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Abstract: The extensive coverage of suicides in the media has long been considered

a trigger for copycat suicides. However, evidence of such an effect is indirect and,

thus, inconclusive. Here, we propose a flexible threshold autoregressive model to

examine whether suicides reported in the media influence actual suicides and, thus,

identify a possible copycat effect. In particular, we employ a penalized smoothing

least squares estimator to conveniently estimate the parameters and unknown func-

tions of the proposed model. We evaluate the performance of the proposed method

using simulation studies, and examine the asymptotic behavior of the correspond-

ing estimators under mild regularity conditions. Lastly, we apply our model to

investigate the relationship between the daily suicide incidence and the number of

suicides reported in a top-selling tabloid newspaper in Hong Kong between Jan-

uary 2002 and December 2006. Our results identify a copycat suicide effect due

to excessive media reporting, as well as the threshold number of reports that may

trigger such an effect.

Key words and phrases: Autoregressive model, copycat suicide effect, penalized

smoothing least squares estimator, threshold model, time series data.

1. Introduction

Numerous studies have investigated whether media coverage of suicides re-

sults in copycat suicides (Phillips (1974); Pirkis and Blood (2001); Chen, Chen

and Yip (2011); Niederkrotenthaler et al. (2012); Niederkrotenthaler and Stack

(2017)). Here, suicides of celebrities have been found to have a significant so-

cial effect (Yip et al. (2006); Fu and Yip (2007); Chen et al. (2013)). However,

evidence of such effects is indirect, inconclusive, and not specific. In addition,

no studies have attempted to identify number of reports that triggers a copycat
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effect.

To examine whether the number of suicides reported in the media is related

to actual suicide incidence, we record the coverage of suicides in a popular Hong

Kong-based tabloid newspaper, the Apple Daily (AD). The AD is the mostly

widely circulated community newspaper in Hong Kong, with a readership of more

than two million (the total population of Hong Kong is about seven million) and,

thus, a high household penetration rate. Furthermore, the AD is well known for

its reports on celebrities, gossip, and scandals. Capturing a wide readership using

sensationalism, exaggerated headlines, and attention-grabbing graphic images,

the AD quickly became a top-selling newspaper in Hong Kong soon after its

first issue in 1995. Unfortunately, such exaggerated media reporting has serious,

adverse implications for the media industry (Chen et al. (2013)).

The Hong Kong suicide rate was particularly high between 2002 and 2006,

especially in 2003. The SARS epidemic between March and May of 2003 seri-

ously affected Hong Kong, resulting in a record unemployment rate of 8.6 and a

historically highest suicide rate. Furthermore, after the death of a celebrity, Mr.

Leslie Cheung, on April 1, 2003, the suicide rate surged by more than 20% in

the subsequent four to six weeks, and remained at a high level until the end of

that year (Yip et al. (2006)). The media coverage of Mr. Cheung’s death was

extensive and sensational. In addition, the number of charcoal-burning suicides

rose to a historical level, since the first recorded case in 1997, of about 320 people

in 2003, contributing significantly to the increase in the suicide rate during that

period (Law et al. (2014)). The spread of charcoal-burning suicides has also been

linked to media reports and Google searches in Taiwan (Chang et al. (2015)). The

World Health Organization, International Association of Suicide Prevention, and

many other organizations and press associations have issued guidelines on how

to report suicide incidences (World Health Organization (2014)).

Based on a Poisson time series autoregression model, Chen, Chong and Bai

(2012) examined whether the widespread media reporting of the suicide of a

young female singer by charcoal burning increased suicide rates in Taiwan. Their

results confirmed that a detailed description of the method used by a celebrity

to commit suicide may incur a strong copycat effect. Cheng et al. (2007) found

a mutual causation between suicide reporting and suicide incidence; that is, an

increase in the number of reported suicide triggers more actual suicides, and

an increase in the number of actual suicides results in more reported suicides.

Consequently, the effect of media coverage on actual suicides is multiplicative

and interactive, and not linear. However, evidence of copycat suicide effects
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remains indirect and unclear (Cheng, Chang and Yip (2012); Chen, Chen and

Yip (2011)).

Using online search tools, we collected daily data on the number of AD

headlines containing key words (in Chinese) related to suicidal behavior (e.g.,

“suicide,” “building jumping,” “charcoal burning,” or “hanging”) for the period

January 2002 to December 2006. Data on the daily numbers of suicides are

obtained from the Coroner’s Court, which is responsible for certifying any un-

natural cause of death (including suicide). The main purpose of this study is to

explore the relation between media coverage of suicides and suicide incidence.

Let Yt and Xt denote the number of suicides and the number of reports in

AD on day t (t = 0, . . . , n), respectively. Two characteristics are incorporated

into the model. The first is whether a copycat suicide effect exists. Researchers

believe that the effect of Yt−j on Yt is amplified if suicides are reported extensively

in the media. However, it is not clear how many reports are required to trigger

this amplified effect of Yt−j on Yt. Second, the effect of previous media coverage

Xt−j and previous suicides Yt−j on Yt may depend on the time gap j, such that

the effects are stronger for more recent media coverage on suicides, and may

diminish over time. If so, it is important to know when and how previous media

coverage and previous suicides cease to have an effect. To address these issues,

we propose the following model:

E {Yt|Xs, Ys, s < t} = µ+

p∑
j=1

α1(j)Yt−j +

q∑
j=1

α2(j)Xt−jI(Xt−j ≥ c1)

+

w∑
j=1

α3(j)Xt−jYt−jI(Xt−j ≥ c2), (1.1)

where α1(j), α2(j), and α3(j) quantify the correlations between observations

over time and, thus, reflect when and how previous media coverage and previous

suicides cease to have an effect; c1 and c2 are unknown threshold parameters that

relate to the occurrence of a copycat suicide effect; p, q, and w are the maximum

time gaps for the second to the fourth term, respectively, of the right-hand side of

(1.1) to be nonzero. The main goals of this model are to determine the threshold

parameters ck and to estimate the size of the effects α2(j) and α3(j), if a copycat

effect occurs.

First, the proposed model (1.1) is a threshold model. Existing threshold

models can be grouped into two broad categories. In the first, only one threshold

variable is included in the model. This threshold variable can be an actual vari-
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able (Hanse (1999, 2000); Chan (1993); Caner and Hansen (2001, 2008);Qian

(1998); Koop and Potter (1999); Delgadoa and Hidalgo (2000); Li and Ling

(2012)) or a combination of multiple variables (Seo and Linton (2007); Chen

and So (2006); Tsay (1998)). In the second category, multiple threshold vari-

ables are included in the model. Chen, Chong and Bai (2012) proposed a two-

threshold variable autoregressive (TTV-AR) model and applied a grid search

approach to estimate the threshold values. Ni, Xia and Liu (2018) proposed a

Bayesian stochastic search variable selection method to study subsets selected us-

ing the TTV-AR model and to estimate the parameters simultaneously. Wu and

Chen (2007) proposed a threshold-variable-driven switching AR model, where

the threshold variable is a random latent (unobservable) indicator that depends

on the covariates through link functions.

Statistical inferences on the threshold model in (1.1) cannot be solved using

a traditional regression problem, because they include the unknown threshold pa-

rameters ck. A common practice is to estimate the thresholds using a simple grid

search method. Here, the threshold estimates are obtained from the point yield-

ing the least squared error across an arbitrarily finite number of candidate points.

The computation time required for a grid search on G grid points is O(G2), which

is computationally costly for large G. The threshold parameters also make it dif-

ficult to derive the asymptotic distributions of the resulting estimators, because

standard asymptotic methods require a smooth criterion function, which is not

the case in our model. In this paper, we propose a smoothing technique to solve

this problem. The computation with the proposed method is straightforward,

and can be accomplished using a standard Newton–Raphson algorithm. Fur-

thermore, this smoothing technique helps us to establish the asymptotic theory

and construct a sandwich formula to estimate the variances of the estimators.

There is an additional issue related to the estimations of αk(j), for k = 1, 2, 3.

Because j takes a finite number of values, we can specify each αk(j) as a separate

parameter. We call this a simple parametric method. This simple approach may

lose information because αk(j), in general, varies slowly over j; that is, αk(j)

is smooth, in some sense. A popular method that incorporates this smoothness

is the nonparametric smoothing technique. However, because the arguments

of αk(·), for k = 1, 2, 3, are discrete and finite, the traditional nonparametric

method does not fit. In this paper, we propose a penalized least squares method

to incorporate the smoothness of αk(·) using discrete and finite arguments.

The paper proceeds as follows. In Section 2, we introduce the flexible thresh-

old autoregressive (FTAR) method, and then establish its asymptotic properties
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in Section 3. Section 4 discusses the bandwidth and tuning parameter selection.

Numerical simulations and analyses of Hong Kong suicide data using the FTAR

procedure and other methods are provided in Sections 5 and 6, respectively. Sec-

tion 7 concludes the paper. All technical proofs are deferred to the Appendix.

2. FTAR Estimation

For notational simplicity, we set p = q = w by replacing p, q, and w in

model (1.1) with the maximum of p, q, and w and setting some αk(j) to zero.

Let Vt = (Vt1, . . . , Vtp)
′ ≡ (Yt−1, Yt−2, . . . , Yt−p)

′ and Xt = (Xt1, . . . , Xtp)
′ ≡

(Xt−1, . . . , Xt−p)
′. Denote αk = (αk(1), . . . , αk(p))

′, for k = 1, 2, 3, and c =

(c1, c2)′ and Θ = (µ,α′1,α
′
2,α

′
3, c
′)′. Here, Θ represents all parameters defined

in model (1.1).

First, we develop estimators for c1 and c2. The objective least squares

function is not continuous with respect to c1 or c2. This discontinuity, which

stems from the indicator functions I(Xtj > ck), makes deriving the asymp-

totic distributions of the estimators computationally difficult (Sherman (1993);

Han (1987); Faraggi and Simon (1996)) Here, we solve the discontinuity prob-

lem using the kernel smoothing technique (Brown and Wang (2005); Lin, Yip

and Huggins (2011)). Let Φ denote the standard normal distribution function.

Note that if Xtj > ck, Φ ((Xtj − ck)/h) → 1 as h → 0, whereas if Xtj < ck,

Φ ((Xtj − ck)/h) → 0, where the bandwidth h goes to zero as the sample size

increases; that is, Φ ((Xtj − ck)/h) → I(Xtj > ck). The inequality (B.3) in the

proof in Appendix B shows that when h is sufficiently small, the error from the

approximation is negligible. Rather than a normal approximation, other ap-

proximations for I(Xtj > ck), such as a sigmoid approximation (Ma and Huang

(2007)), can also be used. These simplify the computation of Θ (especially for

c), which can be accomplished using a standard Newton–Raphson iterative algo-

rithm. Finally, to incorporate that αk(j), for k = 1, 2, 3, vary slowly over j, we

estimate Θ by minimizing the following penalized least squares function:

Ln(Θ) = ln(Θ) + λJ(α1,α2,α3) (2.1)

with respect to Θ, where

ln(Θ) =
1

n

n∑
t=1

[
Yt − µ−

p∑
j=1

α1(j)Vtj .
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−
2∑

k=1

p∑
j=1

αk+1(j)XtjV
k−1
tj Φ

(
Xtj − ck

h

)]2

, (2.2)

λ is a tuning parameter, and J(α1,α2,α3) is a penalty function that enforces the

smoothness on αk(·), for k = 1, 2, 3. The choice of penalty function J(α1,α2,α3)

is crucial. Note that αk(j) varies slowly over j, and the argument of αk(·) is an

ordinal variable. Therefore, we may assume that αk(·) changes smoothly between

any two adjacent levels j and j + 1. This leads to a quadratic second-order

difference penalty,

J(α1,α2,α3) =

3∑
k=1

wk

p−1∑
j=2

{αk(j + 1)− 2αk(j) + αk(j − 1)}2 , (2.3)

where wk, for k = 1, 2, 3, are weights for each coefficient function. The weights

wk are introduced to make the quadratic second order for αk(·) comparable by

taking variations of corresponding variables into account. Consequently, we can

avoid using separate tuning parameters for each αk(·). In the simulation studies

and the real-data analysis, we choose w1 = median{SD(Vtj), j = 1, . . . , p}, w2 =

median{SD(Xtj), j = 1, . . . , p}, and w3 = median{SD(XtjVtj), j = 1, . . . , p}.
The simulation results suggest those choices perform well. This penalty mimics

the cubic spline by penalizing the L2-norm of the discrete version of the second-

order derivatives of the coefficients αk(·), which encourages the smoothness of

the coefficients (Guo et al. (2015)). Compared with the fused lasso penalty

(Tibshirani et al. (2005)), the above penalty (2.3) is computationally simple and

captures smoothly varying features.

It is straightforward to develop a Newton–Raphson algorithm to solve the

minimization problem given in (2.1). The following notation is necessary to

present the gradient and Hessian matrix of Ln(Θ). Let α = (α′1,α
′
2,α

′
3)′, and

let φh(x) = φ(x/h)/h, where φ(·) is the standard normal density function and

φ̇h(x) = ∂φh(x)/∂x is the derivative of φh(x). Then, Υtj1(Θ) = Vtj , Υtjk(Θ) =

XtjV
k−2
tj Φ ((Xtj − ck−1)/h), for k = 2, 3, Υtk(Θ) = (Υt1k(Θ), . . . ,Υtpk(Θ))′, for

k = 1, 2, 3, and Υt(Θ) = (Υt1(Θ)′,Υt2(Θ)′,Υt3(Θ)′)′; Υtjk(Θ) = XtjV
k−2
tj φh(Xtj

−ck−1) and Υtk(Θ) = (Υt1k(Θ), . . . ,Υtpk(Θ))′, for k = 2, 3; Υ̇tjk(Θ) = XtjV
k−2
tj

φ̇h (Xtj − ck−1), and Υ̇tk(Θ) = (Υ̇t1k(Θ), . . . , Υ̇tpk(Θ))′, for k = 2, 3; Ω = D′D;

and
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D =


1 −2 1 0 0 · · · 0 0 0

0 1 −2 1 0 · · · 0 0 0

0 0 1 −2 1 · · · 0 0 0

· · ·
0 0 0 0 0 · · · 1 −2 1


(p−2)×p

.

First, we obtain

∂Ln(Θ)

∂µ
= − 2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]
,

∂Ln(Θ)

∂α
= − 2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]
Υt(Θ) + 2(λI3 ⊗ Ω)α,

∂Ln(Θ)

∂c1
=

2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]
α′2Υt2(Θ),

∂Ln(Θ)

∂c2
=

2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]
α′3Υt3(Θ),

where I3 is a three-dimensional identity matrix, and ⊗ denotes the Kronecker

product. Then, the gradient of Ln(Θ) is given by

g(Θ) ,
∂Ln(Θ)

∂Θ
=

(
∂Ln(Θ)

∂µ
,
∂Ln(Θ)

∂α′
,
∂Ln(Θ)

∂c1
,
∂Ln(Θ)

∂c2

)′
.

The elements for the Hessian matrix H(Θ) , ∂2Ln(Θ)/(∂Θ∂Θ′) are given

by

∂2Ln(Θ)

∂µ2
= 2,

∂2Ln(Θ)

∂µ∂α′
=

2

n

n∑
t=1

Υt(Θ)′,

∂2Ln(Θ)

∂µ∂c1
= − 2

n

n∑
t=1

α′2Υt2,c1(Θ),
∂2Ln(Θ)

∂µ∂c2
= − 2

n

n∑
t=1

α′3Υt3,c2(Θ),

∂2Ln(Θ)

∂α∂α′
=

2

n

n∑
t=1

Υt(Θ)Υt(Θ)′ + 2(λI3 ⊗ Ω),

∂2Ln(Θ)

∂α∂c1
= − 2

n

n∑
t=1

α′2Υt2,c1(Θ) +
2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]( 0
Υt2,c1

(Θ)
0

)
,

∂2Ln(Θ)

∂α∂c2
= − 2

n

n∑
t=1

α′3Υt3,c2(Θ) +
2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]( 0
0

Υt3,c2
(Θ)

)
,
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∂2Ln(Θ)

∂c21
=

2

n

n∑
t=1

[
α′2Υt2,c1(Θ)

]2 − 2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]
α′2Υt2,c1c1(Θ),

∂2Ln(Θ)

∂c1∂c2
=

2

n

n∑
t=1

(
α′2Υt2,c1(Θ)

) (
α′3Υt3,c2(Θ)

)
,

∂2Ln(Θ)

∂c22
=

2

n

n∑
t=1

[
α′3Υt3,c2(Θ)

]2 − 2

n

n∑
t=1

[
Yt − µ−α′Υt(Θ)

]
α′3Υt3,c2c2(Θ),

where Υt2,c1(Θ) = ∂Υt2(Θ)/∂c1,Υt3,c2(Θ) = ∂Υt3(Θ)/∂c2,Υt2,c1c1(Θ) = ∂2

Υt2(Θ)/∂c21, and Υt3,c2c2(Θ) = ∂2Υt3(Θ)/∂c22. Finally, using the initial value

Θ(0) for Θ, we update the estimate of Θ at the (k + 1)th iteration with

Θ(k+1) = Θ(k) −
(
H(θ(k))

)−1
g(Θ(k)),

until convergence.

To initialize the algorithm, we choose initial values of c1 and c2, for example,

c1 = c2 = mediant,jXtj . Given c1 and c2, we estimate the parameters µ and α

by minimizing the squared errors without a penalty, which is the standard least

squares problem.

3. Large-Sample Properties of the Estimators

Now, we establish the consistency and asymptotic normality of the FTAR

estimator. Without loss of generality, we assume the support of Xtj is [0, 1].

Some regularity conditions are stated in Appendix A. Denote Θ1 ≡ (µ,α′)′, and

the true values of Θ, Θ1, and c by Θ0, Θ10, and c0, respectively. The consistency

of Θ̂ is presented in Theorem 1.

Theorem 1. From Conditions A.1 to A.3 in Appendix A, it follows that

‖ Θ̂1 −Θ10 ‖= Op(n
−1/2 + λ)and ‖ ĉ− c0 ‖= Op

(√
h

n
+ λ
√
h

)
.

It is expected that there exists a root-n consistent penalized estimator for the

common regression coefficients Θ1, with λ = o(1/
√
n). However, the estimator

for c converges to the true values at rate O(
√
h/n) with λ = o(1/

√
n), which is

faster than root-n. Although a little surprising, this result is not new, and has

been observed by Seo and Linton (2007). It occurs because c is observed using

I(Xtj > c1) and I(Xtj > c2), which are indicator functions from zero to one.

The jump implies an infinite derivative and yields a large amount of information
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for c. From simulation experiments, we observe that the mean squared errors

for the estimator of c are smaller than those for other regression coefficients. See

Table 1 for details.

Furthermore, under mild conditions, the penalized smoothing estimator is

asymptotically normal.

Theorem 2. From Conditions A.1 to A.3 in Appendix A, it follows that

√
n(Θ̂1 −Θ10 + λV −1

11 b)→ N(0, V −1
11 Σ2V

−1
11 ),√

n

h
(ĉ− c0 − hλV −1

22 V ′12V
−1

11 b)→ N(0, V −1
22 Σ1V

−1
22 ),

where V11, V22, V12,Σ1,Σ2, and b are defined in Appendix B.

Therefore, both Θ̂1 and ĉ can be made asymptotically unbiased by choosing

a small tuning parameter λ = o(1/
√
n) . These proofs of Theorems 1 and 2 are

provided in Appendix C.

4. Selection of Bandwidth and Smoothing Parameter

The estimation procedure requires that we select a bandwidth h. The lead-

ing terms for the estimators of the regression parameters, Θ̂1, are independent of

the bandwidth h, indicating that h is not crucial to the asymptotic performance

of Θ̂1. The asymptotic variance and bias of ĉ are of order O(h/n) and
√
nhλ, re-

spectively, which both decrease as h decrease. Thus, a smaller h may lead to a

better estimator. However, numerical studies show that for extremely small h,

the proposed estimator may be unstable. Our extensive empirical results suggest

that h can be the minimum difference between any two values of Xt, such that

Φ((Xtj − ck)/h) well approximates the indicator function around the threshold

parameters. In practice, we can generate a sequence of h around this minimum

and find an appropriate value that generates stable estimates.

Next, we consider the smoothing parameter λ for α. Most existing tuning

parameter selection methods are designed for independent data. Cai, Fan and

Yao (2000) proposed an analogue to the cross-validation (CV) method for time

series data, and we use their method to select λ. Given a sufficiently small m,

we first use R subseries of lengths n− r×m(r = 1, . . . , R) from the beginning to

estimate the unknown coefficient functions and parameters. Then, we compute

the one-step forecasting errors for the subsequesnt section of the time series with

length m, based on the estimated model. Finally, we choose λ that minimizes



370 LIN ET AL.

the average mean squared (AMS) error, AMS(λ) =
∑R

r=1AMSr(λ), where

AMSr(λ) =
1

m

n−rm+m∑
t=n−rm+1

Yt − µ̂r −
p∑
j=1

α̂r1(j)Vtj

−
2∑

k=1

p∑
j=1

α̂rk+1(j)XtjV
k−1
tj I(Xtj ≥ ĉrk)


2

, (4.1)

and µ̂r, α̂rk(j), ĉ
r
1, and ĉr2 are estimates for µ, αk(j), c1, and c2, respectively,

based on the data {(Yt,Xt,Vt), t = 1, . . . , n − rm}, given λ, for k = 1, 2, 3, j =

1, . . . , p. Cai, Fan and Yao (2000) suggested using m = [0.1n] and R = 4.

Our simulation studies and application show that this method yields reasonable

smoothing parameters.

5. Simulation Studies

In this section, we present simulation studies that assess the finite-sample

performance of the FTAR method. We evaluate the performance of the method

by comparing it to that of the least squares method without penalty (termed

LS-UNP). In this way, we can determine the efficiency of the proposed method

as a result of incorporating the smoothness of αk(·). We are also interested in

the effects of the bandwidth h and the smoothing parameter λ on the resulting

estimators. Finally, we investigate the performance of the FTAR in choosing λn
using (4.1). The performance of the estimators is assessed using the empirical

bias and the standard deviation of the resulting estimators. Specifically, for αk =

(αk(1), . . . , αk(p))
′, we assess empirical Bias = [p−1

∑p
j=1{E∗α̂k(j)−αk(j)}2]1/2,

SD = [p−1
∑p

j=1E
∗{α̂k(j)−E∗α̂k(j)}2]1/2, and the root MSE, RMSE = (Bias2 +

SD2)1/2, where E∗(·) is the empirical expectation over 200 simulated data sets.

We simulate observations under the following model:

Yt =

p∑
j=1

α1(j)Yt−j +

p∑
j=1

α2(j)Xt−jI(Xt−j ≥ c1)

+

p∑
j=1

α3(j)Xt−jYt−jI(Xt−j ≥ c2) + εt, (5.1)

where Xt ∼ Unif(0, 4), εt ∼ N (0, 1), c1 = 2, and c2 = 3. We choose αk(j), for

k = 1, 2, 3, according to the following three cases:
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(1) if p = 15,

• α1(j) = −0.006(j − (p− 10)/2)2/((p/2− 5)2 + 0.03,

• α2(j) = −4.5(j − (p− 4)/2)2/((p/2− 2)2 + 18,

• α3(j) = −0.004(j − (p− 6)/2)2/((p/2− 3)2 + 0.02;

(2) if p = 30,

• α1(j) = −0.006(j − (p− 10)/2)2/((p/2− 5)2 + 0.0165,

• α2(j) = −4.5(j − (p− 4)/2)2/((p/2− 2)2 + 14.4,

• α3(j) = −0.003(j − (p− 6)/2)2/((p/2− 3)2 + 0.01;

(3) if p = 60,

• α1(j) = −0.006(j − (p− 10)/2)2/((p/2− 5)2 + 0.0075,

• α2(j) = −4.5(j − (p− 4)/2)2/((p/2− 2)2 + 18,

• α3(j) = −0.003(j − (p− 6)/2)2/((p/2− 3)2 + 0.006.

The idea behind these settings is that, for each p, we select α1(j), α2(j),

and α3(j) to generate similar variances for each term in (5.1). In addition, we

consider a fourth setting with c1 = 2, p = 10, and εt ∼ N (0, 0.32), in which α1(j)

and α2(j) have similar shapes to those of the real data without the interaction

term:

(4) • α1(j) = 0.0008(j − 12)2 − 0.0008,

• α2(j) = 0.004(j − 5)2 + 0.025.

For each setting, we use a sample size n = 200 and sequences of a length

n+ p to accommodate the auto-regression structure. The summary statistics of

the estimated parameters are reported in Table 1 for p = 15, 30, 60, and 10, from

which we draw the following conclusions:

(1) Both the FTAR and the LS-UNP methods are unbiased. The estimator

for c performs similarly in most of cases because there is no penalty on

c. However, the FTAR method for α1,α2, and α3 generates much smaller

standard deviations and, hence, has much smaller MSEs than those of the

LS-UNP method. This suggests that the FTAR method for α1,α2, and α3

is better than the LS-UNP method, in terms of the MSE.
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Table 1. Simulation results for p = 15, 30, 60, 10 using the proposed method with λ =
0.007, 0.60, 4.88, 1.54, respectively, and the LS-UNP method.

Proposed LS-UNP
Bias SD RMSE Bias SD RMSE

p=15 α1 0.00087 0.00793 0.00797 0.00077 0.01614 0.01616
α2 0.03005 0.16802 0.17068 0.01875 0.21356 0.21438
α3 0.00004 0.00036 0.00036 0.00003 0.00039 0.00039
c1 0.00001 0.00145 0.00145 0.00003 0.00147 0.00147
c2 0.00007 0.00108 0.00108 0.00004 0.00098 0.00098

p=30 α1 0.00105 0.00524 0.00535 0.00184 0.01681 0.01691
α2 0.08210 0.42211 0.43002 0.08953 0.62154 0.62796
α3 0.00005 0.00033 0.00034 0.00007 0.00049 0.00050
c1 0.00011 0.00178 0.00178 0.00006 0.00165 0.00166
c2 0.00004 0.00186 0.00186 0.00022 0.00296 0.00297

p=60 α1 0.000253 0.002078 0.002094 0.001629 0.021288 0.021350
α2 0.021940 0.216963 0.218070 0.033450 0.344298 0.345919
α3 0.000008 0.000112 0.000112 0.000014 0.000191 0.000191
c1 0.000019 0.000260 0.000261 0.000011 0.000131 0.000131
c2 0.000002 0.000056 0.000056 0.000002 0.000031 0.000032

p=10 α1 0.00645 0.02048 0.02147 0.00671 0.06292 0.06328
α2 0.00284 0.00947 0.00989 0.00125 0.01537 0.01542
c1 0.00013 0.00224 0.00224 0.00079 0.01127 0.01129

(2) Comparing the simulation results for p = 15, 30, 60, and 10, we see that the

differences between MSEs of the proposed method and the LS-UNP method

increases as p increases. This may be because the degrees of freedom for

the parameter space are controlled in our method as a result of smoothing

α̂k(·), for k = 1, 2, 3. In contrast, the dimension of the parameter space for

the LS-UNP method increases linearly with p.

(3) The empirical standard deviations of the proposed estimators for c1 and c2

are smaller than those for α1 and α2 under all settings in Table 1, whereas

α3 has a small MSE owing to its small scale. These results confirm the

asymptotic result in Theorem 2 that ĉ has a faster convergence rate than

α̂k, for k = 1, 2, 3.

Figures 1, 2, 3, and 4 present the estimates and 95% point-wise confidence

bands of α1(j), α2(j), and α3(j), for j = 1, . . . , p, under four settings (p =

15, 30, 60 and 10), using the proposed method with an AMS-tuned λ. The results

in Figures 1 to 4 suggest that the performance of the proposed method with

AMS-tuned parameters is satisfactory.
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α

−
α

Figure 1. Panels (1), (2), and (3) show the estimates for α1(j), α2(j), and α3(j), respec-
tively, for j = 1, . . . , 15, and the associated 95% point-wise confidence bands for p = 15
and AMS-tuned λ = 0.007.

α α

Figure 2. Panels (1), (2), and (3) show the estimates for α1(j), α2(j), and α3(j), respec-
tively, for j = 1, . . . , 30, and the associated 95% point-wise confidence bands for p = 30
and AMS-tuned λ = 0.60.

α α

Figure 3. Panels (1), (2), and (3) show the estimates for α1(j), α2(j), and α3(j), respec-
tively, for j = 1, . . . , 60, and the associated 95% point-wise confidence bands for p = 60
and AMS-tuned λ = 4.88.
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−
α

Figure 4. Panels (1) and (2) show the estimates of α1(j) and α2(j), respectively, for
j = 1, . . . , 10, and the associated 95% point-wise confidence bands for p = 10 and AMS-
tuned λ = 1.54.
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Figure 5. RMSE for p = 15, 30, 60 for various values of h, given λ = 0.007, 0.60, 4.88,
respectively.

Finally, we investigate the effect of varying h on the resulting estimates. We

fix λ at 0.44, 6.66, 30 for p = 15, 30, 60, respectively. In order to show all RMSEs

in the same figure, we scale the sequence of RMSEs over h to a one-unit variance

for each coefficient function. The scaled RMSEs against h for each parameter

are shown in Figure 5, and suggest that a smaller h is preferred. However,

extremely small h causes sensitivity to initial values. Therefore, we fix h = 0.001

for p = 10, 15, 30, and h = 0.0001 for p = 60.

6. Analyzing Hong Kong Suicide Data and Media Coverage

In order to examine whether media reports of suicides influence actual sui-

cides, we apply the proposed method to analyze the coverage of reported suicides
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Figure 6. Plots of the averaged daily numbers of suicides reported by AD and actual
suicides in Hong Kong for each week from January 2002 to December 2006.

in a Hong Kong-based tabloid newspaper (the AD) during the period January

2002 to December 2006 identified using the WISENEWS search. In total, there

were 1,827 such reports. January 2002 to December 2006 is taken as the study

period because Hong Kong’s suicide rate increased to a historical maximum,

with a rate of 18.6 per 100,000 (i.e., 1,264 suicide deaths in 2003, or an average

of about three deaths each day).

The daily number of reports are collected. Because many days do not include

such reports, we aggregate the daily numbers of suicides reported by the AD and

of actual suicides by means of a weekly average. The outcome variable Yt can

be viewed as a continuous variable. A histogram and Q–Q plot of the weekly

average show that its distribution is close to normal, which means we can apply

the proposed model. Figure 6 displays the aggregated daily numbers of reported

and actual suicides in Hong Kong for each week from January 2002 to December

2006. The raw curves in Figure 6 show some lags in the spikes between AD

reported and actual suicides.

As described in Section 1, we fit the following model on the data:

E {Yt|Ys, s < t,Xs, s ≤ t} = µ+

p∑
j=1

α1(j)Yt−j +

p∑
j=1

α2(j)Xt−jI(Xt−j ≥ c1)
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Table 2. Estimate, standard deviation, and 95% CI for thresholds.

Estimate SD 95% CI
With interaction c1 2 0.07 (1.87, 2.13)

c2 3 0.05 (2.90, 3.10)
Without interaction c1 2 0.05 (1.90, 2.10)

(1)

−

(2)

α

−
−

−

(3)

α
Figure 7. Panels (1), (2), and (3) show the estimates of α1(j), α2(j), and α3(j), respec-
tively, and the associated 95% point-wise confidence bands.

+

p∑
j=1

α3(j)Xt−jYt−jI(Xt−j ≥ c2).

First, we consider a relatively large order p = 10 to investigate the autore-

gression property. We take h = 0.001, which is close to the minimal difference

between any two values of Xt, and can generate stable estimates. The cross-

validation method defined in Section 4 yields λ = 18.71. The estimates of the

parameters and their standard deviations are shown in Table 2 and Figure 7.

The standard deviation is calculated using the resampling method described in

Fan and Yao (2003), with 500 bootstrapping samples. The results in Figure 7

show that α̂1(·) is significantly different from zero, but α̂3(·) is not significantly

different from zero.

Therefore, we refit the model by removing the interaction term. The esti-

mates for c1 are also shown in Table 2, and the estimates for α1(·) and α2(·)
are plotted in Figure 8, which are based on λ = 104.22. The estimate for α1(·)
implies that the effect of previous suicides decreases over time, as expected. The

estimate for α̂2(·) and its 95% confidence bands suggest that the copycat effect

of media coverage is at the borderline of significance, and can last up to eight

weeks. Furthermore, ĉ1 = 2 implies that a copycat suicide effect occurs when the

number of reports is greater than two.
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−
α

Figure 8. Panels (1) and (2) show the estimates of α1(j) and α2(j), respectively, based
on the model without the interaction term, and the associated 95% point-wise confidence
bands.

−
α

Figure 9. A simple time series regression model with lag 8.

For comparison purposes, we fit the data using a simple time series regression

of the form

E {Yt|Ys, s < t,Xs, s ≤ t} = µ+

p∑
j=1

α1(j)Yt−j +

p∑
j=1

α2(j)Xt−j ,

with p = 8. The estimates for α1(·) and α2(·) are plotted in Figure 9. The

results show that α̂1(·) is marginally different from zero, but that α̂2(·) is not

significantly different from zero. Comparing our results in Figure 8 with those in

Figure 9, the proposed method implies a clearer trend and a narrower confidence

band and, hence, is more efficient.
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7. Conclusion

We have proposed a flexible threshold autoregressive (FTAR) model to ex-

plore whether and how media coverage of suicides is related to the incidence

of suicides. A penalized smoothing least squares estimator is adopted to es-

timate the parameters and unknown functions. The proposed FTAR method

yields an accurate estimate for the effect of such coverage, which is confirmed

by simulation studies. Theoretical properties, including uniform consistency and

asymptotic normality, are proved under mild regularity conditions. Our model

shows that a copycat suicide effect occurs when the number of reported cases is

greater than two.

We also confirm the existence of an association between media coverage and

the incidence of suicides. Although the effect initially diminishes, later media

coverage can still trigger a copycat effect. Lastly, note that our model threshold

parameters identify the occurrence of a copycat suicide effect. It is of further

interest to investigate the pattern of such effects; however, this is left to future

research.
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Appendix

A. Appendix

Condition A.1:

1. f(x1,xr|v1,vr; r) ≤ M ≤ ∞, for all r ≥ 1, where f(x1,xr|v1,vr; r) is the

conditional density of (X1,Xr) given (V1,Vr), and f(v|x) ≤ M < ∞, where

f(v|x) is the conditional density of Vt given Xt = x.

2. The process {Xt,Vt, Yt} is α-mixing with
∑

k k
c[α(k)]1−2/δ < ∞ for some

δ > 2 and c > 1 − 2/δ, where α(k) = sup{|Pr(A ∩ B) − Pr(A)Pr(B)|;A ∈
F0
−∞, B ∈ F∞k }, Fba is the σ-algebra generated by {(Xt,Vt, Yt); a ≤ t ≤ b}.

3. E|Vt|2δ <∞, where δ is given in condition A.1.2.
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4. Xt is bounded with compact support [0, 1]p.

Condition A.2:

1. Assume that E{Y 2
1 + Y 2

l |X1 = x1,Xl = x2,V1 = v1,Vl = v2} ≤ M <∞ for

all l > 1.

2. Assume that h→ 0 and nh→∞. Further, assume that there exists a sequence

of positive integers sn such that sn →∞, sn = o(
√
nh), and (n/h)1/2α(sn)→

0, as n→∞.

3. There exists δ∗ > δ, where δ is given in condition A.1.3, such that

E{|Yt|δ
∗ |Vt = v,Xt = x} ≤M <∞

for any v and x in supports of Vt and Xt, respectively, and

α(n) = O(n−θ
∗
),

where θ∗ ≥ δδ∗/{2(δ∗ − δ)}.

4. E|Vt|2δ
∗
<∞, and n1/2−δ/4hδ/δ

∗−1/2−δ/4 = O(1).

Condition A.3:

1. Let fj be the density function of Xtj . The density function fj(·) is positive

and has continuous second derivatives on [0, 1].

2. λ→ 0, h2log(n)→ 0 and nh→∞ as n→∞.

The above conditions are used for deriving the convergence properties. Con-

ditions A.1 and A.2 are similar to those in Cai, Fan and Yao (2000).

B. Notations and Lemma

Let fj be the density function of Xtj , where fj,s(xtj , xts) is the joint density

of Xtj and Xts, Θ0 is the true value of Θ, and vk =
∫
xkφ2(x)dx.

σ2(Vt,Xt) = var(Yt|Vt,Xt),

bk(Θ) =

p∑
j=1

v0α
2
k+1(j)c2

kfj(ck)E
(
σ2(Vt,Xt)V

2(k−1)
tj |Xtj = ck

)
,
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Υtj1,0(Θ) = Υtj1(Θ),Υtjk,0(Θ) = XtjV
k−1
tj I

(
Xtj > ck−1

h

)
, k = 2, 3,

Ctk(Θ) =

p∑
`=1

αk+1(`)Xt`V
k−1
t` φ

(
Xt` − ck

h

)
,

Fk(Θ) = 2

p∑
j=1

α2
k+1(j)c2

kv0fj(ck)E[V 2
tj |Xtj = ck],

F (Θ) =

p∑
j 6=l

α2(j)α3(l)c1c2fj,l(c1, c2)E(Vtl|Xtj = c1, Xtl = c2),

κkjl = 2

p∑
m=1

αl+1,0(m)cl,0fm(cl,0)E
[
V l−1
tm [VtjI(k = 1)

+XtjV
k−1
tj I(Xtj > ck−1,0)I(k 6= 1, j 6= m)

+cl,0VtjI(cl,0 > ck−1,0)I(k 6= 1)I(j = m)]
∣∣Xtm = cl,0

]
,

ϕl(Θ) = 2

p∑
j=1

αl+1(j)clfj(cl)E(V l−1
tj |Xtj = cl),

δkjmv = 4Eσ2(Vt,Xt)Υtjk,0(Θ0)Υtvm,0(Θ0),

ζ1(Θ) =

p∑
j 6=s

α2(j)α3(s)c1c2fj,s(c1, c2)E
(
σ2(Vt,Xt)Vtj |Xtj = c1, Xts = c2

)
,

ζ2 = 4Eσ2(Vt,Xt),

$kj = 4Eσ2(Vt,Xt)Υtjk,0(Θ0),

ϑkj = 2EΥtjk,0(Θ0), ρkjmv = 2EΥtjk,0(Θ0)Υtvm,0(Θ0),

Σ11 = ζ2, Σ22 = (δ1i1j)i≤p,j≤p, Σ33 = (δ2i2j)i≤p,j≤p, Σ44 = (δ3i3j)i≤p,j≤p,

Σ12 = ($1j)j≤p, Σ13 = ($2j)j≤p, Σ14 = ($3j)j≤p, Σ23 = (δ1i2j)i≤p,j≤p,

Σ24 = (δ1i3j)i≤p,j≤p, Σ34 = (δ2i3j)i≤p,j≤p,

A11 = 2, A22 = (ρ1j1v)1≤j,v≤p, A33 = (ρ2j2v)1≤j,v≤p, A44 = (ρ3j3v)1≤j,v≤p,

A12 = (ϑ1j)j≤p, A13 = (ϑ2j)j≤p, A14 = (ϑ3j)j≤p, A23 = (ρ1j2v)1≤j,v≤p,

A24 = (ρ1j3v)1≤j,v≤p, A34 = (ρ2j3v)1≤j,v≤p,

B1 = (ϕl)l=1,2, B2 = (κ1jl)1≤j≤p,l=1,2, B3 = (κ2jl)1≤j≤p,l=1,2,

B4 = (κ3jl)1≤j≤p,l=1,2,Σ1 = diag(b1(Θ0), b2(Θ0)), V12 = (B′1, B
′
2, B

′
3, B

′
4)′,

V22 = diag(F1, F2),b = (0,α′0A
′)′,
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A =2

Ω 0 0

0 Ω 0

0 0 Ω

,Σ2 =


Σ11 Σ12 Σ13 Σ14

Σ′12 Σ22 Σ23 Σ24

Σ′13 Σ′23 Σ33 Σ34

Σ′14 Σ′24 Σ′34 Σ44

, V11 =


A11 A12 A13 A14

A′12 A22 A23 A24

A′13 A
′
23 A33 A34

A′14 A
′
24 A

′
34 A44

.
Denote Uk(Θ) = n−1

∑n
t=1Rt,k, k = 1, 2, where

Rt,k =

Yt − µ− p∑
j=1

α1(j)Vtj −
2∑

k=1

p∑
j=1

αk+1(j)XtjV
k−1
tj Φ

(
Xtj − ck

h

)
×


p∑
j=1

αk+1(j)XtjV
k−1
tj φh (Xtj − ck)

 .

Lemma B.1 Under Conditions A.1 and A.2, if h→ 0 and nh→∞ as n→∞,

we have

(a) hvar{Rt,k(Θ0)} = bk(Θ0) + o(1);

(b) h
∑n−1

j=1 |cov(R1,k(Θ0), R1+j,k(Θ0))| = o(1);

(c) nhvar{Uk(Θ0)} = bk(Θ0) + o(1).

Proof. Denote

Rt,k0 =

Yt − µ− p∑
j=1

α1(j)Vtj −
2∑

k=1

p∑
j=1

αk+1(j)XtjV
k−1
tj I (Xtj > ck)


×


p∑
j=1

αk+1(j)XtjV
k−1
tj φh (Xtj − ck)

 , k = 1, 2.

Suppose that Z is a standard normal variable. Then we have tail probability,

1− Φ(t) = P (Z ≥ t) =
1√
2π

∫ ∞
t

e−z
2/2dz ≤ 1√

2π

∫ ∞
t

z

t
e−z

2/2dz

≤ 1√
2πt

e−t
2/2,

(B.1)

for any t > 0. We first consider the case of Xtj > ck. To simplify the notation,

let x = (Xtj − ck)/h which is positive, since

|Φ(x)− I(x > 0)| = |Φ(x)− 1|I(Xtj ≥ ck +
√
h)



382 LIN ET AL.

+|Φ(x)− 1|I(ck < Xtj < ck +
√
h),

then, ∀ε > 0 and ∀s ≥ 1,

P

(
|Φ(x)− I(x > 0)|

hs
> ε|Xtj > ck

)
= P

(
|Φ(x)− 1|I(Xtj ≥ ck +

√
h) + |Φ(x)− 1|I(ck < Xtj < ck +

√
h)

hs

> ε|Xtj > ck

)

≤ P

(
|Φ(x)− 1|I(Xtj ≥ ck +

√
h)

hs
>
ε

2
|Xtj > ck

)

+P

(
|Φ(x)− 1|I(ck < Xtj < ck +

√
h)

hs
>
ε

2
|Xtj > ck

)

≤ P

(
|Φ(x)− 1|I(x ≥ 1/

√
h)

hs
>
ε

2
|Xtj > ck

)
+P (ck < Xtj < ck +

√
h|Xtj > ck)

≡ I1 + I2.

By (B.1), we have

I1 ≤ P

(
(1/
√

2πx)e−x
2/2I(x ≥ 1/

√
h)

hs
>
ε

2
|Xtj > ck

)
. (B.2)

Noting that f(y) = (1/y)e−y
2/2 is monotonically decreasing function for y > 0, we

have ((1/
√

2πx)e−x
2/2)/hs ≤ (1/

√
2πh2s−1)e−1/2h → 0 when x ≥ 1/

√
h. Then

I1 ≤ P
(

1√
2πh2s−1

e−1/2hI

(
x ≥ 1√

h

)
>
ε

2
|Xtj > ck

)
→ 0.

Moreover, under condition A.3.1, we have

I2 = P (ck < Xtj < ck +
√
h|Xtj > ck)) = O(

√
h).

Thus,

lim
n→∞

P

(
|Φ(x)− I(x > 0)|

hs
> ε|Xtj > ck

)
= 0
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which implies |Φ((Xtj − ck)/h)− I(Xtj > ck)| = op(h
s) for any s ≥ 1. Similarly,

the same conclusion holds for Xtj < ck. In summary, we have∣∣∣∣Φ(Xtj − ck
h

)
− I(Xtj > ck)

∣∣∣∣ = op(h
s), for any s ≥ 1. (B.3)

Hence,

Rt,k(Θ) = Rt,k0(Θ) +Rt,k(Θ)−Rt,k0(Θ)

= Rt,k0(Θ) + op(h
s). (B.4)

The rest of the proof is similar to that of Lemma B.1 in Cai, Fan and Yao (2000)

and only give the proof of (a).

By conditioning on (Vt,Xt), we have

V ar
(
Rt,k0(Θ)

)
=

p∑
j=1

Eσ2(Vt,Xt)α
2
k+1(j)X2

tjV
2(k−1)
tj φ2

h (Xtj − ck)

+Eσ2(Vt,Xt)

p∑
j 6=j′

αk+1(j)αk+1(j′)XtjXtj′V
k−1
tj V k−1

tj′ φh (Xtj−ck)φh (Xtj′−ck)

= I1 + I2.

Firstly,

I1 =

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt)X

2
tjV

2(k−1)
tj φ2

h (Xtj − ck) fj(Xtj)dXtj

=
1

h2

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt)X

2
tjV

2(k−1)
tj φ2

(
Xtj − ck

h

)
fj(Xtj)dXtj

=
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt)(zh+ ck)

2V
2(k−1)
tj φ2 (z) fj(zh+ ck)dz

=
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){c2

k}V
2(k−1)
tj φ2 (z) {fj(ck)}dz

+
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){c2

k}V
2(k−1)
tj φ2 (z) {f ′j(ck)zh}dz
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+
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){2zhck}V

2(k−1)
tj φ2 (z) {fj(ck)}dz

+
1

h

p∑
j=1

α2
k+1(j)E

∫
σ2(Vt,Xt){2zhck}V

2(k−1)
tj φ2 (z) {f ′j(ck)zh}dz + · · ·

=
1

h
bk(Θ) +O(1) +O(1) +O(h) + o(h).

Similarly, one can prove I2 = o(h). Thus, we can get

hV ar
(
Rt,k0(Θ0)

)
= bk(Θ0) +O(h) = bk(Θ0) + o(1).

C. Proofs of Theorems

Proof of Theorem 1.

Let α1n = n−1/2+λ, α2n =
√
h/n+

√
hλ. Denote Θ0 = (µ0,α

′
10,α

′
20,α

′
30, c

′
0)′

to be the true value of Θ. We wish to show that for any given ε > 0, there exists

a large constant τ1, τ2 such that

Pr

[
min

‖u1‖=τ1,‖u2‖=τ2
Ln{Θ0 + (α1nu1

′, α2nu2
′)′} > Ln(Θ0)

]
≥ 1− ε,

where u1 has the same dimension as Θ1 and u2 has the same dimension as c.

This implies with a probability of at least 1−ε, that there exists a local minimum

in the ball {Θ0 + (α1nu1
′, α2nu2

′)′ :‖ u1 ‖≤ τ1, ‖ u2 ‖≤ τ2}. Hence, there exists

a local minimum (Θ′1, c
′)′ such that ‖Θ1−Θ10‖ = Op(α1n), ‖ c−c0 ‖= Op(α2n).

With the definition Θ∗ = Θ0+(α1nu1
′, α2nu2

′)′ = (µ∗,α∗′1 ,α
∗′
2 ,α

∗′
3 , c

∗′)′,u =

(u′1,u
′
2)′, we have

Dn(u) = Ln(Θ∗)− Ln(Θ0)

= ln(Θ∗)− ln(Θ0) + λ {J(α∗1,α
∗
2,α

∗
3)− J(α10,α20,α30)} .

Since ∂J(α)/∂α = Aα, by the standard argument on Taylor expansion of the

likelihood function, we have

Dn(u) = α1nu1
′∂ln(Θ0)

∂Θ1
+ α2nu2

′∂ln(Θ0)

∂c
+

1

2
α2

1nu1
′∂

2ln(Θ0)

∂Θ1∂Θ′1
u1(1 + op(1))

+
1

2
α2

2nu2
′∂

2ln(Θ0)

∂c∂c′
u2(1 + op(1)) + α1nα2nu1

′∂
2ln(Θ0)

∂Θ1∂c′
u2(1 + op(1))

+λ
{

(α∗ −α0)′Aα0 + (α∗ −α0)′A(α∗ −α0)
}
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≡ I1 + I2 + I3 + I4 + I5 + I6,

where α∗ = (α∗′1 ,α
∗′
2 ,α

∗′
3 )′. Denote ∆tjk(Θ) ≡ Φ{(Xtj − ck)/h} − I(Xtj > ck).

By (B.3), we have∣∣∣∣E∂ln(Θ0)

∂µ

∣∣∣∣ =

∣∣∣∣ 2nE
n∑
t=1

2∑
r=1

p∑
`=1

αr+1,0(`)Xt`V
r−1
t` ∆t`r(Θ0)

∣∣∣∣ = o(hs),

∣∣∣∣E∂ln(Θ0)

∂αk(j)

∣∣∣∣ =

∣∣∣∣ 2nE
n∑
t=1

2∑
r=1

p∑
`=1

αr+1,0(`)Xt`V
r−1
t` ∆t`r(Θ0)Υtjk(Θ0)

∣∣∣∣ = o(hs),

∣∣∣∣E∂ln(Θ0)

∂ck

∣∣∣∣ =

∣∣∣∣ 2

nh
E

n∑
t=1

Ctk(Θ0)

2∑
r=1

p∑
`=1

αr+1,0(`)Xt`V
r−1
t` ∆t`r(Θ0)

∣∣∣∣ = o(hs),

(C.1)

for k = 1, 2, 3, j = 1, . . . , p, where αr,0(`) is the true value of αr(`).

Denote Akj ≡ Eσ2(Vt,Xt)Υ
2
tjk,0(Θ0). Furthermore, similar to Lemma 1, we

have

Γ1 =̂

[
var

{
∂ln(Θ0)

∂α1(1)

}
, . . . , var

{
∂ln(Θ0)

∂α1(p)

}
, var

{
∂ln(Θ0)

∂α2(1)

}
, . . . , var

{
∂ln(Θ0)

∂α3(p)

}]′
=

4

n
· (A11, . . . , A1p, . . . , A3p)

′ + o(hs),

Γ2 =̂ var

{
∂ln(Θ0)

∂µ

}
=

4

n
· Eσ2(Vt,Xt) + o(hs),

Γ3 =̂

[
var

{
∂ln(Θ0)

∂c1

}
, var

{
∂ln(Θ0)

∂c2

}]′
=

1

nh
{b1(Θ0), b2(Θ0)}′ +O

(
1

n

)
. (C.2)

Combining (C.1) and (C.2), we have

∂ln(Θ0)

∂α
= E

{
∂ln(Θ0)

∂α

}
+Op(Γ

1/2
1 ) = Op

(
1√
n

)
,

∂ln(Θ0)

∂µ
= E

{
∂ln(Θ0)

∂µ

}
+Op(Γ

1/2
2 ) = Op

(
1√
n

)
,

∂ln(Θ0)

∂c
= E

{
∂ln(Θ0)

∂c

}
+Op(Γ

1/2
3 ) = Op

(
1√
nh

)
.

then

I1 = Op

(
α1nτ1√

n

)
, I2 = Op

(
α2nτ2√
nh

)
. (C.3)
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Similar to Lemma 1, we also obtain

E
∂2ln(Θ0)

∂µ2
= V ar

(
∂2ln(Θ0)

∂µ2

)
= 2,

E
∂2ln(Θ0)

∂µ∂αk(j)
= 2EΥtjk,0(Θ0) + o(hs),

V ar
∂2ln(Θ0)

∂µ∂αk(j)
=

4

n

[
EΥ2

tjk,0(Θ0)− E2Υtjk,0(Θ0)
]

+ o

(
1

n

)
,

E

(
∂2ln(Θ0)

∂αk(j)∂αm(v)

)
= 2EΥtjk,0(Θ0)Υtvm,0(Θ0) + o(hs),

V ar

(
∂2ln(Θ0)

∂αk(j)∂αm(v)

)
=

4

n

[
EΥ2

tjk,0(Θ0)Υ2
tvm,0(Θ0)

−{EΥtjk,0(Θ0)Υtvm,0(Θ0)}2
]

+ o

(
1

n

)
.

Hence,

I3 = Op(α
2
1nτ

2
1 ). (C.4)

Similarly, we have

E
∂2ln(Θ0)

∂c2k
=
Fk(Θ0)

h
+O(1), E

{
∂2ln(Θ0)

∂c2k

}2

=
F 2
k (Θ0)

h2
+O(1 + (nh2)−1),

E
∂2ln(Θ0)

∂c1∂c2
= F (Θ0) +O

(
1

h
exp

{
−(c1,0 − c2,0)2

4h2

})
,

E

{
∂2ln(Θ0)

∂c1∂c2

}2

= F 2(Θ0) +O

(
exp

{
−(c1,0 − c2,0)2

2h2

})
,

then we obtain,

I4 = Op

(
α2

2nτ
2
2

h

)
. (C.5)

Finally, by

E
∂2ln(Θ0)

∂αk(j)∂cl
= κkjl +O(h), E

{
∂2ln(Θ0)

∂αk(j)∂cl

}2

= κ2
kjl +O(h2),

E
∂2ln(Θ0)

∂µ∂cl
= ϕl +O(h), E

{
∂2ln(Θ0)

∂µ∂cl

}2

= ϕ2
l +O(h2),

we get

I5 = Op(α1nα2nτ1τ2). (C.6)
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By (C.3),(C.4),(C.5), (C.6) and coupling with I6 = Op(λα1nτ1 +λα2
1nτ

2
1 ), choos-

ing large τ1, τ2, then I1,I2, I5 are dominated by I3, I4. This completes the proof

of Theorem 1.

Proof of Theorem 2.

According to Theorem 1, when λ = o(1/
√
n), it can easily be shown that

there exists a
√
n-consistent estimator Θ̂1 = (µ̂, α̂′)′ and

√
n/h-consistent esti-

mator ĉ, satisfying the following equations

∂ln(Θ̂)∂Θ1 + λb̂ = 0,

∂ln(Θ̂)

∂c
= 0,

where b̂ = (0, α̂′A′)′ is a vector of 3p+ 1 dimension. By Taylor expansion,

−
√
n
∂ln(Θ0)

∂Θ1
=
∂2ln(Θ0)

∂Θ1∂Θ′1

√
n(Θ̂1 −Θ10)(1 + op(1))

+
√
h
∂2ln(Θ0)

∂Θ1∂c′

√
n

h
(ĉ− c0)(1 + op(1)) +

√
nλb̂,

−
√
nh
∂ln(Θ0)

∂c
=
√
h
∂2ln(Θ0)

∂c∂Θ′1

√
n(Θ̂1 −Θ10)(1 + op(1))

+h
∂2ln(Θ0)

∂c∂c′

√
n

h
(ĉ− c0)(1 + op(1)). (C.7)

Since

E

(
∂ln(Θ0)

∂ck

)2

=
1

nh
bk(Θ0) +O

(
1

n

)
,

E
∂ln(Θ0)

∂c1

∂ln(Θ0)

∂c2
=

1

n
ζ1 +O(h)

E
∂ln(Θ0)

∂αk(j)

∂ln(Θ0)

∂αm(v)
=

1

n
δkjmv + o

(
hs

n

)
,

E

(
∂ln(Θ0)

∂µ

)2

=
1

n
ζ2 + o

(
hs

n

)
,

E
∂ln(Θ0)

∂µ

∂ln(Θ0)

∂αk(j)
=

1

n
$kj + o

(
hs

n

)
,
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we get nh(∂ln(Θ0)/∂c)⊗2 →p Σ1 and n(∂ln(Θ0)/∂Θ1)⊗2 →p Σ2. Then by CLT

we have

√
nh
∂ln(Θ0)

∂c
→ N(0,Σ1),

√
n
∂ln(Θ0)

∂Θ1
→ N(0,Σ2). (C.8)

Furthermore, from the proof of Theorem 1, we know that ∂2ln(Θ0)/(∂Θ1∂Θ′1)→p

V11, ∂2ln(Θ0)/∂Θ1∂c′ →p V12, h(∂2ln(Θ0))/(∂c∂c′)→p V22. Based on all these

results coupled with (C.7),(C.8) and Slutsky’s theorem, we obtain

√
n(Θ̂1 −Θ10 + λV −1

11 b)→ N(0, V −1
11 Σ2V

−1
11 ),√

n

h
(ĉ− c0 − hλV −1

22 V ′12V
−1

11 b)→ N(0, V −1
22 Σ1V

−1
22 ),

where b is defined in Appendix B. We complete the proof of Theorem 2.
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