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Abstract: In this paper, we propose a novel spatial-temporal model with individ-

ual random effects characterized by a location-scale structure, which allows us to

flexibly capture the pure influence of space-specific factors in a quantile regression

framework. A hybrid two-stage estimation procedure is introduced for this model.

The first stage proposes a Gaussian quasi-maximum likelihood estimator for the

spatial-temporal effects, and the second constructs a weighted conditional quantile

estimator, which we use to study the conditional quantiles of the random effects

related to space-specific attributes. We verify the validity of the two-stage hybrid

estimation, and establish the asymptotic properties of our estimators. The results of

our simulation study indicate that the proposed estimation procedure performs well

in different scenarios with finite-samples. Lastly, we apply the proposed method to

data from a real case study on the air quality of China.

Key words and phrases: Dynamic spatial autoregressive models, hybrid estimation,

quantile regression, quasi-maximum likelihood estimation, random effects.

1. Introduction

With the rapid development of the world economy and the gradual de-

terioration of the global ecological environment, many countries have estab-

lished and improved environmental protection mechanisms to maintain the eco-

logical equilibrium (Streck (2004); Busch and Jörgens (2005)). At the same

time, urban air quality has attracted much attention (Wang and Hao (2012);

Gulia et al. (2015)), because poor air quality has adverse effects on human

health and survival (Cakmak et al. (2011); Bowatte et al. (2015)). Researchers

have increasingly focused on quantitative analyses of the impact of social and

anthropogenic driving forces on urban air quality. For example, de Bruyn,

van den Bergh and Opschoor (1998) and Chen and Xu (2017) studied the rela-

tionship between air quality and economic development; Cramer (1998) and Chen

et al. (2020) investigated the influence of population density on air quality; and

Li et al. (2018) and Yu and Liu (2020) considered the impact of changes to in-
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dustrial structure on air quality. However, as a complex and large system, the

urban ambient air system is not only affected by human activities, but also by

spatial-temporal effects, including historical patterns, geographical location, me-

teorological conditions, and so on (Yang et al. (2007); Giri, Krishna and Adhikary

(2008); Zhou et al. (2022)). As a result, it has become necessary to explore the

social forces affecting urban air quality pressure after removing spatial-temporal

effects.

In the literature, spatial effects that depict a geographical correlation are

usually modeled in three forms: (i) spatial autoregressive (SAR) models, with

the spatial effect built at the response variable (Lee (2004); Yu, De Jong and Lee

(2008)); (ii) spatial error models, with the spatial effect modeled in the distur-

bance term (Kapoor, Kelejian and Prucha (2007); Kelejian and Prucha (2010);

Su and Yang (2015)); and (iii) spatial panel data models with the spatial effect si-

multaneously reflected in both the responses and the errors (Kelejian and Prucha

(1998, 1999)). Existing models include temporal effects that capture autocorre-

lation in the form of a lagged response in the same way as in time series models.

As the practical need to analyze spatial-temporal data has increased, numerous

spatial panel data models that include spatial and temporal effects simultane-

ously have been studied. For example, Yu, De Jong and Lee (2008) considered a

Gaussian quasi-maximum likelihood estimator (QMLE) for the spatial dynamic

panel data (SDPD) model with fixed effects, when both the individual dimension

N and the time dimension T are large. Lee and Yu (2014) proposed generalized

method of moments estimators for the SDPD model with fixed effects when N

is large and T can be large, but small relative to N . Su and Yang (2015) stud-

ied the QMLE for dynamic panel models with spatial errors and random/fixed

effects when N is large, but T is fixed. In this paper, we propose a dynamic

spatial autoregressive (DSAR) model to capture the spatial-temporal effects and

investigate its estimation.

For spatial panel data models, individual effects are important, and are

widely investigated in the form of fixed effects (Yu, De Jong and Lee (2008);

Lee and Yu (2010); Shi and Lee (2017)) or random effects (Baltagi, Egger and

Pfaffermayr (2013); Su and Yang (2015)). Fixed and random effects both have

advantages and disadvantages. The random-effect model avoids the “incidental

parameter” problem (Neyman and Scott (1948)) in fixed-effect models and has

more efficient estimators, but it neglects possible correlations between individ-

ual effects and regressors. The estimators of fixed-effect models are robust in

the sense that the fixed effect can be arbitrarily related to the regressors; see

Hansen (2022, p.624), Mundlak (1978) and Li and Yang (2021). Note that the
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random effects in existing studies are assumed to have zero means and constant

variances, which implies that the random effects are homogeneous for individuals.

However, individual random effects can be influenced by space-specific covariates,

which may make the random effects heterogeneous. For example, the influence of

socio-economic factors on air quality is heterogeneous between cities. In general,

heterogeneity across individuals can be described by fixed effects or heteroskedas-

tic random effects (Baltagi, Jung and Song (2010)), both of which emphasize the

differences between individuals, but cannot be used to explore the heterogene-

ity information. Motivated by this fact, we consider a space-specific, covariate-

dependent location-scale structure for the individual effects. Specifically, the

location of an individual effect depicts the differences between individuals on the

conditional mean, and can be arbitrarily related to time-variant regressors. Thus

it can be viewed as a fixed effect. In contrast, the scale of an individual effect is

random and allows for conditional heteroscedasticity. Hence, the location-scale

structure combines the advantages of fixed and random effects. Moreover, it can

flexibly extract the influence of space-specific covariates on the whole distribution

of the individual random effect.

Quantile regressions (Koenker and Bassett (1978)) are popular tools for cap-

turing heterogeneity and exploiting the distributional information in data, and

provide a complete picture for studying the influence of the covariates on the re-

sponse. In the example of air quality, we are interested in exploring the influence

of socio-economic factors on air quality after removing spatial-temporal effects,

not only on the average level, but also on the different quantile levels, especially

the lower and upper ones. This motivates us to adopt a quantile regression for

the proposed individual effects in the location-scale structure. In summary, we

propose a new framework that captures individual heterogeneity in the presence

of spatial-temporal effects, and explore the influence of space-specific covariates

on the response. This study contributes to the literature in three ways:

(a) We propose a DSAR model with possibly heterogeneous random effects. To

the best of our knowledge, this is the first study to assume that the random

effects of spatial models have a location-scale structure that can be affected

by space-specific covariates. As a result, this model can capture the pure

influence of space-specific factors on different quantile levels of the response,

after the spatial-temporal effects have been removed.

(b) We introduce a two-stage hybrid estimation procedure for the proposed

model. Specifically, a QMLE is proposed in the first stage to estimate

the spatial-temporal effects, and a weighted conditional quantile regression
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estimator (WCQE) is used in the second stage by replacing unobserved

random effects with observed pseudo ones based on the QMLE.

(c) From a theoretical viewpoint, we derive the consistency and asymptotic

normality for the QMLE, establish the weak convergence of the quantile re-

gression process and the asymptotic distribution of the WCQE, and propose

two estimators for the conditional scale coefficients of the random effects and

establish their asymptotic results.

The remainder of the paper is organized as follows. Section 2 introduces the

model. Section 3 proposes a two-stage hybrid estimation procedure for this model,

and establishes all related asymptotic results. A simulation study is conducted in

Section 4 to assess the finite-sample performance of the estimation procedure, and

an empirical analysis of air quality is provided in Section 5 to illustrate the useful-

ness of the proposed model and its inference tools. Section 6 concludes the paper.

A bootstrapping procedure for the QMLE and all technical details are relegated

to the Supplementary Material. Throughout this paper, ⊗ denotes the Kronecker

product of two matrices, | · | denotes the absolute value of a scalar/vector or the

determinant of a matrix, ‖ · ‖ denotes the Euclidean norm of a vector, and tr(·)
denotes the trace of a matrix. Let λmin(·) and λmax(·) be the smallest and largest

eigenvalues of a matrix, respectively. Denote N and T as the total numbers of

spatial units and time periods, respectively. Define I(·) as the indicator function.

For a positive integer m, denote Im as an m×m identity matrix, 0m as an m× 1

vector of zeros and ιm as an m×1 vector of ones, and let Jm = ιmι
′
m. The opera-

tor E denotes the expectation with respect to the probability measure, En denotes

the expectation with respect to the empirical measure, and Gn =
√
n(En − E).

In addition, `∞(T ) denotes the space of all uniformly bounded functions on T .

Moreover, →p denotes convergence in probability, →d denotes convergence in

distribution, and  denotes weak convergence. An R package implementing the

proposed two-stage hybrid estimation procedure and the data set from Section 5

are available at https://github.com/wyLI2020/QuantileDSAR.

2. Model Specification

Consider the following DSAR model with random effects:

yit = θi+αyi,t−1+λ

N∑
j=1

wN,ijyjt+

q∑
`=1

γ`z`it+εit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

https://github.com/wyLI2020/QuantileDSAR
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where {θi} are space-specific or individual random effects, the scalar parameters

α and λ characterize the dynamic effect and the spatial autoregressive effect,

respectively, {γ`} are the coefficients of the time-varying exogenous variables

{z`it}, {wN,ij} are specified constant spatial weights that generate the spatial

dependence, and {εit} are independent and identically distributed (i.i.d.) across

i and t with mean zero and finite variance σ2
ε . To flexibly depict the possible

influence of space-specific covariates on an individual random effect, we assume

a location-scale structure for θi, that is,

θi = ψ0 +

p∑
`=1

ψ`x`i +

(
β0 +

p∑
`=1

β`|x`i|

)
ηi, (2.2)

where {x`i} are time-invariant constant regressors, {ψ`} and {β`} are the coef-

ficients of {x`i} and {|x`i|}, respectively, β0 > 0 and β` ≥ 0 for 1 ≤ ` ≤ p,

and {ηi} are i.i.d. disturbances with mean zero and finite variance σ2
η; see also

Koenker and Zhao (1994) and Zhao and Xiao (2014). Let µi = ψ0 +
∑p

`=1 ψ`x`i
and ϑi =

(
β0 +

∑p
`=1 β`|x`i|

)
ηi. It then follows that

θi = µi + ϑi.

The location-scale structure combines the advantages of fixed and random effects.

Specifically, the location µi depicts the difference between individuals on the

conditional mean and can be arbitrarily related to time-variant regressors {z`it},
whereas the scale effect ϑi allows for conditional heteroscedasticity and reflects the

influence of {x`i} on the fluctuation. Note that if ψ` = β` = 0 for all ` = 1, . . . , p,

then θi reduces to the commonly used individual random effect. Moreover, if

β0 = β1 = · · · = βp = 0, then θi is the individual fixed effect captured by space-

specific covariates with p+ 1 unknown parameters, which avoids the “incidental

parameters” problem due to N unknown parameters in commonly used individual

fixed-effect models.

Denote Y = (y′1, . . . ,y
′
T )′ and Y−1 = (y′0, . . . ,y

′
T−1)′ with yt = (y1t, . . . , yNt)

′,

Z = (Z ′1, . . . , Z
′
T )′ with Zt = (z1t, . . . ,zNt)

′ and zit = (z1it, . . . , zqit)
′, X =

(x1, . . . ,xN )′ with xi = (1, x1i, . . . , xpi)
′, and ε = (ε′1, . . . , ε

′
T )′ with εt = (ε1t, . . . ,

εNt)
′. Let SNT (λ) = IT ⊗BN (λ) with BN (λ) = IN−λWN and WN = {wN,ij , 1 ≤

i, j ≤ N} be the N × N specified constant spatial weights matrix, and denote

Z̃ = (Y−1, Z, (ιT ⊗ IN )X). Then, model (2.1) with (2.2) can be rewritten in the

following matrix form:

SNT (λ)Y = Z̃φ+ (ιT ⊗ IN )ϑ+ ε, (2.3)
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where φ = (α,γ ′,ψ′)′ with γ = (γ1, . . . , γq)
′ and ψ = (ψ0, ψ1, . . . , ψp)

′, and ϑ =

(ϑ1, . . . , ϑN )′ with ϑi = x′aiβηi, xai = (1, |x1i|, . . . , |xpi|)′ and β = (β0, β1, . . . , βp)
′.

Let θ = (θ1, . . . , θN )′. The following proposition provides a sufficient condition

for the covariance stationarity of yt.

Proposition 1. Suppose that ηi and εit are mutually independent. If |αB−1
N (λ)| <

1 and the process {zit} is covariance stationary, then there exists a unique co-

variance stationary solution to models (2.1) and (2.2). The solution takes the

form

yt =

∞∑
m=0

αm
[
B−1
N (λ)

]m+1
(θ + Zt−mγ + εt−m).

Proposition 1 indicates that the stationarity of {yt} restricts the spatial and

temporal effects to some extent by imposing conditions on the weights matrix

WN , spatial effect parameter λ, and autoregressive coefficient α. Specifically,

|α| + |λ| < 1 implies
∣∣αB−1

N (λ)
∣∣ < 1 if WN is row-normalized. Moreover, the

stationarity of {yt} depends on that of the exogenous covariates {zit}. However,

assuming that both {yt} and {zit} are stationary limits the application of the

proposed model. This motivates us to consider a theoretically valid estimation

method without any stationarity assumption on {yt}.
We are interested in estimating φ, β, λ, σ2

ε , and σ2
η, and providing a condi-

tional quantile estimation of the individual random effect θi. Let Qη(τ) be the

τth quantile of ηi. Denote Xa = (xa1, . . . ,xaN )′. The conditional quantile of θ,

given the space-specific covariates X, has the form of

Qθ(τ |X) = Xψ +Xaϕ(τ), (2.4)

where ϕ(τ) = (ϕ0(τ), ϕ1(τ), . . . , ϕp(τ))′ = Qη(τ)β. Note that the individual

effect θ are unobservable. Thus, to estimate Qθ(τ |X) in the framework of model

(2.3), we propose a two-stage hybrid estimation procedure.

3. Two-stage Hybrid Estimation

The space-specific random effect θi is latent. Thus, it is natural for the

estimation under model (2.4) to obtain its observable approximate using (2.1)

based on reasonable estimates of λ, α, and γ, and then to apply the quantile

regression estimation method to model (2.4), with θi replaced by its observable

approximate, to obtain estimates of ψ and ϕ(τ). Note that ψ is independent of

τ and it is not necessary to estimate it using a conditional quantile estimation in

our model setting, whereas ϕ(τ) is τ -dependent and can be estimated using the
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quantile estimation method. Moreover, λ and φ can be estimated directly, and

thus the observable approximate of ϑi is obtained easily from by model (2.3).

Together with the fact that Qθ(τ |X) = Xψ + Qϑ(τ |X), this motivates us to

obtain observable approximates of ϑi, and then to apply a quantile regression,

given by

Qϑ(τ |X) = Xaϕ(τ). (3.1)

Specifically, we adopt the QMLE for model (2.3), denoted by ζ̂ = (φ̂′, σ̂2
ε , λ̂,

β̂?′)′ for ζ = (φ′, σ2
ε , λ,β

?′)′ with β? = βση/σε. Then, the observable approxi-

mate of ϑi called the pseudo scale effect and denoted by ϑ̂i, can be constructed

based on λ̂ and φ̂; see (3.11). We next build a quantile regression model for

ϑ̂ = (ϑ̂1, . . . , ϑ̂N )′ using Xa as the regressor, and construct a WCQE ϕ̂(τ) for

ϕ(τ) and a weighted quantile average estimator (WQAE) β̂ for β. We propose

the following two-stage hybrid estimation procedure:

Stage 1. Obtain the Gaussian QMLE ζ̂ based on model (2.3).

Stage 2. Define the pseudo scale effects {ϑ̂i} using (3.11) based on ζ̂. Then,

obtain the WCQE ϕ̂(τ) for ϕ(τ) based on model (3.1), with ϑ replaced by

ϑ̂, and propose the WQAE β̂ for β by combining the information on ϕ̂(·)
at multiple quantile levels τ .

As a result, if SNT (λ̂) is invertible, then the conditional mean of the data Y can

be estimated by Ê(Y |X) = S−1
NT (λ̂)Z̃φ̂ based on model (2.3) and ζ̂. Moreover,

the conditional quantile of the random effect θ can be estimated by Q̂θ(τ |X) =

Xψ̂ + X ′aϕ̂(τ) based on model (2.4), ψ̂, and ϕ̂(τ). Statistical inference tools,

such as significance tests for φ, ϕ(τ), and β, can also be constructed based on

φ̂, ϕ̂(τ), and β̂. Further details of the proposed estimation procedure and its

asymptotics are provided in Sections 3.1 and 3.2.

To establish the asymptotics for the proposed two-stage hybrid estimation

procedure, we assume the following regularity conditions for N and T :

Assumption 1. T = cN r, for some constants r ≥ 0 and c > 0.

Assumption 2. T = cN r, for some constants 0 ≤ r ≤ 1 and c > 0.

Assumption 3. T = cN r, for some constants 0 < r ≤ 1 and c > 0.

Assumptions 1 and 2 allow T to be fixed or go to infinity as N goes to

infinity, and Assumption 2 restricts T to a rate not greater than N when it goes

to infinity. Assumption 3 requires that both T and N go to infinity, and is a

special case of Assumption 2. Specifically, the consistency of the QMLE in the
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first stage is established under Assumption 1, and the asymptotic normality of

the QMLE is obtained under Assumption 2. For the asymptotic normality of

the QMLE, we need to restrict the rate of T (i.e., T/N → c′, for some constant

c′ ≥ 0) to prove the asymptotic normality of (NT )−1/2∂ lnLNT (ζ0)/∂ζ using

Theorem A.1 of Kelejian and Prucha (2001); see the proof of Theorem 2 in the

Supplementary Material. Moreover, because T →∞ is necessary for the validity

of replacing ϑ with ϑ̂ in the quantile estimation, Assumption 3 is used to establish

the asymptotic results of the WCQE and WQAE in the second stage; see Section

3.2.

3.1. The quasi-maximum likelihood estimation

Recall that the parameter vector of model (2.3) is ζ = (φ′, σ2
ε , λ,β

?′)′ with

β? = βση/σε, and let ζ0 = (φ′0, σ
2
ε0, λ0,β

?′
0 )′ be the true value of ζ. Denote

VNT (λ,φ) = SNT (λ)Y − Z̃φ, VNT = (ιT ⊗ IN )ϑ + ε, B0N = BN (λ0), and

S0NT = SNT (λ0). Then it follows that VNT (λ0,φ0) = VNT = S0NTY − Z̃φ0.

We consider the case that initial observations are generated exogenously, that is,

y0 is exogenous such that it can be treated as a constant vector; see also Su and

Yang (2015).

Assume that εit and ηi are distributed with a zero mean and variances σ2
ε

and σ2
η, respectively, which implies that cov{VNT (λ,φ)} = σ2

εΩNT (β?), where

ΩNT (β?) = JT ⊗ AN (β?) + INT with AN (β?) = diag
{

(x′a1β
?)2, . . . , (x′aNβ

?)2
}

.

The Gaussian quasi-likelihood function of ζ is then given by

LNT (ζ) = (2πσ2
ε)
−NT/2 ∣∣S′NT (λ)Ω−1

NT (β?)SNT (λ)
∣∣1/2

exp

{
−
V ′NT (λ,φ)Ω−1

NT (β?)VNT (λ,φ)

2σ2
ε

}
,

and the corresponding quasi-log-likelihood function of ζ is

lnLNT (ζ) =− NT

2
ln (2π)− NT

2
lnσ2

ε −
1

2
ln |ΩNT (β?)|+ ln |SNT (λ)|

− 1

2σ2
ε

V ′NT (λ,φ)Ω−1
NT (β?)VNT (λ,φ).

(3.2)

Maximizing (3.2) gives the Gaussian QMLE of ζ, denoted by ζ̂. If εit and ηi are

normally distributed, then ζ̂ is the MLE.

For ease of computation, we consider the concentrated log-likelihood by con-

centrating out φ and σ2
ε . Given δ = (λ,β?′)′, maximizing (3.2) leads to the

following QMLEs of φ and σ2
ε :



HETEROGENEOUS DSAR MODEL 2621

φ̂(δ) =
(
Z̃ ′Ω−1

NT (β?)Z̃
)−1

Z̃ ′Ω−1
NT (β?)SNT (λ)Y , (3.3)

and

σ̂2
ε(δ) =

1

NT
V̂ ′NT (δ)Ω−1

NT (β?)V̂NT (δ), (3.4)

where V̂NT (δ) = SNT (λ)Y −Z̃φ̂(δ). Then, by plugging (3.3) and (3.4) into (3.2),

the concentrated log-likelihood function of δ is

ln `NT (δ) = −NT
2

(ln (2π) + 1)− NT

2
ln σ̂2

ε(δ)− 1

2
ln |ΩNT (β?)|+ ln |SNT (λ)|.

(3.5)

The QMLE δ̂ that maximizes the function (3.5) is given by

δ̂ = argmax
δ∈∆

ln `NT (δ),

where ∆ is the parameter space of δ, which is assumed to be compact and the

true value δ0 = (λ0,β
?′
0 )′ is in the interior of ∆. Then, the QMLEs of φ and σ2

ε

are φ̂ = φ̂(δ̂) and σ̂2
ε = σ̂2

ε(δ̂), respectively. As a result, the QMLE of ζ is given

by ζ̂ = (φ̂′, σ̂2
ε , δ̂
′)′ = (φ̂′, σ̂2

ε , λ̂, β̂
?′)′.

To establish the consistency and asymptotic normality for the QMLE, we

introduce the following assumptions.

Assumption 4. (i) E|εit|4+ε0 <∞ and E|ηi|4+ε0 <∞, for some ε0 > 0; (ii) εit
and ηi are mutually independent.

Assumption 5. (i) The elements wN,ij of WN are uniformly bounded constants

for all N in all i and j; as a normalization, wN,ii = 0 for all i; (ii) the matrix B0N

is nonsingular; (iii) the sequences of matrices {WN} and
{
B−1

0N

}
are bounded in

both row and column sums uniformly for all N ; (iv)
{
B−1
N (λ)

}
are bounded in

either row or column sums uniformly for all N, and uniformly in λ ∈ ∆(λ); and

(v) the sequence of matrices {
∑T

t=1 α
t−1
0 (B−1

0N )t} are uniformly bounded for all N

and T in both row and column sums.

Assumption 6. (i) {x`i} are uniformly bounded constants for all N ; (ii) E(z`it) =

0 and E|z`it|4+ε0 < ∞ for some ε0 > 0; (iii) for any 1 ≤ ` ≤ q, the covariance

matrix of {|z`it|, 1 ≤ i ≤ N, 1 ≤ t ≤ T} is uniformly bounded in row sums, and it

holds that ∑
1≤i3,i4≤N

∑
1≤t3,t4≤T

cov (z`i1t1z`i2t2 , z`i3t3z`i4t4) = O(1) (3.6)

for any 1 ≤ i1, i2 ≤ N and 1 ≤ t1, t2 ≤ T ; and (iv) (1/NT )Z̃Z̃ ′ is positive defi-

nite for sufficiently large N and λmin((1/NT )Z̃ ′Ω−1
NT (β?)Z̃) is uniformly bounded
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away from zero almost surely (a.s.).

Assumption 4 provides basic conditions on the disturbances that are standard

in the random effect panel data literature; see Assumptions R(i) and R(ii) of

Su and Yang (2015). Note that Assumption 4(i) does not require {εit} to be

identically distributed. Because the heterogeneity among individuals is captured

by the random effect θi in model (2.1), we assume εit has a common variance

instead of i-dependent variance.

Assumption 5 provides essential features of the weights matrix that are com-

monly assumed for spatial models; see also Assumption G2 of Su and Yang (2015)

and Assumptions 2–5 of Lee (2004). In empirical applications, WN is usually row

normalized such that BN (λ) is nonsingular for λ ∈ (−1, 1); see also Kelejian and

Prucha (2010). The invertibility of B0N in Assumption 5(ii) guarantees that

(2.3) has an equilibrium and the disturbance term is well defined. Assumption

5(iii) limits the spatial correlation to some degree, but facilitates the study of the

asymptotic properties of the spatial parameter estimators. Assumption 5(iv) is

required to establish the consistency. Assumption 5(v) is implied by Assumption

5(iii) when T is fixed. When both N and T go to infinity, Assumption 5(v) is

necessary to guarantee that the variance of yit is bounded, and is an extension of

Assumption 5(iii), which guarantees that the variance of yi in the SAR model is

bounded as N goes to infinity (Lee (2004)). Note that Assumption 5(iii) implies

that both the row and the column sums of (B−1
0N )t are bounded for an arbitrary

t. This, together with |α0| < 1, implies that Assumption 5(v) holds, as long as

αt−1
0 decreases faster than the row or column sum of (B−1

0N )t increases as t in-

creases, which is usually satisfied in practice. Moreover, ifWN is a row-normalized

matrix, then both
{
B−1
N (λ)

}
and {

∑T
t=1 α

t−1[B−1
N (λ)]t} are uniformly bounded

in row sums for |α| + |λ| < 1; see also Lee (2004). In addition, Assumption

5 implies some restrictions on the process {yt} by imposing conditions on the

weights matrix WN , spatial effect parameter λ, and autoregressive coefficient α.

However, both stationary and nonstationary cases of {yt} are allowable under

Assumption 5.

The conditions on the regressors in Assumptions 6(i), (ii), and (iv) are gen-

eral and parallel Assumption 6 in Lee (2004), Assumption 4 in Yu, De Jong

and Lee (2008), and Assumptions G1(iii) and R(iv?) in Su and Yang (2015).

The regressors in Lee (2004) are time-invariant constants, in Yu, De Jong and

Lee (2008), they are time-variant constants, and in Su and Yang (2015), they

are time-invariant or time-variant random variables. Note that Theorems 1 and

2 still hold if x`i (or z`it) is assumed to be either constant or random variable.
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Here, we assume time-variant random z`it but time-invariant constant x`i to

emphasize the randomness by time t. This also allows x`i to be arbitrarily re-

lated to z`it. Assumption 6(iii) guarantees that the variances associated with

{z`it, 1 ≤ i ≤ N, 1 ≤ t ≤ T} are bounded; see Lemmas 4–6. In particularly,

(3.6) implies that given (i1, t1) and (i2, t2), z`i1t1z`i2t2 is correlated with z`i3t3z`i4t4
for only finite terms of (i3, t3) and (i4, t4). Note that Assumption 6(iii) allows

for individual dependence among finite neighbors and time dependence up to fi-

nite lags, which makes it weaker than the independence assumption of regressors

across individuals in Su and Yang (2015).

Recall that ζ = (φ′, σ2
ε , δ
′)′ and ζ̂ = (φ̂′(δ̂), σ̂2

ε(δ̂), δ̂′)′. To show the consis-

tency of the QMLE ζ̂, we first verify that ζ0 = (φ′0, σ
2
ε0, δ

′
0)′ is identifiable. For

the quasi-log-likelihood function at (3.2), given δ, its expectation E[lnLNT (ζ)]

is maximized at

φ̃(δ) =
[
E
(
Z̃ ′Ω−1

NT (β?)Z̃
)]−1

E
(
Z̃ ′Ω−1

NT (β?)SNT (λ)Y
)
, (3.7)

and

σ̃2
ε(δ) =

1

NT
E
(
Ṽ ′NT (δ)Ω−1

NT (β?)ṼNT (δ)
)
, (3.8)

where ṼNT (δ) = SNT (λ)Y − Z̃φ̃(δ). Define ln `?NT (δ) = maxφ,σ2
ε
E[lnLNT (ζ)].

Then, by (3.7) and (3.8), we have

ln `?NT (δ) = −NT
2

(ln (2π) + 1)− NT

2
ln σ̃2

ε(δ)− 1

2
ln |ΩNT (β?)|+ ln |SNT (λ)|.

Denote Ω0NT = ΩNT (β?0). Because E(Z̃ ′Ω−1
0NTVNT ) = 0, by Lemma 8 in the

Supplementary Material, it can be shown that φ̃(δ0) = φ0 + [E(Z̃ ′Ω−1
0NT Z̃)]−1

E(Z̃ ′Ω−1
0NTVNT ) = φ0. Then, it follows that ṼNT (δ0) = VNT and σ̃2

ε(δ0) = σ2
ε0.

The identification of δ0 can be based on the maximum values of (1/NT ) ln `?NT (δ),

and hence that of φ0 and σ2
ε0 follows. The following condition is imposed for

identification.

Assumption 7. For any δ 6= δ0, it holds that

lim
N→∞

1

NT

[
ln
∣∣σ̃−2
ε (δ)Ω−1

NT (β?)SNT (λ)
∣∣− ln

∣∣σ−2
ε0 Ω−1

0NTS0NT

∣∣] 6= 0.

Assumption 7 is equivalent to limN→∞(1/NT ) [ln `?NT (δ)− ln `?NT (δ0)] 6=
0 for any δ 6= δ0, which ensures the identification of δ0; see also Assump-

tion 9 of Lee (2004) and Assumption R(iv) of Su and Yang (2015). Finally,

the consistency of δ̂ holds by the identification and uniform convergence of

(1/NT ) [ln `NT (δ)− ln `?NT (δ)] to zero on ∆; thus the consistency of φ̂ and σ̂2
ε
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follows.

Theorem 1. Under Assumptions 1, and 4–7, then ζ̂ →p ζ0 as N →∞.

Let Σ = limN→∞ΣN and Σ? = limN→∞Σ?
N , where ΣN = −E((1/NT )

(∂2 lnLNT (ζ0)/∂ζ∂ζ′)) and

Σ?
N = E

(
1√
NT

∂ lnLNT (ζ0)

∂ζ

1√
NT

∂ lnLNT (ζ0)

∂ζ′

)
+ E

(
1

NT

∂2 lnLNT (ζ0)

∂ζ∂ζ′

)
.

By the consistency result given in Theorem 1, the asymptotic normality of ζ̂

can be obtained using the Taylor expansion and the central limit theorem for

linear-quadratic forms in Kelejian and Prucha (2001).

Theorem 2. Under Assumptions 2, and 4–7, if Σ and Σ? exist and Σ is positive

definite, then
√
NT (ζ̂ − ζ0)→d N(0,Σ−1 + Σ−1Σ?Σ−1) as N →∞.

Theorem 2 provides the asymptotic distribution of the QMLE ζ̂, where the

matrices ΣN and Σ?
N are relegated to Section S3.1 of the Supplementary Material.

If εit and ηi are normally distributed, then the QMLE reduces to the MLE, and its

limiting distribution can be simplified to
√
NT (ζ̂−ζ0)→d N(0,Σ−1) as N →∞.

Note that Theorems 1 and 2 allow T to be fixed or tend to infinity, which makes

the QMLE applicable to both short and long panel data.

To calculate the covariance matrix of ζ̂ in practice, consistent estimates

of Σ and Σ? are necessary. Obviously, the matrix Σ = limN→∞−E((1/NT )

(∂2 lnLNT (ζ0)/∂ζ∂ζ′)) can be consistently estimated by Σ̂ = −(1/NT )(∂2

lnLNT (ζ̂)/∂ζ∂ζ′). However, a closed-form estimate of the matrix

Γ = Σ? + Σ = lim
N→∞

E

(
1√
NT

∂ lnLNT (ζ0)

∂ζ

1√
NT

∂ lnLNT (ζ0)

∂ζ′

)
(3.9)

is not readily available; see also Su and Yang (2015). Therefore, we use the

residual-based bootstrap and estimate Γ by its bootstrap estimate Γ̂B; see the

Supplementary Material for the detailed procedure and its validity. Consequently,

the asymptotic covariance matrix of ζ̂ can be estimated by Σ̂−1Γ̂BΣ̂−1.

To estimate β0 = (β00, β10, . . . , βp0)′ in model (2.2), the constraint β00 ≡ 1

should be imposed for the identification of β0, as in Koenker and Zhao (1994).

Note that β?0 = β0ση0/σε0. Thus, we have β`0 = β`0/β00 = β?`0/β
?
00, for ` =

1, . . . , p. Then, based on the QMLE ζ̂ = (φ̂′, σ̂2
ε , λ̂, β̂

?′)′ with β̂?=(β̂?0 , β̂
?
1 , . . . , β̂

?
p)′,

we can construct a consistent estimator for β0, denoted by β̌ = (1, β̌1, . . . , β̌p)
′,

where

β̌` =
β̂?`

β̂?0
, ` = 1, . . . , p. (3.10)
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Table 1. Biases, ESDs, and ASDs of three estimators of β0, that is, β̌ by the QMLE,
the initial estimator β̃c, and the WQAE β̂(π̂opt,K), when the innovations {ηi} follow a
standard normal or uniform distribution.

N(0, 1) U(−
√

3,
√

3)

N T Bias ESD ASD Bias ESD ASD

β̌1 20 20 276,805 827,496 5e+12 146,686 609,974 3e+12

50 20 3,181 100,581 4e+9 3,281 103,752 4e+9

100 50 0.1638 0.7819 0.8772 0.0779 0.4386 0.5052

300 200 0.0340 0.3032 0.3548 0.0167 0.1942 0.2278

β̃1c 20 20 0.5346 1.2984 - 0.4840 1.2580 -

100 50 0.2714 0.7978 - 0.2020 0.5663 -

300 200 0.0668 0.3621 - 0.0637 0.3044 -

β̂1 20 20 0.5116 1.2505 1.1530 0.3418 1.1946 1.0260

100 50 0.1165 0.8976 0.4603 0.0669 0.5035 0.3477

300 200 0.0348 0.3578 0.2455 0.0606 0.2372 0.1730

∗ e+ 12 denotes 1012.

Under the conditions of Theorem 2, we can use the delta method (Doob (1935)) to

show that
√
NT (β̌` − β`0)→d N(0,∇h`(ζ0)′Σζ∇h`(ζ0)) as N →∞, where Σζ =

Σ−1+Σ−1Σ?Σ−1, and∇h`(ζ) = ∂h`(ζ)/∂ζ = (0′4+p+q,−β?` /β?20 ,0′`−1, 1/β
?
0 ,0
′
p−`)

′

with h`(ζ) = β?` /β
?
0 . Furthermore, we can calculate the asymptotic variance of

β̌` in practice by plugging in ∇h`(ζ̂) and Σ̂ζ = Σ̂−1Γ̂BΣ̂−1. However, β̌ performs

very poorly when the sample size is small or even moderate; see Table 1. As a

result, we propose another estimator for β0 in Section 3.2.2, that is much more

efficient for small and moderate samples.

3.2. Conditional quantile estimation

In Section 3.2.1, we first investigate the conditional quantile estimation for

ϑi. Then, we construct an efficient estimator for the conditional scale coefficient β

of the random effects by optimally combining information over multiple quantile

levels τ in Section 3.2.2.

3.2.1. Weighted conditional quantile estimation

Because the scale effect ϑi in model (3.1) is unobservable, to study its con-

ditional quantiles, we first obtain its observable approximate using the QMLE

ζ̂ from the first stage. Replacing ζ by ζ̂ in model (2.3), one can get T random

approximates of ϑi for each i. To fully use the information in these approxima-

tions, a natural way is to take the average of T random approximations as the

final approximation for ϑi. Therefore, the pseudo scale effect, denoted by ϑ̂, that
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is, the approximation of ϑ, is given by

ϑ̂ = (ϑ̂1, . . . , ϑ̂N )′ =
1

T

T∑
t=1

[
BN (λ̂)yt − α̂yt−1 − Ztγ̂ −Xψ̂

]
. (3.11)

Thus, the pseudo random effect follows by θ̂ = Xψ̂ + ϑ̂. Next, the conditional

quantile estimation can be applied to model (3.1), with the latent variable ϑ

replaced by its observable pseudo scale effect ϑ̂. Owing to the presence of condi-

tional heteroscedasticity in ϑi, we consider the WCQE given by

ϕ̂(τ) = (ϕ̂0(τ), ϕ̂1(τ), . . . , ϕ̂p(τ))′ = argmin
ϕ∈Φ

N∑
i=1

1

x′aiβ̃c
ρτ (ϑ̂i − x′aiϕ), τ ∈ T ,

(3.12)

where Φ is the parameter space of ϕ(τ), T is a closed subinterval of (0, 1), ρτ (u) =

u (τ − I(u < 0)) is the check function, and β̃c is a consistent estimator of β0 such

that x′aiβ̃c is bounded away from zero for all 1 ≤ i ≤ N ; see also Koenker and

Zhao (1994) and Zhao and Xiao (2014). For the choice of β̃c, see Remark 3.

Theorem 3. Under Assumptions 3–7, as N →∞, the following results hold:

(i) ϑ̂i − ϑi = op(1), for 1 ≤ i ≤ N ;

(ii) (1/
√
N)
∑N

i=1(ϑ̂i − ϑi) = op(1).

Theorem 3 plays an important role in verifying the validity of the proposed

hybrid estimation procedure. Specifically, Theorem 3(i) guarantees that replacing

ϑ with ϑ̂ does not affect the theoretical properties of the WCQE ϕ̂(τ), and its

proof requires T →∞, which is implied by N →∞ and Assumption 3. Theorem

3(ii) simplifies the derivation of the Bahadur representation for ϕ̂(τ); see equation

(S5.16) of the Supplementary Material.

Denote the true value of ϕ(τ) as ϕ0(τ) = (ϕ00(τ), ϕ10(τ), . . . , ϕp0(τ))′. As-

sume that the parameter space Φ is compact and ϕ0(τ) is its interior point; see

also Assumption R2 of Chernozhukov and Hansen (2006) and Assumption 4.1

(b) of Canay (2011). To establish the theoretical properties of ϕ̂(τ), we need the

following basic assumptions.

Assumption 8. For 1 ≤ i ≤ N , ϑi ∈ R has a bounded conditional density a.s.,

that is, supϑ∈R fϑi|xi
(ϑ) < K for some K > 0 a.s., where R = (−∞,∞) and

fϑi|xi
(ϑ) is bounded away from zero at the point x′iϕ0(τ).

Assumption 9. For the function Πi(τ,ϕ, ri) = E[(1/x′aiβ)(τ − I(ϑi < x
′
aiϕ −

ri))xai] with (τ,ϕ, ri) ∈ T × Φ × R, the Jacobian matrices (∂/∂ϕ′)Πi(τ,ϕ, ri)
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and (∂/∂ri)Πi(τ,ϕ, ri) for each 1 ≤ i ≤ N are continuous and have full rank

uniformly over T × Φ× R.

Assumption 8 is needed to establish the uniform convergence of ϕ̂(τ). This,

together with Assumption 9, is used for the weak convergence of ϕ̂(τ); see As-

sumption R3 of Chernozhukov and Hansen (2006) and Assumption 4.1(c) of

Canay (2011).

Theorem 4. Suppose the conditions of Theorem 3 hold. Then, under Assumption

8, supτ∈T ‖ϕ̂(τ)−ϕ0(τ)‖ →p 0 as N →∞.

Theorems 1, 3, and 4 ensure that the conditional quantile of the random

effect θ can be consistently estimated by

Q̂θ(τ |X) = Xψ̂ +Xaϕ̂(τ). (3.13)

Denote the density function of ηi by fη(·). Let S(τ, τ ′) = min{τ, τ ′} − ττ ′

and Ξ(τ) = fη(Qη(τ)). Define the (p+ 1)× (p+ 1) matrices

DN =
1

N

N∑
i=1

xaix
′
ai

(x′aiβ0)2
, D0 = lim

N→∞
DN and D1N (τ) = Ξ(τ)DN .

Theorem 5. Suppose the conditions of Theorem 4 hold. If D0 exists and is

positive definite, then under Assumption 9, as N →∞,

√
N (ϕ̂(·)−ϕ0(·)) = D−1

1N (·)GN

(
xai
x′aiβ0

Ψ· (ηi −Qη(·))
)

+ op(1) G(·)

in `∞(T ), where Ψτ (u) = τ − I(u < 0) and G(·) is a zero mean Gaussian process

with covariance kernel Ξ−1(τ)S(τ, τ ′)Ξ−1(τ ′)D−1
0 .

Theorem 5 states the weak convergence of the quantile regression process

ϕ̂(·). For any fixed quantile level τ , by Theorem 5, it follows that, as N →∞,

√
N(ϕ̂(τ)−ϕ0(τ))→d N(0, τ(1− τ)Ξ−2(τ)D−1

0 ). (3.14)

To calculate the covariance matrix of ϕ̂(τ) in practice, consistent estimators

of Ξ(τ) = fη(Qη(τ)) and D0 are required. Define the error function η̂i(β) =

ϑ̂i/(x
′
aiβ). Then the residuals can be computed as η̃i = η̂i(β̃c), where β̃c is a

consistent estimate of β0, as in (3.12). The density function fη(·) can be esti-

mated using the kernel density estimator f̃η(x) = (Nh)−1
∑N

i=1K((x − η̃i)/h),

where K(·) is the kernel function and h is the bandwidth. In practice, we

suggest using the Gaussian kernel for K(·) and its rule-of-thumb bandwidth,
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h = 0.9N−1/5 min{s, R̂/1.34}, where s and R̂ are the sample standard deviation

and interquartile of the residuals, respectively; see also Zhao and Xiao (2014). As

a result, Ξ(τ) can be estimated using f̃η(Q̄η(τ)), where Q̄η(τ) is the sample τth

quantile of {η̃i}Ni=1. Moreover, D0 can be approximated by DN , with β0 replaced

by β̃c, that is, D̃N = (1/N)
∑N

i=1(xaix
′
ai/(x

′
aiβ̃c)

2). Consequently, the asymp-

totic covariance matrix of ϕ̂(τ) can be estimated by plugging in Ξ̄(τ) = f̃η(Q̄η(τ))

and D̃N to replace Ξ(τ) and D0, respectively.

Remark 1 (Discussion on the estimation of ψ). As the conditional mean

coefficient of the random effects, ψ can be estimated using either the quasi-

maximum likelihood estimation in the first stage or the conditional quantile

estimation for model Qθ(τ |X) = Xψ + Xaϕ(τ) in the second stage. How-

ever, comparing Theorems 2 and 5, the QMLE ψ̂ of ψ has a faster convergence

rate of
√
NT than that of

√
N for the quantile estimator obtained using model

Qθ(τ |X) = Xψ +Xaϕ(τ). This is another reason why the proposed two-stage

hybrid estimation procedure does not consider a quantile estimation for both ψ

and ϕ(τ) simultaneously.

Remark 2 (Discussion on an alternative estimation procedure). To es-

timate the DSAR model (2.1) with the random effect θi specified by (2.2), we

consider the following alternative estimation procedure:

Stage 1′. Estimate (α,γ ′, σ2
ε , δ)′ by the QMLE using the transformation ap-

proach or first-differencing to eliminate individual effect θi (Lee and Yu

(2010); Yu, De Jong and Lee (2008)).

Stage 2′. Define the pseudo random effect θ̃ similarly as in (3.11). Then, apply

the WCQE to model (2.4), with θ replaced by its approximation θ̃. Further-

more, τ -independent ψ and β can be estimated by ψ̃ and β̃, respectively, by

combining the information from the quantile estimators at multiple quantile

levels.

Note that the transformation approach or first-differencing in Stage 1′ ignores

the structure of θ in (2.2), which makes the estimation less efficient. Moreover,

ψ̃ obtained using a quantile regression in Stage 2′ also results in an efficiency

loss, as discussed in Remark 1. Thus, we prefer the two-stage hybrid estimation

procedure proposed in Section 3.

Remark 3 (Choice of β̃c in (3.12) for the WCQE). To conduct the weighted

quantile regression in (3.12), we employ β̌ in (3.10) as β̃c. However, β̌ is not

stable in finite-sample cases, so we construct an alternative choice for β̃c. Note
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that ϕ0(τ) = Qη(τ)β0. Thus, we can construct β̃c by combining the information

of the estimator for ϕ0(τ) over multiple quantile levels. Furthermore, ϕ0(τ) and

Qη(τ) have the same sign. Thus, as an alternative, we consider
∑K

k=1 |ϕ0(τk)| =
β0
∑K

k=1 |Qη(τk)| to avoid the offset among positive and negative values for both

terms at different quantile levels. Following Koenker and Zhao (1994), we adopt

the constraint β00 ≡ 1 to ensure the identification of β0 and Qη(τ). As a result,

we suggest the following choice for β̃c in (3.12):

β̃c =

∑K
k=1 |ϕ̃(τk)|∑K
k=1 |Q̃η(τk)|

, (3.15)

where ϕ̃(τk) with τk = k/(K + 1), for 1 ≤ k ≤ K, is the unweighted condi-

tional quantile estimator defined by ϕ̃(τk) = (ϕ̃0(τk), . . . , ϕ̃p(τk))
′ = argminϕ∈Φ∑N

i=1 ρτk(ϑ̂i − x′aiϕ), and Q̃η(τk) = ϕ̃0(τk); see also Zhu, Zheng and Li (2018).

Clearly, (3.15) guarantees the positivity of β̃c.

3.2.2. Weighted quantile average estimation

For the conditional scale coefficient β of the random effects, we have proposed

two consistent estimators β̌ and β̃c, in (3.10) and (3.15), respectively. However,

β̌ is not suggested, because it is not stable in small or even moderate samples.

For β̃c, it is actually an equally weighted quantile average estimator by assigning

equal weights [
∑K

k=1 |Q̃η(τk)|]−1 to the WCQE ϕ̂(·) at each quantile level, which

may lead to a less efficient estimator. We next introduce an efficient estimator

of β by optimally combining the information of ϕ̂(·) across K quantile levels:

τk = k/(K + 1), for 1 ≤ k ≤ K, where K is a fixed integer.

Recall that β0 = (β00, β10, . . . , βp0)′ is the true value of β, and ϕ0(τ) =

Qη(τ)β0 with ϕ`0(τ) = Qη(τ)β`0 holds for ` = 0, 1, . . . , p. Note that for any

weight vector πK = (π1, . . . , πK)′ satisfying
∑K

k=1 πkQη(τk) = 1, it holds that

β0 =
∑K

k=1 πkϕ0(τk) under the constraint β00 ≡ 1. This motivates us to combine

{ϕ̂(τk), 1 ≤ k ≤ K} linearly to define the WQAE of β, as follows:

β̂(πK) =

K∑
k=1

πkϕ̂(τk) with

K∑
k=1

πkQη(τk) = 1; (3.16)

see also Zhao and Xiao (2014).

Denote B as the parameter space of β, and assume B is compact and β0

is an interior point. Define the K × K matrix H = {hij , 1 ≤ i, j ≤ K}, with

hij = Ξ−1(τi)S(τi, τj)Ξ
−1(τj). The asymptotics of β̂(πK) and optimal choice for

πK are provided below.
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Theorem 6. Suppose the conditions of Theorem 5 hold. Then as N →∞,

√
N
(
β̂(πK)− β0

)
→d N (0, Υ (πK)) ,

where Υ (πK) = π′KHπKD
−1
0 . Moreover, the optimal weight is

πopt,K = argmin
π, s.t.π′q=1

Υ (πK) =
H−1q

q′H−1q
, (3.17)

where q = (Qη(τ1), . . . , Qη(τK))′. Thus, the asymptotic covariance of the optimal

WQAE β̂(πopt,K) is Υ (πopt,K) = (q′H−1q)−1D−1
0 .

To estimate the optimal weight πopt,K , consistent estimators of q and H are

necessary. We can approximate q by q̂ = (Q̂η(τ1), . . . , Q̂η(τK))′, with Q̂η(τ) =

ϕ̂0(τ), and estimate H by Ĥ = {ĥij , 1 ≤ i, j ≤ K}, with ĥij = Ξ̂−1(τi)S(τi, τj)

Ξ̂−1(τj) and Ξ̂(τ) = f̃η(Q̂η(τ)). Here, using Q̂η(τ) instead of the empirical quan-

tile Q̄η(τ) to estimate q ensures that the estimate of β00 is one. Then, a consistent

estimator π̂opt,K = (π̂1,opt, . . . , π̂K,opt)
′ of πopt,K = (π1,opt, . . . , πK,opt)

′ can be ob-

tained by plugging in Ĥ and q̂. Finally, the optimal WQAE can be calculated

as β̂(π̂opt,K) =
∑K

k=1 π̂k,optϕ̂(τk). It can be shown that
√
N(β̂(π̂opt,K)− β0)→d

N (0, Υ (πopt,K)) as N → ∞, which implies that β̂(π̂opt,K) and β̂(πopt,K) have

the same asymptotic efficiency.

Remark 4 (Comparison of β̌, β̃c, and β̂(π̂opt,K)). β̌ and β̂(π̂opt,K) are es-

timated using different methods, and thus a theoretical comparison is infeasible.

Instead, we compare their finite-sample performance by means of a simulation.

The results in Section 4 indicate that β̂(π̂opt,K) outperforms β̌ in terms of the bias

and empirical and asymptotic standard deviations when the sample size is small

or even moderate. In contrast, note that the convergence rates of β̂(π̂opt,K) and

β̌ are
√
N and

√
NT , respectively. Thus, β̌ can be more efficient than β̂(π̂opt,K)

for large samples. We also compare the finite-sample performance of β̂(π̂opt,K)

and β̃c, with the results showing that β̂(π̂opt,K) has smaller biases and empirical

standard deviations than β̃c. Therefore, we suggest improving the efficiency by

using β̂(π̂opt,K) when the sample size is small or moderate, whereas β̌ is preferred

in large samples owing to its faster convergence rate.

4. Simulation Study

This section conducts a simulation experiment to evaluate the finite-sample

performance of the proposed two-stage hybrid estimation procedure in Section 3,

including the Gaussian QMLE ζ̂, the WCQE ϕ̂(τ), and the WQAE β̂(π̂opt,K).
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The data are generated from the following model:
yit = θi + 0.5yi,t−1 + 0.5

N∑
j=1

wN,ijyjt + zit + εit,

θi = 1 + xi + (1 + |xi|) ηi,

where the innovations {εit} are independently standard normal, {ηi} are inde-

pendently standard normal or follow the uniform distribution U(−
√

3,
√

3), and

{xi} and {zit} are independently generated randomly from the uniform distri-

bution U(−1, 1) and the standard normal distribution, respectively. The spa-

tial weights matrix is generated according to rook contiguity and is row nor-

malized (Yu, De Jong and Lee (2008); Su and Yang (2015)). Note that the

QMLE at Stage 1 has a
√
NT -convergence rate under Assumption 2, which al-

lows two cases: (i) both N and T are large; and (ii) N is large, but T is fixed.

In contrast, the WCQE and WQAE at Stage 2 both have a
√
N -convergence

rate under Assumption 3, which allows only case (i). Hence, we consider three

sample settings, (N,T ) = (20, 20), (20, 50), and (100, 50), for the QMLE, and

(N,T ) = (20, 20), (100, 50), and (300, 200) for the WCQE and WQAE, with 1,000

replications generated for each sample setting.

We aim to estimate the parameters ζ0 = (α0, γ10, ψ00, ψ10, σ
2
ε0, λ0, β

?
00, β

?
10)′,

ϕ0(τ) = (ϕ00(τ), ϕ10(τ))′, and β10 using the QMLE ζ̂, WCQE ϕ̂(τ), and WQAE

β̂1(π̂opt,K), respectively, where (β?00, β
?
10) = (1, β10)ση0/σε0 and ϕ0(τ) = (1, β10)

Qη(τ). The quasi-Newton method (Doob (1935)) is employed to solve the QMLE.

For the WCQE, we use the R package “nloptr” (Johnson (2021)), with the same

sign restriction imposed on each element of ϕ̂(τ), owing to ϕ0(τ) = β0Qη(τ)

and β0 ≥ 0. For the WQAE, we employ K = 9 quantile levels τk = k/10, with

k = 1, . . . , 9, and the resulting β̂1(π̂opt,K) is almost nonnegative under the same

sign restriction for ϕ̂(τ).

Table 2 reports the biases, empirical standard deviations (ESDs), and asymp-

totic standard deviations (ASDs) of the QMLE ζ̂ at Stage 1, where the ASDs are

calculated using a residual-based bootstrap with bootstrap sample size B = 500.

Recall that we require N → ∞ theoretically. Thus, we focus only on the com-

parison of the (N,T ) settings with N increasing. Comparing the results of the

settings (N,T ) = (20, 20) and (100, 50), in which T increases at a slower rate

than N , most of the biases, ESDs, and ASDs become smaller as N increases. We

have the same finding when comparing the results of (N,T ) = (20, 50) with that

of (100, 50), where T is fixed as N increases. Moreover, the biases for the nor-

mal distribution of ηi are mostly smaller than those for the uniform distribution.
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Table 2. Biases, ESDs, and ASDs of the QMLE ζ̂ when the innovations {ηi} follow a
standard normal or uniform distribution.

N(0, 1) U(−
√

3,
√

3)

N T Bias ESD ASD Bias ESD ASD

α 20 20 0.0021 0.0234 0.0398 0.0029 0.0232 0.0341

20 50 0.0007 0.0146 0.0400 0.0008 0.0141 0.0332

100 50 0.0006 0.0080 0.0089 0.0006 0.0079 0.0088

γ1 20 20 0.0020 0.0511 0.0561 0.0013 0.0516 0.0571

20 50 0.0019 0.0336 0.0381 0.0026 0.0318 0.0371

100 50 0.0002 0.0145 0.0147 0.0005 0.0144 0.0147

ψ0 20 20 0.0089 0.3737 1.2303 0.0091 0.3930 0.8101

20 50 0.0292 0.3561 1.8826 0.0201 0.3966 2.1397

100 50 0.0040 0.1537 0.1609 0.0045 0.1519 0.1596

ψ1 20 20 0.0404 0.6824 1.2488 0.0161 0.6284 0.9061

20 50 0.0018 0.6537 4.9535 0.0149 0.6501 3.0061

100 50 0.0072 0.2782 0.2731 0.0100 0.2742 0.2735

σ2
ε 20 20 0.0039 0.0714 0.1266 0.0086 0.0752 0.1138

20 50 0.0013 0.0464 0.1113 0.0027 0.0449 0.0913

100 50 0.0001 0.0201 0.0377 0.0003 0.0193 0.0366

λ 20 20 0.0030 0.0237 0.0435 0.0037 0.0235 0.0375

20 50 0.0008 0.0147 0.0428 0.0010 0.0141 0.0346

100 50 0.0006 0.0080 0.0089 0.0006 0.0079 0.0088

β?
0 20 20 0.1805 0.5059 2.7118 0.1295 0.4365 1.6301

20 50 0.1834 0.4967 7.5333 0.1041 0.4295 4.2356

100 50 0.0198 0.2087 0.2581 0.0177 0.1360 0.1718

β?
1 20 20 0.1256 0.9422 5.7388 0.0584 0.7995 3.0798

20 50 0.1419 0.9644 15.7608 0.0312 0.8020 9.5194

100 50 0.0015 0.4065 0.4525 0.0043 0.2630 0.2991

This is expected, because the QMLE reduces to the MLE when ηi is normally

distributed.

Table 3 summarizes the biases, ESDs, and ASDs of the WCQE ϕ̂(τ) at

Stage 2 for three quantile levels, τ = 0.25, 0.5, and 0.75, and three sample set-

tings, (N,T ) = (20, 20), (100, 50), and (300, 200). We find the following: (i) for

both normally and uniformly distributed innovations {ηi}, as N increases, most

of the biases, ESDs, and ASDs become smaller, and the ESDs get closer to their

corresponding ASDs; (ii) the performance of ϕ̂(τ) improves as the quantile level

τ gets closer to the center. In addition, the ESDs are obviously smaller than the

corresponding ASDs at τ = 0.5, because Qη(0.5) ≡ 0 holds for symmetric distri-

butions centered at zero, and thus ϕ00(0.5) = ϕ10(0.5) ≡ 0, which makes ESDs
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Table 3. Biases, ESDs, and ASDs of the WCQE ϕ̂(τ) at τ = 0.25, 0.5, 0.75 when the
innovations {ηi} follow a standard normal or uniform distribution.

N(0, 1) U(−
√

3,
√

3)

N T Bias ESD ASD Bias ESD ASD

τ = 0.25 ϕ0 20 20 0.0303 0.4880 0.9059 0.1333 0.5239 0.9455

100 50 0.0219 0.3287 0.3713 0.0479 0.3667 0.3934

300 200 0.0081 0.1935 0.1970 0.0144 0.2116 0.2101

ϕ1 20 20 0.0913 0.7667 1.6977 0.0247 0.8428 1.7688

100 50 0.0585 0.5937 0.7213 0.0496 0.6657 0.7625

300 200 0.0225 0.3896 0.4091 0.0056 0.4270 0.4368

τ = 0.5 ϕ0 20 20 0.0164 0.2520 0.8681 0.0037 0.2654 1.0016

100 50 0.0038 0.1092 0.3529 0.0035 0.1334 0.4541

300 200 0.0045 0.0589 0.1851 0.0041 0.0750 0.2427

ϕ1 20 20 0.0143 0.3411 1.6275 0.0253 0.4375 1.8757

100 50 0.0104 0.1718 0.6852 0.0028 0.2384 0.8802

300 200 0.0052 0.1125 0.3844 0.0015 0.1558 0.5042

τ = 0.75 ϕ0 20 20 0.0336 0.4843 0.8838 0.1093 0.5027 0.9572

100 50 0.0141 0.3197 0.3737 0.0511 0.3666 0.3981

300 200 0.0082 0.1913 0.1960 0.0063 0.2080 0.2101

ϕ1 20 20 0.0864 0.7897 1.6561 0.0118 0.8468 1.7927

100 50 0.0300 0.5683 0.7254 0.0517 0.6734 0.7715

300 200 0.0126 0.3703 0.4069 0.0119 0.4215 0.4368

abnormally small under the same sign constraint. However the ESDs are closer

to their corresponding ASDs for larger N ; see Table S.1 in the Supplementary

Material.

Table 1 provides the biases, ESDs, and ASDs of the WQAE β̂1(π̂opt,K) at

Stage 2 for three sample settings (N,T ) = (20, 20), (100, 50), and (300, 200). For

comparison, the results of β̌1 in (3.10) and β̃1c in (3.15) are also reported, where

the extra setting (N,T ) = (50, 20) is added to show the performance of β̌1 in

cases with moderate sample sizes. It can be seen that, as N increases, the biases,

ESDs, and ASDs of all estimators become smaller, and the ESDs get closer to

the corresponding ASDs. Moreover, the ESDs of β̂1(π̂opt,K) move closer to their

corresponding ASDs for larger N ; see Table S.2 in the Supplementary Material.

In addition, the estimate β̌1 is not satisfactory, because the sample size is not

large, and β̃1c is usually less efficient than β̂1(π̂opt,K) in terms of ESDs and ASDs.

In summary, the finite-sample performance of the two-stage hybrid estima-

tion procedure is reasonable, which validates the accuracy of the asymptotics in

Section 3.
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Figure 1. Scatterplots of the log-transformed variables “GRP,” “population,” and “pop-
ulation density.”

5. Empirical Analysis of Air Quality

This section demonstrates the usefulness of the proposed model and its es-

timation procedure by analyzing the pure influence of socio-economic factors on

air quality in China, after eliminating the spatial-temporal effects.

We choose the air quality index (AQI) as the indicator for air quality, down-

loaded from China National Environmental Monitoring Centre (http://www.

cnemc.cn/), spanning the period January 1, 2018, to December 16, 2018, among

143 cities in China. Because the AQI is closely related to meteorological fac-

tors (Yang et al. (2007); Lee, Ballinger and Domino (2012)), we select tempera-

ture (TEM), precipitation (PRE), and wind speed (WIN) to represent exogenous

spatial-temporal effects in our model; the data are downloaded from National

Meteorological Information Center (http://data.cma.cn/en). Moreover, the

AQI can be affected by socio-economic factors related to each city (Chen and Xu

(2017); Yu and Liu (2020)). Hence, we use the gross regional product (GRP) and

secondary industry share in GRP (Industry) as space-specific factors; the data

are obtained from China City Statistical Yearbook. Many references indicate

that population or population density is also an important socio-economic factor

that can influence air quality. However, Figure 1 shows that there is a signifi-

cant positive correlation between GRP and population (or population density)

http://www.cnemc.cn/
http://www.cnemc.cn/
http://data.cma.cn/en
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Figure 2. Heat maps of the AQI of part of central and eastern China from the first to
the ninth weeks in 2018.

in China. Hence we only include GRP to avoid multicollinearity. To balance

the size and information of the data in the time dimension, we transform the

original average hourly data of the AQI and the average daily data of the TEM

and WIN into average weekly data, and transform the original cumulative daily

data of PRE into cumulative weekly data by summation. Finally, we obtain a

spatial-temporal data set with N = 143 and T = 49.

In Figure 2, the heat maps of the AQI of some local areas of China from the

first to the ninth weeks in 2018 imply that there are spatial and temporal effects

in the air quality. This motivates us to consider both effects using our model.

In this study, we aim to understand the influence of local socio-economic factors

on air quality, controlling for spatial-temporal effects, so that governments can

evaluate the effectiveness of local policies in terms of improving air quality.

Note that the scales of AQI, TEM, PRE, WIN, GRP, and Industry differ

from each other, as clearly demonstrated in Table 4, so we divide them by the

estimated standard deviations. Moreover, we centralize TEM, PRE, and WIN,

owing to the zero mean requirement of Assumption 6(ii). In accordance with

the model setting in (2.1), for i = 1, . . . , 143 and t = 0, . . . , 49, we denote the

processed variables AQI, TEM, PRE, WIN, GRP, and Industry as {yit}, {z1it},
{z2it}, {z3it}, {x1i}, and {x2i}, respectively. We consider the proposed two-stage

hybrid estimation procedure in Section 3. The fitted model of (2.1) is then given

by
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Table 4. Summary statistics for AQI, TEM (0.1◦C), PRE (0.1mm), WIN (0.1m/s), GRP
(10,000 yuan), and Industry (%).

AQI TEM PRE WIN GRP Industry
Min 13.264 -283.000 0.000 4.714 1,500,100 18.270
Max 312.845 325.714 5,113.000 78.286 326,798,700 72.900

Table 5. Summary information of fitted coefficients for models (5.1) and (5.2).

Estimate Std. Error z statistic p-value
α 0.178 0.027 6.593 0.000
λ 0.648 0.022 29.455 0.000
γ1 -0.096 0.015 -6.400 0.000
γ2 -0.065 0.006 -10.833 0.000
γ3 -0.078 0.013 -6.000 0.000
ψ0 0.171 0.194 0.881 0.378
ψ1 0.078 0.088 0.886 0.375
ψ2 0.063 0.036 1.750 0.080

ϕ0(0.25) -0.066 0.103 -0.641 0.522
ϕ1(0.25) -0.016 0.028 -0.571 0.568
ϕ2(0.25) -0.046 0.024 -1.917 0.055
ϕ0(0.75) 0.030 0.216 0.139 0.890
ϕ1(0.75) 0.021 0.058 0.362 0.717
ϕ2(0.75) 0.014 0.049 0.286 0.775

yit = θ̂i + 0.178 yi,t−1 + 0.648

N∑
j=1

wN,ijyjt− 0.096 z1it− 0.065 z2it− 0.078 z3it + ε̂it,

(5.1)

where the spatial weights matrix WN = {wN,ij = aij/di} is a row-normalized

binary adjacency matrix with di =
∑N

j=1 aij , aii = 0, and aij = 1 if the ith

city is adjacent to the jth city geographically, otherwise aij = 0 for i 6= j.

The summary information of the fitted coefficients in model (5.1) is provided in

Table 5, where the standard errors are calculated using a residual-based bootstrap

with bootstrap sample size B = 500. Note that the coefficients are significantly

nonzero at the 10% significance level. The fitted model (5.1) indicates that the

first lag of the AQI and its neighbors have positive impacts on the AQI, whereas

the temperature, precipitation, and wind speed have negative impacts on the

AQI. These findings are consistent with common sense.

We are particularly interested in the influence of x1i and x2i on the low

and high quantile levels of the individual random effect θi, that is, the influence

of socio-economic factors on air quality in good or poor status after spatial-

temporal effects have been removed. For this purpose, we choose two quantile
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levels, τ = 0.25 and 0.75, for illustration. The estimated conditional quantile

functions of θi in model (2.4) are
Q̂θi(0.25|xi) = (0.171 + 0.078x1i + 0.063x2i)

+ (− 0.066− 0.016 |x1i| − 0.046 |x2i|) ,
Q̂θi(0.75|xi) = (0.171 + 0.078x1i + 0.063x2i)

+ (0.030 + 0.021 |x1i|+ 0.014 |x2i|) ,

(5.2)

where the summary information of the fitted coefficients is reported in Table

5. For each equation of (5.2), the first set of parentheses corresponds to the

estimated conditional location of θi, and the second represents the conditional

quantile estimate of the scale effect. Because the conditional location of θi is

actually the conditional expectation of θi, the fitted conditional expectation of

θi is Ê(θi|xi) = 0.171 + 0.078x1i + 0.063x2i. Note that x1i, x2i > 0 for all i

in our situation. Then, |x`i| is equal to x`i, for ` = 1, 2. As a result, based

on model (5.2) and Table 5, we have the following conclusions: (i) both the

secondary industry share and GRP may have positive impacts on the conditional

mean of θi and its low and high quantiles; (ii) with the spatial-temporal effects

eliminated, the nonsignificant positive impact on the AQI of GRP implies that

China may locate near the apex of the environmental Kuznets curve (Stern,

Common and Barbier (1996)); that is, the adverse impact of China’s economic

development on the enviroment diminishes gradually; (iii) the secondary industry

share has a statistically significant positive impact on the conditional location of

θi at the 10% significance level, which indicates that the secondary industry may

cause a deterioration of the air quality in China. Moreover, the variable x2i

is significantly related to the conditional scale of θi at the lower quantile level,

while no statistically significant effect is observed at the higher level at the 10%

significance level, which provides evidence of possible heterogeneity in the AQI,

owing to the secondary industry share.

6. Conclusion

We have introduced a dynamic spatial autoregressive model with heteroge-

neous random effects, which is useful in cases with complicated correlation struc-

tures. Although we focus on space-specific factors, this idea can be used similarly

in other random-effect models to account for possible heterogeneity based on a

quantile regression.
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There are several potential research topics in the framework of the proposed

model. First, note that the asymptotic covariance of the QMLE in Theorem 2 is

infeasible to compute, and the limiting distributions of the WCQE and WQAE

in (3.14) and Theorem 6 are not convenient to estimate, owing to the unknown

density function fη(·) of those innovations with estimations that need some non-

parametric methods with tuning parameters. The bootstrap method we used

to approximate the covariance matrix of the QMLE introduces a perturbation

at the individual level, but ignores the time level, which may make it less effi-

cient. As a result, we can consider a new method that perturbs the information

of individual and time levels simultaneously for the proposed model. Hopefully,

the bootstrapping can simplify the estimation of the asymptotic distributions

and lead to more accurate inference results when the sample size is moderate or

small. Second, missing values in individuals or time points are common for spa-

tial panel data in practice. For example, in our real application, there are missing

observations for the AQI of certain cities (e.g., Yantai), and we adopt the likewise

deletion method for simplicity, which may result in information loss. Hence, it is

beneficial to consider an estimation procedure in the presence of missing values

at the response. Third, we can consider a more general quantile regression model

than the location-scale model given in (2.2):

Qθi(τ |x1i, . . . , xpi) = ψ̃0(τ) +

p∑
`=1

ψ̃`(τ)x`i,

where {ψ̃`(·)} are quantile-dependent coefficients. We leave these topics for future

research.

Supplementary Material

The online Supplementary Material contains a bootstrapping procedure for

the QMLE, additional simulation results, detailed forms of the matrices ΣN ,

Σ?
N , Ω−1

NT (β?), and the vector Y−1, and technical details for Theorems 1–6 and

Propositions 1–2, and Lemmas 1–10.
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