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Abstract: Optimal designs for nonlinear model with random block effects are sys-

tematically studied. For a large class of nonlinear models, we prove that any optimal

design can be based on some simple structure. We further derive the corresponding

general equivalence theorem. This allows us to propose an efficient algorithm for

deriving specific optimal designs. The application of the algorithm is demonstrated

through deriving a variety of locally optimal designs and accessing their robustness

under different nonlinear models.
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1. Introduction

Nonlinear models have found broad applicability during the last decades.

They have been applied in such fields as drug discovery, clinical trials, social

sciences, marketing, etc. Methods of analysis and inference for these models are

well established (see for example McCullagh and Nelder (1989); McCulloch and

Searle (2001)). While using nonlinear models to analyze such data has become

common with advances in computational tools, the study of optimal design for

such problems is far behind the current use of nonlinear models, especially when

observations are correlated.

An optimal/efficient design can reduce the sample size needed for achiev-

ing pre-specified precision of estimation or improving the precision of estimation

for the fixed sample size. While the importance of optimal design cannot be

overstated, there are many scientific problems for which tools that can help to

identify optimal or efficient designs are simply inadequate, not infrequently lead-

ing to the use of inferior designs. This inadequacy is partly due to the fact that

identifying optimal designs is a very challenging problem, especially for nonlin-

ear models. As a result, solutions have often been developed on a case-by-case

basis, requiring a separate proof for each combination of model, objective, and

optimality criterion.

https://doi.org/10.5705/ss.202017.0020
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Recently, a series papers by Yang and Stufken (2009); Yang (2010); Dette and

Melas (2011); Stufken and Yang (2012); Yang and Stufken (2012); and Dette and

Schorning (2013) discovered if the functions that are elements of the information

matrix generate the so called Chebyshev system, the number of support points in

locally optimal designs is small and often is equal to the number of parameters to

be estimated (saturated designs). The new tools simplify the process of deriving

optimal designs, and most of the available optimality results for nonlinear models

can be derived as special cases with the new tools.

These results focus on the situation where observations are independent, in

which the information matrix has the “additive” property: the information ma-

trix of a design can be written as the summation of the information matrices

at each point. When the observations are correlated, the additive property does

not hold anymore. This new framework does not apply. Even the celebrated

general equivalence theorem, which allows us to verify a design is indeed opti-

mal, is no longer available. Relatively little is known of how to produce optimal

designs for nonlinear models when the observations are correlated. Müller and

Pázman (1999) presented an iterative algorithm for regression models with cor-

related error. Pázman (2010) studied contribution of information from subset

of finite design points when correlated observations are indicated. Dette et al.

(2010) derived asymptotic optimal design for population pharmacokinetics model

with random effects. Kiefer and Wynn (1981) discussed optimal balanced block

and Latin square designs for linear model with various correlation structures.

Kunert, Martin and Eccleston (2010) and Cutler (1993) considered optimal de-

sign for comparing treatment and control effects under autoregressive correlation

structure. Atkinson (2008) gave some examples applying an equivalence theorem

for D-optimal in constructing optimal design for nonlinear model with corre-

lated observations. Ucinski and Atkinson (2004) studied design for nonlinear

time-dependent models. Dette and Kunert (2014) studied optimal design for

Michaelis-Menten model and Holland-Letz, Dette and Renard (2012) proposed

an algorithm approach of deriving optimal design based on linear approximation.

With random block effects, Cheng (1995) and Atkins and Cheng (1999) stud-

ied optimal design under linear models. Recently, Huang and Cheng (2016) ex-

tended their results to quadratic regression with block size two. In this manuscript,

we consider a class of nonlinear models with arbitrary block size. We prove that

any optimal design can be based on a simple structure. We further derive the

corresponding general equivalence theorem under the correlated errors structure.

This result allows us to propose an efficient algorithm of deriving specific optimal
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designs. Our approach works for all general non-linear models and provides a

strategy of searching specific optimal designs.

For the layout of the remainder of this paper, in Section 2, we introduce

the model and the information matrix. In Section 3, we show that searching for

optimal designs can be restricted to those with identical groups and demonstrate

a “complete class” result for several specific nonlinear models. This result allows

us to focus on a specific structure when we derive any optimal design. In Section

4, we derive the corresponding general equivalence theorem and propose an effi-

cient algorithm for deriving D-optimal and A-optimal designs. It is understood

that the algorithm can be extended to other optimalities readily. Some numerical

examples are given to demonstrate the results in Section 5. Saturated D-optimal

design and robustness issue are also discussed in this section. A short discussion

is given in Section 6. Some lengthy proofs are postponed to the appendix, which

could be found in the on-line supplement material.

2. Model Setup and Information Matrix

Suppose there are b groups, each having k observations. Consider a nonlinear

model

yij = fθ(xij) + εij , 1 ≤ i ≤ b, 1 ≤ j ≤ k,

where fθ(·) is a smooth function with its form only depending on the parameter

θ to be estimated, yij is the response of the jth unit of the ith group, xij is the

corresponding design point in a given design region, say X . Here we assume εij
to be normally distributed with a constant variance σ2. Observations in same

group are assumed to have equal correlation coefficient ρ and those in different

groups are uncorrelated. For the sake of finding optimal designs, we set σ2 = 1

without loss of generality. Then, for group i we have

E(Yi) = fθ(Xi),

Cov(Yi) = (1− ρ)Ik + ρJk := V ,
(2.1)

where Yi = (yi1, . . . , yik)
T , Xi = (xi1, . . . , xik)

T ∈ X k, fθ(Xi) = {fθ(xi1), . . . ,
fθ(xik)}T , Ik is the k × k identify matrix, and Jk is the k × k matrix with

all elements 1. Since the covariance matrix is completely symmetric, the order

of the components xij in Xi is irrelevant from a design perspective. Suppose

the components of Xi consist of mi distinct points, say {xi1, . . . , ximi
} with

corresponding number of replications as {ki1, . . . , kimi
}. Automatically we have∑mi

j=1 kij = k. By direct calculations, the information matrix of group i regarding

θ is



286 WANG, YANG AND ZHENG

Mi=F
T
i diag(1Tki1

,1Tki2
, . . . ,1Tkimi

)V −1diag(1ki1
,1ki2

, . . . ,1kimi
)Fi.

=c1(ρ)F T
i diag(ki1, . . . , kimi

)Fi−k−1c2(ρ, k)F T
i (ki1, . . . , kimi

)T (ki1, . . . , kimi
)Fi. (2.2)

where Fi = (g(xi1), . . . , g(ximi
))T with g(xij) = ∂fθ(xij)/∂θ, c1(ρ) = (1 − ρ)−1,

c2(ρ, k) = kρ {1 + (k − 1)ρ}−1 c1(ρ), and 1k is the k× 1 vector with all elements

1. Here we utilized the fact V −1 = c1(ρ)Ik − k−1c2(ρ, k)Jk. In the sequel

we abbreviate c1(ρ) and c2(ρ, k) by c1 and c2, respectively, unless there is a

necessity to emphasise their dependence on ρ and k. If wij = kij/k and Wi =

diag(wi1, . . . , wimi
), then Mi can be written as

Mi = F T
i (c1kWi − c2kWiJmi

Wi)Fi. (2.3)

It turns out the information matrix Mi depends on the group size k and the

design measure of group i, ξi = {(xij , wij), j = 1, . . . ,mi} with wij = kij/k. In

the classical approximate design theory, we denote the information matrix of ξi
by

M(ξi) =
Mi

k
= F T

i (c1Wi − c2WiJmi
Wi)Fi,

= c1

∫
g(x)g(x)T ξi(dx)− c2

{∫
g(x)ξi(dx)

}{∫
g(x)ξi(dx)

}T
.

(2.4)

Since there is no between-group correlations, we have the model for the full data

as
E(Y ) = fθ(X),

Cov(Y ) = Ib ⊗ V ,
(2.5)

where Y = (Y T
1 , . . . ,Y

T
b )T , X = (XT

1 , . . . ,X
T
b )T and fθ(X) =

{
fθ(X1)T , . . . ,

fθ(Xb)
T
}T

. Suppose there are b∗ distinct groups designs {ξ1, . . . , ξb∗}, which

appear {n1, . . . , nb∗} times with the restriction
∑b∗

i=1 ni = b. Denote the whole

design measure by δ = {(ξi, ζ(ξi)), i = 1, . . . , b∗}, where ζ(ξi) = ni/b. Then the

information matrix of δ is

M(δ) =

b∗∑
i=1

ζ(ξi)M(ξi). (2.6)

In approximate design theory, we relax the integer constraints on kij and ni and

work on the space {ξi :
∑mi

j=1wij = 1, wij ≥ 0} for ξi and {ζ :
∑b∗

i=1 ζ(ξi) =

1, ζ(ξi) ≥ 0} for ζ.

3. Complete Class of Designs

In this section, we find the complete class, a subclass of designs containing
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the optimal designs under various design criteria simultaneously. The designs in

the derived complete class have very small (mostly minimum) number of sup-

porting points, which facilitates the numerical search of specific optimal designs.

As compared to existing results on complete class, (2.5) imposes additional chal-

lenges. There are two layers of approximate designs as represented by (2.4) and

(2.6), and the information matrix in (2.4) does not possess the desirable additiv-

ity property as in most studies. We establish complete classes separately for the

two layers.

3.1. Complete class of between-group designs

By (2.4), the within-group information matrix under a design, say ξ, can be

represented by

M(ξ) = c1L(ξ)− c2G(ξ)G(ξ)T , (3.1)

L(ξ) =

∫
g(x)g(x)T ξ(dx), (3.2)

G(ξ) =

∫
g(x)ξ(dx). (3.3)

Lemma 1. M(ξ) is concave in ξ by Lowner’s ordering.

Proof. Since L(ξ) is linear in ξ, it is sufficient to show that G(ξ)G(ξ)T is convex

in ξ, in view of c2 > 0. For a constant 0 < α < 1 and two measures ξ1 and ξ2,

we have

αG(ξ1)G(ξ1)
T + (1− α)G(ξ2)G(ξ2)

T −G(αξ1 + (1− α)ξ2)G(αξ1 + (1− α)ξ2)
T

= α(1− α) {G(ξ1)−G(ξ2)} {G(ξ1)−G(ξ2)}T ≥ 0.

Hence, the proof is completed.

Theorem 1. Consider approximate designs under (2.5). If for any design δ =

{(ξi, ζ(ξi))|i = 1, . . . , b∗}, δ∗ = (ξ̄, 1) with ξ̄ =
∑b∗

i=1 ζ(ξi)ξi. Then

M(δ∗) ≥M(δ). (3.4)

by Loewner’s ordering.

This theorem is a direct result of Lemma 1 through Jensen’s Inequality. This

result is similar to that of Schmelter (2007), where the mixed effects model with

uncorrelated error terms was studied. Theorem 1 indicates that we can focus

on the class of designs which have identical design in each group. This greatly

simplifies the procedure of deriving approximate optimal design.
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3.2. Complete class of within-group designs

Even though the within-group information matrix does not share the desir-

able additive property of traditional design problems, it is still possible to identify

the complete class as in Theorem 1 in Yang (2010). We can show that only a

small number of support points are necessary to achieve optimal design under

Model (2.5). First, there exists a p× p nonsingular transformation matrix P (θ),

such that the (3.1) can be written as

M(ξ) = P (θ)

c1
N∑
j=1

wjΦ1(Cj)− c2
N∑
j=1

wjΦ2(Cj)

N∑
j=1

wjΦ2(Cj)
T

P (θ)T ,

(3.5)

where Φ2(Cj) = (φ01(Cj), . . . , φ0p(Cj))
T ,

Φ1(Cj) =

 φ11(Cj) φ12(Cj) . . . φ1p(Cj)
...

...
. . .

...

φ1p(Cj) φ2p(Cj) . . . φpp(Cj)

 ,

P (θ) is a function of θ only and does not depend on xj or Cj . Cj may depend

on θ, and is a one-to-one map from xj ∈ X to [A,B]. Thus, it is equivalent to

write ξ as ξ = {(Ci, wi), i = 1, . . . ,m}.
locally optimal design context, for any two given designs ξ = {(Ci, wi), i =

1, . . . ,m} and ξ∗ = {(C̃i, w̃i), i = 1, . . . ,m∗}, to show that Mξ ≤Mξ∗ , it suffices

to show that
m∑
i=1

wiφlt(Ci) =

m∗∑
i=1

w̃iφlt(C̃i), (3.6)

and that for all l = 0, 1, . . . , p, t = 1, . . . , p except for one l = t,

m∑
i=1

wiφll(Ci) ≤
m∗∑
i=1

w̃iφll(C̃i). (3.7)

Theorem 2. Suppose for (2.5) there exists a matrix P (θ) s.t. its information

matrix can be written in the form of (3.5). Let {φ1, . . . , φn} be the set of distinct

functions from {φ01, . . . , φpp} in (3.5), which are defined on [A,B], and Γ(C) =∏n
l=1 γll(C),∀C ∈ [A,B], where

γlt =


φ′l(C) t = 1, l = 1, . . . , n,{

γl,t−1(C)

γt−1,t−1(C)

}′
2 ≤ t ≤ n, t ≤ l ≤ n.

(3.8)

For any given design ξ = {(Cj , wj), j = 1, . . . , N}, there always exists a design
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ξ̃ = {(C̃j , w̃j)} such that

Mξ ≤Mξ̃ (3.9)

with respect to Loewner ordering.

(a) When n = 2m−1, N ≥ m and Γ(C) < 0 for C ∈ [A,B], ξ̃ has m support

points and one of them is A;

(b) When n = 2m−1, N ≥ m and Γ(C) > 0 for C ∈ [A,B], ξ̃ has m support

points and one of them is B;

(c) When n = 2m,N ≥ m and Γ(C) > 0 for C ∈ [A,B], ξ̃ has m+1 support

points and two of them are A and B;

(d) When n = 2m,N ≥ m+1 and Γ(C) < 0 for C ∈ [A,B], ξ̃ has m support

points.

Remark 1. In Theorems 1 and 2, we consider optimality with respect to Loewner’s

ordering, which is stronger than most commonly used optimal criteria, like A-,

D- and E- optimality.

The proof is skipped because it is a direct application of Theorem 1 in Yang

(2010). Theorem 2 allows us to restrict the search of optimal within-group designs

to a small subclass, where designs typically have minimum number of distinct

support points. This greatly reduces the computational burden.

4. Numerical Search of Optimal Design

There remains a challenge in finding a specific optimal design for a given

model and optimality criterion. For the example of the exponential model in

Section 5, by Theorems 1 and 2, we can focus on the class of designs with

at most three points, one of which is the upper bound. We need therefore to

find the remaining two design points and their weights. The classical general

equivalence theorem (GET) is a powerful device for verifying the optimality of

a candidate design, but, existing results on GET are based on the assumption

that the observations are independent, which is not true here. In this section, a

new version of GET under Model (2.5) is derived and an efficient algorithm is

proposed. We focus on the A- and D-optimal criteria for the algorithm with the

understanding that the algorithm can be readily extended to other optimality

criterion.

4.1. The general equivalence theorem

A-optimal design minimizes the average (or sum) of variances of the param-

eter estimators, minξ Tr(M(ξ)−1). A D-optimal design minimizes the volume
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of the confidence region of the estimators, minξ |M(ξ)−1|. Kiefer (1974) unified

these criteria by the function Φp(M(ξ)) = {(1/v)Tr(M(ξ)−p)}1/p, where the

D- and A- criteria are special cases of p = 0 and p = 1, respectively. Here p = 0

is understood as limp→0 Φp(M(ξ)−1) = |M(ξ)−1|1/v. As Φp(M(ξ)) is convex

in M(ξ) (Fedorov and Hackl (1997, Sec. 2.2)), Lemma 1 allows us to establish

the following.

Lemma 2. Φp(M(ξ)) is convex in ξ.

Theorem 3. A within-group design, ξ, minimizes Φp(M(ξ)) if and only if

min
x∈χ

η(x, ξ) = Tr(D(ξ)ψ(ξ, ξ)), (4.1)

where

D(ξ) =
∂Φp(M)

∂M

∣∣∣∣
M=M(ξ)

,

ψ(ν, ξ) =c1L(ν)− c2
{
G(ν)G(ξ)T +G(ξ)G(ν)T

}
,

η(x, ξ) =c1g(x)TD(ξ)g(x)− 2c2G(ξ)TD(ξ)g(x),

and L(ξ) and G(ξ) are defined as in (3.2) and (3.3). Moreover, all supporting

points of ξ satisfy the equality in (4.1).

Proof. By direct calculation we have

∂M((1− α)ξ+αν)

∂α

∣∣∣∣
α=0

= ψ(ν, ξ)− ψ(ξ, ξ). (4.2)

By Lemma 2, ξ is Φp-optimal if and only if

0 ≤ ∂Φp(M((1− α)ξ + αν))

∂α

∣∣∣∣
α=0

= Tr(D(ξ){ψ(ν, ξ)− ψ(ξ, ξ)}),
(4.3)

for any design ν. If νx is a degenerated design supported on only one point x,

then

Tr(D(ξ)ψ(νx, ξ)) = η(x, ξ). (4.4)

By (4.3), we have

min
ξ∈χ

η(x, ξ) ≥ Tr(D(ξ)ψ(ξ, ξ)). (4.5)

Due to (4.4) and
∫
ψ(ν, ξ)ξ(dx) = ψ(ξ, ξ), we have∫

η(x, ξ)ξ(dx) = Tr(D(ξ)ψ(ξ, ξ)). (4.6)

which implies

min
ξ∈χ

η(x, ξ) ≤ Tr(D(ξ)ψ(ξ, ξ)). (4.7)
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The proof is complete in view of (4.5)-(4.7).

Remark 2. We find D(ξ) = −(1/v)M(ξ)−2 and −(1/v)|M(ξ)|1/vM(ξ)−1,

respectively. It can be shown that condition (4.1) is equivalent to maxx∈χ d(ξ) ≤
0, where

d(ξ, x) =


c1g(x)TM(ξ)−2g(x)− 2c2G(ξ)TM(ξ)−2g(x)

−Tr(M(ξ)−2ψ(ξ, ξ)),
A-optimal,

c1g(x)TM(ξ)−1g(x)− 2c2G(ξ)TM(ξ)−1g(x)

−Tr(M(ξ)−1ψ(ξ, ξ)),
D-optimal.

(4.8)

4.2. Optimal weights for given support points

In this section, we propose an algorithm suggested by the optimal weights ex-

change algorithm (OWEA) of Yang, Biedermann and Tang (2013). The OWEA

can be viewed as an extension of the Fedorov-Wynn algorithm (Wynn (1970),

Fedorov (1972)) that adds an optimization step for the weights, but this step is

for the model with independent observation at each design point. Theorems 4

and 5 show that such technique can be extended to the correlated errors case

under D- and A- optimality criteria. Although the two theorems can be proved

through the convexity of Φp(M(ξ)) (Lemma 2), we give different proofs in the

appendix by showing the corresponding Hessian matrix is a nonnegative definite

matrix. The proofs provide the needed expressions of the Gradient vector and

Hessian matrix in the deriving of optimal weights.

Notice that the D- and A-optimality criteria are equivalent to minimizing

Φ̃p(ξ) =

{
log |Σξ(θ)|, if p = 0,

T r(Σξ(θ)), if p = 1.
(4.9)

Let ξ = {(xi, wi), i = 1, . . . , n} be the within-group design. Take w = (w1,

w2, . . . , wn)T and Ω = {ωi ≥ 0, i = 1, . . . , n − 1,
∑n−1

i=1 ωi ≤ 1}. For a given set

of support points, Theorems 4 and 5 provde direct support that the A- and D-

optimal criteria functions are convex with respect to the weight vector, as well

as expressions (first and second derivative in their proof) which helps derive the

algorithm in Section 4.3.

Theorem 4. The minimum value of log |Σξ(θ)|, as a function of w, is achieved

at any critical point in Ω or at the boundary of Ω.

Theorem 5. The minimum value of Tr(Σξ(θ)), as a function of w, is achieved

at any critical point in Ω or at the boundary of Ω.
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4.3. Implementation of the algorithm

When the design space is continuous, we shall the design space to Xn, which

is the collection of n evenly spaced points in X . If X is discrete, let Xn = X .

The algorithm proceeds as follows.

1. Initialization. Set S(0) to be the set of m + 1 design points uniformly

distributed in χn, where m is the parameter in Theorem 2. Derive

the optimal design ξ0 for the given initial support points with uniform

initial weights.

2. Update. At iteration t ≥ 1, derive the set of supporting points

S(t) = S(t−1) ∪ {x∗t },where x∗t = arg max
x∈χn

d(ξt−1, x), (4.10)

and d(ξ, x) is defined as in (4.8). Derive ξt, the optimal design on the

supporting set S(t). The weight in ξt−1 is the initial solution in deriving

the weights in ξt. Points with zero weight in ξt shall be removed from

S(t).

3. Stopping rule. If maxx∈χn
d(ξt, x) ≤ ε0, for some pre-specified value of

ε0, stop and output ξt as the optimal design. Otherwise, go back to

the updating step.

We give more details for deriving the optimal weight in the update step of

the algorithm. This is a modification of the classical Newton-Raphson method.

Let w
(t)
0 be the initial candidate value of the weight for ξt, w

(t)
j is value at the

jth iteration Algorithm proceeds as follows.

(a) w
(t)
j+1 = w

(t)
j − a

{
(∂2Φ̃

(t)
p )/(∂w∂wT )

}−1
(∂Φ̃

(t)
p )/(∂w). Expressions of

(∂2Φ̃
(t)
p )/(∂w∂wT ), (∂Φ̃

(t)
p )/(∂w) can be found in proof of Theorem 4 and

5 in the appendix in the on-line supplement material.

(b) If there are non-positive components in w
(t)
j+1, go to (d), otherwise go to (c).

(c) If ||w(t)
j+1 −w

(t)
j || < ε, where ε > 0 is a pre-specified small positive value as

threshold for convergence, output w(t) as the optimal weight. Otherwise,

go back to (a).

(d) Reduce a to a/2. Repeat (a) and (b) until reaching a pre-specified small

value, say 0.00001. If there is a non-positive component in weight, remove

the support point with the smallest weight. Go back to (a).
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Theorem 6. If Mξ
S(0)

is nonsingular, the sequence of designs {ξS(t) : ∀t ≥ 0}
converges to the design ξ∗ that minimizes Φp(ξ).

5. Examples

5.1. Michaelis-Menten model

The Michaelis-Menten model is a nonlinear model that is widely used in the

biological sciences. The model can be written in the form of (2.5) with

f(xij ,θ) =
θ1xij
θ2 + xij

, θ = (θ1, θ2).

So we have

∂F (Xi, θ)

∂θ
=


xi1

θ2 + xi1

xi2
θ2 + xi2

. . .
xik

θ2 + xik

− θ1xi1
(θ2 + xi1)2

− θ1xi2
(θ2 + xi2)2

. . . − θ1xik
(θ2 + xik)2


T

.

Under an approximate design δ with identical within-group {(xi, wi), i = 1, . . . ,m},
the information matrix can be written as

M(δ) =c1

m∑
j=1

wj


x2j

(θ2 + xj)2
−

θ1x
2
j

(θ2 + xj)3

−
θ1x

2
j

(θ2 + xj)3
θ21x

2
j

(θ2 + xj)4


− c2

m∑
j=1

wj


xj

θ2 + xj

− θ1xj
(θ2 + xj)2

∑
j

wj

(
xj

θ2 + xj
,− θ1xj

(θ2 + xj)2

)
.

Let P (θ) =

(
1 0

1 θ2/θ1

)−1
. Then we have

P (θ)−1M(δ)
{
P (θ)T

}−1
=c1

m∑
j=1

wj

(
C2
j C3

j

C3
j C4

j

)

− c2

{∑
wj

(
Cj
C2
j

)}{∑
wj

(
Cj
C2
j

)}T
,

where Cj = xj/(θ2 + xj). Let φ1(C) = C, φ2(C) = C2, φ3(C) = C3, and

φ4(C) = C4. Applying Theorem 2 with n = 4, we find Γ(C) = 24 > 0. Thus we

can focus on the class of within-group designs with at most three support points,

including upper and lower bounds of Cj .

With the design space χ = [0, 3], Table 1 lists different optimal designs for
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Table 1. Optimal designs for Michaelis-Menten model.

Block size k = 3
D-optimal A-optimal

(θ1, θ2) ρ (xi, wi) ρ (xi, wi)

(5,6)

0.4
(3, 0.5)

0.5
(3, 0.3456)

(1.199, 0.5) (1.1884, 0.6544)

0.5
(0, 0.1111)

0.6
(0, 0.0664)

(3, 0.4444) (3, 0.3242)
(1.2003, 0.4444) (1.1998, 0.6094)

(1,2)

0.4
(3, 0.5)

0.5
(3, 0.3411)

(0.8576, 0.5) (0.8529, 0.6589)

0.5
(0, 0.1111)

0.6
(3, 0.3158)

(3, 0.4444) (0, 0.0763)
(0.8576, 0.4444) (0.857, 0.608)

Block size k = 10

(5,6)

0.1
(3, 0.5)

0.2
(3, 0.3417)

(1.2009, 0.5) (1.1624, 0.6583)

0.2
(0, 0.0667)

0.3
(3, 0.3272)

(3, 0.4667) (0, 0.0579)
(1.199, 0.4667) (1.1998, 0.6149)

different configurations of the correlation coefficient ρ, pre-specified θ, block size k

and the optimality criterion (A or D). All numeric solutions are based on 30,000

grids on χ = [0, 3], and all values of support points or weights are rounded to

multiples of 0.0001. Table 1 reveals a few interesting patterns. First, boundary

points may not always be support points. Theorem 2 (c) indicates that at most

three support points are necessary, while in Table 1, some optimal designs only

require two support points. By Theorem 2, lower and upper bound of Cj should

be in the support set when there are three supporting points. When an optimal

design has only two support points, it may not necessarily include both upper

and lower bound of Cj . From Table 1, we can see only upper bound is included

when optimal design has only two support points.

The number of support points tend to increase when ρ or block size k in-

crease. This is not surprising. From (2.4), Iξ is proportional to∫
g(x)g(x)T ξi(dx)− c2

c1

{∫
g(x)ξi(dx)

}{∫
g(x)ξi(dx)

}T
. (5.1)

When there is no correlation within a block, the information matrix is the first

part of (5.1) and optimal design are based on two support points (Example 14.6,

Biedermann and Biedermann and Yang (2015)). When c2/c1 is small, optimal

designs mainly depend on the first part. As it increases, the second part becomes
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more dominant. On the other hand,

c2
c1

=
kρ

1 + (k − 1)ρ

is a increasing function of ρ and k.

The saturated D-optimal design always has equal weights. This phenomena

has been well known in the independent observation case. The numerical results

shows it also holds for the correlated data. Now we confirm this by Theorem 7.

Cheng (1995) showed a similar result for linear models with the same correlation

structure under the setup of exact design. Here we show it is also true for non-

linear model under approximate design.

Theorem 7. For any model in the form of (2.5), when θ = (θ1, . . . , θp), if

ξ = {(xj , wj)} supported on m points is D-optimal design when ρ = 0, then ξ

is also the saturated D-optimal design when ρ 6= 0. Furthermore, ξ has equal

weights at all support points.

Proof. In Mξ = σ−2F TV −1F , F is always square matrix when ξ is saturated

design, thus we have

|Mξ| = σ−2|F T ||V |−1|F |
= σ−2|V |−1 × |F TF |

= σ−1
(

1 +
kρ

1− ρ

)−1( k

1− ρ

)m∏
wj × |F TF |

(5.2)

By (5.2), it is obvious that for any {wj |j = 1, . . . ,m}, |Mξ| is maximized when

|F TF | – the D-optimal function for the uncorrletated model – is maximized, for

all ρ ∈ [0, 1], and for any fixed F , |Mξ| achieves its maximum when w1 = · · · =
wm = 1/m.

Remark 3. Since the D-optimal design for the Michaelis-Menten model with

independent errors is based on two points, the proof of Theorem 7 also shows

that a two-points D-optimal design when ρ 6= 0 must be the D-optimal design for

the independent case. Since the block size k is irrelevant to optimal design when

observations are independent, it is not surprising, for (θ1, θ2) = (5, 6), that the

two D-optimal designs when (ρ, k) = (0.4, 3) and (ρ, k) = (0.1, 10) are identical

with the understanding slight differences are due to computing errors.

5.2. Exponential model

The model can be written in the form of (2.5) with
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Table 2. Optimal designs for exponential model.

Block size k = 3
D-optimal A-optimal

(θ1, θ2) ρ (xi, wi) ρ (xi, wi)

(5,6)
0.6

(0, 0.5)
0.6

(0, 0.6411)
(3, 0.5) (3, 0.3589)

0.9
(0, 0.5)

0.9
(0, 0.6411)

(3, 0.5) (3, 0.3589)

(1,2)

0.5
(3, 0.5)

0.7
(3, 0.2861)

(0.9982, 0.5) (1.4878, 0.7139)

0.9
(0, 0.2634)

0.9
(0, 0.076)

(3, 0.4391) (3, 0.2977)
(1.5775, 0.2975) (1.8531, 0.6263)

Block size k = 10

(5,6) 0.9
(0, 0.5)

0.9
(3, 0.3906)

(3, 0.5) (0.7768, 0.6094)

(1,2)

0.4
(3, 0.5)

0.6
(3, 0.3183)

(0.9992, 0.5) (1.7483, 0.6817)

0.5
(0, 0.1037)

0.7
(0, 0.0423)

(3, 0.4882) (3, 0.3122)
(1.1488, 0.4081) (1.848, 0.6455)

f(xij ,θ) = θ1 exp

(
xij
θ2

)
,

θ = (θ1, θ2).

Under the approximate design δ with identical within-group {(xi, wi), i = 1, . . . ,

m}, we have

{P (θ)}−1M(δ)
{
P (θ)T

}−1
= c1k

∑
j

wj

(
e2Cj Cje

2Cj

Cje
2Cj C2

j e
2Cj

)

− c2
∑
j

wj

(
eCj

Cje
Cj

)∑
j

wj

(
eCj Cje

Cj

)
,

where Cj = xj/θ2 and P (θ) =

(
1 0

0 −(θ1/θ2)

)
. Let φ1(C) = eC , φ2(C) = CeC ,

φ3(C) = e2C , φ4(C) = Ce2C , and φ5(C) = C2e2C . Applying Theorem 2 with

n = 5, we find that Γ(C) = 4e2C > 0, for any C. Thus, we can focus on within-

group designs supported by at most three distinct points including the upper

bound of C.

Table 2 lists the optimal designs under different configurations of the param-
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eters when the design space [0, 3] has 30,000 grids. It exhibits similar patterns

as seen in Table 1.

5.3. Three parameters Emax model

Dette, Melas and Wong (2005) studied another version of the Emax model,

that can be written in the form (2.5) with

f(xij ,θ) =
θ0x

θ2
ij

θ1 + xθ2ij
,

θ = (θ0, θ1, θ2),

where θ0, θ1 > 0 and θ2 6= 0. Under the approximate design δ with identical

within-group {(xi, wi), i = 1, . . . ,m}, we have

M(δ∗)

= c1P (θ)
∑
j

wj



1

(1 + Cj)2
1

(1 + Cj)3
Cj logCj
(1 + Cj)3

1

(1 + Cj)3
1

(1 + Cj)4
Cj logCj
(1 + Cj)4

Cj logCj
(1 + Cj)3

Cj logCj
(1 + Cj)4

C2
j log2Cj

(1 + Cj)4


P (θ)T

− c2P (θ)
∑
j

wj



1

1 + Cj
1

(1 + Cj)2

Cj logCj
(1 + Cj)2


∑
j

wj

(
1

1 + Cj

1

(1 + Cj)2
Cj logCj
(1 + Cj)2

)
P (θ)T ,

where Cj = θ1x
−θ2
j and

P (θ) =


1 0 0
−θ0
θ1

θ0
θ1

0

θ0
θ2

log θ1 −
θ0
θ2

log θ1
−θ0
θ2

 ,

Let φ1(C) = 1/(1 + C)4, φ2(C) = 1/(1 + C)3, φ3(C) = (C logC)/(1 + C)4,

φ4(C) = 1/(1 + C)2, φ5(C) = (C logC)/(1 + C)3, φ6(C) = 1/(1 + C), φ7(C) =

(C2 log2C)/(1+C)4, and φ8(C) = (C logC)/(1+C)2. Applying Theorem 2 with

n = 8, we can verify that Γ(C) = (−12)/{C5(1 +C)4} < 0, for any C > 0, which

is satisfied when the design space is X = [1, 4].

Table 3 lists the optimal designs under different configurations of the param-
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Table 3. Optimal designs for Emax model.

Block size k = 3
D-optimal A-optimal

(θ0, θ1, θ2) ρ (xi, wi) ρ (xi, wi)
Block size k = 3

(1,2,3)

0.5
(1, 0.3333)

0.5
(1, 0.409)

(4, 0.3333) (4, 0.2215)
(1.757, 0.3333) (1.759, 0.3695)

0.9
(1, 0.3333)

0.9
(4, 0.2301)

(4, 0.3333) (1.045, 0.3902)
(1.755, 0.3333) (1.846, 0.3797)

(1,5,6) 0.8

(1, 0.1241)

0.9

(4, 0.1642)
(4, 0.325) (1, 0.0217)
(1.563, 0.3182) (1.205, 0.4472)
(1.143, 0.2327) (1.629, 0.3669)

Block size k = 10

(1,2,3)

0.8
(1, 0.3333)

0.7
(4, 0.2325)

(4, 0.3333) (1.1035, 0.3743)
(1.755, 0.3333) (1.9145, 0.3932)

0.9

(1, 0.3112)

0.8

(4, 0.234)
(4, 0.3256) (1, 0.0084)
(1.34, 0.0647) (1.167, 0.3527)
(1.819, 0.2984) (1.987, 0.405)

Block size k = 3

(1,5,6) 0.5

(1, 0.1822)

0.6

(4, 0.1748)
(4, 0.3139) (1, 0.0067)
(1.188, 0.2049) (1.716, 0.3774)
(1.5845, 0.2989) (1.2185, 0.4411)

eters when design space [1, 4] has 30,000 grids. It exhibits similar patterns as

seen in Table 1.

6. Robustness of Locally Optimal Designs

The optimal designs discussed in previous sections are computed based on

the pre-specified value of ρ, which is usually unknown in practice. We study

design efficiency with a wrongly specified ρ. The D- and A-efficiencies of a given

design, say ξ, are defined as

D-eff(ξ) =
Φ0(ξ

∗
D)

Ψ0(ξ)
,

A-eff(ξ) =
Φ1(ξ

∗
A)

Ψ1(ξ)
,

(6.1)
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Table 4. D-efficiency and A-efficiency of optimal designs with wrong ρ.

true ρ D-efficiency A-efficiency

Design:
(3, 0.5) (3, 0.3081)
(1.2,0.5) (0.96,0.6919)

0 1.0000 1.0000
0.1 1.0000 0.9981
0.4 1.0000 0.9643
0.45 0.9864 0.9526
0.5 0.9492 0.9382
0.6 0.8216 0.8852
0.7 0.6460 0.7735
0.8 0.4424 0.5973
0.9 0.2242 0.3460

All designes have prespecified ρ = 0 and
truely specified θ = (5, 6).

Table 5. D-efficiency and A-efficiency of optimal desings with wrong θ.

true θ D-efficiency A-efficiency

Design:
(3, 0.4444) (3, 0.3458)
(1.2,0.4444) (1.19,0.6542)
(0, 0.1111)

(5,3) 0.9596 0.9292
(5,6) 1.0000 1.0000
(5,16) 0.9731 0.9609
(5,60) 0.9386 0.9154

All designs have pre-specified θ = (5, 6),
and truely specified ρ = 0.5.

where ξ∗D and ξ∗A are D- and A- optimal design with true values of parameters,

respectively.

We generated a design when ρ is specified as 0 and measured its efficiencies

when the true value of ρ takes other values as in Table 4. When the true value of ρ,

and hence c2/c1, is small, the optimal design is identical to that for ρ = c2/c1 = 0.

When the true ρ ≤ 0.5, the corresponding design efficiencies are close to or higher

than 95%. When ρ is further away from the wrongly misspecified value 0, design

efficiencies decrease. This is also true when the ρ are wrongly specified to values

other than 0.

Locally optimal designs also depend on pre-specified θ. Under theD- optimal

criteria, saturated optimal design always have 100% efficiency. Under the D- and

A- optimal criteria, design efficiency decreases as θ diverges from its true value.
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Table 5 provides the efficiencies of a design when of ρ = 0.5 and θ = (5, 6), at

various true values of θ. Even if θ is far away from the pre-specified value, design

efficiencies are mostly higher than 90%.

Tables 4 and 4 indicate that optimal designs are quite robust with respect to

misspecified values of θ and ρ under Michaelis-Menten model. Simulations with

other examples yields similar conclusions. They are omitted here due to space

limit.

7. Discussion

Although nonlinear models with correlated responses are not uncommon in

practice, little optimality work has been done. The main challenge is that the

information matrix does not have the “additive” property, where one applies

powerful tools.

For the nonlinear models with random block effects, the variance-covariance

matrix for the observations within a block is compound symmetric. We are then

able to characterize the format of optimal designs and derive the corresponding

general equivalence theorem. Unlike nonlinear models with independent observa-

tions, in which optimal designs are often based on saturated designs, for optimal

designs under nonlinear models with random block effects, this is no longer the

case. The number of support points depends on how strong the correlation ρ is.

When ρ is close to 0, it is often equal to minimum number of support points,

just as in the independent case. When ρ is close to 1, optimal designs often have

one more support points than the saturated designs.

For nonlinear models with other correlation structures, the information ma-

trix becomes more complicated. The method employed here is unlikely to work.

Specifically, it is not clear whether the general equivalence theorem still holds.

Given the importance of nonlinear models with correlated responses, more re-

search in this direction is certainly needed.

Supplementary Materials

Proofs of Theorem 4, Theorem 5, and 6 can be found in the on-line supple-

ment material.
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