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Abstract: For large covariance matrices and the corresponding precision matrices
with banding structures, this paper develops a criterion to identify the bandwidth.
The new method is based on an objective function that is discontinuous at the true
bandwidth to show a “valley-cliff” pattern so that the identification of this location
can be visualized and easily implemented. We offer the estimation consistency and
the estimation error bound of the estimated covariance matrix and precision matrix
with this estimated bandwidth. Numerical studies demonstrate the finite sample
validity of the method, and a real data validity analysis is used for illustration.
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1. Introduction

Estimating covariance matrix and its inverse, precision matrix, is one of
the fundamental problems in multivariate data analysis. Many classic sta-
tistical problems, including principal component analysis (PCA), studies of
independence or conditional independence of graphical models, and confidence
interval construction for parameters in linear regression, require the knowledge
of covariance structure or some aspect thereof. In many cases, precision matrix
can infer the conditional dependence structure of random variables. Application
areas include gene expression array analysis, functional magnetic resonance
imaging, text retrieval, image classification, spectroscopy, climate studies, risk
management, and portfolio allocation. The sample covariance matrix is the
most commonly used covariance matrix estimator, and its properties are well
understood. However, it tends to be inconsistent when the dimension p is large.
For more explanation about the limiting spectrum theory of large dimensional
sample covariances, see Bai and Yin (1993)), Johnstone| (2001)), |Geman/ (1980) and
Wachter| (1978).

Several proposals are available in the literature on covariance estimation
with high-dimensional data. Among them, some methods handle the studies in
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which variables with a natural order or the concept of distance between variables

(Rothman, Levina and Zhu, 2009b). The implicit regularization assumption

is that involved variables are weakly correlated when they are distant from
each other. This is equivalent to giving a covariance matrix under a distinct
banding or tapering structure. Consistent estimator of covariance matrix is often
constructed, for high-dimensional data, through regularization such as shrinkage:
Fan, Fan and Lv| (2008), Maurya (2016), and Furrer and Bengtsson (2007);
banding: Bickel and Levinal (2004)), Bickel and Levina) (2008), and

(2015); tapering: |Cai, Zhang and Zhou! (2010), Xue and Zou/ (2014), and |Qiu and|
(2015). Some other methods handle the studies with no notion of distance

between variables, such as arrays of gene expressions. These studies require

estimators that remain constant under variable permutations. Thresholding the

sample covariance matrix is a solution such as, Bickel and Levinal (2009)), [Karoui
(2008), and |Qiu and Liyanage| (2019). Random matrix theory presented recently
is another shrinkage estimation method (Zhang, Rubio and Palomar, 2013; Wang]
and Daniels, 2014} Wang et al., 2015).

For precision matrix, we can also assume that the variables of interest have

a natural order that there is no partial correlation between two random variables
when the distance between them is large enough. In this case, the Cholesky
decomposition is often used for regularization analysis to define an estimator,
see Pourahmadi| (1999), Wu and Pourahmadi (2003), and Huang et al.| (2006).
A comprehensive review of high-dimensional covariance and precision matrix
estimation under different model structures can be found in [Cai, Ren and Zhoul

(2016).

Suppose we observe p-dimensional independent identically distributed ran-

dom variables Xy, ..., X, with an unknown covariance matrix ¥ = Var(X;) =
(0i)pxp and define @ = X~'. Data with natural order generally have an im-
portant parameter, the bandwidth K, which defines the number of subdiagonals
that are not all zero. Take ¥ as an example, i.e., 0;; = 0 for all |i — j| > K.
Moreover, banding and tapering estimators for covariance matrix or its inverse
relies on good bandwidth estimators when the bandwidth K is unknown. Several
methods have been proposed for estimating the bandwidth. Cross-validation
(Bickel and Levinal 2008)) is a way, but time-consuming. When K is relatively
large, this estimation is often unstable, and estimation accuracy is an issue.
and Chen| (2012) proposed a non-parametric test for banding covariance matrix

without assuming a parametric distribution of the high-dimensional data, and
they also presented a consistent estimator of the band size. The tests in
and Jiang (2011) and Qiu and Chen| (2012) are respectively powerful for sparse
and dense alternatives. Another class of methods minimizes objective functions
to estimate the bandwidth (Cai, Zhang and Zhou, 2010; Qiu and Chen, 2015).
For example, [Yi and Zou (2013) and |Li and Zoul (2016) treated bandwidth as
a tuning parameter, gave a criterion by using Stein’s unbiased risk estimation
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(SURE) optimal point, and offered the estimation consistency. However, these
estimators are susceptible to sample effects. As pointed out by |Chen, Gao and
Ren| (2018)), even if only one outlier exists in the entire data set, the statistical
performance of the estimator may be completely impaired. These methods in
practical use may result in underestimation. One reason behind this is that
for the sum of squares of the subdiagonals of covariance matrix, the values of
estimator tend to be close to each other, except for some maximum dominance,
whether or not they are non-zero at the global level. Thus the global minimum
(or maximum) value of a criterion at all indices is usually smaller than the true
value. The hypothesis testing methods are also helpful as they can provide a
practical statistical guide to whether the underlying covariance matrix is of the
“bandable” class (Cai and Jiang, 2011; Qiu and Chen, [2012; [Shao and Zhou,
2014). But the estimation consistency and robustness against “outlier” samples
are still the issues we must handle. |Qiu and Chen/ (2012) considered an estimator
based on the difference between continuous statistics to enhance the robustness.
However, the objective values vary from infinity to zero at the true bandwidth,
which makes it challenging to choose a suitable threshold for estimation.

To address the above issues, we propose a ridge ratio thresholding method
and prove the estimation consistency. We understand that almost all existing
criteria in the field follow the idea of constructing continuous convex/concave
objective function such that the global minimum/maximum can be used as an
estimator of the bandwidth K. To achieve convexity/concavity, the objective
function usually contains a penalty term. AIC and BIC are the two represen-
tatives of such methods. The approaches in this area include |Qiu and Chen
(2015). However, as these criteria may be difficult to separate well from nearby
values, they often product ,under- or overproduction at the sample level. In other
words, distinguishing the value at the dedicated bandwidth from others is crucial
for estimation. The current paper then proposes a general criterion motivated
from |Zhu et al.| (2020)). To enhance the separation of the value at K from other
values, instead of considering a continuous convex-concave objective function, we
construct a sequence of ridge ratios as an objective function that is discontinuous
at the point K. It drops significantly to zero at K, followed by a sudden rise to 1
for all indices ¢ > K. That is, the key feature of our method is that the objective
function exhibits a “valley-cliff” pattern at the true bandwidth. Therefore, at the
sample level, We can quickly determine an estimator of K by using the maximum
index of the values smaller than a threshold 7 with 0 < 7 < 1.

This paper is organized as follows. Section 2 contains the criterion con-
struction and the associated asymptotic properties. In Section 3, the method is
extended to deal with the bandwidth selection of the precision matrix. Section 4
includes the selection of ridges, simulation results, and analysis of a real data set.
The first part of Supplementary Material discusses how to obtain the estimators
of the covariance matrix under banding and tapering structure, the precision
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matrix, and the corresponding order of the matrices. The second part contains
all proofs of the theoretical results.

2. Criterion Construction

2.1. Motivation and construction

Let X, = (Xil,...,Xip)T € RP for ¢ = 1,...,n be independent and
identically distributed (i.i.d.) random variables with the mean vector p and
covariance matrix ¥ = (0y;)pxp. Define

1 =k

ZJIQIM, for0<k<p-1.

h(k) == ——
p—k 1=1

We presume that ¥ is banded with the true bandwidth K, i.e., the following
assumption:

Assumption 1. 0,; =0 for all |i — j| > K and h(K) > 0.

Under this assumption, h(0) > 0,h(1) > 0,...,h(K —1) > 0 and h(K) > 0,
but A(K +1) =--- = h(p — 1) = 0. Consider the following sequence: defining
h(p) =h(p+1)=0,

h(k+1)

h(k)

We can see that this sequence has a useful pattern: when 0 < k < K,
h(k +1)/h(k) > 0; when k = K, h(k + 1)/h(k) = 0; and when K < k < p,
h(k + 1)/h(k) = 0/0 = 1 if we temporarily define 0/0 as 1. To avoid this
undefined ratio, denote the ridge ratio sequence by adding a ridge value ¢, > 0
to both the numerator and denominator, where ¢, tends to zero at a certain rate
when n, p tends to infinity. Let s(k) = {h(k + 1) + ¢, }/{h(k) + c,}. It has the
following property: as n and p — oo

, for 0 <k <p. (2.1)

— 7 > f <k< K

hk) +c, >0, or 0 <k <K,
s(k)=q _ S for k= K

h(k)+cn_>0’ or )

1, for K+1<k<p.

The sequence presents a good pattern to identify K: regardless of the ratio
before the true K, K is the maximum index of the ratios whose values are smaller
than one over all £ in 0 < k < p. This looks like a valley-cliff pattern where at
the location K with the value of 0 can be regarded as the valley floor and then
faces a cliff with the value of one at the location K + 1. It remains flat after the
position K + 1. At the sample level, we replace h(k) with the estimators h(k)
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and define h(p) = h(p + 1) = 0. Then the corresponding estimator of s(k) is

ih) = h(k) + ¢,

, for 0 <k <p, (2.2)
where the ridge value ¢,, tends to zero at a certain rate to be specified later.
To this end, we define an estimator of h(k) as (Qiu and Chen, 2015):

. R
h(k:) = ka Z {A? Z(XilXil-i-k)(lele‘f‘k)
=1

LN

p— 1 <
— 5 2o XX (XX + 5 D XquHkaquHk}, (2.3)

noi,5,m " i,j,m,q

where 2*: denotes summation over all involved subscripts and A% = n!/(n — b)!
with 0 < b < n. |Qiu and Chen (2015) has shown that it is an unbiased estimator
that is a linear combination of multiple U-statistics, so we can easily derive its
consistency.

Once ¢, is determined, we have the following result in probability,

lim §(k) =

0, fork=K,
1, for K+1<k<p-1.

Asymptotically, the sequence §(k)’s has the same pattern as the sequence s(k)’s.
Note that K is the maximum index of s(k)’s smaller than 1. Therefore, the
bandwidth K can be estimated as: for any 7 with 0 <7 <1

K = argmax{k : §(k) < 7}. (2.4)
0<k<p
This determination is not seriously affected even when the sequence may have
multiple local minima.

2.2. Asymptotic properties

Throughout this paper, || - ||, and || - || denote the Orilcz norm defined
as || X[y, = sup,s; p~/*{E|X [P}/ and the I; norm of a vector, respectively.
To investigate the consistency of this estimator, we state the following two
assumptions.

Assumption 2. logp = o(nl/S), as min{n,p} — oo.

Assumption 3. X is a positive definite matriz. Let Z, = ©~Y/?X,. Variables
Xi, 1 <1 < pand Zy's are sub-Gaussian vectors with sup, i<, || Xy, < Ko
and E{exp(a'Z;)} < exp(K?|a||?) for some constants 0 < Ky, K, < oo.
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Remark 1. Assumption 2.2 controls the sample size and dimensionality. As || ||y,
in Assumption 2.3 is a sub-Gaussian norm, the class of sub-Gaussian random
variables on a given probability space is the normed space. Classic examples
of sub-Gaussian random variables satisfying Assumption 2.3 contain Gaussian,
Bernoulli, and all bounded random variables (Vershyninl 2010). In particular,
when Zj, is standard normal, K, = 1, Assumption 2.3 implies that max; ., 0,; <
C for some C' > 0. These assumptions are similar to those in [Zhao, Zhao and
7Zhu| (2018).

The following theorem states the convergence rate of h(q) to h(q).

Theorem 1. Under Assumptions 2 and 3, when K, <1, as min{n,p} — oo, we
have

P (max \h(k) — h(k)| > Coqn> = o(1),

0<k<p

where Cy is a constant depending on Ko and g, = O{y/log®(p V n)/n}.

Remark 2. Here the value of Cj is unknown, and therefore the result is mainly
used for the theoretical investigation. In Section 2.3, to estimate the bandwidth
of the covariance matrix, we suggest using the ridge value ¢, without involving
the unknown constant Cy. Moreover, under the same conditions of Lemma A.1
in (Qiu and Chen (2015)), the conclusion in Theorem 1 can be improved to be

P (s, 1206) = (4| > Cag, ) = o(1),

where Cp is some constant and ¢, = O{y/Klog(pVn)/(np)}. It is worth
mentioning that Lemma A.1 in|Qiu and Chen| (2015) requires that the components
of Z, are independent with identical first four moments. These conditions are
different from Assumption 3 in the current paper.

The following theorem states the consistency of the estimator K determined

by the criterion in (2.4)).

Theorem 2. Under Assumptions 1, 2 and 3, if ¢, satisfies ¢,, — 0, ¢,/h(K) — 0
and q,/c, = o(1) with g, defined in Theorem 1, then we have P(K = K) — 1 as
n,p — 00.

2.3. Tuning parameter selection

This subsection presents some discussions and suggestions for selecting the
tuning parameters ¢, and 7 and an estimation algorithm.

For ¢, the selection range is quite wide in theory. As we do not have a
full data-driven algorithm to select it, it is often the case to recommend a value
based on the rule of thumb, like any correlation method with penalties (e.g., the
BIC criterion). But if some prior information on the upper bound of the true
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value K is available, we propose the following semi-data-driven algorithm. From
Theorem 1, we can see that.
JQax [A(k) — h(k)|log(p - n) = Op{gnlog(p - n)}-

Note that if for two large integers M; < M, such that K < M;, M, has the same
order as p, we then have maxys, <p<ar, |h(k) — h(k)| = maxys, <p<nr, |2(k)|, which
has the same rate of convergence as maxo<j<p |h(k) — h(k)|. Therefore, we can
define a ridge c,, as

cn=0dlog(p-n) max [h(k)|=Op{g.log(p-n)}, (2.5)
where § € (0,00) is an adjustment parameter. Hence c¢,, satisfies all assumptions
in Theorem 2 and is adaptive to the data.

Thus, to use this data-driven ridge, we need prior information on the
upper bound of the true bandwidth K. Assume that the true bandwidth K
may diverge to infinity at a rate slower than p and n. Then we can use
M; = min{[n/2], [p/4]} such that K/M; — 0. To balance between computational
complexity and approximation, we in numerical studies use My = min{[AM,], p}
for a A > 2 and to ensure M; large enough in finite sample scenarios, we use
M; = max{min{[n/2], [p/4]}, 20}.

Note that § is used to adjust the size of ¢,. In practice, when p and n are
not large, maxy, <p<as, |A(k)| will not be close to zero, so ¢, will be large and
the ratio will quickly reach 1, leading to an underestimation. In the numerical
studies in this paper, we recommend a value of § as

1/5, ifn <50 <50
5:{/7 ln— 7p_ ) (26)

1, otherwise.

The next issue is about the selection of the threshold 7. This issue is
relatively less important because of the fairly wide range of choices in the interval
(0,1). As a compromise, the median value 7 = 0.5 could be recommended to
handle the overestimation and underestimation. However, we note that the term
log(p - n), when p and n are large, could result in a relatively large ¢, such
that the curve of the sequence would become flatter than that with smaller
¢,. In this case, choosing 7 = 0.5 would more likely cause underestimation.
Additionally, an underestimated bandwidth value would cause the covariance
matrix estimator to be less accurate. Therefore, for the problem studied in this
paper, we recommend a relatively large threshold value 7 = 0.75. The details
can be found in Supplementary Material showing that this value produces stable
results.
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3. Application to the Precision Matrix

When the variables of interest have a natural order, it is usually assumed
that partial correlation between two random variables is zero when their distance
is large enough. Specifically,

Assumption 4. w;; =0 for all |i — j| > K and {1/(p — K)} 725 lwuik| > 0.

The bandwidth of the precision matrix Q@ = X7 = (w;;)px, is K. Similarly
to the covariance matrix case, let X; = (Xﬂ,...,XZ-p)T e RP fori=1,...,n
be the observations collected from the ith subject. Here, X; is independent and
normally distributed with mean zero and covariance matrix . The Cholesky
decomposition of ¥ is

Y =LDL",

where L is a lower triangular matrix whose diagonal elements are all equal to 1
and D is a diagonal matrix. Let T'= L' = (¢;;)1<i j<p, then the precision matrix
Q = X! can be written as

Q=T"D'T.
Let ¢; = TX;. |/An, Guo and Liu (2014) showed that if the bandwidth of  is K,
then
A for j =1,
do = {gjﬂ'l o (3.1)
q:(j—K)l(_tquiq +5ij), for j > 1,

where (j— K); = max{1, j— K}, the elements of ¢; are independent and normally
distributed with mean zero, and the covariance matrix of ¢; is D. When the
precision matrix 2 has a band structure, Rothman, Levina and Zhul (2009a))
showed that the Cholesky factor 1" has the same bandwidth K as 2. We can
then turn to estimate the bandwidth of 7'

Let M be an upper bound of K, t§k) = (tjG—)rs-- s tjm1) X = (Xq, ...,
X,)", and x; be the jth column of x, Xg-k) = (X(j=k)1s---» Xj—1). By fitting the

regression equation (3.1)), we can define an estimator §M0 of tg»M) as:

J

M mT (yy—1. ()T
5 = =M )T (3.2)

Let (k) = {1/(p — k)} 3P |t x| Then an estimator of I(k) is defined as

. 1 LA
Z(/c)—kaHM) k=0,...,M, (3.3)

= Gkl
p j=k+1

where f%[lk stands for the {j — k — (j — M); + 1}th element of fg-M).

Remark 3. Without the band structure of €2, the regression equations are X;; =
en and X;; = ;;1(_tquiq + ¢;;) for j > 1. In the case of large p and small

n, the estimates of T obtained by fitting these regression equations may not
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work well, some regularization of T" is often imposed (Levina, Rothman and Zhu,
2008; [Huang et al., 2006). However, if Assumption 4 holds and M < n, a good
estimator of T' can be constructed in the large p and small n setting.

The following two theorems state the estimation consistency of relevant
statistics.

Theorem 3. Suppose that X;, for i = 1,...,n, are independent identically
normally distributed. Under Assumption 4, if K < M < n, then

P (s, 106) — 1] > G ) = 0,00,

0<k<M

as min{n,p} — oo, where C; is a constant and v, = O(y/logp/n).

Based on Theorem 3, we can similarly define an objective function as that

in :

I(k+1)+eé
iy = EEDHE k<M, (3.4)
l(k)+é,
where the choice of ¢, is discussed in the following theorem. Thus, the bandwidth
K of the precision matrix can be estimated as: for 0 < 7 < 1,

K = argmax {k: #(k) <7}. (3.5)
0<k<M-1

Like that in Subsection 2.3, we also recommend the thresholding value 7 = 0.75,
and the bandwidth upper bound M; = max{min{[p/4], [n/2]},20}. The ridge é,
is similarly defined as:

Cn = 0log(n) max [I(K)], (3.6)
where ¢ is the same value defined in (2.6) and M, = min{[A\M;], M — 1} with
A € (2,3). The following theorem states the estimation consistency.

Theorem 4. Under the normality assumption of X; and Assumption 4, when
én — 0, ¢, /I(K) — 0 and ¢,/n/logp — oo, then P(K = K) — 1, as n,p — 0.

We have obtained bandwidth estimators of the covariance matrix and pre-
cision matrix with band structure using the proposed ridge ratio thresholding
method. We also discuss how to apply the estimated bandwidth to estimating
the covariance matrix and precision matrix and give the properties of the
corresponding estimators in Supplementary Material.
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4. Numerical Studies

In this section, we will utilize several numerical studies first to select the
appropriate value of A and then assess the finite sample performance of the
proposed method and compare it with some state-of-the-art approaches.

4.1. Selection of X\

Consider two covariance structures similarly to the examples in |Qiu and Chen
(2015). The data generation process used in this experiment is as follows:

X, = 21/2zi, with Z;, = (Z1, .. ., Zip)T’

where Z;; are generated i.i.d. from N(0,1) and ¥ = (0;)1<;,j<p is the covariance
matrix. Consider the two designs as:

1. oy = 3*\i*j\/2[(’i —Jjl < K), for K =4,
2. 05, =1I(i=7)+02I(0<|i —j| < K), for K =8.

In this example, we consider the true bandwidth to be K = 4,8 in two
scenarios: n = 50, p = 300; and n = 200, p = 100. We search for a value of
A by maximizing the correct rate of the determined bandwidth in the interval
[1,3] with the grid points 1: 0.2 : 3. For each A, we performed 50 replications to
obtain the mean and correct rate. Figures 1 and 2 plot the mean values and the
correct rates of the determined bandwidth for different A.

Obviously, from these two figures, the proposed method is not very sensitive
to the choice of A when it is within the interval [2, 3], and its correct rate well
keeps equal to 100%. The numerical studies not reported in this paper indicate
that when X\ > 3, the correct ratio also keeps equal to 100%. Therefore, it is
sensible to recommend the median value of 2.5 as a suitable value of A.

4.2. Simulation study

In this subsection, we consider two sets of numerical experiments below. The
first set, including Examples 1-3, is used to compare our method with Qiu and
Chen’s estimator in |Qiu and Chen! (2015) and Bickel and Levina’s estimator in
Bickel and Levina) (2008]).

Write our method and their methods as VCC, QC, and BL, respectively, and
use “True” to indicate the true bandwidth K. To make a fair comparison between
QC and VCC, we adopt the same upper bound M; = max{min{[n/2], [p/4]},20}
of K. We search for the minimum value point for BL and QC method in 0, ..., M.
The second set, including Example 4, forces on precision matrix and compares
VCC with the hypothesis testing procedure (Backward-Forward procedure) in
An, Guo and Liu| (2014). Each experiment is repeated 100 times for QC and VCC
throughout this subsection. Compared with the Backward-Forward procedure,
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Figure 1. The results of A and the estimated bandwidth mean under the covariance
structure (1).

the replication time is 1,000, so the Type I error can be well controlled.
The data are generated from

X, = El/QZi, with Z; = (Z,. . ., Zip)T’

where Z;; are i.i.d. respectively from N(0,1) and ¢5 that denotes the standardized
t-distribution with degrees 5 of freedom.

Example 1. Consider the following example similarly to that in |Qiu and Chen!
(2015) but with truncated covariance matrix 3 = (0y;)1<,j<p as:

A. 0y =0"1"9(Ji — j| < K), with K =5 and 6 = 0.77;

B. oy = I(i =j)+£&i—j P10 < |i— j| < K), with K =2, £ = 0.5 and
B =15.

We design the same samples sizes and dimensions as those in |Qiu and Chen
(2015)), which are n = 40, 60 and p = 40, 200, 400, 1000, respectively.

Tables 1 and 2 report the mean and standard deviations of the estimated
bandwidth by these three methods. The results show that VCC has the best
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Figure 2. The results of A and the estimated bandwidth mean under the covariance
structure (2).

Table 1. Mean and standard deviation of the estimated bandwidth by VCC, QC, and
BL under the covariance structure A in Example 1.

Covariance (A) with =1 = 0.7
Normal t-distribution

n p True VCC QC BL True vCC QC BL

40 40 5 4.72(1.301) 6.34(1.387) 5.56(1.833) 5  4.80(0.876) 6.32(1.377) 5.56(2.392)
40 200 5  4.75(0.956) 6.56(1.343) 8.70(4.446) 5  5.12(0.782) 6.76(1.386) 8.76(5.142)
40 400 5  4.86(0.492) 6.39(1.392) 9.94(5.199) 5  4.80(0.568) 6.46(1.396) 9.90(5.390)
40 1,000 5 5(0) 6.21(1.402) 10.64(5.524) 5  5(0) 6.36(1.375) 10.74(5.677)
60 40 5  4.97(1.086) 6.35(1.359) 5.34(1.683) 5  4.94(0.565) 6.39(1.355) 5.94(2.182)
60 200 5 4.77(0.583) 6.28(1.386) 10.85(6.428) 5  4.80(0.538) 6.24(1.319) 11.89(8.128)
60 400 5  5(0) 6.68(1.385) 11.64(6.844) 5  5(0) 6.44(1.366) 16.54(7.830)
60 1,000 5 5(0) 6.62(1.316) 14.14(8.600) 5  5(0) 6.38(1.376) 16.96(8.856)

performance with less deviation among the three contenders, and QC has a better
performance than BL.

As the dimension p increases, the deviation and standard deviation decrease,
while QC and BL do not. When p = 1000, VCC’s deviation and standard
deviation are equal to 0. This means that VCC always makes the correct decision
in this simulation.
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Table 2. Mean and standard deviation of the estimated bandwidth by VCC, QC, and
BL under the covariance structure B in Example 1.

Covariance (B) with £ =0.5, =15
Normal t-distribution

n p True VCC QC BL True VCC QC BL

40 40 2 2.35(1.225) 3.51(1.322) 3.46(2.346) 2 2.35(1.086) 3.38(1.316)  4.10(2.576)
40 200 2 1.91(0.795) 3.34(1.307) 6.67(4.803) 2  1.83(0.377) 3.39(1.286) 9.48(5.926)
40 400 2 2(0) 3.79(1.258) 8.20(4.872) 2 1.98(0.140) 3.47(1.283) 10.79(6.256)
40 1,000 2 2(0) 3.29(1.274)  9.20(5.737) 2 2(0) 3.61(1.263)  10.42(5.919)
60 40 2 2.29(0.795) 3.37(1.308) 3.36(1.967) 2  4.63(0.847) 3.20(1.310) 2.49(2.977)
60 200 2 2(0) 3.40(1.223) 7.45(6.195) 2 1.97(0.171) 3.46(1.329) 10.86(7.702)
60 400 2 2(0) 3.22(1.307) 9.41(7.354) 2 2(0) 3.52(1.306)  14.93(9.305)
60 1,000 2  2(0) 3.23(1.302) 11.03(9.220) 2  2(0) 3.30(1.291) 15.13(10.051)

Table 3. Mean and standard deviation of the estimated bandwidth by VCC and BL for
Example 2.

Mean(Std)

p H True(K) VCC BL QC
10 05 0  00(00) 00000 0.000.0)
10 07 5 5(0.0) 5.0(2.8) 2.6(0.7)

00 05 0  0.0(0.0) 0.0(0.0) 0.0(0.0)

100 0.7 4 4(0.0) 4.9(3.2) 17.0(9.8)

200 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0)

200 07 3 3(0.0) 4.5(27) 24.6(16.1)

Example 2. This model with normal data is similar to the example in |Bickel
and Levina) (2008) Y= (Uz’j)lfi,jﬁp with

o = 5 (Il = 31+ 1P = 20 = 2 + [li = 51 = 1) 1(]i = j| < K.

The sample size and the dimension are n = 100 and p = 10,100,200
respectively. The results are summarized in Table 3. The results clearly show
the superiority of VCC to BL and QC.

Example 3. To further check the performance of VCC under banding structures,
consider the following covariance structure:

K
oy =1(i=j)+ Y & PPI(|i — j| =1),with¢ = 0.5 and 8 = 0.9
=1
with larger bandwidths K = 4,13,19. The sample sizes and dimension are n =
50,100 and p = 50, 500, 1000, respectively. Table 4 reports the averages, standard
deviations, and frequencies of the bandwidth estimators by QC and VCC. Some
findings from Table 4 are as follows.
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Table 4. Mean, standard deviation, and frequencies of the estimated bandwidth by VCC
and QC for Example 3.

Example 3
Mean(Std) frequencies under VCC frequencies under QC

n  p true(K) VCC QC K<K K=K K>K K<K K=K K>K
50 50 4 4.35(1.120) 11.36(5.943) 2 92 6 0 24 76
50 500 4 4(0) 13.73(7.802) 0 100 0 0 22 78
50 1,000 4 4(0) 14.13(8.553) 0 100 0 0 24 76
100 50 4 4(0) 12.37(6.350) 0 100 0 0 22 78
100 500 4 4(0) 24.08(17.176) 0 100 0 0 14 86
100 1,000 4 4(0 27.33(17.044) 0 100 0 0 16 84
50 50 13 11.43(6.627) 15.91(2.878) 28 61 11 0 36 64
50 500 13 13.95(2.396) 18.98(4.948) 7 85 8 0 26 74
50 1,000 13 13.31(1.361) 18.74(4.898) 0 94 6 0 26 74
100 50 13 13.11(4.364) 16.26(2.953) 0 100 0 0 31 69
100 500 13 13.34(1.430) 31.53(14.239) 0 94 6 0 14 86
100 1,000 13 13(0) 29.06(14.083) 0 100 0 0 19 81
50 50 19 12.89(1.100) 19.41(0.9331) 58 34 8 0 39 61
50 500 19 19.28(0.792) 22.36(2.5605) 86 14 0 26 74
50 1,000 19 19.21(0.795) 21.65(2.532) 0 93 7 0 35 65
100 50 19 11.72(3.662) 19.41(0.494) 17 7 6 0 59 41
100 500 19 19.44(1.929) 33.78(12.387) 0 94 6 0 22 78
100 1,000 19 19(0) 33.79(12.194) 0 100 0 0 21 79

First, when K = 4, VCC has stable results and a high frequency of correct
decisions, while QC tends to mate the bandwidth grossly. Moreover, except for
the cases of p = 50 and n = 50, in more detail, QC has a lower proportion of
correct decisions, less than 35%. Except for the cases of n = 50 and p = 50, VCC
can have more than 75% of correct decisions, and when K = 4, the proportion
of correct decisions of VCC is 100%. The performance of VCC is significantly
better than QC. Secondly, as the value of K increases, the standard deviation of
VCC increases reasonably, and the proportion of correct decisions decreases.

Let M, (k) = (1/p) X1, —1p>x oty, + (1/np) Dt —ta|<k Tlity Oy, and M, (k)
denote the estimator of M, (k) defined in |Qiu and Chen| (2015). Figures 3 and
4 plot the curves of the objective functions of QC and VCC at the population
level and their box plots at the sample level, respectively. The box plots in
Figures 3 and 4 show the advantage of discontinuity of the objective function
we defined and the results of QC. We can observe that for £ > K, almost all
values of §(k) are above the threshold 0.75 and §(K) is much smaller than 0.75.
Further, when p = 100, p = 1000 and K = 19, fL(l) attains the global minimum.
But the discontinuity at the true bandwidth K greatly separates §(K) from all
consecutive ratios. This explains why VCC performs better than QC and BL.

In summary, VCC works better than QC and BL; in some cases, the
advantage is very significant.

Now we examine the finite sample performance of VCC for precision matrix
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Figure 3. The true curves of s(k) and boxplots of §(k) for Example 3 with K = 4,19.

and compare it with the hypothesis testing procedures (Backward and Forward
procedure) developed in [An, Guo and Liu (2014). We write them as BackE
and ForE. Because of an inverse matrix involved in their computing process,
\Guo and Liu (2014) considered the upper bound M = 2K in their estimating
algorithm. Again, we adopt the model used in /An, Guo and Liu| (2014)) for a fair

comparison.

Example 4. Consider the following precision matrix Q = (w;;) with

K
Q=10 =4)+ > 37"2I(li—j| =),
=1

where K = 2,4,6,8. The results are reported in Table 5.

The results of the three methods in Table 5 clearly show that when K < 6,
BackE performs well, and VCC works similarly to BackE. ForE is not as good as
VCC and BackE. When K = 8, the performance of BackE is much worse than
VCC.
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Figure 4. The true curves of M,, and boxplots of M, for Example 3 with K = 4,19.

Table 5. Percentages (%) of correct identifications of K by our proposed method(VCC)
and Backward and Forward estimators (AGL) for the normally distributed data in

Example 4.
p
30 100 200 500 1,000
n  VCC Backward Forward VCC Backward Forward VCC Backward Forward VCC Backward Forward VCC Backward Forward
K=2
50 100 97.5 99.8 97.3 98.9 99.5 99.2 98.6 99.7 99 99 99.8 100 98.8 99.7
200 99.1 97.4 99.9 100 98.6 99.8 100 99.2 99.7 100 98.8 99.8 100 99.1 100
400 100 97.3 99.6 100 98.4 99.8 100 99 99.8 100 98.8 100 100 99.3 100
K=4
50 924 73.6 7.5 100 99 52 99.5 99.2 83.8 99.7 99.5 99.8 99.8 99.7 99.9
200 98.3 98.8 98 99 99.2 99.7 100 99.5 99.8 100 98.9 99.8 100 99.7 99.7
400 100 98.6 99.6 100 99.4 99.9 100 99.1 99.8 100 99.7 99.7 100 99.4 99.9
K=6
50 17.7 1.5 0 39.3 24 0 75.1 4.9 0 100 16.2 0.4 100 47.9 0.2
200 59.3 18.7 04 94.1 72.7 5.7 100 96.4 145 99.2 99.8 47.6 100 100 84.7
400 83.5 67.1 7.6 100 99.8 38.7 99 99.6 70.8 100 99.5 99.3 100 99.8 99.6
K=
50 11.1 0 0 3 0 0 6 0 0 31.1 0 0 59.4 0 0
200 5 0 0 11.3 0 0 35 0 0 76.5 0 0 98 0 0
400 18.3 0 0 23.2 0 0 64.3 0 0 96 10 20 100 4 2
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Figure 5. The value of the estimated h(k) and [(k) under two types of Sonar data.

4.3. Two real data examples

In this subsection, we illustrate the application of VCC to the sonar data
and the ionospheric data. Both datasets are available in the UCI database.

4.3.1. Sonar dataset

This data set was analysed in |Yi and Zou| (2013) and Qiu and Chen, (2015]).
There are 218 observations, 60 input variables, and one output variable. The
output target is mine or rock, of which 97 are from rock and 111 from mine. They
were considered two data sets, and two corresponding matrices were estimated. [Yi
and Zou (2013) found that the values on the diagonal of the sample covariance
matrix decayed significantly along the direction away from the diagonal. This
finding shows the banding structure that combines the sample covariance matrix
with the estimated bandwidth yields better results. Figure 5 plots the curves of
the function A(k) on the covariance matrix defined in and the function I(k)
on the precision matrix defined in . It can be found that the covariance
matrix has a clear hierarchical nature and the accuracy matrix has a large
variation in the subdiagonal. Thus, assuming that the covariance matrix has
a potentially bundleable structure is reasonable.

Different methods yielded different estimated bandwidths for the covariance
matrix. |Qiu and Chen| (2015) and Bickel and Levina| (2008) derived bandwidth
estimators of 26 and 37 (QC) and 35 and 44 (BL) for the rock and mine classes,
respectively. The proposed VCC gives values of 3 and 27 for the rock and metal
groups, respectively. The estimated §(k) are shown in Figure 6.

To examine the estimation efficiency of these three methods, we used linear
discriminant analysis for data classification. Here, the sample covariance matrix
used in the linear discriminant analysis is replaced with a banding sample
covariance matrix that combines the estimated bandwidths obtained by the above
methods. The output correct rates were 0.6394 (VCC), 0.5769 (QC), and 0.5337
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Figure 6. The value of the estimated §(k) under two types of Sonar data.

(BL), respectively. The performance of the three classifiers demonstrates the
superiority of VCC concerning QC and BL.

4.3.2. Ionospheric dataset

Tonospheric data are mainly used to predict atmospheric structure based on
radar echoes of free electrons in a given ionosphere. This is a binary classification
problem. The data set consists of 351 observations, 34 input variables, and, one
output variable, including two types of labels, “g” and “b” for “good” and “bad,”
respectively. Similarly, Figure 8 plots the line graphs of the function lAz(k) defined
in and the function I(k) defined in (3-3). It is clear that as k increases,
iL(k) gradually approaches zero, but [ (k) does not. Therefore, it is reasonable to
consider the frequency banding assumption on the covariance matrix. Then we
estimate the bandwidth to obtain an effective classifier. The estimator based on
VCC is 26. The classifier for the sonar data is obtained using linear discriminant
analysis. The corresponding accuracy is 0.8666. When applying QC and BL, the
estimated bandwidths are 29 and 20, and the accuracies of the corresponding
classifier is 0.8547 and 0.8575, respectively. The estimated §(k) is shown in
Figure 8.

5. Conclusion

This paper proposes a novel approach called “valley-cliff criterion” (VCC)
to determine the band sizes of the large-dimensional covariance matrix. It
can also apply to the bandwidth selection problem of the precision matrix.
The new approach is computationally efficient, and the resulting estimation
is consistent. Unlike the traditional methods that construct a convex/concave
objective function to search for a minimizer/maximizer as an estimator, the key
feature of the new criterion is its discontinuity of the objective function at the
true bandwidth such that the corresponding value of the objective function can
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Figure 8. The value of the estimated §(k) under ionosphere data.

be significantly stood out for identification. Our method can be nested in a class
of regularized estimators of covariance and precision matrices. This methodology
should have the potential to be applied to other order determination problems
with large-dimensional covariance matrices. The research is ongoing.

Supplementary Material

In the online Supplementary Material, we discusses how bandwidth esti-
mation can be applied to the estimation of covariance matrices and precision
matrices. This Supplementary Material also contains the part of numerical
studies and all proofs of the theoretical results.
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