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Abstract: For large covariance matrices and the corresponding precision matrices

with banding structures, this paper develops a criterion to identify the bandwidth.

The new method is based on an objective function that is discontinuous at the true

bandwidth to show a “valley-cliff” pattern so that the identification of this location

can be visualized and easily implemented. We offer the estimation consistency and

the estimation error bound of the estimated covariance matrix and precision matrix

with this estimated bandwidth. Numerical studies demonstrate the finite sample

validity of the method, and a real data validity analysis is used for illustration.
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1. Introduction

Estimating covariance matrix and its inverse, precision matrix, is one of

the fundamental problems in multivariate data analysis. Many classic sta-

tistical problems, including principal component analysis (PCA), studies of

independence or conditional independence of graphical models, and confidence

interval construction for parameters in linear regression, require the knowledge

of covariance structure or some aspect thereof. In many cases, precision matrix

can infer the conditional dependence structure of random variables. Application

areas include gene expression array analysis, functional magnetic resonance

imaging, text retrieval, image classification, spectroscopy, climate studies, risk

management, and portfolio allocation. The sample covariance matrix is the

most commonly used covariance matrix estimator, and its properties are well

understood. However, it tends to be inconsistent when the dimension p is large.

For more explanation about the limiting spectrum theory of large dimensional

sample covariances, see Bai and Yin (1993), Johnstone (2001), Geman (1980) and

Wachter (1978).

Several proposals are available in the literature on covariance estimation

with high-dimensional data. Among them, some methods handle the studies in
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which variables with a natural order or the concept of distance between variables

(Rothman, Levina and Zhu, 2009b). The implicit regularization assumption

is that involved variables are weakly correlated when they are distant from

each other. This is equivalent to giving a covariance matrix under a distinct

banding or tapering structure. Consistent estimator of covariance matrix is often

constructed, for high-dimensional data, through regularization such as shrinkage:

Fan, Fan and Lv (2008), Maurya (2016), and Furrer and Bengtsson (2007);

banding: Bickel and Levina (2004), Bickel and Levina (2008), and Qiu and Chen

(2015); tapering: Cai, Zhang and Zhou (2010), Xue and Zou (2014), and Qiu and

Chen (2015). Some other methods handle the studies with no notion of distance

between variables, such as arrays of gene expressions. These studies require

estimators that remain constant under variable permutations. Thresholding the

sample covariance matrix is a solution such as, Bickel and Levina (2009), Karoui

(2008), and Qiu and Liyanage (2019). Random matrix theory presented recently

is another shrinkage estimation method (Zhang, Rubio and Palomar, 2013; Wang

and Daniels, 2014; Wang et al., 2015).

For precision matrix, we can also assume that the variables of interest have

a natural order that there is no partial correlation between two random variables

when the distance between them is large enough. In this case, the Cholesky

decomposition is often used for regularization analysis to define an estimator,

see Pourahmadi (1999), Wu and Pourahmadi (2003), and Huang et al. (2006).

A comprehensive review of high-dimensional covariance and precision matrix

estimation under different model structures can be found in Cai, Ren and Zhou

(2016).

Suppose we observe p-dimensional independent identically distributed ran-

dom variables X1, . . . ,Xn with an unknown covariance matrix Σ = V ar(X1) =

(σij)p×p and define Ω = Σ−1. Data with natural order generally have an im-

portant parameter, the bandwidth K, which defines the number of subdiagonals

that are not all zero. Take Σ as an example, i.e., σij = 0 for all |i − j| > K.

Moreover, banding and tapering estimators for covariance matrix or its inverse

relies on good bandwidth estimators when the bandwidth K is unknown. Several

methods have been proposed for estimating the bandwidth. Cross-validation

(Bickel and Levina, 2008) is a way, but time-consuming. When K is relatively

large, this estimation is often unstable, and estimation accuracy is an issue. Qiu

and Chen (2012) proposed a non-parametric test for banding covariance matrix

without assuming a parametric distribution of the high-dimensional data, and

they also presented a consistent estimator of the band size. The tests in Cai

and Jiang (2011) and Qiu and Chen (2012) are respectively powerful for sparse

and dense alternatives. Another class of methods minimizes objective functions

to estimate the bandwidth (Cai, Zhang and Zhou, 2010; Qiu and Chen, 2015).

For example, Yi and Zou (2013) and Li and Zou (2016) treated bandwidth as

a tuning parameter, gave a criterion by using Stein’s unbiased risk estimation
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(SURE) optimal point, and offered the estimation consistency. However, these

estimators are susceptible to sample effects. As pointed out by Chen, Gao and

Ren (2018), even if only one outlier exists in the entire data set, the statistical

performance of the estimator may be completely impaired. These methods in

practical use may result in underestimation. One reason behind this is that

for the sum of squares of the subdiagonals of covariance matrix, the values of

estimator tend to be close to each other, except for some maximum dominance,

whether or not they are non-zero at the global level. Thus the global minimum

(or maximum) value of a criterion at all indices is usually smaller than the true

value. The hypothesis testing methods are also helpful as they can provide a

practical statistical guide to whether the underlying covariance matrix is of the

“bandable” class (Cai and Jiang, 2011; Qiu and Chen, 2012; Shao and Zhou,

2014). But the estimation consistency and robustness against “outlier” samples

are still the issues we must handle. Qiu and Chen (2012) considered an estimator

based on the difference between continuous statistics to enhance the robustness.

However, the objective values vary from infinity to zero at the true bandwidth,

which makes it challenging to choose a suitable threshold for estimation.

To address the above issues, we propose a ridge ratio thresholding method

and prove the estimation consistency. We understand that almost all existing

criteria in the field follow the idea of constructing continuous convex/concave

objective function such that the global minimum/maximum can be used as an

estimator of the bandwidth K. To achieve convexity/concavity, the objective

function usually contains a penalty term. AIC and BIC are the two represen-

tatives of such methods. The approaches in this area include Qiu and Chen

(2015). However, as these criteria may be difficult to separate well from nearby

values, they often product ,under- or overproduction at the sample level. In other

words, distinguishing the value at the dedicated bandwidth from others is crucial

for estimation. The current paper then proposes a general criterion motivated

from Zhu et al. (2020). To enhance the separation of the value at K from other

values, instead of considering a continuous convex-concave objective function, we

construct a sequence of ridge ratios as an objective function that is discontinuous

at the point K. It drops significantly to zero at K, followed by a sudden rise to 1

for all indices q > K. That is, the key feature of our method is that the objective

function exhibits a “valley-cliff” pattern at the true bandwidth. Therefore, at the

sample level, We can quickly determine an estimator of K by using the maximum

index of the values smaller than a threshold τ with 0 < τ < 1.

This paper is organized as follows. Section 2 contains the criterion con-

struction and the associated asymptotic properties. In Section 3, the method is

extended to deal with the bandwidth selection of the precision matrix. Section 4

includes the selection of ridges, simulation results, and analysis of a real data set.

The first part of Supplementary Material discusses how to obtain the estimators

of the covariance matrix under banding and tapering structure, the precision
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matrix, and the corresponding order of the matrices. The second part contains

all proofs of the theoretical results.

2. Criterion Construction

2.1. Motivation and construction

Let Xi = (Xi1, . . . , Xip)
⊤ ∈ Rp for i = 1, . . . , n be independent and

identically distributed (i.i.d.) random variables with the mean vector µ and

covariance matrix Σ = (σij)p×p. Define

h(k) :=
1

p− k

p−k∑
l=1

σ2
ll+k, for 0 ≤ k ≤ p− 1.

We presume that Σ is banded with the true bandwidth K, i.e., the following

assumption:

Assumption 1. σij = 0 for all |i− j| > K and h(K) > 0.

Under this assumption, h(0) > 0, h(1) ≥ 0, . . . , h(K − 1) ≥ 0 and h(K) > 0,

but h(K + 1) = · · · = h(p − 1) = 0. Consider the following sequence: defining

h(p) = h(p+ 1) = 0,
h(k + 1)

h(k)
, for 0 ≤ k ≤ p. (2.1)

We can see that this sequence has a useful pattern: when 0 ≤ k < K,

h(k + 1)/h(k) ≥ 0; when k = K, h(k + 1)/h(k) = 0; and when K < k ≤ p,

h(k + 1)/h(k) = 0/0 = 1 if we temporarily define 0/0 as 1. To avoid this

undefined ratio, denote the ridge ratio sequence by adding a ridge value cn > 0

to both the numerator and denominator, where cn tends to zero at a certain rate

when n, p tends to infinity. Let s(k) = {h(k + 1) + cn}/{h(k) + cn}. It has the

following property: as n and p → ∞

s(k) =



h(k + 1) + cn
h(k) + cn

≥ 0, for 0 ≤ k < K,

cn
h(k) + cn

→ 0, for k = K,

1, for K + 1 ≤ k ≤ p.

The sequence presents a good pattern to identify K: regardless of the ratio

before the true K, K is the maximum index of the ratios whose values are smaller

than one over all k in 0 ≤ k ≤ p. This looks like a valley-cliff pattern where at

the location K with the value of 0 can be regarded as the valley floor and then

faces a cliff with the value of one at the location K + 1. It remains flat after the

position K + 1. At the sample level, we replace h(k) with the estimators ĥ(k)
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and define ĥ(p) = ĥ(p+ 1) = 0. Then the corresponding estimator of s(k) is

ŝ(k) =
ĥ(k + 1) + cn

ĥ(k) + cn
, for 0 ≤ k ≤ p, (2.2)

where the ridge value cn tends to zero at a certain rate to be specified later.

To this end, we define an estimator of h(k) as (Qiu and Chen, 2015):

ĥ(k) =
1

p− k

p−k∑
l=1

{
1

A2
n

∗∑
i,j

(XilXil+k)(XjlXjl+k)

− 2

A3
n

∗∑
i,j,m

XilXml+k(XjlXjl+k) +
1

A4
n

∗∑
i,j,m,q

XilXjl+kXmlXql+k

}
, (2.3)

where
∗∑

denotes summation over all involved subscripts and Ab
n = n!/(n − b)!

with 0 ≤ b ≤ n. Qiu and Chen (2015) has shown that it is an unbiased estimator

that is a linear combination of multiple U-statistics, so we can easily derive its

consistency.

Once cn is determined, we have the following result in probability,

lim
n→∞

ŝ(k) =

{
0, for k = K,

1, for K + 1 ≤ k ≤ p− 1.

Asymptotically, the sequence ŝ(k)’s has the same pattern as the sequence s(k)’s.

Note that K is the maximum index of s(k)’s smaller than 1. Therefore, the

bandwidth K can be estimated as: for any τ with 0 < τ < 1

K̂ = argmax
0≤k≤p

{k : ŝ(k) ≤ τ}. (2.4)

This determination is not seriously affected even when the sequence may have

multiple local minima.

2.2. Asymptotic properties

Throughout this paper, ∥ · ∥ψ2
and ∥ · ∥ denote the Orilcz norm defined

as ∥X∥ψ2
= supp≥1 p

−1/2{E|X|p}1/p and the l2 norm of a vector, respectively.

To investigate the consistency of this estimator, we state the following two

assumptions.

Assumption 2. log p = o(n1/5), as min{n, p} → ∞.

Assumption 3. Σ is a positive definite matrix. Let Zk = Σ−1/2Xk. Variables

Xil, 1 ≤ l ≤ p and Zk’s are sub-Gaussian vectors with sup1≤l≤p ∥Xkl∥ψ2
< K0

and E{exp(α⊤Zk)} ≤ exp(K2
z∥α∥2) for some constants 0 < K0, Kz < ∞.
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Remark 1. Assumption 2.2 controls the sample size and dimensionality. As ∥·∥ψ2

in Assumption 2.3 is a sub-Gaussian norm, the class of sub-Gaussian random

variables on a given probability space is the normed space. Classic examples

of sub-Gaussian random variables satisfying Assumption 2.3 contain Gaussian,

Bernoulli, and all bounded random variables (Vershynin, 2010). In particular,

when Zk is standard normal, Kz = 1, Assumption 2.3 implies that max1<j<p σjj <

C for some C > 0. These assumptions are similar to those in Zhao, Zhao and

Zhu (2018).

The following theorem states the convergence rate of ĥ(q) to h(q).

Theorem 1. Under Assumptions 2 and 3, when Kz ≤ 1, as min{n, p} → ∞, we

have

P

(
max
0≤k≤p

|ĥ(k)− h(k)| > C0qn

)
= o(1),

where C0 is a constant depending on K0 and qn = O{
√
log5(p ∨ n)/n}.

Remark 2. Here the value of C0 is unknown, and therefore the result is mainly

used for the theoretical investigation. In Section 2.3, to estimate the bandwidth

of the covariance matrix, we suggest using the ridge value cn without involving

the unknown constant C0. Moreover, under the same conditions of Lemma A.1

in Qiu and Chen (2015), the conclusion in Theorem 1 can be improved to be

P

(
max

0≤k≤M
|ĥ(k)− h(k)| > C0qn

)
= o(1),

where C0 is some constant and qn = O{
√
K log(p ∨ n)/(np)}. It is worth

mentioning that Lemma A.1 in Qiu and Chen (2015) requires that the components

of Zk are independent with identical first four moments. These conditions are

different from Assumption 3 in the current paper.

The following theorem states the consistency of the estimator K̂ determined

by the criterion in (2.4).

Theorem 2. Under Assumptions 1, 2 and 3, if cn satisfies cn → 0, cn/h(K) → 0

and qn/cn = o(1) with qn defined in Theorem 1, then we have P (K̂ = K) → 1 as

n, p → ∞.

2.3. Tuning parameter selection

This subsection presents some discussions and suggestions for selecting the

tuning parameters cn and τ and an estimation algorithm.

For cn the selection range is quite wide in theory. As we do not have a

full data-driven algorithm to select it, it is often the case to recommend a value

based on the rule of thumb, like any correlation method with penalties (e.g., the

BIC criterion). But if some prior information on the upper bound of the true
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value K is available, we propose the following semi-data-driven algorithm. From

Theorem 1, we can see that.

max
0≤k≤p

|ĥ(k)− h(k)| log(p · n) = Op{qn log(p · n)}.

Note that if for two large integers M1 < M2 such that K < M1, M2 has the same

order as p, we then have maxM1≤k≤M2
|ĥ(k)− h(k)| = maxM1≤k≤M2

|ĥ(k)|, which
has the same rate of convergence as max0≤k≤p |ĥ(k) − h(k)|. Therefore, we can

define a ridge cn as

cn = δ log(p · n) max
M1≤k≤M2

|ĥ(k)| = Op{qn log(p · n)}, (2.5)

where δ ∈ (0,∞) is an adjustment parameter. Hence cn satisfies all assumptions

in Theorem 2 and is adaptive to the data.

Thus, to use this data-driven ridge, we need prior information on the

upper bound of the true bandwidth K. Assume that the true bandwidth K

may diverge to infinity at a rate slower than p and n. Then we can use

M1 = min{[n/2], [p/4]} such that K/M1 → 0. To balance between computational

complexity and approximation, we in numerical studies use M2 = min{[λM1], p}
for a λ > 2 and to ensure M1 large enough in finite sample scenarios, we use

M1 = max{min{[n/2], [p/4]}, 20}.
Note that δ is used to adjust the size of cn. In practice, when p and n are

not large, maxM1≤k≤M2
|ĥ(k)| will not be close to zero, so cn will be large and

the ratio will quickly reach 1, leading to an underestimation. In the numerical

studies in this paper, we recommend a value of δ as

δ =

{
1/5, if n ≤ 50, p ≤ 50,

1, otherwise.
(2.6)

The next issue is about the selection of the threshold τ . This issue is

relatively less important because of the fairly wide range of choices in the interval

(0, 1). As a compromise, the median value τ = 0.5 could be recommended to

handle the overestimation and underestimation. However, we note that the term

log(p · n), when p and n are large, could result in a relatively large cn such

that the curve of the sequence would become flatter than that with smaller

cn. In this case, choosing τ = 0.5 would more likely cause underestimation.

Additionally, an underestimated bandwidth value would cause the covariance

matrix estimator to be less accurate. Therefore, for the problem studied in this

paper, we recommend a relatively large threshold value τ = 0.75. The details

can be found in Supplementary Material showing that this value produces stable

results.
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3. Application to the Precision Matrix

When the variables of interest have a natural order, it is usually assumed

that partial correlation between two random variables is zero when their distance

is large enough. Specifically,

Assumption 4. ωij = 0 for all |i− j| > K and {1/(p−K)}
∑p−K

l=1 |ωll+K | > 0.

The bandwidth of the precision matrix Ω = Σ−1 = (ωij)p×p is K. Similarly

to the covariance matrix case, let Xi = (Xi1, . . . , Xip)
⊤ ∈ Rp for i = 1, . . . , n

be the observations collected from the ith subject. Here, Xi is independent and

normally distributed with mean zero and covariance matrix Σ. The Cholesky

decomposition of Σ is

Σ = LDL⊤,

where L is a lower triangular matrix whose diagonal elements are all equal to 1

and D is a diagonal matrix. Let T = L−1 = (tij)1≤i,j≤p, then the precision matrix

Ω = Σ−1 can be written as

Ω = T⊤D−1T.

Let εi = TXi. An, Guo and Liu (2014) showed that if the bandwidth of Ω is K,

then

Xij =

{
εij, for j = 1,∑j−1

q=(j−K)1
(−tjqXiq + εij), for j > 1,

(3.1)

where (j−K)1 = max{1, j−K}, the elements of εi are independent and normally

distributed with mean zero, and the covariance matrix of εi is D. When the

precision matrix Ω has a band structure, Rothman, Levina and Zhu (2009a)

showed that the Cholesky factor T has the same bandwidth K as Ω. We can

then turn to estimate the bandwidth of T .

Let M be an upper bound of K, t
(k)
j = (tj,(j−k)1 , . . . , tj,j−1)

⊤, χ = (X1, . . . ,

Xn)
⊤, and χj be the jth column of χ, χ

(k)
j = (χ(j−k)1 , . . . , χj−1). By fitting the

regression equation (3.1), we can define an estimator t̂
(M)
j of t

(M)
j as:

t̂
(M)
j = −(χ

(M)
j

⊤
χ
(M)
j )−1χ

(M)
j

⊤
χj. (3.2)

Let l(k) = {1/(p− k)}
∑p−k

l=1 |tl+k,l|. Then an estimator of l(k) is defined as

l̂(k) =
1

p− k

p∑
j=k+1

|t̂(M)
j,j−k|, k = 0, . . . ,M, (3.3)

where t̂
(M)
j,j−k stands for the {j − k − (j −M)1 + 1}th element of t̂

(M)
j .

Remark 3. Without the band structure of Ω, the regression equations are Xi1 =

εi1 and Xij =
∑j−1

q=1(−tjqXiq + εij) for j > 1. In the case of large p and small

n, the estimates of T obtained by fitting these regression equations may not
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work well, some regularization of T is often imposed (Levina, Rothman and Zhu,

2008; Huang et al., 2006). However, if Assumption 4 holds and M < n, a good

estimator of T can be constructed in the large p and small n setting.

The following two theorems state the estimation consistency of relevant

statistics.

Theorem 3. Suppose that Xi, for i = 1, . . . , n, are independent identically

normally distributed. Under Assumption 4, if K ≤ M < n, then

P

(
max

0≤k≤M
|l̂(k)− l(k)| > C1γn

)
= op(1),

as min{n, p} → ∞, where C1 is a constant and γn = O(
√
log p/n).

Based on Theorem 3, we can similarly define an objective function as that

in (2.2):

r̂(k) =
l̂(k + 1) + c̃n

l̂(k) + c̃n
, for 0 ≤ k ≤ M − 1, (3.4)

where the choice of c̃n is discussed in the following theorem. Thus, the bandwidth

K of the precision matrix can be estimated as: for 0 < τ < 1,

K̂ = argmax
0≤k≤M−1

{k : r̂(k) ≤ τ} . (3.5)

Like that in Subsection 2.3, we also recommend the thresholding value τ = 0.75,

and the bandwidth upper bound M1 = max{min{[p/4], [n/2]}, 20}. The ridge c̃n
is similarly defined as:

c̃n = δ log(n) max
M1≤k≤M2

|l̂(k)|, (3.6)

where δ is the same value defined in (2.6) and M2 = min{[λM1],M − 1} with

λ ∈ (2, 3). The following theorem states the estimation consistency.

Theorem 4. Under the normality assumption of Xi and Assumption 4, when

c̃n → 0, c̃n/l(K) → 0 and c̃n
√
n/ log p → ∞, then P (K̂ = K) → 1, as n, p → ∞.

We have obtained bandwidth estimators of the covariance matrix and pre-

cision matrix with band structure using the proposed ridge ratio thresholding

method. We also discuss how to apply the estimated bandwidth to estimating

the covariance matrix and precision matrix and give the properties of the

corresponding estimators in Supplementary Material.
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4. Numerical Studies

In this section, we will utilize several numerical studies first to select the

appropriate value of λ and then assess the finite sample performance of the

proposed method and compare it with some state-of-the-art approaches.

4.1. Selection of λ

Consider two covariance structures similarly to the examples in Qiu and Chen

(2015). The data generation process used in this experiment is as follows:

Xi = Σ1/2Zi, with Zi = (Zi1, . . . , Zip)
⊤,

where Zij are generated i.i.d. from N(0, 1) and Σ = (σij)1≤i,j≤p is the covariance

matrix. Consider the two designs as:

1. σij = 3−|i−j|/2I(|i− j| ≤ K), for K = 4,

2. σij = I(i = j) + 0.2I(0 < |i− j| ≤ K), for K = 8.

In this example, we consider the true bandwidth to be K = 4, 8 in two

scenarios: n = 50, p = 300; and n = 200, p = 100. We search for a value of

λ by maximizing the correct rate of the determined bandwidth in the interval

[1, 3] with the grid points 1 : 0.2 : 3. For each λ, we performed 50 replications to

obtain the mean and correct rate. Figures 1 and 2 plot the mean values and the

correct rates of the determined bandwidth for different λ.

Obviously, from these two figures, the proposed method is not very sensitive

to the choice of λ when it is within the interval [2, 3], and its correct rate well

keeps equal to 100%. The numerical studies not reported in this paper indicate

that when λ > 3, the correct ratio also keeps equal to 100%. Therefore, it is

sensible to recommend the median value of 2.5 as a suitable value of λ.

4.2. Simulation study

In this subsection, we consider two sets of numerical experiments below. The

first set, including Examples 1–3, is used to compare our method with Qiu and

Chen’s estimator in Qiu and Chen (2015) and Bickel and Levina’s estimator in

Bickel and Levina (2008).

Write our method and their methods as VCC, QC, and BL, respectively, and

use “True” to indicate the true bandwidthK. To make a fair comparison between

QC and VCC, we adopt the same upper bound M1 = max{min{[n/2], [p/4]}, 20}
ofK. We search for the minimum value point for BL and QCmethod in 0, . . . ,M1.

The second set, including Example 4, forces on precision matrix and compares

VCC with the hypothesis testing procedure (Backward-Forward procedure) in

An, Guo and Liu (2014). Each experiment is repeated 100 times for QC and VCC

throughout this subsection. Compared with the Backward-Forward procedure,
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Figure 1. The results of λ and the estimated bandwidth mean under the covariance
structure (1).

the replication time is 1,000, so the Type I error can be well controlled.

The data are generated from

Xi = Σ1/2Zi, with Zi = (Zi1, . . . , Zip)
⊤,

where Zij are i.i.d. respectively from N(0, 1) and t5 that denotes the standardized

t-distribution with degrees 5 of freedom.

Example 1. Consider the following example similarly to that in Qiu and Chen

(2015) but with truncated covariance matrix Σ = (σij)1≤i,j≤p as:

A. σij = θ−|i−j|I(|i− j| ≤ K), with K = 5 and θ = 0.7−1;

B. σij = I(i = j) + ξ|i − j|−βI(0 < |i − j| ≤ K), with K = 2, ξ = 0.5 and

β = 1.5.

We design the same samples sizes and dimensions as those in Qiu and Chen

(2015), which are n = 40, 60 and p = 40, 200, 400, 1000, respectively.

Tables 1 and 2 report the mean and standard deviations of the estimated

bandwidth by these three methods. The results show that VCC has the best
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Figure 2. The results of λ and the estimated bandwidth mean under the covariance
structure (2).

Table 1. Mean and standard deviation of the estimated bandwidth by VCC, QC, and
BL under the covariance structure A in Example 1.

Covariance (A) with θ−1 = 0.7

Normal t-distribution

n p True VCC QC BL True VCC QC BL

40 40 5 4.72(1.301) 6.34(1.387) 5.56(1.833) 5 4.80(0.876) 6.32(1.377) 5.56(2.392)

40 200 5 4.75(0.956) 6.56(1.343) 8.70(4.446) 5 5.12(0.782) 6.76(1.386) 8.76(5.142)

40 400 5 4.86(0.492) 6.39(1.392) 9.94(5.199) 5 4.80(0.568) 6.46(1.396) 9.90(5.390)

40 1,000 5 5(0) 6.21(1.402) 10.64(5.524) 5 5(0) 6.36(1.375) 10.74(5.677)

60 40 5 4.97(1.086) 6.35(1.359) 5.34(1.683) 5 4.94(0.565) 6.39(1.355) 5.94(2.182)

60 200 5 4.77(0.583) 6.28(1.386) 10.85(6.428) 5 4.80(0.538) 6.24(1.319) 11.89(8.128)

60 400 5 5(0) 6.68(1.385) 11.64(6.844) 5 5(0) 6.44(1.366) 16.54(7.830)

60 1,000 5 5(0) 6.62(1.316) 14.14(8.600) 5 5(0) 6.38(1.376) 16.96(8.856)

performance with less deviation among the three contenders, and QC has a better

performance than BL.

As the dimension p increases, the deviation and standard deviation decrease,

while QC and BL do not. When p = 1000, VCC’s deviation and standard

deviation are equal to 0. This means that VCC always makes the correct decision

in this simulation.
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Table 2. Mean and standard deviation of the estimated bandwidth by VCC, QC, and
BL under the covariance structure B in Example 1.

Covariance (B) with ξ = 0.5, β = 1.5

Normal t-distribution

n p True VCC QC BL True VCC QC BL

40 40 2 2.35(1.225) 3.51(1.322) 3.46(2.346) 2 2.35(1.086) 3.38(1.316) 4.10(2.576)

40 200 2 1.91(0.795) 3.34(1.307) 6.67(4.803) 2 1.83(0.377) 3.39(1.286) 9.48(5.926)

40 400 2 2(0) 3.79(1.258) 8.20(4.872) 2 1.98(0.140) 3.47(1.283) 10.79(6.256)

40 1,000 2 2(0) 3.29(1.274) 9.20(5.737) 2 2(0) 3.61(1.263) 10.42(5.919)

60 40 2 2.29(0.795) 3.37(1.308) 3.36(1.967) 2 4.63(0.847) 3.20(1.310) 2.49(2.977)

60 200 2 2(0) 3.40(1.223) 7.45(6.195) 2 1.97(0.171) 3.46(1.329) 10.86(7.702)

60 400 2 2(0) 3.22(1.307) 9.41(7.354) 2 2(0) 3.52(1.306) 14.93(9.305)

60 1,000 2 2(0) 3.23(1.302) 11.03(9.220) 2 2(0) 3.30(1.291) 15.13(10.051)

Table 3. Mean and standard deviation of the estimated bandwidth by VCC and BL for
Example 2.

Mean(Std)

p H True(K) VCC BL QC

10 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0)

10 0.7 5 5(0.0) 5.0(2.8) 2.6(0.7)

100 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0)

100 0.7 4 4(0.0) 4.9(3.2) 17.0(9.8)

200 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0)

200 0.7 3 3(0.0) 4.5(2.7) 24.6(16.1)

Example 2. This model with normal data is similar to the example in Bickel

and Levina (2008): Σ = (σij)1≤i,j≤p with

σij =
1

2

(
||i− j|+ 1|2H − 2|i− j|2H + ||i− j| − 1|2H

)
I(|i− j| ≤ K).

The sample size and the dimension are n = 100 and p = 10, 100, 200

respectively. The results are summarized in Table 3. The results clearly show

the superiority of VCC to BL and QC.

Example 3. To further check the performance of VCC under banding structures,

consider the following covariance structure:

σij = I(i = j) +
K∑
l=1

ξl−β/2I(|i− j| = l),withξ = 0.5 and β = 0.9

with larger bandwidths K = 4, 13, 19. The sample sizes and dimension are n =

50, 100 and p = 50, 500, 1000, respectively. Table 4 reports the averages, standard

deviations, and frequencies of the bandwidth estimators by QC and VCC. Some

findings from Table 4 are as follows.
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Table 4. Mean, standard deviation, and frequencies of the estimated bandwidth by VCC
and QC for Example 3.

Example 3

Mean(Std) frequencies under VCC frequencies under QC

n p true(K) VCC QC K̂ < K K̂ = K K̂ > K K̂ < K K̂ = K K̂ > K

50 50 4 4.35(1.120) 11.36(5.943) 2 92 6 0 24 76

50 500 4 4(0) 13.73(7.802) 0 100 0 0 22 78

50 1,000 4 4(0) 14.13(8.553) 0 100 0 0 24 76

100 50 4 4(0) 12.37(6.350) 0 100 0 0 22 78

100 500 4 4(0) 24.08(17.176) 0 100 0 0 14 86

100 1,000 4 4(0) 27.33(17.044) 0 100 0 0 16 84

50 50 13 11.43(6.627) 15.91(2.878) 28 61 11 0 36 64

50 500 13 13.95(2.396) 18.98(4.948) 7 85 8 0 26 74

50 1,000 13 13.31(1.361) 18.74(4.898) 0 94 6 0 26 74

100 50 13 13.11(4.364) 16.26(2.953) 0 100 0 0 31 69

100 500 13 13.34(1.430) 31.53(14.239) 0 94 6 0 14 86

100 1,000 13 13(0) 29.06(14.083) 0 100 0 0 19 81

50 50 19 12.89(1.100) 19.41(0.9331) 58 34 8 0 39 61

50 500 19 19.28(0.792) 22.36(2.5605) 0 86 14 0 26 74

50 1,000 19 19.21(0.795) 21.65(2.532) 0 93 7 0 35 65

100 50 19 11.72(3.662) 19.41(0.494) 17 77 6 0 59 41

100 500 19 19.44(1.929) 33.78(12.387) 0 94 6 0 22 78

100 1,000 19 19(0) 33.79(12.194) 0 100 0 0 21 79

First, when K = 4, VCC has stable results and a high frequency of correct

decisions, while QC tends to mate the bandwidth grossly. Moreover, except for

the cases of p = 50 and n = 50, in more detail, QC has a lower proportion of

correct decisions, less than 35%. Except for the cases of n = 50 and p = 50, VCC

can have more than 75% of correct decisions, and when K = 4, the proportion

of correct decisions of VCC is 100%. The performance of VCC is significantly

better than QC. Secondly, as the value of K increases, the standard deviation of

VCC increases reasonably, and the proportion of correct decisions decreases.

Let Mn(k) = (1/p)
∑

|l1−l2|>k σ
2
l1l2

+ (1/np)
∑

|l1−l2|≤k σl1l1σl2l2 and M̂n(k)

denote the estimator of Mn(k) defined in Qiu and Chen (2015). Figures 3 and

4 plot the curves of the objective functions of QC and VCC at the population

level and their box plots at the sample level, respectively. The box plots in

Figures 3 and 4 show the advantage of discontinuity of the objective function

we defined and the results of QC. We can observe that for k > K, almost all

values of ŝ(k) are above the threshold 0.75 and ŝ(K) is much smaller than 0.75.

Further, when p = 100, p = 1000 and K = 19, ĥ(1) attains the global minimum.

But the discontinuity at the true bandwidth K greatly separates ŝ(K) from all

consecutive ratios. This explains why VCC performs better than QC and BL.

In summary, VCC works better than QC and BL; in some cases, the

advantage is very significant.

Now we examine the finite sample performance of VCC for precision matrix
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Figure 3. The true curves of s(k) and boxplots of ŝ(k) for Example 3 with K = 4, 19.

and compare it with the hypothesis testing procedures (Backward and Forward

procedure) developed in An, Guo and Liu (2014). We write them as BackE

and ForE. Because of an inverse matrix involved in their computing process, An,

Guo and Liu (2014) considered the upper bound M = 2K in their estimating

algorithm. Again, we adopt the model used in An, Guo and Liu (2014) for a fair

comparison.

Example 4. Consider the following precision matrix Ω = (ωij) with

Ωij = I(i = j) +
K∑
l=1

3−l/2I(|i− j| = l),

where K = 2, 4, 6, 8. The results are reported in Table 5.

The results of the three methods in Table 5 clearly show that when K ≤ 6,

BackE performs well, and VCC works similarly to BackE. ForE is not as good as

VCC and BackE. When K = 8, the performance of BackE is much worse than

VCC.
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Figure 4. The true curves of Mn and boxplots of M̂n for Example 3 with K = 4, 19.

Table 5. Percentages (%) of correct identifications of K by our proposed method(VCC)
and Backward and Forward estimators (AGL) for the normally distributed data in
Example 4.

p

30 100 200 500 1,000

n VCC Backward Forward VCC Backward Forward VCC Backward Forward VCC Backward Forward VCC Backward Forward

K = 2

50 100 97.5 99.8 97.3 98.9 99.5 99.2 98.6 99.7 99 99 99.8 100 98.8 99.7

200 99.1 97.4 99.9 100 98.6 99.8 100 99.2 99.7 100 98.8 99.8 100 99.1 100

400 100 97.3 99.6 100 98.4 99.8 100 99 99.8 100 98.8 100 100 99.3 100

K = 4

50 92.4 73.6 7.5 100 99 52 99.5 99.2 83.8 99.7 99.5 99.8 99.8 99.7 99.9

200 98.3 98.8 98 99 99.2 99.7 100 99.5 99.8 100 98.9 99.8 100 99.7 99.7

400 100 98.6 99.6 100 99.4 99.9 100 99.1 99.8 100 99.7 99.7 100 99.4 99.9

K = 6

50 17.7 1.5 0 39.3 2.4 0 75.1 4.9 0 100 16.2 0.4 100 47.9 0.2

200 59.3 18.7 0.4 94.1 72.7 5.7 100 96.4 14.5 99.2 99.8 47.6 100 100 84.7

400 83.5 67.1 7.6 100 99.8 38.7 99 99.6 70.8 100 99.5 99.3 100 99.8 99.6

K = 8

50 11.1 0 0 3 0 0 6 0 0 31.1 0 0 59.4 0 0

200 5 0 0 11.3 0 0 35 0 0 76.5 0 0 98 0 0

400 18.3 0 0 23.2 0 0 64.3 0 0 96 10 20 100 4 2
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Figure 5. The value of the estimated ĥ(k) and l̂(k) under two types of Sonar data.

4.3. Two real data examples

In this subsection, we illustrate the application of VCC to the sonar data

and the ionospheric data. Both datasets are available in the UCI database.

4.3.1. Sonar dataset

This data set was analysed in Yi and Zou (2013) and Qiu and Chen (2015).

There are 218 observations, 60 input variables, and one output variable. The

output target is mine or rock, of which 97 are from rock and 111 from mine. They

were considered two data sets, and two corresponding matrices were estimated. Yi

and Zou (2013) found that the values on the diagonal of the sample covariance

matrix decayed significantly along the direction away from the diagonal. This

finding shows the banding structure that combines the sample covariance matrix

with the estimated bandwidth yields better results. Figure 5 plots the curves of

the function ĥ(k) on the covariance matrix defined in (2.3) and the function l̂(k)

on the precision matrix defined in (3.3). It can be found that the covariance

matrix has a clear hierarchical nature and the accuracy matrix has a large

variation in the subdiagonal. Thus, assuming that the covariance matrix has

a potentially bundleable structure is reasonable.

Different methods yielded different estimated bandwidths for the covariance

matrix. Qiu and Chen (2015) and Bickel and Levina (2008) derived bandwidth

estimators of 26 and 37 (QC) and 35 and 44 (BL) for the rock and mine classes,

respectively. The proposed VCC gives values of 3 and 27 for the rock and metal

groups, respectively. The estimated ŝ(k) are shown in Figure 6.

To examine the estimation efficiency of these three methods, we used linear

discriminant analysis for data classification. Here, the sample covariance matrix

used in the linear discriminant analysis is replaced with a banding sample

covariance matrix that combines the estimated bandwidths obtained by the above

methods. The output correct rates were 0.6394 (VCC), 0.5769 (QC), and 0.5337
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Figure 6. The value of the estimated ŝ(k) under two types of Sonar data.

(BL), respectively. The performance of the three classifiers demonstrates the

superiority of VCC concerning QC and BL.

4.3.2. Ionospheric dataset

Ionospheric data are mainly used to predict atmospheric structure based on

radar echoes of free electrons in a given ionosphere. This is a binary classification

problem. The data set consists of 351 observations, 34 input variables, and, one

output variable, including two types of labels, “g” and “b” for “good” and “bad,”

respectively. Similarly, Figure 8 plots the line graphs of the function ĥ(k) defined

in (2.3) and the function l̂(k) defined in (3.3). It is clear that as k increases,

ĥ(k) gradually approaches zero, but l̂(k) does not. Therefore, it is reasonable to

consider the frequency banding assumption on the covariance matrix. Then we

estimate the bandwidth to obtain an effective classifier. The estimator based on

VCC is 26. The classifier for the sonar data is obtained using linear discriminant

analysis. The corresponding accuracy is 0.8666. When applying QC and BL, the

estimated bandwidths are 29 and 20, and the accuracies of the corresponding

classifier is 0.8547 and 0.8575, respectively. The estimated ŝ(k) is shown in

Figure 8.

5. Conclusion

This paper proposes a novel approach called “valley-cliff criterion” (VCC)

to determine the band sizes of the large-dimensional covariance matrix. It

can also apply to the bandwidth selection problem of the precision matrix.

The new approach is computationally efficient, and the resulting estimation

is consistent. Unlike the traditional methods that construct a convex/concave

objective function to search for a minimizer/maximizer as an estimator, the key

feature of the new criterion is its discontinuity of the objective function at the

true bandwidth such that the corresponding value of the objective function can
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be significantly stood out for identification. Our method can be nested in a class

of regularized estimators of covariance and precision matrices. This methodology

should have the potential to be applied to other order determination problems

with large-dimensional covariance matrices. The research is ongoing.

Supplementary Material

In the online Supplementary Material, we discusses how bandwidth esti-

mation can be applied to the estimation of covariance matrices and precision

matrices. This Supplementary Material also contains the part of numerical

studies and all proofs of the theoretical results.
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