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Abstract: Joint mean-covariance regression modeling with unconstrained parametri-

zation for continuous longitudinal data has provided statisticians and practitioners

with a powerful analytical device. How to develop a delineation of such a regression

framework amongst discrete longitudinal responses remains an open and more chal-

lenging problem. This paper studies a novel mean-correlation regression for a family

of generic discrete responses. Targeting the joint distributions of the discrete longi-

tudinal responses, our regression approach is constructed by using a copula model

whose correlation parameters are represented in hyperspherical coordinates with no

constraint on their support. To overcome computational intractability in maximiz-

ing the full likelihood function of the model, we propose a computationally efficient

pairwise likelihood approach. A pairwise likelihood ratio test is then constructed

and validated for statistical inferences. We show that the resulting estimators of

our approaches are consistent and asymptotically normal. We demonstrate the ef-

fectiveness, parsimoniousness and desirable performance of the proposed approach

by analyzing three data sets and conducting extensive simulations.
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1. Introduction

Longitudinal observations are characterized by repeated measurements from

the same subjects, giving rise to their feature of rich, interesting, and practically

meaningful covariance structures. In contrast to analyzing independent data, re-

vealing, understanding, and explaining the correlation structures are fundamental

and crucial not only for developing appropriate models but also for drawing and

interpreting conclusions from the data sets on the trends, changes, and other as-

pects of interest in various studies (Diggle et al. (2002); Fitzmaurice, Laird and

Ware (2004)). With multiple subjects in a longitudinal study, a specific goal is

to characterize the covariance matrices, one for each subject, for those repeated
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measurements using parsimonious regression techniques. While it is useful to

employ conventional ARMA structures or random effects Diggle et al. (2002)

for modeling the covariance/correlation of the longitudinal responses, one often

find that only limited choices of such devices are available (Pourahmadi (1999);

Zhang, Leng and Tang (2015)). One often resorts to developing regression models

that utilize covariates for depicting various target associations of interest. For

instance, for more comprehensive interpretations and predictions, one can ex-

plore correlation structures incorporating more explanatory variables additional

to times of the observations; see, for example, Hoffman (2012) for modeling with

multiple random effects. Indeed, as shown in a data example in Section 4.2,

additional covariates to the time-lag of observations are found significant for the

explaining the correlation structures of the longitudinal data.

A key challenge in dealing with a covariance matrix with regression tech-

niques is the positive definite requirement. For continuous longitudinal responses,

Pourahmadi (1999, 2000) pioneered joint modeling approaches. Pivotal to these

approaches is a modified Cholesky decomposition of covariance that allows un-

constrained parametrization of the entries in the decomposition. This permits

the development of interpretable regression models akin to autoregressive models

in a time series context (Pourahmadi (2011)). A new class of models motivated

by moving average models were further developed by Zhang and Leng (2012).

Zhang, Leng and Tang (2015) proposed models to investigate marginal variances

and correlations from a geometric perspective. Other important works on joint

modeling for continuous longitudinal data include Pan and Mackenzie (2003);

Ye and Pan (2006); Pourahmadi (2007); Daniels and Pourahmadi (2009); Liu,

Lafferty and Wasserman (2009); Xu and Mackenzie (2012).

These developments have mainly focused on continuous longitudinal data

with observations from social, economic, and medical studies often contain a

substantial number of discrete variables. See, among others, some studies in

Lynn (2009), that focus on discrete responses. Hence, it is as important for

practitioners to parsimoniously model the dependence structure of the discrete

longitudinal responses as in investigating continuous cases; see, among others,

the monographs by Molenberghs and Verbeke (2005) and Bergsma, Croon and

Hagenaars (2009).

Despite the ubiquity of discrete longitudinal responses, analyzing them is

more challenging due to the lack of suitable multivariate joint distributions for

discrete variables that broadly incorporate the correlations between measure-

ments from the same subject. It is known that even for given marginal distri-
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butions of the discrete variables, such as Bernoulli or Poisson, specifying the

joint distributions of multiple longitudinal measurements incorporating between

measurements correlations remains difficult (Molenberghs and Verbeke (2005);

Bergsma, Croon and Hagenaars (2009)). Moreover, although progress has been

made in modeling the mean for longitudinal discrete responses (Diggle et al.

(2002)), it is an open difficult problem to develop regression methods for si-

multaneously analyzing the mean and covariance structure for discrete data. In

particular, for identifiability issues, the covariance matrix is constrained as a

correlation matrix (Chib and Greenberg (1998)). The need to parametrize a

matrix to be positive definite and have unit diagonals immediately renders the

inapplicability of the modified Cholesky approach in Pourahmadi (1999, 2000)

and the moving average decomposition method in Zhang and Leng (2012). In

the Bayesian context, Daniels and Pourahmadi (2009) made use of the partial

autocorrelations (PACs). But, difficulties remain in explaining these PAC and

in building more elaborate regression models. Wang and Daniels (2013) studied

a Bayesian modeling approach for continuous longitudinal data via PACs and

marginal variances, and Gaskins, Daniels and Marcus (2014) proposed models

to obtain sparse PACs. Other existing approaches for modeling and incorporat-

ing correlations include the Markov model on the transitional probability matrix

for binary data (Muenz and Rubinstein (1985)), the working model approach

(Zeger, Liang and Self (1985)), the estimating equation approach (Zeger and

Liang (1986)), and the double hierarchical modeling approach with random ef-

fects (Lee and Nelder (2006)). None of them discuss the problem of building

general regression models using covariates for modeling correlations of discrete

longitudinal data.

In this paper, we propose an approach for adaptively and flexibly model-

ing discrete longitudinal data, focusing on a mean-correlation regression analysis

that solves both problems of generally specifying joint distributions and parsimo-

niously modeling correlations with no constraint. To our best knowledge, this is

the first time such tools have been made available. To accommodate a broad class

of dependent discrete longitudinal data that can be unbalanced and observed at

irregular times, we advocate a unified framework for the joint distributions of

the discrete responses from the same subject by using a copula, in conjunction

with appropriate univariate marginal distributions.

The paper is organized as follows. Section 2 introduces the joint mean-

correlation-dispersion modeling approach of the paper. Section 3 discusses the

theoretical properties of the estimators and presents a new test based on pairwise
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likelihood ratio for hypothesis testing. Section 4 presents extensive numerical

simulations and three data analyses. Conclusions and an outline of future study

are found in Section 5. Technical details including sketch of proofs, additional

data analysis example and simulations studies are given in the Supplementary

Material of this paper.

2. Main Methodology

2.1. The joint modeling approach

An appealing approach for modeling correlated discrete longitudinal vari-

ables is the copula construction (Song, Li and Yuan (2009)). Sklar’s theorem en-

sures that a multivariate distribution can be determined jointly by the univariate

marginal distributions and a copula, a multivariate function of these marginals

responsible for dependence. For our paper, we use the Gaussian copula. As a

counterpart of the Gaussian distribution, the Gaussian copula has merits of being

convenient and has been demonstrated useful in recent studies (e.g. Leng, Zhang

and Pan (2010)). Formally, a set of random variables U = (U1, . . . , Ud)T follows

a Gaussian copula model if their joint distribution is specified by

F (u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud) = Φd(v1, . . . , vd;R).

Here Φd is the probability distribution function of the d-dimensional standard-

ized normal distribution with zero mean, R is the correlation matrix, and vi =

Φ−11 (wi) where wi = P (Ui ≤ ui) is the marginal distribution of Ui (1 ≤ i ≤ d).

The copula construction is attractive in that it decouples the marginal feature

from the dependence structure, and can treat continuous, categorical and mixed

data in a unified fashion. Because of the decoupling, models developed for in-

dependent data can be seamlessly incorporated by appropriately manipulating

the marginal distributions. In our study, we consider the Gaussian copula be-

cause of its merits in flexibility, interpretability, and parsimony in its parameters

for capturing the data features, sharing those of the multivariate normal distri-

bution. We remark that other copulas, for example, the t-copula (Fang, Fang

and Kotz (2002)), can also be applied without compromising the essence of our

mean-correlation modeling framework.

Let yi = (yi1, . . . , yimi
)T be the mi longitudinal measurements for the ith

subject, where the discrete response yij is observed at time tij . We consider

without loss of generality that the discrete variable takes integer values, yij ∈
{0, 1, 2, . . . }. Let ti = (ti1, . . . , timi

)T, and let xij ∈ Rp be the covariate for the

jth measurement of subject i. With this notation, we intend to develop models
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that can handle general unbalanced longitudinal data. Existing methods, for

example, those in Song, Li and Yuan (2009) and Gaskins, Daniels and Marcus

(2014) work on balanced and equally-spaced longitudinal data.

With multiple subjects, we denote the observations as {yij , xij , tij} (i =

1, . . . , n; j = 1, . . . ,mi). For categorical responses, we assume that yij has an

exponential family distribution so that generalized linear models (GLMs) can be

used for the discrete responses marginally (McCullagh and Nelder (1989)). We

write the marginal probability mass function of Y as f(y) = c(y;ϕ) exp({yθ −
ψ(θ)}/ϕ) with canonical parameter θ and scale parameter ϕ. Since ψ′(θ) =

E(Y ) := µ, we denote the canonical link function by (ψ′)−1(µ) := g(µ). For the

mean, we postulate the usual GLM marginally for each yij as

g(E(yij)) = g(µij) = xT
ijβ. (2.1)

Here var(y) = ϕψ′′(θ) with dispersion parameter ϕ depending on the family of

the discrete response variables. We then take the joint distribution of yi as

Fmi
(yi) = P (Yi1 ≤ yi1, . . . , Yimi

≤ yimi
) = Φmi

(zi1, . . . , zimi
;Ri), (2.2)

where zij = Φ−11 (F (yij)) (j = 1, . . . ,mi), F is the marginal distribution function

of Y specified by the GLM, and Ri = (ρijk)mi

j,k=1 is the correlation matrix for

the ith subject. This copula modeling device allows the marginal distributions

and the correlations of the discrete longitudinal responses to be treated sepa-

rately. Although the elements in Ri are not directly the correlations between the

discrete observations, they are determining the dependence of the longitudinal

observations via (2.2). When the responses are binary, the correlation between

two observations is a monotone function of the corresponding element in Ri; see

also Fan et al. (2017). We also refer to the discussions in Song (2000) on the

connection between the correlation coefficients in Ri and those of the observed

variables.

Clearly, with so many parameters in {Ri} (i = 1, . . . , n) associated with un-

balanced longitudinal data, existing conventional copula modeling approaches

generally do not apply due to the problem of over-parametrization. In our ap-

proach, we decompose Ri as

Ri = TiT
T
i , (2.3)

where Ti is a lower triangular matrix given by
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Ti =



1 0 0 . . . 0

ci21 si21 0 . . . 0

ci31 ci32si31 si32si31 . . . 0
...

...
...

. . .
...

cimi1 cimi2simi1 cimi3simi2simi1 . . .
mi−1∏
l=1

simil


, (2.4)

where cijk = cos(ωijk) and sijk = sin(ωijk) are trigonometric functions of an-

gles ωijk ∈ [0, π) (1 ≤ k < j ≤ mi) that are the parameters under the new

parametrization.

For any matrix Ti, Ri = TiT
T
i is guaranteed to be nonnegative definite. The

special form of Ti in (2.3) ensures further that the diagonals of Ri are 1. The

order of the angles added into the lower triangular Ti respects the longitudinal

nature of the data collected along the time dimension. Thus, the effect of the

decomposition is to transform the unknown positive definite correlations {Ri}
into unconstrained parameters in {ωijk} on [0, π). This decomposition in (2.3)

appeared in Creal, Koopman and Lucas (2011) for analyzing time series and was

studied by Zhang, Leng and Tang (2015) for regression with continuous longitu-

dinal responses where it was argued that the angles ωijk represent rotations of

these coordinates and their magnitude reflects roughly the correlations amongst

different components.

Since all angles in (2.3) are unconstrained on [0, π), we propose to model these

angles {ωijk} collectively via a regression model after a monotone transformation

from R:

ωijk =
π

2
− atan(wT

ijkγ), (2.5)

where wijk ∈ Rq is a covariate and γ is the q × 1 unknown parameters. We opt

to use the arctan transformation to ensure that the parameter γ for covariate

wijk in (2.5) is completely constraint free. A dimension reduction is achieved

by (2.5) that uses only q parameters for modeling all n correlation matrices

{Ri} (i = 1, . . . , n). While wijk depends on two indices j and k of the ith

subject, we need to examine the covariates of the ith subject at the corresponding

observations. We follow the convention of longitudinal data analysis by taking

wijk as some function of the time lag |tij − tik| between observations, which

effectively ensures the correlation to be stationary; see also Pourahmadi (1999).

Other time-dependent covariates may also be meaningfully exploited; an example

is available in Section 4.2 for analyzing the Mayo PBC liver data. Thus our
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regression approach for the correlations can incorporate a broad class of covariates

available for explaining the covariations between longitudinal measurements.

We refer to our proposed method for modeling discrete longitudinal data

collectively using (2.1)-(2.5) as the mean-correlation regression approach. By

combining all unknown parameters in this modeling framework, we write collec-

tively the parameter vector of interest as θ = (βT,γT, ϕ)T. Using the GLM for

the responses marginally in (2.1) and the model in (2.5) for the correlations, we

are ready to develop the maximum likelihood estimators for θ. A difficulty is

that applying copula to fit discrete data is known to be computationally inten-

sive. This arises in the fact that a d-dimensional Gaussian Copula has continuous

support on Rd while discrete response variable are conceptually defined only on

discrete grid points, only probabilities evaluated on the grid points are well de-

fined. To see this, we write the full likelihood as

L(θ) =

n∏
i=1

P (Yi1 = yi1, . . . , Yimi
= yimi

)

=

n∏
i=1

P (yi1 − 1 < Yi1 ≤ yi1, . . . , yimi
− 1 < Yimi

≤ yimi
)

=

n∏
i=1

∫
· · ·
∫
z−
i <u≤zi

φmi
(u;Ri)du, (2.6)

where zi = (zi1, . . . , zimi
)T and z−i = (z−i1, . . . , z

−
imi

)T with zij = Φ−11 (F (yij)),

z−ij = Φ−11 (F (yij − 1)), and z−ij = −∞ when yij takes the smallest possible value

on its support. The vector inequality z−i < u ≤ zi means z−i1 < u1 ≤ zi1, . . . ,

z−im1
< umi

≤ zimi
. Though integrals in the full likelihood can be approximated

numerically, the computational cost is high and may not scale easily to even a

moderate number of repeat measurements. Directly calculating the distribution

function of each subject i specified by (2.2) requires 2mi summations of lower di-

mensional distribution functions as in the approach of Song, Li and Yuan (2009),

and the computational cost grows exponentially with mi.

For computation, we apply the composite likelihood idea in Varin, Reid and

Firth (2011) by using pairwise likelihood.

2.2. The pairwise likelihood (PL) approach

To estimate the parameters in the model specified by (2.1)-(2.5), we construct

all pairwise likelihoods via the bivariate copula as
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pL(θ) =

n∏
i=1

∏
1≤j<k≤mi

∫ zij

z−
ij

∫ zik

z−
ik

φ2(u; ρijk)du, (2.7)

where φ2(·; ρ) is the probability density function of bivariate normalN(0, 0, 1, 1, ρ).

The computational cost is noticeably lower than that of the full likelihood as

(2.7) involves mi(mi − 1)/2 summations for each subject in the longitudinal

data, a polynomial order complexity as compared to the exponential order in

computing the full likelihood. Furthermore, each summand can be obtained by

approximating a bivariate normal distribution function that can be evaluated

very quickly and accurately with existing computational routines developed for

low-dimensional integration, for example, those in Tong (1990) and the ones

implemented in R (e.g. function biv.nt.prob in package mnormt;and function

pmvnorm in package mvtnorm). Calculating the pairwise likelihood is highly scal-

able as each pairwise likelihood can be done separately, which is an ideal fit for

modern computational facilities.

By using (2.7) in conjunction with mean-correlation regression models spec-

ified in (2.1)-(2.5), our method enhances the conventional pairwise likelihood

methods for studying covariance and correlation matrices. An appealing feature

of our approach is that ρijk in (2.7) is specified by the hyperspherical decom-

position in (2.3), (2.4) and (2.5); This is highly parsimonious and the resulting

correlation matrix is automatically positive definite.

Denote the log pairwise likelihood function as

pl(θ) =

n∑
i=1

∑
1≤j<k≤mi

log

∫ zij

z−
ij

∫ zik

z−
ik

φ2(u; ρijk)du :=

n∑
i=1

∑
1≤j<k≤mi

lijk(θ), (2.8)

and the score function as

Sn(θ) =
∂pl

∂θ
=

n∑
i=1

∑
1≤j<k≤mi

∂lijk
∂θ

:=

n∑
i=1

Sni(θ). (2.9)

We employ the modified Fisher scoring algorithm to maximize (2.8). The exact

forms of the score function and the expected Hessian matrix for pl(θ) are provided

in the Supplementary Material.

Denote θ(t−1) as the updated value of θ at iteration (t− 1) . We update the

estimates by the iterative equation θ(t) = θ(t−1) + H−1n (θ(t−1))Sn(θ(t−1)), where

Hn is the expected Hessian matrix given later in (3.1).

The parameters η = (βT, ψ)T can be initialized by fitting the marginal

GLMs, assuming an independent correlation structure where ρijk = 0 equiva-

lent to γ = 0. These initial estimators of β and ψ are known to be root-n
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consistent (Zeger and Liang (1986)). If data are balanced with Ri = R, it is not

difficult to find an initial consistent estimator of γ. One can obtain a sample

estimator of R that is root-n consistent using the initial consistent estimators

of β and ψ. By noticing ω1jk = · · · = ωnjk for balanced data, we can use (2.5)

to consistently estimate γ. It is then straightforward to show that the one-step

estimator is as efficient as the fully iterated estimators, a reminiscent of what

is true for one-step estimators for the MLE. If data are unbalanced, obtaining

the global optimal solution of the likelihood or the pairwise likelihood is more

difficult. Our experience, is that the iterative procedure discussed converges to

the optimal solution, and the numerical results reported in Section 4 are based

on this simple iterative procedure.

3. Main Results

3.1. Asymptotic properties

The asymptotic property of the maximum likelihood estimation involves the

limit of the expected Hessian matrix H(θ) = limn→∞−1/(nE){(∂2pl)/(∂θ∂θT)},
and the limit of variance J(θ) = limn→∞ V arθ(1/(

√
n)Sn(θ)), where the expec-

tation is conditioned on the covariates xij and wijk. To formally establish the

theoretical properties, we need some regularity conditions.

Condition A1: The dimensions p and q of covariates xij and wijk are fixed;

n→∞ and maximi is bounded from above.

Condition A2: The true value θ0 = (βT
0 ,γ

T
0 , ϕ0)

T is in the interior of the

parameter space Θ, a compact subset of Rp+q+1.

Condition A3: H(θ0) and J(θ0) are positive definite matrices.

Condition A4: If the expected Hessian matrix for the full likelihood method is

I(θ) = −E(∂2 logL/∂θ∂θT), as n→∞, I(θ0)/n converges to a positive definite

matrix I(θ0).

Theorem 1. If the conditions A1, A2 and A4 hold and θ̌ = (β̌T, γ̌T, ϕ̌)T is

the maximum likelihood estimator, the maximizer of (2.6), then
√
n(θ̌ − θ0) →

N(0, I−1(θ0)), where I(θ) is the Fisher information matrix of Condition A4.

Theorem 2. If the conditions A1, A2 and A3 hold and θ̂ = (β̂T, γ̂T, ϕ̂)T is

the maximum pairwise likelihood estimator, the maximizer of (2.7), then
√
n(θ̂−

θ0) → N(0,G−1(θ0)), where G(θ) = H(θ)J−1(θ)H(θ), the Godambe informa-

tion matrix.

Since θ̂ is a consistent estimator of θ0, H and J in the asymptotic covariance
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matrix are consistently estimated by

Hn(θ̂) = − 1

n

n∑
i=1

∑
1≤j<k≤mi

l̈ijk(θ̂), (3.1)

where l̈ijkθ) = ∂2lijk(θ)/∂θ∂θT, and Jn(θ̂) = 1/n
∑n

i=1 Sni(θ̂)ST
ni(θ̂). Therefore,

G(θ0) can be consistently estimated as

Gn(θ̂) = Hn(θ̂)Jn(θ̂)−1Hn(θ̂). (3.2)

The difference between the efficiencies of the pairwise likelihood and the full

likelihood depends on the difference between the Godambe information matrix

in Theorem 2 and the Fisher information matrix in Theorem 1, where the latter

determines the lower variance bound of unbiased estimators. Our method for

estimating β and ϕ, is consistent even when (2.2) is not correctly specified.

When the Ri in (2.2) are the identity matrix, our method is equivalent to the

approach ignoring all dependence between the longitudinal data that remains

consistent for the parameters β and ϕ. When there is a departure from the

model assumption on the correlations, one can follow the existing framework of

statistical inference with mis-specified model, e.g. White (1982). The probability

limit of the parameter estimate is the one in the support of the parameter space

such that the corresponding model has the smallest Kullback-Leibler divergence

from the truth.

3.2. Pairwise likelihood ratio and hypothesis testing

We discuss a procedure based on pairwise likelihood ratio for testing hy-

potheses. This test is useful when the interest is to assess the statistical evidence

for single or multiple components in the parameter θ. Specifically, subject to a

permutation of the entries of θ, write θ = (θT1 ,θ
T
2 )T where θ1 is an r × 1 pa-

rameter of interest, θ2 is a nuisance parameter. We want to test H0 : θ1 = θ1,0
against H1 : θ1 6= θ1,0. Let θ̂ be the unrestricted maximum pairwise likelihood

estimate and θ̃ = (θT1,0, θ̃
T
2 )T be the (profile) maximum pairwise likelihood esti-

mate under the null hypothesis. We partition the total score statistic Sn(θ) at

(2.9) correspondingly as

Sn(θ) =

(
Sn,1 (θ)

Sn,2 (θ)

)
.

The maximum pairwise likelihood estimates θ̂ under the alternative hypothesis

and θ̃ under the null hypothesis satisfy, respectively, Sn(θ̂) = 0,Sn,2(θ1,0, θ̃2) = 0.

We partition the Hessian matrix H and its inverse as
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H =

(
H11 H12

H21 H22

)
, H−1 =

(
H11 H12

H21 H22

)
,

and where H11·2 = (H11)−1 = H11 − H12H
−1
22 H21. The same partitions are

applied to G and G−1. Then the pairwise likelihood ratio statistic is

LRT = 2
{
pl
(
θ̂
)
− pl

(
θ̃
)}
,

where pl(θ) is the log pairwise likelihood function given by (2.8).

Theorem 3. Under conditions A1, A2 and A3, for testing the hypothesis H0 :

θ1 = θ1,0 versus H1 : θ1 6= θ1,0, asymptotically as n → ∞, the pairwise like-

lihood ratio statistic LRT = 2{pl(θ̂) − pl(θ̃)} d→
∑r

j=1 λjVj, where V1, . . . , Vr
are independent χ2

1 random variables and λ1 ≥ · · · ≥ λr are the eigenvalues of

(H11)−1G11.

Since Hn and Gn given by (3.1) and (3.2) are consistent estimators of H and

G, the eigenvalues λ1, . . . , λr can be estimated consistently by the corresponding

eigenvalues of (H11
n )−1G11

n . Then the critical value of the pairwise likelihood

ratio test statistic can be obtained straightforwardly by simulations. We have

applied the testing procedure in detecting significant features in both the mean

and correlation parts of the regression model; see Section 4.2. Simulations given

in Section 4.4 show that the testing procedure works satisfactorily.

4. Examples: Data Analyses and Simulations

4.1. Mayo PBC liver data

We applied the proposed method to the primary biliary cirrhosis (PBC) of

the liver data set as in Appendix D of Fleming and Harrington (1991). The PBC

data set was collected in a study conducted by the Mayo Clinic from 1974 to 1984

and is available in many R packages (Eg. mixAK and JM). The major goal of this

double-blinded randomised placebo-controlled trial is to assess the efficacy of a

new drug, the D-penicillamine. This data set contains survival time and other

information on 312 PBC patients participating in the trial. The original clinical

protocol for these patients specified visits at six months, one year, and annually

thereafter, leading to unequally spaced observations times. Due to death and

censoring, patients on average made 6.2 visits with a standard deviation 3.8,

resulting in a highly un-balanced repeated measurement data set. Since earlier

studies have shown that there were no therapeutic differences between control

and D-penicillamine-treated patients, we examined the relationship between a
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patient’s hepatomegaly status and other covariates.

We found clear evidence that the hepatomegaly status is highly correlated

with other covariates. For example, Pearson chi-square tests gave highly signif-

icant statistical evidence for the existence of correlation between hepatomegaly

and a variable named spiders. Let Yij denote the hepatomegaly indicator at

visit j for patient i where Yij = 1 if hepatomegaly developed and 0 otherwise.

We considered the following covariates: Age = Age in years; tij = Number of

years between enrollment and this visit date; drug = 0 for placebo and 1 for D-

penicillmain treatment; ascites = presence of ascites, 0 for No and 1 for Yes;

spiders = blood vessel malformations in the skin, 0 for No and 1 for Yes; Bili

= Serum bilirubin, in mg/dl; Alb = Albumin in gm/dl; Plat = Platelet count;

Protime = Prothrombin time, in second.

Observations with incomplete covariates were ignored. The remaining 235

patients with 116 cases of developed hepatomegaly were analyzed using the lo-

gistic regression model:

logit(Yij) = β0 + β1Agei + β2Drugi + β3Ascitesij + β4Spiders+ β5 log(Biliij)

+ β6 log(Albij) + β7 log(Platij) + β8 log(Protimeij),

and the angles ωjk at (2.3) for the correlations matrix are modeled by

tan
(π

2
− ωijk

)
= f(tij − tik) + γ3

∣∣∣∣log

(
Protimeij
Protimeik

)∣∣∣∣ ,
where f(tij − tik) = γ0 + γ1(tij − tik) + γ2(tij − tik)2 is a quadratic polynomial of

the time lag chosen by the composite likelihood versions of BIC criterion (Gao

and Song (2010)). Here the difference in Prothrombin time (after log-transform)

is a time dependent covariate additional to functions in time lag that we included

in the regression analysis for correlations.

The estimated parameters with standard deviations for the mean were β̂0 =

5.7492.155, β̂1 = 0.0020.012, β̂2 = −0.4160.239, β̂3 = 0.4700.246, β̂4 = 0.6450.154,

β̂5 = 0.5410.108, β̂6 = −2.7800.346,β̂7 = −0.3370.698, and β̂8 = −0.4030.189. As a

comparison, a GEE approach with unstructured working correlation was also im-

plemented and we found β̃0 = 4.52962.2296, β̃1 = 0.00160.0104, β̃2 = −0.42120.2126,

β̃3 = 0.32050.2732, β̃4 = 0.57240.1633, β̃5 = 0.57000.0892, β̃6 = −1.90990.5313,

β̃7 = −0.30840.7080 and β̃8 = −0.35930.1770. Using the hypothesis testing ap-

proach in Theorem 3, the p-value of 0.734 for testing H0 : β1 = β2 = β3 = 0,

suggested that a smaller model could be adequate for modeling the conditional

mean function. The estimated correlation parameters were γ̂0 = 0.6330.082,

γ̂1 = −0.1400.034, γ̂2 = 0.0070.003 and γ̂3 = 1.0920.488. By using the pairwise
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Figure 1. Mayo PBC liver data: (a) plot of fitted angles tan(π/2− ω̂jk) versus time lag,
(b) plot of fitted correlations versus time lag. In panel (a), the solid red line is the fitted
line by the proposed model, and the dashed curves represent asymptotic 95% confidence
intervals.

likelihood ratio test of Theorem 3, we tested H0 : γ1 = γ2 = 0, H0 : γ1 = 0 or

H0 : γ2 = 0. All the p-values turned out to be close to zero, indicating that the

quadratic polynomial in time lag for the angles is highly significant. The p-value

was 0.009 for H0 : γ3 = 0, showing that the difference in Prothrombin time (after

log-transform) is highly significant in the correlation modeling. This indicated

that, additional to the time, other more general variable can play a statistically

significant role in explaining the correlation structures. The left plot of Figure

1 gives the plot of fitted tan(π/2 − ω̂ijk) versus time lags, and the right plot in

Figure 1 shows the fitted correlations versus time lag. The correlations generally

decrease with time lag, indicating that the hepatomegaly status could be highly

correlated with the disease status at the most recent measuring times.

The difference between patterns in Figures 1 and 5 (in the online supple-

mentary materials) is interesting, though both are decreasing. Importantly, our

development in Theorems 1–3 provides an effective device for collecting data

evidence for more effective model building in taking both the mean and correla-

tion into consideration for unbalanced and unequally spaced discrete longitudinal

data.

4.2. The Epileptic seizure data

The Epileptic seizure Data (Thall and Vail (1990)) concerns a randomised
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clinical trial of 59 epileptic patients who were randomly assigned to a new drug(trt

= 1) or a placebo(trt = 0) as an adjuvant to the standard chemotherapy. This

data set has been analyzed by, for example, Diggle et al. (2002) and Molenberghs

and Verbeke (2005). Baseline data are available at the time when patients entered

the trial, including the number of epileptic seizure recorded in the preceding 8-

week period (expind = 0) and age in years. The patients were then randomly

assigned to the treatment by the drug Progabide (31 patients) or to the placebo

group (28 patients). They were then followed for four 2-week periods (expind =

1) and the number of seizures recorded. To account for the over-dispersion, we

used a parametric negative binomial regression model for the mean (Diggle et al.

(2002))

Yij ∼ Negbin(δ, µij),

log(µij) = log(tij) + β0 + β1expindi + β2trti + β3expindi ∗ trti,

where δ is the overdispersion parameter, tij = 8 if j = 0 and tij = 2 for j =

1, 2, 3, 4. The log(tij) is needed to account for different observation periods.

We analyzed this data set via the proposed approach using a polynomial of

the time lag for modelling the correlations, and started with a common correlation

Ri = R for all i. To model the angles ωjk in the correlation, the angles were first

directly estimated by maximizing the proposed composite likelihood with respect

to the full model, then a model including quadratic terms of the time lags for the

angles were fitted based on the composite likelihood versions of BIC criterion.

As discussed in Diggle et al. (2002), patient number 207 was deleted since he had

unusual pre- and post-randomisation seizure counts. The estimated parameters

in the mean model were β̂0 = 1.3460.178, β̂1 = 0.1120.144, β̂2 = −0.1070.245, β̂3 =

−0.3020.208. Overall, there is little difference between the treatment and placebo

groups in affecting seizure counts. A similar finding by using GEE was given by

Diggle et al. (2002). The over-dispersion parameter δ̂ = 1.3300.221 is significant,

suggesting that the counts are over-dispersed. For the parameters in the correla-

tion model, we obtained γ̂0 = 1.4130.210, γ̂1 = −0.4870.098, γ̂2 = 0.0570.011. Figure

2 (a) shows the plots of the fitted angles in form of tan(π/(2− ωjk)) versus the

time lag, suggesting that a polynomial model for correlations is reasonable. The

curved pattern between the correlation and time in Figure 2 (b) is interesting,

which may be due to the fact that the seizure counts may at first be more highly

correlated with the most recent measurements, and then become more correlated

with the baseline counts. This is coincident with the conclusion that there is little

difference between the treatment and placebo groups in affecting seizure counts.
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Figure 2. The Epileptic seizure Data: (a) plot of fitted angles tan(π/2 − ω̂jk) versus
time lag, (b) plot of fitted correlations versus time lag. In panel (a), solid dots are fitted
angles with a common correlation matrix for all subjects with parametrization (2.4), the
solid black line is from fitting a LOWESS curve to the solid dots; the solid red line is
the fitted line by the proposed model, and the dashed curves represent asymptotic 95%
confidence intervals.

The maximum time lag here is 8 such that the number of observations for esti-

mating correlations between larger time lag is far fewer. Thus one needs to take

caution because the associated level of uncertainty may be higher for inferring

correlations at large time lag.

To assess the adequacy of the model fitting, we conducted some visual model

diagnostics. Upon fitting the proposed model, we can get estimated probabilities

denoted by F̂1,i(yi) (i = 1, . . . , n). On the other hand, we can calculate empirical

distribution as F̂2,i(yi) = n−1
∑n

j=1 I(y1j ≤ y1i, . . . , ymj ≤ ymi). A plot of F̂1,i

vs F̂2,i is an overall diagnostic of goodness of fit; it is given in (a) of Figure 3,

showing an overall reasonable fitting of the distribution. As a second diagnostic,

we focused on the fitting of the correlation structure. In particular, we computed

the empirical correlations between the z-scores, zij = Φ−1(F (yij)), and then

plotted it against the fitted correlation with the proposed method; it is given in

(b) of Figure 3, indicating a reasonable fit of the correlation matrix Ri.

4.3. Simulations

We conducted extensive simulations to assess the performance of the mean-

correlation modeling methodology with R. We also compared the pairwise like-

lihood estimates (PLEs) with the MLEs in terms of their biases and variances,
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Figure 3. Plots of model diagnostics: (a) the empirical distribution function vs the
fitted distribution function; (b) the empirical correlations of the z-scores vs the fitted
correlations.

and evaluated the accuracy of the inferential procedure for estimating the stan-

dard errors of the estimators. As a benchmark, we compared our method to the

GEE method in Liang and Zeger (1986) for estimating the parameters in the

mean model and the dispersion, assuming unstructured correlations. In each of

the studies, we generated 500 data sets and took sample sizes n = 50,100 and

200. All simulations were conducted in R. Here are the differences in time for

obtaining the PLEs and MLEs for Study 1 when n = 50. On the average, it

takes twice as much time to obtain the MLEs when mi = 4, twenty times as

such time when mi = 6. When mi = 8, the computational time is intractable

for the full likelihood approach, while for the pairwise likelihood approach, the

computational time is manageable even for larger mi.

Study 1. The data sets were generated from the model

yij ∼ Poisson(λij), log(λij) = β0 + xij1β1 + xij2β2,

ωijk =
π

2
− atan(γ0 + wijk1γ1 + wwjk2γ2), (i = 1, . . . , n; j = 1, . . . ,mi),

where the measurement times tij were uniform. We considered two cases: I

mi ≡ 6 and II mi − 1 ∼ Binomial(6, 0.8). The latter case gives different num-

bers of repeated measurements mi for different subjects. The covariate xij =

(xij1, xij2)
T was generated from a standard bivariate normal distribution with

zero correlation. We took the covariates for the correlations as wijk = (1, tij −
tik, (tij − tik)2)T. The parameters were set as β = (β0, β1, β2) = (1.0,−0.5, 0.5)
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Figure 4. (a) The power function for testing H0 : β2 = 0; (b) The power function for
testing H0 : γ0 = 0; (c) Quantile-Quantile plot of the pairwise likelihood ratio statistics
relative to the mixture of χ2

1 distributions as in Theorem 3. The dashed horizontal lines
are at the 0.05 nominal level.

and γ = (γ0, γ1, γ2) = (0.5,−0.3, 0.5). There was no dispersion parameter for

this study.

Table 1 shows the accuracy of the estimated parameters in terms of their

mean biases (MB) and standard deviations. For PLEs, all the biases are small

especially when n is large. Additionally, to evaluate the inference procedure, we

compared the sample standard deviation (SD) of 500 parameter estimates to the

sample average of 500 standard errors (SE) using formula (3.2). The standard

deviation (Std) of 500 standard errors in Table 1 show that the SD and SE are

quite close, especially for large n. This indicates that the standard error formula

works well and demonstrates the validity of Theorem 1. Although estimators

based on the pairwise likelihood function are slightly less efficient than the max-

imum likelihood estimates, they have smaller biases. In particular, the MLEs for

estimating the parameters in the correlation matrices are highly biased, likely due

to the computational difficulty of evaluating multidimensional integrals when a

full likelihood is used. Compared to the GEE estimates with unstructured cor-

relations for estimating the parameters in the mean model, the PLEs have very

competitive performances. Though our method is not designed with specific con-

sideration for enhancing the mean model estimation incorporating correlations

from the longitudinal data, their performance is very close to those of the full

likelihood and GEE methods. When the sample size is smaller, the PLEs even

outperform the GEE with unstructured correlations, showing the advantage of

using parsimonious correlation models.

We assessed the finite sample performance of the approximation results in
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Table 1. Simulation results for Study 1. Mean bias (MB) and standard deviation (SD)
of each parameter us reported. SE is the average standard error calculated using the
formula in Theorem 2. PL: Partial Likelihood; FL: Full Likelihood; GEE: Generalized
Estimating Equation.

Pairwise Likelihood Full Likelihood GEE
n 50 100 200 50 100 200 50 100 200

Case I
MBβ0

−0.007 −0.003 0.001 −0.006 −0.005 0.001 −0.014 −0.007 −0.001
SD (0.073) (0.046) (0.034) (0.071) (0.046) (0.033) (0.076) (0.051) (0.034)
SE 0.069 0.049 0.034 - - - - - -
Std (0.005) (0.002) (0.001) - - - - - -
MBβ1

−0.002 −0.001 0.000 −0.002 −0.001 0.000 −0.005 −0.001 0.001
SD (0.033) (0.022) (0.015) (0.031) (0.021) (0.014) (0.037) (0.021) (0.016)
SE 0.032 0.023 0.016 - - - - - -
Std (0.004) (0.002) (0.001) - - - - - -
MBβ2 0.002 0.001 0.000 0.002 0.001 0.000 0.003 0.002 0.000
SD (0.034) (0.022) (0.016) (0.032) (0.020) (0.015) (0.038) (0.021) (0.015)
SE 0.032 0.023 0.016 - - - - - -
Std (0.004) (0.002) (0.001) - - - - - -
MBγ0 0.001 −0.001 −0.004 −0.039 −0.046 −0.047 - - -
SD (0.119) (0.078) (0.056) (0.069) (0.050) (0.036) - - -
SE 0.090 0.063 0.044 - - - - - -
Std (0.013) (0.007) (0.003) - - - - - -
MBγ1 −0.023 −0.011 0.031 0.304 0.328 0.350 - - -
SD (0.688) (0.462) (0.330) (0.301) (0.241) (0.181) - - -
SE 0.477 0.332 0.232 - - - - - -
Std (0.088) (0.048) (0.023) - - - - - -
MBγ2 0.058 0.035 −0.024 −0.359 −0.378 −0.407 - - -
SD (0.814) (0.555) (0.391) (0.340) (0.279) (0.212) - - -
SE 0.558 0.385 0.268 - - - - - -
Std (0.116) (0.063) (0.032) - - - - - -

Case II
MBβ0 −0.002 −0.002 −0.003 −0.004 −0.001 −0.002 −0.006 −0.004 −0.005
SD (0.071) (0.053) (0.0360) (0.067) (0.050) (0.034) (0.087) (0.052) (0.034)
SE 0.074 0.052 0.036 - - - - - -
Std (0.006) (0.003) (0.001) - - - - - -
MBβ1

0.001 −0.001 −0.001 0.001 −0.000 −0.000 −0.003 −0.002 −0.002
SD (0.034) (0.026) (0.018) (0.033) (0.025) (0.017) (0.065) (0.025) (0.019)
SE 0.036 0.026 0.018 - - - - - -
Std (0.005) (0.002) (0.001) - - - - - -
MBβ2

−0.001 0.001 0.001 −0.001 0.001 0.000 −0.000 −0.001 0.001
SD (0.035) (0.025) (0.018) (0.033) (0.024) (0.017) (0.054) (0.026) (0.019)
SE 0.036 0.023 0.018 - - - - - -
Std (0.005) (0.002) (0.001) - - - - - -
MBγ0 0.015 −0.001 −0.003 −0.037 −0.049 −0.048 - - -
SD (0.132) (0.099) (0.065) (0.077) (0.053) (0.041) - - -
SE 0.110 0.076 0.054 - - - - - -
Std (0.017) (0.009) (0.004) - - - - - -
MBγ1 −0.084 −0.011 0.009 0.326 0.372 0.362 - - -
SD (0.795) (0.580) (0.388) (0.298) (0.195) (0.173) - - -
SE 0.588 0.406 0.288 - - - - - -
Std (0.117) (0.060) (0.030) - - - - - -
MBγ2 0.132 0.034 −0.005 −0.386 −0.441 −0.442 - - -
SD (0.963) (0.689) (0.464) (0.347) (0.209) (0.189) - - -
SE 0.700 0.479 0.338 - - - - - -
Std (0.162) (0.080) (0.043) - - - - - -



DISCRETE LONGITUDINAL DATA MODELING 871

Theorem 3 by testing H0 : β2 = 0 and H0 : γ0 = 0 under simulation setup case

I. Figure 4 (a) and (b) display the power functions by the proposed pairwise

likelihood ratio testing procedure with a nominal level 0.05. Here the size of the

test is well maintained at the nominal level and the power of the test increases

when the true parameter value deviates from that in the null hypothesis. To

examine the finite sample distribution under the null provided by Theorem 3,

Figure 4 (c) shows the Q-Q plot of LRT = 2{pl(θ̂)−pl(θ̃)} based on 500 simulated

data sets with sample size n = 50, for testing H0 : θ1 = θ1,0 with θ1 = (β2, γ0)
T

and θ1,0 = (0, 0)T. The estimated null distribution is found to be 4.81χ2
1 +

0.94χ2
1, where each eigenvalue is the average of 500 eigenvalues, one from each

simulation. We treated this distribution as the null distribution and obtained its

quantile via simulation as the theoretical quantiles. We plotted them against the

observed quantiles from the 500 pairwise likelihood ratio statistics. There is a

close agreement between these two sets of quantiles, even though the sample size

n = 50 is fairly small.

Study 2. The data sets were generated from the model

yij ∼ Bernoulli(pij), logit(pij) = β0 + xij1β1 + xij2β2,

ωijk =
π

2
− atan(γ0 + wijk1γ1 + wijk2γ2), (i = 1, . . . , n; j = 1, . . . ,mi),

where again mi ≡ 6 for case I and mi − 1 ∼ Binomial(6, 0.8) for case II. The

measurement times tij were uniform. We set β = (β0, β1, β2) = (1.0,−0.5, 0.5)

and γ = (γ0, γ1, γ2) = (0.5,−0.3, 0.5). The covariate xij was generated again

from a standard normal distribution and we took wijk = (1, tij−tik, (tij−tik)2)T.

Table 2 shows the results qualitatively similar to those in Study 1.

Study 3. This is a study designed to investigate the impact on the mean

model estimation from a misspecified correlation model. For such a purpose, we

generated data from a random effect Poisson regression model

yij ∼ Pois(λij), log(λij) = β0 + β1xij1 + β2xij2 + zijbi,

where bi ∼ N(0, σ2b ) is a random effect accounting for the correlations. We took

β = (1, 0.5,−0.5)′ and σb = 0.8. The covariates xij1 and xij2 were standard

normal, zij ∼ Uniform(0, 1). The number of repeated measurements was 6.

We applied the cubic polynomial of time lag for our approach when modeling

the correlations, and we compared our approach with the GEE method with

different specifications of the working correlation structures. For this setting,

the model is mis-specified for both our method and the GEE method. The sim-

ulation results are summarized in Table 3. From the results, we can see that
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Table 2. Simulation results for Study 2. Mean bias (MB) and standard deviation (SD)
of each parameter us reported. SE is the average standard error calculated using the
formula in Theorem 2. PL: Partial Likelihood; FL: Full Likelihood; GEE: Generalized
Estimating Equation.

Pairwise Likelihood Full Likelihood GEE
n 50 100 200 50 100 200 50 100 200

Case I
MBβ0

0.009 0.016 0.005 0.029 0.033 0.023 0.0311 0.033 0.014
SD (0.234) (0.153) (0.111) (0.227) (0.147) (0.105) (0.280) (0.160) (0.112)
SE 0.220 0.156 0.110 - - - - - -
Std (0.016) (0.008) (0.004) - - - - - -
MBβ1

−0.014 −0.006 −0.002 −0.017 −0.011 −0.005 0.021 −0.001 0.003
SD (0.152) (0.111) (0.076) (0.144) (0.107) (0.072) (0.168) (0.112) (0.072)
SE 0.147 0.104 0.073 - - - - - -
Std (0.018) (0.009) (0.004) - - - - - -
MBβ2 0.021 0.004 0.006 0.025 0.008 0.010 −0.013 −0.004 0.001
SD (0.153) (0.114) (0.077) (0.146) (0.107) (0.072) (0.167) (0.112) (0.073)
SE 0.148 0.104 0.073 - - - - - -
Std (0.017) (0.009) (0.004) - - - - - -
MBγ0 −0.005 −0.004 0.004 −0.056 −0.048 −0.048 - - -
SD (0.266) (0.179) (0.119) (0.141) (0.095) (0.065) - - -
SEStd 0.203 0.143 0.100 - - - - - -
Std (0.039) (0.019) (0.008) - - - - - -
MBγ1 0.003 0.046 −0.013 0.343 0.329 0.324 - - -
SD (1.562) (1.031) (0.728) (0.495) (0.270) (0.199) - - -
SE 1.042 0.721 0.505 - - - - - -
Std (0.205) (0.106) (0.051) - - - - - -
MBγ2 0.139 −0.006 0.037 −0.338 −0.368 −0.365 - - -
SD (1.919) (1.251) (0.871) (0.504) (0.272) (0.196) - - -
SE 1.232 0.837 0.583 - - - - - -
Std (0.276) (0.137) (0.068) - - - - - -

Case II
MBβ0 0.013 0.014 −0.002 0.024 0.031 0.017 0.044 0.030 0.007
SD (0.240) (0.166) (0.117) (0.224) (0.157) (0.106) (0.244) (0.169) (0.115)
SE 0.233 0.166 0.118 - - - - - -
Std (0.020) (0.010) (0.005) - - - - - -
MBβ1

−0.014 −0.006 −0.002 −0.017 −0.006 −0.005 −0.005 0.002 −0.001
SD (0.168) (0.116) (0.084) (0.166) (0.114) (0.0768) (0.177) (0.116) (0.080)
SE 0.165 0.117 0.082 - - - - - -
Std (0.024) (0.011) (0.005) - - - - - -
MBβ2

0.005 0.010 0.004 0.011 0.013 0.007 −0.005 0.004 0.002
SD (0.174) (0.120) (0.084) (0.166) (0.115) (0.080) (0.175) (0.119) (0.081)
SE 0.166 0.117 0.082 - - - - - -
Std (0.022) (0.011) (0.005) - - - - - -
MBγ0 0.009 −0.009 −0.008 −0.043 −0.058 −0.054 - - -
SD (0.329) (0.207) (0.140) (0.172) (0.109) (0.073) - - -
SE 0.240 0.166 0.117 - - - - - -
Std (0.052) (0.023) (0.011) - - - - - -
MBγ1 −0.032 0.004 0.054 0.315 0.035 0.354 - - -
SD (2.001) (1.207) (0.833) (0.553) (0.109) (0.194) - - -
SE 1.249 0.869 0.604 - - - - - -
Std (0.260) (0.126) (0.064) - - - - - -
MBγ2 0.164 0.095 −0.022 −0.334 −0.363 −0.392 - - -
SD (2.531) (1.558) (1.011) (0.587) (0.3522) (0.167) - - -
SE 1.497 1.024 0.709 - - - - - -
Std (0.346) (0.173) (0.085) - - - - - -
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Table 3. Simulation results. Mean bias (MB) and Mean square error (MSE) of each
parameter is reported under different sample sizes and models. PL: pairwise likelihood
approach; GEE: generalized estimating equations; Ind: Independent working correlation;
AR: AR(1) working correlation; Unstr: Unstructured working correlation. All results
are multiplied by 100.

n MBβ0 MSE MBβ1 MSE MBβ2 MSE

PL
50 10.09 2.04 −0.26 0.45 −0.12 1.57

100 11.28 1.66 −0.21 0.21 0.15 0.93
150 9.72 1.27 −0.54 0.12 0.12 0.48

GEE

Ind
50 10.27 2.17 0.26 0.54 −0.3 1.88

100 11.27 1.68 0.08 0.21 −0.75 1.06
150 10.68 1.51 −0.42 0.15 −0.41 0.59

AR
50 10.50 2.16 −0.13 0.45 −0.31 1.67

100 11.29 1.65 −0.08 0.17 −1.06 0.85
150 10.67 1.48 −0.49 0.13 −0.08 0.42

Unstr
50 8.43 6.12 −1.30 3.65 0.37 6.24

100 10.78 1.54 −0.02 0.17 −1.02 0.91
150 10.23 1.37 −0.42 0.13 −0.17 0.45

our method performs competitively, even when the correlation structure is not

correctly specified. Specifically, when sample sizes are small, our method consis-

tently performs the best with the smallest MSE. When sample size is larger, the

GEE with unstructured covariance specification works very well. When the sam-

ple size is smaller, at n = 50, the GEE with unstructured covariance specification

has a high level of variation due to unstable covariance estimations. Overall, our

method performs promisingly, indicating the potential benefit for estimating the

mean model incorporating the correlations between the longitudinal data from

using a parsimonious correlation model.

In simulation results not reported here, we found substantial improvement of

our method compared with the GEE with working independence. We also found

that inferences including estimations and hypothesis testing to be highly effective

using the pairwise likelihood instead of using the computationally intractable

full likelihood. Using our mean-correlation regression approach with pairwise

likelihood-based inferences could provide a powerful and convenient device for

analyzing generic discrete longitudinal data in practice.

5. Conclusion

The problem of developing regression models for correlation structures is an

open problem when longitudinal responses are discrete. We propose the first
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model of this kind to address the problem. Equipped with the new parametriza-

tion of a correlation matrix in a copula model that enables unconstrained model

building and a computationally efficient estimation method based on pairwise

likelihood, we have developed a tool for investigating correlated responses.

This paper focuses mainly on univariate discrete responses. It would be in-

teresting to generalize the univariate models to situations where multiple mixed

outcomes are available at each time point (Xu and Mackenzie (2012)). One way

to simplify the multiple response time-dependent covariance is to factorize the

covariance matrices via a Kronecker product decomposition that greatly reduces

the dimensionality. This will be studied in a future paper. Another interest-

ing problem is to develop model diagnostic tools for assessing model adequacy,

especially for unbalanced data. For balanced data, as illustrated in the paper,

graphical tools to compare the empirical estimates and the model estimates, such

as those used for analyzing the toenail data and the epileptic seizure data, are

useful. However, counterparts of those are not currently available when data are

unbalanced. Another future line of research is to develop data-driven models for

covariations.

Supplementary Materials

The online supplementary materials contain the proofs of Theorem 1, 2 and

3 in the main paper, additional data analysis and simulations studies.
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