(h)

are univariate stationary correlation functions; see Goulard and Voltz (1992),

Schmidt and Gelfand (2003), and Emery (2010). Dimension reduction in the LMC

literature is performed by first fitting an LMC, and then decreasing the number of

terms r or finding a lower rank representation of the coregionalization matrices.

The former is achieved by using an eigendecomposition of the coregionalization

matrices. If the system of eigenvectors is equal across a few summands, these

matrices may be proportional. This is referred to as intrinsic correlation; see

Wackernagel (1994). In the latter case, the coregionalization matrices arise from

a scalar product matrix of latent variables (Goulard and Voltz (1992)). Variants

of a principal component analysis (PCA) of the coregionalization matrices lead

to a lower dimensional representation of these latent variables. This is called a

regionalized PCA; see (Wackernagel (2003, Chap. 27)).

As noted by Bachoc et al. (2020b), the SBSS model is a special case of the

LMC, where r = p, Tm = ωmω
⊤
m (ωm is the mth column of the mixing matrix

Ω), leading to rank-one corregionalization matrices, and ρm(h) are the univariate

correlation functions of the entries of the latent field z(s). Although there is

a connection between the LMC and SBSS, the advantage of SBSS lies in the

fact that estimating the unmixing matrix (or, equivalently, the coregionalization

matrices) does not require estimating or specifying a model for the covariances of

the latent field components. Moreover, our approach to dimension reduction is

different, because we test wether some latent components are white noise, which

leads to a reduction of r.

Next, we explain how to estimate the unmixing matrix Γ, that is Ω−1, and

propose our test statistic for the signal dimension of the SBSS model (2.1). Let

I(·) denote the indicator function throughout this paper, and consider the kernel

functions f0, f1, . . . , fk, with fℓ : Rd → R for ℓ = 0, . . . , k, and with f0(s) =

I(s = 0). Note that we call f0, f1, . . . , fk kernels, following Bachoc et al. (2020a);

Muehlmann, Bachoc and Nordhausen (2022) analogously to kernel smoothing.
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However, f0, f1, . . . , fk should not be confused with the covariance functions of

the components of x or z. For f ∈ {f0, f1, . . . , fk}, let

Fn,f =
1

n

n∑
i,j=1

f2(si − sj),

where {s1, . . . , sn} ⊆ S is the set of two-by-two distinct observation points. Note

that Fn,f0 = 1. Let f ∈ {f1, . . . , fk}. The population local covariance (or scatter)

matrices are then defined as

M(f) =
1

n
√
Fn,f

n∑
i=1

n∑
j=1

f(si − sj)E
(
x(si)x(sj)

T
)

(2.2)

and M(f0) =
1

n

n∑
i=1

E
(
x(si)x(si)

T
)
,

and the corresponding sample local covariance matrices are defined as

M̂(f) =
1

n
√
Fn,f

n∑
i=1

n∑
j=1

f(si − sj)x(si)x(sj)
T (2.3)

and M̂(f0) =
1

n

n∑
i=1

x(si)x(si)
T .

Remark 1. The normalizing quantity nF
1/2
n,f in (2.2) and (2.3) is slightly different

from that in Bachoc et al. (2020b), who simply use n. Here, including F
1/2
n,f enables

us to obtain a simple and elegant asymptotic distribution of the test statistic for

the number of noise components (see Proposition 1).

The k+1 sample local covariance matrices M̂(f0), M̂(f1), . . . , M̂(fk) are used

to estimate the unmixing matrix Γ as

Γ̂ ∈ argmax
Γ:ΓM̂(f0)Γ

T=Ip,

Γ has rows γT
1 ,...,γT

p ,

(
∑k

ℓ=1{γ
T
j M̂(fℓ)γj}2)j=1,...,p are in descending order

k∑
ℓ=1

p∑
j=1

{γT
j M̂(fℓ)γj}2. (2.4)

The unmixing matrix should “diagonalize” all k local covariance matrices, and

for ℓ = 1, . . . , k, we let

D̂ℓ = Γ̂M̂(fℓ)Γ̂
T

,

where all D̂ℓ should be close to a diagonal matrix. Note that for finite data,

exact diagonalization is usually possible only for k = 1. Further, by definition,∑k
ℓ=1 D̂

2

ℓ,1,1 ≥ · · · ≥
∑k

ℓ=1 D̂
2

ℓ,p,p. We are now interested in the case in which there

are q “real” continuous random fields in z, and the remaining p− q components
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are white noise.

For q ∈ {0, . . . , p− 1}, we are interested in testing the following hypothesis:

H0q : There are exactly p− q white noise processes in z.

This hypothesis is formalized in the following two conditions:

Condition 1. For a = 1, . . . , p− q, the covariance function of zq+a is given by

Cov(zq+a(u), zq+a(v)) = I(u− v = 0).

Condition 2. For ℓ = 1, . . . , k, fℓ is symmetric and satisfies fℓ(0) = 0. For

a = 1, . . . , q, we have

lim inf
n→∞

k∑
ℓ=1

[(
Ω−1M(fℓ)Ω

−T
)
a,a

]2
> 0.

Note that in Conditions 1 and 2, we assume that the sources are ordered such

that the q signal components are first, followed by the p − q noise components.

Because the order of the sources is not identifiable, this assumption comes without

loss of generality. The fulfillment of Condition 2 means that the correlation

in the signal fields z1, . . . , zq is sufficient for these signals to be asymptotically

separated from the noise fields zq+1, . . . , zp. Note that we do not need to consider

the stronger assumption that the q vectors of the ath diagonal elements in

Ω−1M(f1)Ω
−T , . . . ,Ω−1M(fk)Ω

−T , for a = 1, . . . , q, for the signal random fields

are asymptotically distinct (see Assumption 9 in Bachoc et al. (2020b)) and

nonzero.

When Condition 2 is satisfied by f1, . . . , fk, it is likely to be satisfied by the

single kernel f1 + · · · + fk as well. This means that using a single kernel can

be sufficient to obtain the various asymptotic results of Section 3 on the test

statistic discussed below. Nevertheless, the flexibility of allowing several kernels

is beneficial here. Indeed, after having tested (or estimated) the signal dimension,

the user may be interested in estimating some of the first (most important) signal

components individually. As shown in Bachoc et al. (2020b), this usually requires

multiple kernels, both for theoretical guarantees and for practical efficiency. Using

the same set of kernels for these two studies (signal dimension and components)

may make it easier to interpret the results; see Nordhausen and Ruiz-Gazen

(2022) for details on joint diagonalization in multivariate methods.

Conditions 1 and 2 motivate the following block decompositions for ℓ =

1, . . . , k:

M̂(fℓ) =

(
M̂(fℓ)qq M̂(fℓ)q0

M̂(fℓ)0q M̂(fℓ)00

)
and D̂ℓ =

(
D̂ℓ,qq D̂ℓ,q0

D̂ℓ,0q D̂ℓ,00

)
,

where the blocks M̂(fℓ)qq and D̂ℓ,qq have size q × q, and the blocks M̂(fℓ)00 and
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D̂ℓ,00 have dimension (p− q)× (p− q).

Then, our test statistic is

tq =
n

2

k∑
ℓ=1

||D̂ℓ,00||2, (2.5)

where || · || is the Frobenius norm. The test statistic is expected to be bounded

under the null hypothesis, and to diverge when one of zq+1, . . . , zp is spatially

correlated. The test will reject the null hypothesis H0q if tq is larger than a

certain threshold, in which case, more than q signal components may be present.

For a nominal level α ∈ (0, 1), the threshold is set to the quantile 1 − α of the

asymptotic distribution of Proposition 1 or 2 or Corollary 1, depending on the

context.

3. Theory and Methodology

3.1. Asymptotic tests for dimension

Assume now that x satisfies Model (2.1). Then, let q denote the true value

of the signal dimension (i.e., H0q is true) and consider the limiting distribution

of tq. To establish the asymptotic results, we need to introduce a few technical

conditions.

Condition 3. The random fields z1, . . . , zp are independent, centered, and

stationary.

The independence assumption makes studing the sources meaningful, and

the independence of the noise components is used to obtain the asymptotic

distribution of the test statistic in Propositions 1 and 2 and Corollary 1; see,

specifically, the proof of Proposition 1. The stationarity assumption is standard

in spatial statistics; see for Shaby and Ruppert (2012) and Bachoc et al. (2020b).

The zero-mean assumption is replaced by a constant unknown mean assumption

in Section 3.4. For a = 1, . . . , p, we let za have the stationary covariance function

Ka : Rd → R, with Cov(za(s), za(s+ h)) = Ka(h).

Condition 4. A fixed δ > 0 exists such that, for all n ∈ N and i ̸= j, i, j =

1, . . . , n, ||si − sj|| ≥ δ.

Condition 4 implies that we have an increasing-domain asymptotic frame-

work; see Cressie (1993, Sec. 7.3) for an introduction, and Bevilacqua et al.

(2012) for recent developments.

Condition 5. Fixed β > 0 and α > 0 exist such that, for all a = 1, . . . , q, for

u, v ∈ N, u ≥ 1, v ≥ 1, u+ v ≤ 4, for y1, . . . ,yu ∈ Rd, for w1, . . . ,wv ∈ Rd,

|Cov (za(y1) . . . za(yu), za(w1) . . . za(wv))| ≤
β

1 + ∆2d+1+α
,
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where

∆ = min
r∈{1,...,u},
s∈{1,...,v}

||yr −ws||.

Condition 5 means that, for the q signal processes, two products of signal

values between two sets of input locations have a covariance that decays with the

smallest distance between two points of the sets. Hence, this condition can be

interpreted as weak dependence, and is mild in the sense that only pairs of sets

with a sum of four elements or less need to be considered.

In the special case where the signal processes are stationary Gaussian, the

condition holds when, for two constants 0 < γ1, γ2 < ∞, and for a = 1, . . . , q,

h ∈ Rd, the covariance function satisfy |Ka(h)| ≤ γ1 exp(−γ2||h||). This can

be seen from the proof of Lemma 7 in Bachoc et al. (2020a), where F is the

identity function. This latter condition holds for many standard covariance

functions in spatial statistics, such as the spherical, Gaussian, exponential,

and Matérn functions (Cressie (1993, Sec. 2.3)). Note that the exponential

decay of the covariance can be weakened to a polynomial decay, from direct

arguments, and still yield Condition 5. We do not elaborate on this for the

sake of brevity. Furthermore, Lemma 7 in Bachoc et al. (2020a) shows that

Condition 5 holds when the signal processes are nonGaussian and obtained from

nonlinear transformations of stationary Gaussian processes, under mild technical

assumptions.

Note that when the signal and noise processes are stationary Gaussian,

Condition 5 can be replaced by the simpler condition that, for two constants

0 < γ1, γ2 < ∞, for a = 1, . . . , q, h ∈ Rd, their covariance functions satisfy

|Ka(h)| ≤ γ1/(1 + ||h||d+γ2). With this replacement, Propositions 1 to 4 and

Corollary 1 still hold, because in this case, Lemmas S1.3 and S1.4 in the

Supplementary Material hold directly from Theorem B.1 in the supplementary

material to Bachoc et al. (2020a). We skip the details for the sake of brevity.

Condition 6. For a = 1, . . . , p− q, the random variables {zq+a(y);y ∈ Rd} are

independent. Assuming Condition 5 holds, then for the same α > 0, we have

max
a=1,...,p−q

sup
y∈Rd

E
(
|zq+a(y)|4+α

)
< ∞. (3.1)

Condition 6 requires that the noise values be independent (not only

decorrelated). The independence assumption is important for the computation

of the asymptotic distribution of the test statistic, in particular, to compute

moments of order more than two (see Lemma S1.6 in the Supplementary Material)

and to obtain a central limit theorem (see Lemma S1.4 in the Supplementary

Material). The condition in (3.1), when taken together with Condition 3

(stationarity), simply requires a finite moment of order strictly more than four

for the marginal distribution of the noise, which is arguably mild.
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Condition 7. Assuming Condition 5 holds, then for the same β > 0 and α > 0,

we have, for ℓ = 1, . . . , k,

|fℓ(y)| ≤
β

1 + ||y||d+α
.

A typical example of a function f ∈ {f1, . . . , fk} for which Conditions 2 and

7 are satisfied is the “ring” kernel:

R(r1, r2)(s) = I(r1 < ||s|| ≤ r2), (3.2)

with 0 < r1 < r2 < ∞.

Condition 8. For ℓ = 1, . . . , k, we have

lim inf
n→∞

Fn,fℓ > 0.

Condition 8 is mild and simply requires that for ℓ = 1, . . . , k, the number of

pairs of observation locations si, sj, i, j = 1, . . . , n, for which fℓ(si−sj) is nonzero

is not negligible compared with n.

Condition 9. For all ℓ, ℓ
′
= 1, . . . , k, ℓ ̸= ℓ

′
, fℓ(y)fℓ′ (y) = 0, for all y ∈ Rd.

Condition 9 means that the supports of the kernels are disjoint. This

enables us to have a simple and elegant chi-squared asymptotic distribution of

the test statistic. When Condition 9 does not hold, we can still compute the

asymptotic distribution of the test statistic (see Proposition 2), which is less

simple, but still explicit. Hence, importantly, Condition 9 is not necessary to

have an asymptotically valid test when the quantiles from the asymptotic null

distribution are simple to approximate numerically. As discussed above, the

kernels in Condition 9 are not the covariance functions of x or z, so Condition 9

does not make any assumption on the covariance structures of x and z.

Our first main result is on the asymptotic null distribution of our test statistic

tq.

Proposition 1. Assume that Conditions 1–9 hold. Then, as n → ∞,

tq
d−→ χ2

k(p−q)(p−q+1)/2.

In the next proposition, we show that when considering the same normaliza-

tion as that considered by Bachoc et al. (2020b) for the local covariance matrices,

and removing the assumption of disjoint kernel supports, we still obtain an

asymptotic distribution of the test statistic as the distribution of the squared

Euclidean norm of a Gaussian vector. In this proposition, we consider a metric

dw generating the topology of weak convergence on the set of Borel probability

measures on Euclidean spaces (e.g., Dudley (2018, p.393)).
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Proposition 2. Assume that Conditions 1–7 hold. Let the test statistic t̃q be

defined as tq, with M̂(f) replaced by

M̃(f) =
1

n

n∑
i=1

n∑
j=1

f(si − sj)x(si)x(sj)
T ,

for f ∈ {f1, . . . , fk}. Let Lt̃q,n be the distribution of the test statistic t̃q, and let

LV,n be the distribution of
∑k

ℓ=1

∑p−q
a,b=1 V

2
ℓ,a,b, where (Vℓ,a,b)ℓ=1,...,k;a,b=1,...,p−q is

a Gaussian vector with mean vector 0 and covariance matrix defined by

Cov(Vℓ,a,b,Vℓ′,a′,b′) =
1

2
Fn,fℓ,fℓ′ (I(a = a′)I(b = b′) + I(a = b′)I(b = a′)),

with

Fn,fℓ,fℓ′ =
1

n

n∑
i,j=1

fℓ(si − sj)fℓ′(si − sj),

for ℓ, ℓ′ = 1, . . . , k and a, b, a′, b′ = 1, . . . , p− q. Then, as n → ∞,

dw(Lt̃q,n,LV,n) → 0.

In the following corollary, we show that if the supports of the kernels are

disjoint, the test statistic converges to a weighted chi-squared distribution; see,

for example, Bodenham and Adams (2016) for the approximation procedures for

this distribution.

Corollary 1. Consider the setting of Proposition 2 and assume additionally that

Condition 9 holds. Then, the limiting distribution LV,n in Proposition 2 is equal

to the distribution of
k∑

ℓ=1

Fn,fℓX 2
ℓ ,

where X 2
1 , . . . ,X 2

k are independent and follow a chi-squared distribution with (p−
q)(p− q + 1)/2 degrees of freedom.

3.2. Regular domain as a special example

When the data are observed in a regular-grid domain, that is, S ⊆ Zd, the

kernel functions can be based on the natural notion of a spatial neighborhood on

the grid, which simplifies our technique.

A location s0 = (s1, . . . , sd) ∈ Zd has 2d one-way lag-h neighbors, (s1 ±
h, . . . , sd), (s1, s2 ± h, . . . , sd), . . . , (s1, . . . , sd−1, sd ± h). For example, if d = 2

and h = 1, the four one-way lag-1 neighbors of s0 are “left” (s1 − 1, s2), “right”

(s1 + 1, s2), “up” (s1, s2 + 1), and “down” (s1, s2 − 1). Therefore, we can define

the one-way lag-1 population and sample local covariance matrices as
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M =
1√

n
∑n

i=1 |Nsi
|

n∑
i=1

∑
sj∈Nsi

E
(
x(si)x(sj)

T
)

and M̂ =
1√

n
∑n

i=1 |Nsi
|

n∑
i=1

∑
sj∈Nsi

x(si)x(sj)
T , (3.3)

respectively, where, for x ∈ Zd,

Nx = {s ∈ {s1, . . . , sn}; |x− s| = 1},

with |u| = |u1| + · · · + |ud| for u = (u1, . . . , ud) ∈ Rd. The matrices M and M̂

are of the form M(f) and M̂(f) in (2.2) and (2.3) for f(s) = I(||s|| = 1), s ∈ Rd.

Similarly, if d = 2, a location s0 = (s1, s2) ∈ Z2 has four two-way lag-1

neighbors that are of the form (s1±1, s2±1). In general, for m,h ∈ N, 1 ≤ m ≤ d,

the m-way lag-h population and sample local covariance matrices can be defined

as

M =
1√

n
∑n

i=1 |Nm
h,si

|

n∑
i=1

∑
sj∈Nm

h,si

E
(
x(si)x(sj)

T
)

and M̂ =
1√

n
∑n

i=1 |Nm
h,si

|

n∑
i=1

∑
sj∈Nm

h,si

x(si)x(sj)
T , (3.4)

respectively, where, for x ∈ Zd,

Nm
h,x = {s ∈ {s1, . . . , sn}; s = ψJ(x, ζJ(x)+hv), for some J ∈ Am,v ∈ {−1, 1}m},

with Am = {J = (i1, . . . , im) ∈ Nm; 1 ≤ i1 < · · · < im ≤ d}; that is, |Am| =
(
d
m

)
and, for J = (i1, . . . , im) ∈ Am,y = (y1, . . . , ym) ∈ Zm, ζJ(x) = (xi1 , . . . , xim),

ψJ(x,y) = (x1, . . . , xi1−1, y1, xi1+1, . . . , xim−1, ym, xim+1, . . . , xd).

In general, in Equations (2.2) and (2.3), the m-way lag-h population and

sample local covariance matrices M and M̂, respectively, can also be written in

the form M(f) and M̂(f), respectively, with f(s) = I(s ∈ {−h, 0, h}d, |s| = hm),

s ∈ Rd.

Consequently, for the similarly defined test statistic tq, we can derive the same

limiting conclusions. By exploiting the neighborhood structure in the regular

domain case, we can also shorten the computation time for other techniques,

such as the proposed asymptotic test or spatial bootstrap, with the greatest time

improvement being achieved for the latter (see Sections 3.5 and 4.3).

3.3. Estimation of the number of signal components

In this section, we investigate an estimator of the signal number q based on

the asymptotic tests. We wish to test the null hypothesis, for r ∈ {0, . . . , p− 1},



848 MUEHLMANN ET AL.

H0r : There are exactly p− r white noise processes in z.

This hypothesis states that the signal dimension is r. Similarly to Section 2, for

r = 0, . . . , p− 1, we can partition, for ℓ = 1, . . . , k,

D̂ℓ =

(
D̂ℓ,rr D̂ℓ,r−r

D̂ℓ,−rr D̂ℓ,−r−r

)
,

where the block D̂ℓ,rr has size r×r and the block D̂ℓ,−r−r has size (p−r)×(p−r).

Then, consider the test statistic

tr =
n

2

k∑
ℓ=1

||D̂ℓ,−r−r||2.

We now use the test statistic tr, for r = 0, 1, . . . , p − 1, for the estimation

problem and derive a number of useful limiting properties in the following

proposition.

Proposition 3. Assume the same conditions as in Proposition 1. Then,

• If r ≥ q, then tr is bounded in probability.

• If r < q, then there exists a fixed b > 0 such that tr/n ≥ b+ op(1).

A consistent estimate q̂ of the unknown signal dimension q ≤ p− 1 can then

be based on the test statistic tr, as the following proposition states.

Proposition 4. Assume the same conditions as in Proposition 1. Let (cn)n∈N be

a sequence of positive numbers such that cn → ∞ and cn = o(n) as n → ∞. Let

q̂ = min {r ∈ {1, . . . , p− 1} | tr ≤ cn} ,

with the convention min∅ = p. Then, q̂ → q in probability as n → ∞.

However, specifying the sequence cn is not obvious in practice, and is still an

open problem in order determination using hypothesis tests based on eigenvalues,

as can be done a PCA, sliced inverse regression, or independent components

analysis; see, for example, Bura and Cook (2001), Nordhausen et al. (2017)

and Nordhausen, Oja and Tyler (2022), and the reference therein. Nevertheless,

an estimator q̂ can also be found by applying a suitable strategy to perform

successive tests. Later, in the simulations, we always test for simplicity at the

same significance level, and apply a divide-and-conquer strategy for the testing.

Remark 2. One can check that Propositions 3 and 4 still hold if the setting of

Proposition 1 is replaced by that of Proposition 2.
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3.4. General mean

The previous results were derived under the assumption that E(z(s)) = 0.

In the next proposition, we show that the conclusions of Propositions 1, 2, 3, and

4 and Corollary 1 are unchanged when z has a nonzero unknown constant mean

function, and when the observations are empirically centered for the computation

of the local covariance matrices.

Proposition 5. Assume that for a = 1, . . . , p, za has a constant mean function

µa ∈ R. For f ∈ {f1, . . . , fk}, let

M(f) =
1

n
√
Fn,f

n∑
i=1

n∑
j=1

f(si − sj)(x(si)− x̄)(x(sj)− x̄)T

and M(f0) =
1

n

n∑
i=1

(x(si)− x̄)(x(si)− x̄)T , (3.5)

with x̄ = (1/n)
∑n

i=1 x(si). Then, the conclusions of Propositions 1, 2, 3, and

4 and Corollary 1 still hold under the same assumptions, except that M̂(f) is

replaced everywhere with M(f).

For the remainder of the paper, we assume that the mean is unknown.

3.5. Bootstrap tests for dimension

The above derived noise dimension test based on the large-sample behavior of

the introduced test statistic is efficient to compute, but may need a large sample

size for the finite-sample level to match the asymptotic level. As an alternative for

smaller sample sizes, we can formulate noise dimension tests using the bootstrap

method.

In its original form, the bootstrap is a nonparametric tool for estimating

the distribution of an estimator or test statistic by resampling from the empirical

cumulative distribution function (ECDF) of the sample at hand. It exhibits

good performance in many theoretical and practical statistical problems; see

Chernick et al. (2011) or Lahiri (2003) for a more detailed discussion.

Again, we assume that the observed random field follows the SBSS model

given by Equation (2.1), and want to test H0r given an SBSS solution of

Equation (2.4) for a certain kernel setting and the corresponding test statistic

in Equation (2.5). In the following, we formulate a method for resampling

from the distribution of Model (2.1) by respecting the null hypothesis H0r.

FollowingMatilainen, Nordhausen and Virta (2018), this is achieved by leaving the

hypothetical signal part of the estimated latent field ẑ(s) = Γ̂x(s) untouched, and

then manipulating only the hypothetical noise parts (ẑ(s))i, for i = r + 1, . . . , p

and all s ∈ {s1, . . . , sn}, in one of the following ways.
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Parametric: Here, we assume that each noise part is independent and identically

distributed (i.i.d.) Gaussian, as is usual for white noise processes. This leads to

bootstrap samples (z∗(s))i ∼ N(0, 1), for i = r + 1, . . . , p and corresponding to

each s ∈ {s1, . . . , sn}.

Permute: Here, we assume that each noise component is still i.i.d. but that

it does not necessarily follow a Gaussian distribution. Therefore, bootstrap

samples are drawn from the ECDF of the joint noise components: (z∗(s))i ∼
ECDF((ẑ(s1)

⊤)ŵ, . . . , (ẑ(sn)
⊤)ŵ), with i = r + 1, . . . , p, s ∈ {s1, . . . , sn}, and

where ŵ denotes the noise components (r + 1 to p) of ẑ.

Algorithm 1 Testing H0r : q = r.

Set the number of resamples B, the observed sample X = (x(s1), . . . ,x(sn))
⊤, the flag

spatial resampling, and optionally, the block size m;
Compute the SBSS solution and get Γ̂ and Ẑ = (Γ̂X⊤)⊤ and compute the test statistic
t = tr(X);
for k ∈ {1, . . . , B} do

Replace the last p− r columns of Ẑ with either a parametric or bootstrap sample to
get Z∗k;
if spatial resampling = TRUE then

Replace Z∗k by a full spatial bootstrap sample. See text for details.

Compute X∗k ← Γ̂Z∗k and tk ← tr(X
∗k);

Return the p-value: [#(tk ≥ t) + 1]/(B + 1);

After replacing the hypothetical noise part with a bootstrap sample in one

of the former ways, we achieve the goal of sampling from Model (2.1) under H0r.

However, so far, the uncertainty of estimating the signal has not been considered

in the bootstrap test. Therefore, an optional second step in the resampling

procedure is devoted to drawing a spatial bootstrap sample from the already

manipulated sample, as follows. We suggest applying spatial bootstrapping,

as discussed in Lahiri (2003), and in the following, we summarize the main

ideas. Recall that the set of sampling sites C = {s1, . . . , sn} lies inside the d-

dimensional spatial domain S, which can be viewed as the “sample region”, and

hence C ⊆ S ⊆ Rd. S is divided into nonoverlapping blocks of size md that lie

partially in S, formally B = {bi = (i+(0, 1]d)m∩S : (i+(0, 1]d)m∩S ≠ ∅, i ∈ Zd},
and overlapping blocks that lie fully in S, written as Bbs = {bj = j + (0, 1]dm :

j + (0, 1]dm ⊆ S, j ∈ Zd}. The bootstrapped spatial domain S∗ is formed by

replacing each block bi ∈ B with a randomly with-replacement sampled block

bj ∈ Bbs that is trimmed to the shape of bi by bj∩(bi−im+j). Hence, the trimmed

version of bj remains at the original location of bj, and the shape changes to that of

bi, taking care of the boundary blocks that do not lie fully within S. Finally, the
bootstrapped version of the random field is expressed as z∗ = {z(s) : s ∈ S∗∩C}.
Note that in each spatial bootstrap iteration, the shape of S∗, and therefore the

bootstrapped sampling sites, differ. This, in turn, makes the computation of the
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local covariance matrices a demanding task, because it relies on the distances

between all sampling sites, which need to be computed in each iteration. For

regular data, this can be avoided by using a slightly different bootstrap regime,

as follows.

Algorithm 2 Divide and Conquer.

Set lower, upper, and α;
middle = ⌊(upper − lower)/2⌋;
while (middle! = lower) && (middle! = upper) do

p = test function(r = middle);
if p < alpha then

lower = middle;

else
upper = middle;

middle = ⌊(upper − lower)/2⌋;
Return q̂ = middle+ 1;

Nordman, Lahiri and Fridley (2007) have suggested a slightly different

approach for sampling sites located on a regular grid, meaning that the sampling

sites satisfy {s1, . . . , sn} ⊆ S ∩ Zd. Again, the domain S is divided into blocks of

size md that are either nonoverlapping or overlapping, but lie completely inside

S, leading to B = {(i+ (0, 1]d)m : (i+ (0, 1]d)m ⊆ S, i ∈ Zd} and Bbs, as defined

above. The key difference is that the bootstrap sample is drawn at the level

of the random field values, whereas the former bootstrap version operates at

the level of the spatial domain. Specifically, for each block bi ∈ B, the values

{z(s) : s ∈ bi ∩ Zd} are replaced with {z(s) : s ∈ bj ∩ Zd} for a randomly with-

replacement chosen block bj ∈ Bbs. This procedure keeps the bootstrapped spatial

domain and sampling sites equal in all iterations, namely, the unison of all blocks

from B. This, in turn, simplifies the computation of the local covariance matrices,

because only the random field values change. We compare the computation times

of the former two approaches in the simulation study presented in Section 4.3.

Algorithm 1 summarizes the bootstrap strategy to test for one specific value

of signal dimension r. To estimate the signal dimension, we perform a sequence

of tests for different signal dimensions r at a given significance level α. Several

different test sequences are possible, but we rely on the divide-and-conquer

strategy outlined in Algorithm 2. Here, the test function can be one of the

bootstrap test variants seen in Algorithm 1 or the asymptotic test outlined above.

4. Simulation

To validate the performance of the proposed methods, we carried out five

extensive simulation studies in R 3.6.1 R Core Team (2019) with the help of

the packages SpatialBSS from Muehlmann, Nordhausen and Virta (2020), JADE
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from Miettinen, Nordhausen and Taskinen (2017), sp from Bivand, Pebesma and

Gomez-Rubio (2013), raster from Hijmans (2020), gstat from Gräler, Pebesma

and Heuvelink (2016), and RandomFields from Schlather et al. (2015).

4.1. Simulation study 1: Hypothesis testing

In this part of the simulation, we explore the performance of the hypothesis

testing. For all the following simulations, we consider the SBSS model in

Equation (2.1), where without loss of generality, we set µa = 0, for a = 1, . . . , p,

and assume the mean is unknown. For the latent signal part, we use two different

three-variate random field model settings. Therefore, the true dimension is always

q = 3. All the random fields are Gaussian and follow a Matérn correlation

structure; thus, the ath random field za has its covariance function value at

u,v ∈ Rd, given by

Ka(h; ν, ϕ) =
1

2ν−1Γ(ν)

(
h

ϕ

)ν

Kν

(
h

ϕ

)
, h = ||u− v||,

where ν > 0 is the shape parameter, ϕ > 0 is the range parameter, Kν is the

modified Bessel function of the second kind with shape parameter ν, and Γ is

the gamma function. The parameters used are (ν, ϕ) ∈ {(3, 2), (2, 1.5), (1, 1)}
and {(3, 2), (2, 1.5), (0.6, 0.6)} for model settings 1 and 2, respectively, which are

depicted in Figure 1. Model setting 2 can be viewed as a low-dependence version

of model setting 1. The noise part always consists of i.i.d. samples drawn from

N2(0, I2), leading to a total latent field dimension of p = 5 for both model settings.

Because SBSS is affine equivariant (for details, see Bachoc et al. (2020b) and the

Supplementary Material), we choose the mixing matrix to be the identity matrix,

that is, Ω = I5, without loss of generality.

We focus on squared spatial domains [0, n] × [0, n] (also written in the

following as n × n) of different sizes n ∈ {30, 40, 50, 60}. For a given domain,

we consider two sample location patterns: uniform and skewed. For the uniform

pattern, n2 pairs of (x, y)-coordinates are drawn randomly from a uniform

distribution U(0, 1) and then multiplied by n, leading to a constant sampling

location density over the entire domain. We follow the same approach for the

skewed pattern, except that the x-coordinate values are drawn from a beta

distribution β(2, 5), resulting in a denser arrangement of samples in the left half

of the domain.

For the local covariance matrices (2.3), we use two kernel function settings.

Kernel setting 1 uses only one ring kernel function (3.2) with parameters (r1, r2) =

(0, 2), and kernel setting 2 uses three ring kernel functions with parameters

(r1, r2) ∈ {(0, 2), (2, 4), (4, 6)}. Figure 1 depicts a simulation example for each

of the uniform and skewed coordinate patterns, where the circles represent the

different ring kernel radii.
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Table 1. Rejection rates for model setting 1 based on 2,000 simulation repetitions at a
significance level of α = 0.05.

Uniform Skew

Kernel Setting 1 Kernel Setting 2 Kernel Setting 1 Kernel Setting 2

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30× 30

Asym 1.000 0.041 0.006 1.000 0.042 0.007 1.000 0.042 0.004 1.000 0.029 0.003

Sp Param 1.000 0.048 0.006 1.000 0.058 0.001 1.000 0.059 0.004 1.000 0.051 0.000

Sp Perm 1.000 0.050 0.006 1.000 0.059 0.000 1.000 0.058 0.004 1.000 0.052 0.001

Param 1.000 0.042 0.006 1.000 0.044 0.006 1.000 0.050 0.008 1.000 0.039 0.005

Perm 1.000 0.045 0.008 1.000 0.051 0.006 1.000 0.049 0.008 1.000 0.035 0.005

40× 40

Asym 1.000 0.055 0.004 1.000 0.048 0.005 1.000 0.045 0.002 1.000 0.040 0.005

Sp Param 1.000 0.056 0.005 1.000 0.066 0.000 1.000 0.056 0.003 1.000 0.064 0.002

Sp Perm 1.000 0.063 0.005 1.000 0.061 0.000 1.000 0.055 0.004 1.000 0.065 0.002

Param 1.000 0.052 0.007 1.000 0.055 0.003 1.000 0.050 0.007 1.000 0.048 0.005

Perm 1.000 0.056 0.007 1.000 0.052 0.004 1.000 0.048 0.008 1.000 0.050 0.004

50× 50

Asym 1.000 0.049 0.005 1.000 0.040 0.010 1.000 0.040 0.006 1.000 0.044 0.009

Sp Param 1.000 0.052 0.004 1.000 0.053 0.002 1.000 0.047 0.006 1.000 0.064 0.002

Sp Perm 1.000 0.050 0.005 1.000 0.053 0.002 1.000 0.045 0.005 1.000 0.061 0.002

Param 1.000 0.052 0.007 1.000 0.049 0.007 1.000 0.042 0.007 1.000 0.054 0.007

Perm 1.000 0.050 0.008 1.000 0.050 0.006 1.000 0.042 0.010 1.000 0.054 0.008

60× 60

Asym 1.000 0.052 0.006 1.000 0.048 0.010 1.000 0.044 0.004 1.000 0.045 0.004

Sp Param 1.000 0.056 0.006 1.000 0.058 0.003 1.000 0.048 0.005 1.000 0.060 0.000

Sp Perm 1.000 0.055 0.007 1.000 0.057 0.002 1.000 0.052 0.004 1.000 0.058 0.000

Param 1.000 0.049 0.009 1.000 0.054 0.006 1.000 0.043 0.006 1.000 0.048 0.004

Perm 1.000 0.053 0.009 1.000 0.050 0.008 1.000 0.046 0.006 1.000 0.048 0.004

Table 2. Rejection rates for model setting 2 based on 2,000 simulation repetitions at a
significance level of α = 0.05.

Uniform Skew

Kernel Setting 1 Kernel Setting 2 Kernel Setting 1 Kernel Setting 2

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30× 30

Asym 1.000 0.051 0.005 1.000 0.052 0.004 1.000 0.048 0.006 1.000 0.033 0.003

Sp Param 1.000 0.053 0.005 1.000 0.062 0.000 1.000 0.058 0.005 1.000 0.055 0.002

Sp Perm 1.000 0.052 0.006 1.000 0.065 0.001 1.000 0.056 0.006 1.000 0.051 0.001

Param 1.000 0.052 0.011 1.000 0.058 0.003 1.000 0.059 0.011 1.000 0.043 0.004

Perm 1.000 0.048 0.011 1.000 0.060 0.002 1.000 0.061 0.012 1.000 0.044 0.003

40× 40

Asym 1.000 0.060 0.004 1.000 0.052 0.005 1.000 0.050 0.004 1.000 0.038 0.007

Sp Param 1.000 0.063 0.002 1.000 0.060 0.000 1.000 0.060 0.004 1.000 0.054 0.002

Sp Perm 1.000 0.055 0.002 1.000 0.062 0.000 1.000 0.058 0.002 1.000 0.057 0.002

Param 1.000 0.056 0.006 1.000 0.056 0.004 1.000 0.052 0.008 1.000 0.045 0.005

Perm 1.000 0.058 0.005 1.000 0.053 0.004 1.000 0.054 0.006 1.000 0.045 0.005

50× 50

Asym 1.000 0.045 0.004 1.000 0.047 0.004 1.000 0.044 0.005 1.000 0.044 0.004

Sp Param 1.000 0.048 0.002 1.000 0.056 0.000 1.000 0.053 0.002 1.000 0.058 0.001

Sp Perm 1.000 0.049 0.002 1.000 0.053 0.001 1.000 0.050 0.005 1.000 0.055 0.001

Param 1.000 0.045 0.004 1.000 0.050 0.002 1.000 0.048 0.007 1.000 0.051 0.004

Perm 1.000 0.044 0.007 1.000 0.048 0.003 1.000 0.046 0.009 1.000 0.052 0.004

60× 60

Asym 1.000 0.048 0.004 1.000 0.059 0.008 1.000 0.047 0.004 1.000 0.042 0.006

Sp Param 1.000 0.052 0.005 1.000 0.072 0.002 1.000 0.050 0.004 1.000 0.059 0.000

Sp Perm 1.000 0.056 0.003 1.000 0.068 0.002 1.000 0.050 0.004 1.000 0.057 0.000

Param 1.000 0.047 0.009 1.000 0.063 0.004 1.000 0.046 0.005 1.000 0.052 0.003

Perm 1.000 0.048 0.010 1.000 0.063 0.006 1.000 0.048 0.005 1.000 0.050 0.005
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Figure 1. Upper: Matérn correlation functions for model setting 1, which consists of
the signal random field (z1, z2, z3,1) with parameters (ν, ϕ) ∈ {(3, 2), (2, 1.5), (1, 1)}, and
model setting 2 formed by the signal random field (z1, z2, z3,2) with parameters (ν, ϕ) ∈
{(3, 2), (2, 1.5), (0.6, 0.6)}. Lower left and lower right: uniform (left) and skewed (right)
coordinate sample pattern for a spatial domain of size 30× 30 with three circles of radii
(2, 4, 6) representing ring kernel functions.

For each of the four simulation settings, we perform 2,000 repetitions, and

in each repetition, we test three null hypotheses (H02, H03, and H04) using the

following five test approaches: asymptotic test (Asym); noise bootstrapping with

option parametric (Param); noise bootstrapping with option permute (Perm);

full spatial bootstrapping with option parametric (Sp Param); and full spatial

bootstrapping with option permute (Sp Perm). For all bootstrap approaches, we

fix the number of resamples to B = 200, and for the full spatial bootstrap, the
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Table 3. Rejection rates for model setting 1 with Gaussian and nonGaussian distributions
and the uniform sample location pattern based on 2,000 simulation repetitions at a
significance level of α = 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30× 30

Asym 1.000 0.047 0.007 1.000 0.044 0.006 1.000 0.045 0.005 1.000 0.043 0.005

Sp Perm 1.000 0.050 0.006 1.000 0.056 0.005 1.000 0.068 0.001 1.000 0.059 0.002

Perm 1.000 0.050 0.009 1.000 0.040 0.008 1.000 0.058 0.005 1.000 0.048 0.005

40× 40

Asym 1.000 0.038 0.002 1.000 0.040 0.002 1.000 0.048 0.006 1.000 0.042 0.008

Sp Perm 1.000 0.043 0.002 1.000 0.044 0.002 1.000 0.056 0.000 1.000 0.056 0.002

Perm 1.000 0.038 0.006 1.000 0.046 0.007 1.000 0.049 0.003 1.000 0.046 0.005

50× 50

Asym 1.000 0.043 0.005 1.000 0.045 0.004 1.000 0.040 0.007 1.000 0.044 0.010

Sp Perm 1.000 0.052 0.005 1.000 0.050 0.004 1.000 0.046 0.002 1.000 0.051 0.001

Perm 1.000 0.048 0.009 1.000 0.046 0.004 1.000 0.043 0.005 1.000 0.050 0.006

60× 60

Asym 1.000 0.052 0.007 1.000 0.050 0.006 1.000 0.052 0.006 1.000 0.044 0.005

Sp Perm 1.000 0.054 0.006 1.000 0.048 0.005 1.000 0.058 0.002 1.000 0.051 0.000

Perm 1.000 0.053 0.010 1.000 0.045 0.008 1.000 0.051 0.005 1.000 0.048 0.004

block size is equal to m = 10.

Rejection rates based on a significance level of α = 0.05 for all simulation

settings are presented in Tables 1 and 2. Overall, all the test methods appear to

maintain the expected rejection rates, which are 1.00 for H02, 0.05 for H03, and

< 0.05 for H04, based on α = 0.05. Only for small samples sizes (30 × 30) did

the asymptotic test show a rejection rate that is too small for kernel setting 2

and the skewed sample location pattern. Thus, for practical applications, smaller

numbers of kernel functions might be preferable for the asymptotic test. For

bootstrapping, the full spatial variants and those relying only on manipulating

the hypothetical noise part perform equally well. Considering the computation

time, the latter bootstrap variant might be preferable, as explored in Section 4.3.

4.2. Simulation study 2: Hypothesis testing for different signal and

noise distributions

In these simulations, we compare the quality of the introduced tests for data

distributions that are nonGaussian. To do so, we keep the same simulation

outline and the same model settings as in the former section, but we consider

a Gaussian and a nonGaussian distribution for the latent field. The latent field

of the Gaussian setting (as in the former section) has a three-variate signal part

and a two-variate standard normal noise part. The nonGaussian setting has a

three-variate t-distributed signal part with degrees of freedom of 5, 6, and 7, and

the two-variate noise part follows an exponential distribution (with zero mean and

unit variance). The Gaussian and the nonGaussian settings have equal second-

order spatial dependence, but the distributions are different; therefore, differences

in the performance of the tests are the result of the different distributions.

Moreover, we do not consider parametric bootstrap tests for these simulations,
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Table 4. Rejection rates for model setting 1 with Gaussian and nonGaussian distributions
and the skewed sample location pattern based on 2,000 simulation repetitions at a
significance level of α = 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30× 30

Asym 1.000 0.047 0.004 1.000 0.035 0.007 1.000 0.040 0.004 1.000 0.051 0.005

Sp Perm 1.000 0.060 0.004 1.000 0.046 0.007 1.000 0.066 0.001 1.000 0.074 0.001

Perm 1.000 0.050 0.008 1.000 0.040 0.009 1.000 0.049 0.004 1.000 0.062 0.005

40× 40

Asym 1.000 0.044 0.005 1.000 0.040 0.004 1.000 0.034 0.004 1.000 0.048 0.007

Sp Perm 1.000 0.057 0.004 1.000 0.053 0.004 1.000 0.053 0.001 1.000 0.063 0.001

Perm 1.000 0.051 0.007 1.000 0.048 0.007 1.000 0.040 0.004 1.000 0.053 0.006

50× 50

Asym 1.000 0.043 0.004 1.000 0.043 0.002 1.000 0.044 0.006 1.000 0.040 0.008

Sp Perm 1.000 0.054 0.006 1.000 0.054 0.002 1.000 0.058 0.002 1.000 0.060 0.001

Perm 1.000 0.047 0.009 1.000 0.045 0.006 1.000 0.049 0.006 1.000 0.048 0.005

60× 60

Asym 1.000 0.048 0.006 1.000 0.034 0.008 1.000 0.040 0.006 1.000 0.051 0.007

Sp Perm 1.000 0.056 0.007 1.000 0.038 0.009 1.000 0.052 0.001 1.000 0.065 0.001

Perm 1.000 0.048 0.011 1.000 0.039 0.011 1.000 0.046 0.004 1.000 0.057 0.004

Table 5. Rejection rates for model setting 2 with Gaussian and nonGaussian distributions
and the uniform sample location pattern based on 2,000 simulation repetitions at a
significance level of α = 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30× 30

Asym 1.000 0.040 0.003 1.000 0.044 0.007 1.000 0.046 0.005 1.000 0.050 0.005

Sp Perm 1.000 0.044 0.003 1.000 0.049 0.006 1.000 0.054 0.001 1.000 0.062 0.001

Perm 1.000 0.044 0.007 1.000 0.047 0.011 1.000 0.053 0.004 1.000 0.056 0.004

40× 40

Asym 1.000 0.042 0.005 1.000 0.046 0.005 1.000 0.046 0.008 1.000 0.058 0.006

Sp Perm 1.000 0.045 0.004 1.000 0.053 0.005 1.000 0.054 0.001 1.000 0.070 0.001

Perm 1.000 0.044 0.008 1.000 0.048 0.006 1.000 0.051 0.006 1.000 0.060 0.004

50× 50

Asym 1.000 0.050 0.004 1.000 0.046 0.006 1.000 0.053 0.007 1.000 0.048 0.005

Sp Perm 1.000 0.050 0.004 1.000 0.050 0.004 1.000 0.061 0.002 1.000 0.053 0.000

Perm 1.000 0.050 0.005 1.000 0.046 0.008 1.000 0.058 0.004 1.000 0.049 0.004

60× 60

Asym 1.000 0.043 0.006 1.000 0.062 0.004 1.000 0.048 0.007 1.000 0.052 0.010

Sp Perm 1.000 0.047 0.005 1.000 0.058 0.003 1.000 0.054 0.000 1.000 0.057 0.001

Perm 1.000 0.046 0.008 1.000 0.057 0.007 1.000 0.051 0.004 1.000 0.052 0.004

because they are designed for Gaussian distributions.

Tables 3–6 summarize the rejection rates based on 2,000 simulation rep-

etitions for a significance level of α = 0.05 for model settings 1 and 2 with

uniform and skewed coordinate patterns. These simulations again show the

desired rejection rates of 1.00 for H02, 0.05 for H03, and < 0.05 for H04, based on

α = 0.05. Most of the differences between the rejection rates for the Gaussian and

nonGaussian cases are in the third decimal place. Thus the tests still performa

well, even for heavy-tailed nonGaussian signal and noise distributions, and so we

perform the subsequent simulations for the Gaussian case only.
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Table 6. Rejection rates for model setting 2 with Gaussian and nonGaussian distributions
and the skewed sample location pattern based on 2,000 simulation repetitions at a
significance level of α = 0.05.

Kernel Setting 1 Kernel Setting 2

Gaussian Non-Gaussian Gaussian Non-Gaussian

Domain Method H02 H03 H04 H02 H03 H04 H02 H03 H04 H02 H03 H04

30× 30

Asym 1.000 0.042 0.007 1.000 0.040 0.004 1.000 0.038 0.005 1.000 0.043 0.004

Sp Perm 1.000 0.050 0.007 1.000 0.048 0.002 1.000 0.051 0.002 1.000 0.066 0.001

Perm 1.000 0.049 0.009 1.000 0.044 0.006 1.000 0.048 0.006 1.000 0.057 0.004

40× 40

Asym 1.000 0.053 0.005 1.000 0.053 0.006 1.000 0.032 0.005 1.000 0.042 0.004

Sp Perm 1.000 0.068 0.004 1.000 0.062 0.005 1.000 0.050 0.002 1.000 0.056 0.002

Perm 1.000 0.058 0.010 1.000 0.052 0.006 1.000 0.040 0.005 1.000 0.050 0.005

50× 50

Asym 1.000 0.040 0.004 1.000 0.051 0.004 1.000 0.040 0.007 1.000 0.048 0.004

Sp Perm 1.000 0.051 0.004 1.000 0.055 0.002 1.000 0.054 0.002 1.000 0.064 0.001

Perm 1.000 0.043 0.009 1.000 0.054 0.004 1.000 0.048 0.006 1.000 0.055 0.005

60× 60

Asym 1.000 0.045 0.009 1.000 0.039 0.004 1.000 0.048 0.008 1.000 0.043 0.007

Sp Perm 1.000 0.053 0.006 1.000 0.042 0.004 1.000 0.061 0.002 1.000 0.057 0.001

Perm 1.000 0.048 0.010 1.000 0.040 0.006 1.000 0.053 0.006 1.000 0.044 0.004
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Figure 2. Median running times of the five test methods for different domain sizes with
regular sampling sites based on five simulation repetitions. Computations are performed
using code designed for regular and irregular sampling sites.

4.3. Simulation study 3: Computation time comparison

In this simulation, we investigate the computation times for the various test

methods. As an illustrative example, we again consider a five-variate latent

random field with model setting 1 and bivariate Gaussian noise components. In

addition, we keep the same spatial domain sizes, although we change the sampling

sites to be regular, defined as [0, n] × [0, n] ∩ Z2. H03 is tested using the same

five test methods with the same number of bootstrap samples and block sizes.

The key difference is that each test is performed using code designed for irregular

sample locations, and code that considers simplifications made possible because

the sample locations are regular (e.g., the simplified spatial bootstrap algorithm).
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Figure 3. Rejection rates of the asymptotic and parametric bootstrap tests for H03 for
different kernel settings as a function of the range parameter of the first entry of the
signal part at a test significance level of 0.05 (indicated by the dashed line). The results
are based on 2,000 repetitions.

We use two ring kernel functions with parameters (r1, r2) ∈ {(0, 1), (1,
√
2)} for

the irregular code, and kernels of the form f(s) = I(||s|| = h) with h ∈ {1,
√
2}

for the regular code (one-way and two-way lag-1 local covariance matrices). This

choice ensures that the same neighbors are selected for both versions of the code,

and thus that the qualitative results of the tests are equal up to random effects

of the bootstrap sampling procedures.

Figure 2 shows the median computation time based on five simulation

repetitions carried out on a Windows machine with an Intel i5 CPU. The figure

shows that the asymptotic tests are fastest, because the SBSS solution needs to

be computed only once, whereas the bootstrap algorithms compute the SBSS

solution B times.

Of greater interest is the overall difference in the computation time between

regular and irregular code, possibly because the code for regular sampling sites

does not rely on distances between sampling sites, as the irregular code does.

Specifically, we can select the neighbors for the local covariance matrices by

shifting the coordinate system appropriately for the regular code, whereas in

the irregular code, this is based on looping over the distance matrix among
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all coordinates. This difference should also explain the different scaling of the

computation time with increasing sample size, because looping through the

distance matrix depends on the actual number of locations, whereas coordinate

shifting does not.

Furthermore, there is a larger computation time difference between the full

spatial bootstrap and the one that manipulates only the hypothetical noise for

the irregular code compared with the regular one. This might be a result of

the simplified spatial bootstrap variant for regular sampling sites. As explained

above, for the irregular code, the distance matrix has to be computed for every

new iteration, because the spatial bootstrap changes sampling sites for each

iteration. In contrast, for the regular code, the sampling sites remain equal

for each bootstrap iteration.

Overall, this simulation strongly indicates that regular sampling sites should

be treated computationally as such. In addition, considering the overall similar

performance of the tests in the former simulation, we can discard the spatial

bootstrapping step for the irregular data, because it significantly increases the

computation time.

4.4. Simulation study 4: Power of the test

In this part of the simulation, we investigate the power of the proposed tests.

To do so, we keep the signal part of model setting 1 and the second entry of

the noise (z5) untouched, but replace the first entry of the noise part (z4) with a

signal following a Matérn correlation structure, with ν = 0.5 and varying range

parameter ϕ ∈ [0, 0.8]. Note that the case ϕ = 0 is technically forbidden in the

Matérn covariance function; hence, we treat it simply as white noise. Expect

for the case of ϕ = 0, this setting has a true signal dimension q = 4; thus, we

always test the wrong hypothesis H03, and the test should be able to detect the

true signal dimension more efficiently with an increasing range parameter. The

hypothesis is tested using the asymptotic test and the parametric bootstrap test

without full spatial bootstrapping because, although all tests in the hypothesis

testing simulations performed similarly, these two test strategies showed a low

computation time, which makes these simulations feasible.

Figure 3 depicts the test rejection rates at a significance level of α = 0.05 as a

function of the range parameter based on 2,000 simulation iterations for uniform

and skewed sample location patterns. For lower sample sizes, all tests show a

desired rejection rate of one at a range parameter of 0.5, which decreases to 0.3

when the sample size is highest. Interestingly, there are no differences between

the skewed and uniform sample location patterns and the two kernel function

settings considered. Furthermore, this simulation shows no significant difference

between the asymptotic and the bootstrap tests, which again favors using the

asymptotic test in practice.
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Figure 4. Frequencies of the estimated signal dimension for model setting 1.

4.5. Simulation study 5: Estimation of the signal dimension

The former simulations investigated only hypothesis tests for one specific

value of the hypothetical signal dimension. In this section, we use hypothesis

tests to estimate the signal dimension. We consider the same simulation settings

as in Section 4.1, but increase the dimension of the noise part to seven, leading to

a total latent random field dimension of p = 10, whereas the true signal dimension

remains q = 3. We estimate the signal dimension using the divide-and-conquer

strategy described above. As before, all hypothesis tests are performed using

the asymptotic test method and the parametric bootstrap without full spatial

bootstrapping. This choice is justified by the similar performance in terms of

signal dimension testing of all bootstrap test variants, and the fact that the full

spatial bootstrap is computationally unfeasible for such a large simulation.

Figures 4 and 5 depict the estimated dimensions for 2,000 simulation

repetitions for a significance level of α = 0.05. Overall, the estimation is highly

accurate, with the estimated dimension being equal to the true dimension in

approximately 95% of the cases. Interestingly, the signal dimension is never

underestimated, but is overestimated in approximately 100 of the simulation
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Figure 5. Frequencies of the estimated signal dimension for model setting 2.

iterations, reflecting the significance level α = 0.05. For all settings, the

asymptotic test outperformed the bootstrap test, particularly for low sample sizes,

which is a counter-intuitive result. This may be because, as the former simulations

show, for low sample sizes, the asymptotic test never met the theoretical rejection

rate, which is simply the significance level when the null is actually true for small

sample sizes (Tables 1 and 2). Therefore, the true null is accepted more often,

leading to better performance when estimating the signal dimension.

5. Conclusion

In this paper, we have proposed testing and estimation methods for the

number of latent signal components in the SBSS model. The asymptotic null

distributions of the test statistic are given under various conditions, without

assuming the domain is necessarily regular. A consistent estimator of the

dimension based on the sequential tests is also introduced. For small sample

cases, different bootstrap strategies are suggested. In addition to the theoretical

results, the five simulation studies presented in Section 4 demonstrate that our

asymptotic tests are comparable with bootstrap tests in terms of hypothesis
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testing and estimation. In terms of computation time, our asymptotic method is

much faster than the bootstrap tests. When a regular domain structure is used,

the computation time can be decreased significantly.

Our proposed dimension tests in the SBSS context might be useful for further

analysis of the latent fields, including for various forms of spatial prediction.

Indeed, the components of the latent field are uncorrelated, and thus predictions

can be carried out on each latent field independently. This leads to a reduction

as a result of building several models, rather than a single multivariate model.

This procedure has been investigated and found to be useful by Muehlmann,

Nordhausen and Yi (2021). As an additional step, one of our proposed dimension

tests can be perfomed before the spatial prediction, leading to a reduction of the

latent field dimension, resulting in even fewer univariate models needing to be

built.

However, it is not clear how to obtain the sequence mentioned in Proposi-

tion 4 in a data-driven way, leading to a consistent estimate. In future research,

we plan to develop a ladle estimator (Luo and Li (2016, 2021)) for this setting

that will be based either on bootstrapping or on data augmentation. Other

ideas for future research are to develop similar approaches for spatiotemporal

data and to study the fixed-domain asymptotic properties (Stein (1995); Cressie

(1993, Sec. 5.8)) of SBSS. It may be interesting to study the SBSS model in a

high-dimension framework, where we could transfer SBSS to a spiked model when

both n and p go to infinity. The problem of identifying the number of spikes is

studied in, for example, Passemier and Yao (2014). When p < n is diverging,

Zhang, Hao and Yao (2022) propose a new way of estimating the mixing matrix

for an SBSS model. Thus, combining the two methods might provide insight into

selecting the high-dimensional signal. However, we suspect that it will be difficult

to investigate the limiting behavior of eigenvalues in a spatial setting.

Supplementary Material

The Supplementary Material contains all technical proofs, as well as an

environmental data example.

Acknowledgments

The authors would like to thank the editor, associate editor, and two

anonymous reviewers for their constructive comments and suggestions in the

review process. The work of Christoph Muehlmann, Klaus Nordhausen, and

Mengxi Yi was supported by the Austrian Science Fund (No. P31881-N32).

The work of Mengxi Yi was also supported by the National Natural Science

Foundation of China (No. 12101119).



DIMENSION DETERMINATION OF SBSS MODEL 863

References

Bachoc, F., Betancourt, J., Furrer, R. and Klein, T. (2020a). Asymptotic properties of the

maximum likelihood and cross validation estimators for transformed Gaussian processes.

Electronic Journal of Statistics 14, 1962–2008.

Bachoc, F., Genton, M. G., Nordhausen, K., Ruiz-Gazen, A. and Virta, J. (2020b). Spatial blind

source separation. Biometrika 107, 627–646.

Bevilacqua, M., Gaetan, C., Mateu, J. and Porcu, E. (2012). Estimating space and space-time

covariance functions for large data sets: A weighted composite likelihood approach. Journal

of the American Statistical Association 107, 268–280.

Bivand, R. S., Pebesma, E. and Gomez-Rubio, V. (2013). Applied Spatial Data Analysis with R.

2nd Edition. Springer, New York.

Bodenham, D. A. and Adams, N. M. (2016). A comparison of efficient approximations for a

weighted sum of Chi-squared random variables. Statistics and Computing 26, 917–928.

Bura, E. and Cook, R. D. (2001). Extending sliced inverse regression. Journal of the American

Statistical Association 96, 996–1003.
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E-mail: klaus.k.nordhausen@jyu.fi

Mengxi Yi

School of Statistics, Beijing Normal University, 100875 Beijing, China.

Computational Statistics, Vienna University of Technology, 1040 Vienna, Austria.

E-mail: mxyi@bnu.edu.cn

(Received September 2021; accepted September 2022)


