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Abstract: We develop an efficient test for the homogeneity of the mean directions

of several independent circular populations (ANOMED) that can be universally

implemented. Current tests for ANOMED are available only for highly concen-

trated and/or large groups. Thus, we fill the gap for a usable test under highly

dispersed and/or small to medium-sized groups. Focusing on the popular von Mises

distribution, a simple and elegant test statistic is derived under homogeneous con-

centrations across groups. The hurdle of the non-location-scale nuisance parameter

κ is overcome by adopting a new approach based on the integrated likelihood ratio

test (ILRT). Furthermore, a second-order-accurate asymptotic chi-square distribu-

tion is established for the ILRT. Notably, the test outperforms existing tests for

small to moderate-size and highly dispersed (small κ) groups, which is precisely

the parametric region of prime concern, where previous tests were either unusable

or unsatisfactory. The test also outperforms the popular Watson–Williams test for

highly concentrated small groups, and shows competitive performance compared

with that of its best competitors and, hence, can be universally used in all situ-

ations. The ILRT extends naturally under heterogeneous concentrations, and is

amenable to elegant generalizations to a rich variety of circular populations and to

higher dimensions (i.e., to distributions on the sphere and hypersphere). Lastly,

the test is illustrated using three real-life data sets.

Key words and phrases: Batschelet distribution, circular ANOVA, circular normal

distribution, generalized von Mises distribution, integrated likelihood ratio tests,

Watson-Williams test.

1. Introduction

Observations on angular movements or displacements and on directional

propagations on a plane commonly constitute circular data. Strictly periodic

occurrences, rhythmic activities, and compositional data may also fall within

this category. Analytically, any data that can be mapped uniquely onto the cir-

cumference of a unit circle is defined as circular data. Analyses of such data differ

markedly from those for linear data, owing to the disparate topologies between
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the line and the circle. Refer to Mardia and Jupp (2000)(MJ) and Jammala-

madaka and SenGupta (2001) (JS), and Fisher (1993) for further details.

Often, a situation demands a comparison of the mean directions of several

independent populations; see Lozano (2016) and Shay et al. (2016) for recent

applications. We refer to such a comparison as an analysis of mean direc-

tions (ANOMED). The present work develops efficient test procedures for an

ANOMED under the popular von Mises (vM) or circular normal distribution.

An overview of the existing literature on ANOMED for vM (see Section

2)reveals that tests are available either for highly concentrated data (Watson

and Williams (1956)) or for large samples (e.g., see the corresponding likelihood

ratio test (LRT) in MJ). Under similar conditions, useful references on ANOMED

include Beran and Fisher (1998) for bootstrap-based pairwise comparisons be-

tween mean directions, Larsen, Blaesild and Sorensen (2002) for improved like-

lihood ratio-based tests for the two-sample problem, and SenGupta and Roy

(2011) for an analysis of deviance-based approach with vM and wrapped Cauchy

distributions.

In the present scenario, it appears that for vM, no satisfactory tests exist

for highly dispersed data (small concentration parameter) and small to moderate

group sizes, despite the frequency with which such data occur in diverse areas of

applied research. An example attesting to this fact is also given in this paper.

The present work attempts to fill this gap by developing an integrated likeli-

hood ratio test (ILRT), which eliminates the nuisance concentration parameter

κ by integrating it out of the likelihood function using a suitably chosen weight

function. Then, a second-order-accurate asymptotic chi-square distribution for

the ILRT is derived. Extensive simulation-based comparisons show that the pro-

posed test outperforms its competitors under small concentration parameters,

and performs as equally well as its best competitors otherwise, rendering it uni-

versally applicable. Tests for ANOMED under generalized von Mises (GvM) and

Batschelet distributions are outlined. A version of the ILRT for heterogeneous

concentrations across groups is also developed. The new test is illustrated using

real data sets.

The remainder of the paper proceeds as follows. Section 2 summarizes the

existing methods. The proposed ILRT, its asymptotic distribution, and its per-

formance assessment in comparison to its competitors are addressed in Section

3. Section 4 develops the analogue of the ILRT under unequal concentrations,

derives its asymptotic distribution, and discusses its extensions to other distri-

butions. Section 5 exemplifies the use of the ILRT using real data sets, relative
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to the existing tests. Section 6 concludes the paper.

2. Preliminaries and Review

2.1. Preliminaries

The angular observations θij , for i = 1, . . . , p, j = 1, . . . , ni; θij ∈ (0, 2π], are

assumed to follow the vM or circular normal distribution, with pdf

f(θij) =
1

2πI0(κ)
exp{κ. cos(θij − µi)},

where κ > 0 is the concentration parameter, µi ∈ (0, 2π] is the mean direction for

the ith group, and I0(κ) is the modified Bessel function of the first kind with order

zero. The maximum likelihood estimate (MLE) of the ith group mean direction

µi is given by θi., the quadrant-specific sample mean direction (Jammalamadaka

and SenGupta (2001, p.13)). Let Ci =
∑ni

j=1 cos(θij), Si =
∑ni

j=1 sin(θij), and

n =
∑p

i=1 ni. The length of the resultant vector for the ith group in its two

equivalent forms is Ri = (C2
i + S2

i )
1

2 =
∑ni

j=1 cos(θij − θi.). The MLE κ̂1 of κ is

a solution of the equation A(κ̂1) = (
∑p

i=1Ri)/n, where A(.) = I1(.)/I0(.).

The mean direction θ.. of the combined sample and its resultant length R

are obtained similarly, based on the combined sample, by replacing Ci and Si
with C =

∑p
i=1Ci and S =

∑p
i=1 Si, respectively. The standardized lengths for

the ith group and the combined sample are given by R̄i = Ri/ni and R̄ = R/n,

respectively.

Here we test H0 : µ1 = · · · = µp, versus at least one inequality in mathe-

matical terms. Under H0, the MLE of µ0 is θ.., whereas that of κ is κ̂0, where

A(κ̂0) = R̄. The existing tests for ANOMED under vM are described below.

2.2. Existing methods

The literature addresses the problem of ANOMED for a high concentration

(large κ) or for large sample sizes. As a result, four corresponding types of tests

exist (see e.g., Mardia and Jupp (2000, Chap. 10)): two high-concentration tests,

namely the Watson–Williams (WW) and Harrison, Kanji, Gadsden (HKG) tests,

and two LRT-based large-sample tests.

1. WW test with a multiplicative correction:

TWW ≡
(

1 +
3

8κ̂0

)
(n− p)SSB
(p− 1)SSW

∼ Fp−1,n−p,
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for large κ, where SSW = 2κ(n −
∑p

i=1Ri) and SSB = 2κ(
∑p

i=1Ri − R).

The corrective adjustment (1 + 3/(8κ̂0)) is suggested by Stephens (1972),

and is recommended for κ̂0 > 2.

2. HKG with a multiplicative correction:

THKG ≡
(

1− 1

5κ̂0
− 1

10κ̂2
0

)
(n− p)SSTr
(p− 1)SSE

∼ Fp−1,n−p,

for large κ, where SSTr = (
∑

i niR̄i
2 − nR̄..2) and SSE = (n−

∑
i niR̄i

2
).

3. LRT:

TLRT = 2

[
n{log I0(κ̂0)− log I0(κ̂1)}+ κ̂1

∑
i

Ri − κ̂0R

]
a∼ χ2

p−1.

4. Anderson and Wu test (AW):

Anderson and Wu (1995) suggested using κ̂0 in place of κ̂1 in TLRT , with

the same asymptotic chi-square distributional assumption.

Here
a∼ refers to an asymptotic distribution.

Although highly dispersed and/or small to medium-sized groups are often

encountered in practice, existing tests either are not applicable or fail to perform

well. See Section 3.3 for a rigorous discussion of this point. This study seeks

to fill this gap. To do so, we develop a test that should work uniformly in all

situations. Here, we eliminate the nuisance concentration parameter to improve

the quality of the LRT-based tests.

In the next section, we develop an integrated likelihood test, ILRT, for

ANOMED, and derive its second-order asymptotic chi-square distribution. A

detailed assessment of the test reported in Section 3.3 reveals uniformly satisfac-

tory performance. Furthermore, the proposed test outperforms other tests in the

aforementioned regions.

3. The Proposed ILRT

3.1. The integrated likelihood ratio approach

Consider a likelihood function L(ψψψ,λλλ), where ψψψ is the parameter of interest,

and λλλ ∈ ΛΛΛ is the nuisance parameter. The likelihood inference about ψψψ is often

based on a pseudo-likelihood function Lψψψ, obtained by eliminating λλλ in a suitable

way, which maintains the properties similar to those of a regular likelihood. The
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most popular is the profile likelihood (PL) Lp (and its modifications), which

replaces the nuisance parameter with λ̂λλψψψ, the maximizer of L with respect to λλλ

under fixed ψψψ. However the PL has several drawbacks. First, Maximizing over

ΛΛΛ can be challenging in the case of a large number of nuisance parameters. See

also example 2 (yielding ′0′ as the PL-based MLE for the population variance

under every observable data set), example 3 (yielding a strange likelihood, rapidly

growing to ∞ as the parameter θ → ∞ or −∞, depending on the sign of the

sample mean), and example 4 (PL is nearly useless for inferences, being nearly

constant over a huge range of the parameter space) of Berger, Liseo and Wolpert

(1999) for other undesirable situations.

Given this background, the ”averaging” effect produced by an integrated

likelihood (IL) is expected to produce a better summary of the original likelihood

than that of the ”maximization” in the profile likelihood. Refer to Berger, Liseo

and Wolpert (1999) for a critical discussion about pseudo likelihoods, where the

use of IL is strongly recommended for several reasons, including accounting for

nuisance parameter uncertainty. For further insights, refer to Kalbfleisch and

Sprott (1970) and Liseo (1993), among others. An IL is of the form

L̄(ψψψ) =

∫
ΛΛΛ
L(ψψψ,λλλ) ·Π(λλλ|ψψψ) dλλλ. (3.1)

Here, Π is a nonnegative weight function on ΛΛΛ, making the above integral con-

vergent for every fixed ψψψ.

Because L̄ depends only on the data and the parameter of interest ψψψ, it

can be used like a standard likelihood function for all likelihood-based inference

procedures. However, choosing Π to produce good inference procedures is an im-

portant issue, one that remains unresolved under multiple parameters of interest,

as in the present inference problem of ANOMED.

Effective IL-based inference procedures are considered by Chamberlain (2007),

Ghosh et al. (2006), and Malley et al. (2003), among others. Severini (2007, 2010,

2011) gives a thorough development of inference procedures about a scalar pa-

rameter of interest ψ, particularly when the nuisance parameters λλλ and the scalar

parameter of interest ψ are orthogonal; that is, the expected values of the mixed

derivatives of the log likelihood function with respect to λλλ and ψ are zeros. In

this case, the impact of the choice of Π is quite low when Π does not depend

on ψψψ, in moderate to large samples. However, parameter orthogonality is not a

necessary condition for the ILRT to produce good inference procedures.

In the following, the ILRT statistic is developed for ANOMED under equally
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dispersed vM distributions. Its second-order asymptotic chi-square distribution

is derived. An extensive simulation-based assessment of its performance is carried

out in Section 3.3.

3.2. ILRT under equal concentration parameters

Referring to section 2.1, the likelihood function is

L(µµµ|θθθ, κ) =
1

I0(κ)n
exp

κ


p∑
i=1

ni∑
j=1

(cos(θij − µi))


 , κ > 0, µi ∈ [0, 2π),∀i.

Here, θθθ = (θ11, θ12, . . . , θ1n1
, . . . , θp1, . . . , θpnp) is the vector of all observa-

tions, and ψψψ = µµµ = (µ1, . . . , µp) is the vector parameter of interest. The choice

of prior,

Π(κ) = I0(κ)n exp(−nκ) κan−1, κ > 0, (3.2)

is motivated by its success in attaining a simple closed form of the IL, after elim-

inating the normalizing constant I0(κ)−n and choosing the exponent exp(−nκ)

to make the resulting integral convergent for all observed data sets and mean

directions. Nevertheless, we would like to keep it free from the parameter of

interest ψψψ. This choice, together with the parameter orthogonality between ψψψ

and κ, provides the resulting ILRT with the desired second-order properties, as

seen in the proof of Theorem 1 (see also Severini (2007)). The term κan/2−1, the

exponent of which produces the scaling factor an in the resulting ILRT statistic,

is used to attain a nondegenerate limiting distribution. In line with the Welch–

Satterthwaite technique, an initial guess of an = n− 1 is based on matching the

simulated means (first moments) of TILRT to p − 1, the expected values of the

desired asymptotic χ2 distribution, under a large group size and large κ. More

precisely, n1 = 100 and κ = 15 were taken as representatives of large group sizes

and large concentrations, respectively. Then, the ratio of p− 1 to the simulated

mean (based on 500,000 simulations) of the RHS of (3.3), excluding the (n− 1)

term (which is the simulated value of the an term), was regressed on the total

sample size n for p = 2(1)8. The value of an was further tuned for its modest

dependence on the unknown κ using multiplicative adjustments, as suggested in

section A.1 of Appendix A. Finally, integrating L.Π over κ ∈ (0,∞) results in

the integrated likelihood function

L̄(µµµ|θθθ) ∝

n− p∑
i=1

ni∑
j=1

cos(θij − µi)

−(n−1)/2

.
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The integrated MLEs obtained by maximizing L̄ with respect to µµµ under the null

and the alternative hypotheses coincide with the usual ones, ψ̄0 = µ̄0 = θ.. and

ψ̄ψψ1 = µ̄µµ; µ̄i = θi., for i = 1, . . . , p, respectively (see Section 2.1). The resulting IL

ratio is

λ̄ =
supΘ0

L̄(µ|θθθ)
supΘ1

L̄(µµµ|θθθ)
=

[
n−

∑p
i=1Ri

(n−R)

](n−1)/2

,

where Θ1 = {µµµ : µi ∈ (0, 2π], i = 1, . . . , p}, and Θ0 = {µ(1, 1, . . . , 1)p×1, µ ∈
(0, 2π] } is the subset of Θ1 comprising all components of µµµ equal to µ. The

proposed ILRT statistic −2 log λ̄ is

TILRT = −(n− 1) log

[
n−

∑p
i=1Ri

n−R

]
. (3.3)

The asymptotic χ2 distribution of TILRT is stated in Theorem 1.

Throughout this paper, the parameter space for κ is assumed to be (0,∞).

(The case κ = 0 is excluded, being a uniform distribution over [0, 2π)).

Theorem 1. The asymptotic distribution of TILRT is χ2
p−1.

Proof of Theorem 1. Let C(ψψψ) =
∑p

i=1

∑ni
j=1 cos(θij − µi). Writing L(κ) for

L(κ|µµµ;θθθ), let

h(κ) = − 1

n
log(L(κ))

= log(I0(κ))− κ

n
C(ψψψ).

It is easily seen that the partial derivatives of h with respect to κ are

h′(κ) = −C(ψψψ)

n
+A(κ);

h(j)(κ) = A(j−1)(κ); j = 2, 3, . . . ,

(3.4)

where A(j) is the jth derivative of A(κ) with respect to κ.

First, consider the case of large concentrations, κ > 1. Here, A(κ) and its

jth derivative can be shown to be piece-wise well approximated to O(10−3) by

A(κ) ≈ c+
b

κ
;

A(j) ≈ b (−1)(j) j!

κj+1
; j = 1, 2, . . . .

(3.5)

The constant c varies slightly across the pieces, and is almost zero for large
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concentrations, whereas the slope b is very close to 2. See Table 2 of Section

A.2, Appendix A, for details. See also A.13 of Appendix 1 of JM for another

approximation. The Taylor expansion of h about κ̂ψψψ ≡ κ̂, with equations (3.4)

and (3.5), and the fact that h′(κ̂) = 0, yield the following:

nh(κ) = − log(L(κ̂)) +
1

2
A′(κ̂)u2 +

{
−2 u3

√
n3(κ̂)3

+
2 u4

n4(κ̂)4

}
+ rn(u),

where u =
√
n(κ− κ̂) and rn(u) is O(n−1.5).

Note that the prior Π is continuously differentiable. Then, applying the expansion

of e−x to the third term (inside the curly bracket) and using Taylor’s expansion

of Π(κ) about κ̂ gives

L(κ).Π(κ) = exp{−nh(κ)}Π(κ)

=
L(κ̂)√
n |A′(κ̂)|

.
√
n |A′(κ̂)| exp

{
−A

′(κ̂)u2

2

}
.

{
1−

[
−2 u3

3
√
n(κ̂)3

+
2 u4

4n(κ̂)4

]
+

1

2

[
−2 u3

3
√
n(κ̂)3

+
2 u4

4n(κ̂)4

]2

+ R1n(κ, κ̂)

}
{

Π(κ̂) +
1√
n

Π′(κ̂)u+
1

2n
Π′′(κ̂)u2 +

1

6n
√
n

Π(3)(κ̂)u3 + R2n(κ, κ̂)

}
,

(3.6)

where R1n and R2n are of O(n−2). First compute the product of the two

bracketed terms on the RHS of (3.6), and then multiply the resulting terms by√
n |A′(κ̂)| exp{(−1/2)A′(κ̂)u2}, which is proportional to a normal density with

mean zero and standard deviation A′(κ̂)−1/2. Next, integrate term by term with

respect to κ, and note that dκ =
√
n du. Then, on the RHS of (3.6), the integrals

involving powers of u are proportional to the raw moments of a normal distri-

bution with mean zero and standard deviation A′(κ̂)−1/2. The use of (3.5) with

the approximation b ≈ 2 makes the (2j)th raw moment µ
′

2j = 2κ̂2j(2j)!/(2jj!2j),

a constant multiple of κ̂2j , while the odd order moments vanish. Ignoring the

O(n−2) terms, the RHS of (3.6) becomes∫
L(κ).Π(κ)dκ ∝LA(κ̂)

{
Π(κ̂) +

Π
′′
(κ̂)µ

′

2

2n
+

Π
′
(κ̂)µ

′

4

3nκ̂3

− Π(κ̂)µ
′

4

2nκ̂4
+

Π(κ̂)µ
′

6

9nκ̂6
+O(n−2)

}
,

(3.7)



ANALYSIS OF MEAN DIRECTIONS 2003

where LA(ψψψ) ∝ L(ψψψ, κ̂ψψψ)|lκκ|−1/2
{κ=κ̂} is the Cox and Reid (1987) adjusted profile

likelihood, |lκκ|{κ=κ̂} = nA′(κ̂), where lκκ is the second-order partial derivative

of the log likelihood l with respect to κ. Furthermore, from (3.5), Π
′
(κ) ≈

nΠ(κ)(2.5/κ − θ) and Π
′′
(κ) ≈ Π(κ)n2(2.5/κ − θ)2, where θ = 1 − c is close to

one (for large κ, c is very close to zero, see Table 2, Section A.2, Appendix A for

more details). Consequently, ignoring the O(n−2) terms, the above observations

yield

L̄(ψψψ) =

∫
L .Π(κ)dκ ∝ LA(κ̂).Π(κ̂)g(κ̂)

{
1 +O(n−1.5)

}
, (3.8)

where, for every fixed n, both g and Π are finite and continuous in κ. Taking the

logarithms and denoting the log likelihoods by l yields

l̄(ψψψ) = lA(ψψψ) + log(Π(κ̂ψψψ)) + log(g(κ̂ψψψ)) + log(
{

1 +O(n−1.5)
}

).

Recall from Section 2.1 that ψ̄ψψ1 = µ̂µµ, ψ̄0 = µ̂0, are the usual MLEs of µµµ, whereas

those of κ are κ̂1 = supψψψ κ̂ψψψ and κ̂0 under Hi, for i = 1, 0. The resulting ILRT

statistic is

− 2 log λ̄ = −2(lA(µ̂µµ)− lA(µ̂0)) + 2log

(
Π(κ̂1)

Π(κ̂0)

)
+ 2log

(
g(κ̂1)

g(κ̂0)

)
+OP (n−1.5).

(3.9)

Note that Π (by our choice) and g depend on the parameter of interest ψψψ only

through κψψψ. Additionally, E(∂2l/∂κ∂µi) = 0, for i = 1, . . . , p, (see MJ) so that

the nuisance parameter κ is orthogonal to the parameter of interest ψψψ = µµµ.

Consequently, κ̂ψψψ, is less sensitive to the variation in ψψψ under the null and the

alternative hypotheses (see Section 2.2, result (iv) of Cox and Reid (1987)).

Additionally, both κ̂1 and κ̂0 being consistent for the same parameter κ, |κ̂1 −
κ̂0| = OP (n−1). Together with the continuity of Π and g, this makes the terms

log(Π(κ̂1)/Π(κ̂0)), log(g(κ̂1)/g(κ̂0)), and the middle term in equation (3.9) all

OP (n−1). These arguments finally lead to

TILRT = −2 log λ̄ = −2(lA(µ̂µµ1)− lA(µ̂0)) +OP (n−1),

where the computational form is given in equation (3.3). The asymptotic distri-

bution of TILRT is the same as that of the adjusted profile log likelihood ratio,

namely χ2
p−1. The approximations involving κ in (3.5) (leading to the χ2 dis-

tributional approximation) are very sharp for large κ, say κ > 9, but not so for

κ < 9. A slight fine-tuning in the form of subtle multiplicative adjustments is

given in Section A.1 of Appendix A. This is based on the piece-wise partition of
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the approximation of A(κ), and significantly improves the χ2
p−1 approximation

for this case.

The case of a small concentration can be dealt with in a similar way by noting

that, in this case, the function A(κ) can be well approximated by 0.107 + 0.46κ,

with a maximum deviation of order 10−3, for κ ∈ (0.1, 0.9). For κ < 0.1, the

circular uniform distribution is recommended. Here, the derivatives of A(κ),

and hence of h(κ), of order greater than one all vanish, simplifying the RHS of

(3.6) to a great extent. However, in this region, the estimates of κ are likely

to be more sensitive. Moreover, the derivatives of Π involve reciprocals of κ̂.

Hence, the RHS of (3.9) is expected to be more unstable, resulting in large

observed sizes, as shown in a simulation study (not discussed here, for brevity).

This problem was handled by ad-hoc multiplicative adjustments to the resulting

ILRT, as developed in Section A.1 of Appendix A.

Remark 1.

(i) The aforementioned multiplicative adjustments controlled the sizes of the

resulting tests very well, without affecting its power function, as can be seen

in the simulation study reported in the next subsection. These adjustments

are used throughout the remainder of this paper, including the performance

assessment in Section 3.3 and the real-data analysis in Section 5, and are

strongly recommended in practice.

(ii) Although the results from Cox and Reid (1987) under parameter orthog-

onality used here were originally developed for a real-valued parameter of

interest, these remain valid for a vector-valued parameter of interest, as

long as the orthogonality between the vector parameter of interest and the

nuisance parameters holds, as in our case.

The next subsection attempts an extensive simulation-based comparison be-

tween the ILRT and the existing tests.

3.3. Performance assessment

A study based on 50,000 simulated observations from vM distributions on

the circle is conducted to compare the size and power of the ILRT with those

of the two high-concentration tests and the two likelihood-based tests reported

in Section 2.2. A large number of situations are considered to form a fair rep-

resentation of practical scenarios: group sizes n1 = 15, 20, 30, 40, 60; con-

centration parameters κ=0.25, 0.3(0.04)0.44; 0.45, 0.5(0.1)1.5; 2(1)10; 15, 20,
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40, 70, 100; and number of groups p = 2(1)8. The level of significance was

fixed at the commonly used 5% level. Note that the parametric space under

H1 for the mean vectors µµµ, Θ1 = [0, 2 π)p, is p-dimensional, whereas the power

function is a surface in p + 1 dimensions. A comparative study of the power

surfaces of several tests in p + 1 dimensions is challenging, particularly when

p is large, and may lack visual clarity. To avoid such complications, and not-

ing the periodic nature of µi, such that the farthest components of µµµ can be

at most π distance from each other, a systematic subset of [0, 2 π)p is selected,

{µµµ = h/(p − 1).(0, 1, . . . , p − 1); h = 0 (π/6) π}. Here, we scale the vector

(0, 1, . . . , p−1)/(p−1) ∈ Θ1 by a real positive number h, varying h over the grid

{ 0 (π/6) π }, for the computation of powers so that the resulting collection

of powers can be plotted against h as a function in two dimensions, henceforth

referred to as ”the power function”. This enables a visually clear picture of the

power functions and a clearer comparison of the tests.

(A) Size performance

Note that the case of h = 0 corresponds to the observed sizes of the respective

tests. Box plots of the simulated sizes for the aforementioned four tests and the

ILRT are shown in Figure 1. A careful assessment of the simulated sizes based

on various graphical tools (not reported here, for brevity) revealed the following

prominent features:

i) The large outliers in the box plots for WW basically emerged from small

concentrations (κ < 1). The magnitude of outliers increased with the num-

ber of groups (p), but group sizes (n1) had almost no impact. This behavior

is consistent with the role of the large concentration behind WW’s construc-

tion.

ii) The observed sizes of the other large concentration test, HKG, revealed a

similar impact of κ and p (but not of n1), albeit in the opposite directions;

that is, tiny sizes (often very close to zero) increased with κ and stabilized

to the desired level after κ became as large as 40. This, in turn, resulted in

reduced power, as revealed by Figures 2–5.

iii) The whiskers and outliers for LRT emerged under all three factors: small κ,

large p, and small n1. Under small concentrations, the group sizes required

to stabilize the sizes around the desired level 0.05 were as large as 60. For

large concentrations, the convergence was relatively fast.

iv) AW exhibited a pattern similar to LRT, but in the opposite direction, as
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HKG did.

Clearly, based on the size performance, WW and LRT were practically un-

usable under small concentrations and/or small groups.

(B) Power performance

To ensure a fair comparison between the tests, two versions of the power

function were simulated:

(I) For an unbiased comparison among all available tests, the normalized

power function was generated by multiplying the original uncorrected tests

by the ratio of the respective theoretical χ2 or F quantile to the simulated

quantile of the uncorrected statistics, for the particular parameter combi-

nation under concern. This guaranteed the size of all cases to be exactly

0.05, making the power comparison unbiased. Figure 2 presents the gain in

power over other tests by the ILRT, under the normalized power function

at h = π as a function of κ for small concentrations at various combinations

of p and n1. Figure 3 displays similar plots for very small concentrations

(κ = 0.25 and 0.3) as a function of p.

(II) Viewing AW as the ”size-corrected” version of LRT, the actual (non-

normalized) power functions of AW and HKG were compared with the

ILRT. Representative power functions for the p = 2 and p = 8 groups are

presented in Figures 4–5 for small concentrations, and in Figures 6–7 for

large concentrations. WW and LRT are unusable owing to their large sizes

under small concentrations; thus, their power functions are not included

in Figures 4 and 5, whereas Figures 6 and 7 include all tests.

Both the normalized and non-normalized power functions showed similar

patterns in excess power (gain) attained by the ILRT. A careful observation of

Figures 2–7 strongly supports the following points.

Small concentrations:

i) As targeted, a notable gain for the ILRT was observed over its competi-

tors, AW and HKG, under small concentrations, namely κ < 1, and more

prominently for κ < 0.5 (see Figures 2–5).

ii) For very small κ, the gain was increasing with the number of groups (p) for

fixed values of other parameters (see Figure 3).

iii) For two groups and/or κ < 0.5, the gain over AW was uniformly more than

that over HKG, even under large group sizes (Figure 3 and first row of



ANALYSIS OF MEAN DIRECTIONS 2007

Figure 2). However, this behavior reversed for large numbers of groups and

0.5 < κ < 1. Under large group sizes and κ in the neighbourhood of one,

the three tests performed almost equally (last two rows of Figure 2).

Large concentrations:

iv) Under medium κ (1 < κ < 2) and very small group sizes, the likelihood-

based tests surpassed WW, with the gain increasing with p (first row of

Figures 6–7).

v) Under large concentrations and large group sizes, all tests, including the

regular LRT, performed almost equally well (Figure 7). However, for two

groups, the power of AW declined in the farthest region from the null hy-

pothesis, that is at h = π, particularly under large concentrations and small

group sizes (Figure 6).

Remark 2.

(i) Because the unadjusted versions of the ILRT and WW are functionally

related, namely ILRT = (n− 1) log(WW − 1), the normalized power func-

tions of the two are almost the same; thus, WW is not included in Figures

2–3. However their distributions, and hence cut-off points, are different. As

noted above, under small concentrations, WW yields large sizes, making it

practically unusable.

(ii) The main benefit of the ILRT was evident under small concentrations and/

or small group sizes, as desired. The ILRT not only improved over LRT and

AW, but was also superior to all other tests in this scenario. It compared

well in all other cases to the best performers and, hence, can be uniformly

used under all situations, irrespective of the magnitude of the observed

values of κ and the group sizes.

The next section discusses an extension of the ILRT to heterogeneous groups.

An extension to GvM and the Batschelet distributions is also outlined. Note

that our approach can be adapted easily and elegantly for a generalization of

ANOMED to distributions on hyper-spheres.

4. Extensions of ILRT to Other Cases

4.1. ILRT under unequal concentration parameters

The p groups may follow vM distributions with differing concentration pa-

rameters. The setup is similar to the that in Section 3.2, except that now θij ∼
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Figure 2. Gain in normalized power by ILRT over AW and HKG vs. κ (< 1) for various
group sizes (n1) and number of groups (p). Panel headings are values of the pairs p, n1.

von-Mises (µi, κi), for i = 1, . . . , p. The likelihood function is given by

L∗(µµµ,κκκ|θθθ) =

p∏
i=1

Li, Li =
1

I0(κi)
ni exp

κi


ni∑
j=1

cos(θij − µi)


 .
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The only existing test for unknown and unequal concentrations for this problem

is the likelihood ratio test suggested by Watson (1983) (WW ∗), given by

TWW ∗ = 2

(
p∑
i=1

κ̂iRi −RW

)
∼ χ2

p−1,
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Figure 7. Simulated power functions of ILRT, AW, LRT, HKG, WW; eight groups, large
κ. Panel headings are values of the pairs κ, n1.

where

RW =


(

p∑
i=1

κ̂iRi cos θi.

)2

+

(
p∑
i=1

κ̂iRi sin θi.

)2


1/2

,

where κ̂i is the MLE of κi under the ith group.

To identify the specific parametric region where an improvement over WW ∗

is essential, the power values were simulated using the same setting as those in

the case of equal κ. Additionally, increments in the concentration parameters by

0.25 and 0.5 for successive groups were introduced. Though the sizes of actual

LRT were unduly large, the size-normalized power function was reasonably good,

even for small group sizes. However, size-corrective multiplicative adjustments

may depend on the pattern of concentrations across the groups in a complicated

way, and thus cannot be derived easily.

The ILRT for this case is developed next. Adopting a parallel approach to

that in Section 3.2 with the prior

Π∗(κκκ) =

p∏
i=1

Πi, Πi = (I0(κi))
niκ

(ni−1)/2−1
i exp(−niκi), κi > 0 ∀ i, (4.1)

the resulting integrated likelihood function is
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L̄∗(µµµ|θθθ) =

p∏
i=1

∫
LiΠid(κi), (4.2)

leading to

L̄∗(µµµ|θθθ) ∝
p∏
i=1

[ni −
ni∑
j=1

cos(θij − µi)]−(ni−1)/2.

The maximizer of L̄∗ with respect to µµµ under H1 is still µ̄∗i = µ̂i = θi., for

i = 1, . . . , p. However, under H0, L̄
∗ is maximized at µ̄∗0, which is the solution to

the equation
p∑
i=1

Si. cos(µ̄∗0)− Ci sin(µ̄∗0)

ni − Ci. cos(µ̄∗0)− Si. sin(µ̄∗0)
= 0, (4.3)

where Si and Ci are defined in Section 2.1. This leads to the integrated likelihood

ratio

λ̄∗ =

p∏
i=1

[
ni −Ri

ni − Ci. cos(µ̄∗0)− Si. sin(µ̄∗0)

](ni−1)/2

.

The log likelihood ratio statistic is

TILRT ∗ = −2logλ̄∗ =

p∑
i=1

(ni − 1). log

(
ni −Ri

ni − Ci. cos(µ̄∗0)− Si. sin(µ̄∗0)

)
.

As before, we have the following result:

Theorem 2. The asymptotic distribution of TILRT ∗ is χ2
p−1.

Proof of Theorem 2. Note from equation (11) that

L̄∗(ψψψ|θθθ) =

p∏
i=1

∫
LiΠid(κi)

=

p∏
i=1

fi,

where fi =
∫
LiΠid(κi). Treating each group separately, and employing similar

arguments to those in the proof of Theorem 1 on each Li separately, analogues

of equations (3.4) through (3.8) hold for each fi, such that

l̄i(ψψψi) = log(fi)

= lAi(ψψψi) + log(Πi(κ̂iψψψi )) + log(g(κ̂iψψψi )) + log(
{

1 +O(n−1.5)
}

),
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where lAi(ψψψi) is the Cox–Reid adjusted profile likelihood corresponding to Li.

Taking the logarithms yields

l̄∗(ψψψ) =

p∑
i=1

log(fi)

=

p∑
i=1

lAi(ψψψi) + log(Πi(κ̂iψψψi )) + log(g(κ̂iψψψi )) + log(
{

1 +O(n−1.5)
}

).

The MLE(s) of µµµ under H1 are θi., as given in Section 2.1, whereas under H0,

they are µ̄∗0, as given in equation (4.3). The MLEs κ̂i of κi (solutions to the

equations A(κ̂i) = (Ri)/ni, for i = 1, . . . , p, where Ri is defined in Section 2.1)

are the same under both H0 and H1. Consequently, the terms containing the

estimates of κ in the log likelihood ratio get cancelled out, leaving the following

ILRT statistic:

− 2 log λ̄∗ = −2

p∑
i=1

[
(lAi(µ̂µµ)− lAi(µ̂∗0)) +OP (n−1.5

i )
]
, (15)

Ignoring the OP (n−1.5
i ) terms, and noting the asymptotic χ2

1 distribution of the

adjusted Cox—Reid likelihood for each group, the additive property of χ2 under

independence across the groups and a common estimate of the mean under the

null establish the asymptotic χ2
p−1 distribution of TILRT ∗ .

Using the overall sample mean θ.. in place of µ̄∗0 gave a good approximation.

In addition, minor fine-tuning with the multipliers 1.085 (for 0.7 < k0 < 1), 1.05

(for 2 < k0 < 5), and 1.15 (for 1 < k0 < 2) further enhanced the size performance.

Here, k0 is the smallest of the estimates of the concentration parameters for the p

groups. Equally good performance was exhibited by the size-adjusted 0.88 TWW∗,

with multiplier 0.88 for κ0 > 0.7. However for very small concentrations, namely

k0 < 0.7, none of the tests gave satisfactory results. This case requires further

investigation.

The next section describes the ILRT for the GvM in the circular case.

4.2. ANOMED for GvM (A case of two nuisance parameters)

Note that the ILRT-based treatment of the nuisance parameter is likely to

be more effective under orthogonality between the nuisance parameters and the

parameters of interest, and the prior does not depend on the parameters of in-

terest. This fact can be used to construct tests for ANOMED for other dis-
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tributions, preferably where the normalizing constant does not depend on the

parameter of interest. In this case, its influence can be circumvented by includ-

ing its reciprocal in the prior, while keeping the prior free of the parameter of

interest. These conditions are, for example, satisfied for the three-parameter

GvM and Batschelet (1981) distributions, as discussed below. Suppose θθθ = {θij ,
i = 1, . . . , p, j = 1, . . . , ni} are independent and identically distributed (i.i.d.)

observations from the generalized vM distribution, with pdf

f(θij) = [2πG0(k1, k2)]−1 exp[k1 cos(θij − µ) + k2 cos 2 (θij − µ)], k1 > 0, k2 > 0,

where µ ∈ [0, 2π) is a location parameter, and G0(k1, k2) is the normalizing

constant.

The prior Π(κ1, κ2) = [G0(κ1, κ2)]n exp[−nκ1 − nκ2]kan−1
1 kan−1

2 is the most

appropriate, and yields

L̄(µµµ|θθθ) ∝

[
n−

∑
i

R1
i

]an [
n−

∑
i

R2
i

]an
, (4.4)

where, Rli(x) =
ni∑
j=1

cos l(θij − x), for l = 1, 2, leading to the following ILR statis-

tics:

TGvM ILRT ≡ 2an log


[
n−

∑
i
R1
i (µ̂0)

][
n−

∑
i
R2
i (µ̂0)

]
[
n−

∑
i
R1
i (µ̂1i)

][
n−

∑
i
R2
i (µ̂1i)

]
 . (4.5)

Here, µ̂1i, for i = 1, . . . , p, and µ̂0 are maximizers of L̄(µµµ) under H1 and H0,

respectively, and can be obtained using numerical methods. Because the domain

of the maximization is bounded, this should not pose much difficulty. The choice

of an can be based on the Satterthwaite–Welch-type technique, in line with the

arguments in Section 3.2.

A parallel approach holds for the Batschelet (1981) distribution , with density

function

f(θ)=C−1 exp[κ cos (θ − µ) + ν sin(θ − µ)];−π ≤ θ, µ < π; κ ≥ 0;−∞ < ν <∞,

with R2
i (x) replaced by

∑ni
j=1 sin(θij − x) in equations (4.4) and (4.5). However

fine-tuning adjustments described in Section A.1 of Appendix A may need to be

developed for small concentrations.
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5. Examples

This section applies ILRT to real-data examples, representing situations in

which ANOMED is most appropriate. The computational details are summarized

in Table 1. For WW, HKG, LRT, and AW, the computational formulae given

in Section 2.2 are used. The ILRT is computed using equation (3.3), together

with the multiplicative correction factor suggested in Section A.1 of Appendix

A, where we replace κ0 with its estimate κ̂0, as reported in Table 1. For the data

sets (except data set D3, where the raw data were not available), the assump-

tions of a vM distribution and an equal concentration parameter for the groups

were validated ( Mardia and Jupp (2000); Fisher (1993)). These examples also

demonstrate the proper usage of tests.

5.1. Epidemic onset data: D1, D2

In certain epidemic diseases, such as acute primary angle closure glaucoma

(APACG), the exact date of attack can be reliably determined. As suggested

byGao et al. (2006)(GAO), each date of onset within a year can be represented

as an angle by equating the 365 days of a year to 360o (2.π radians). Therefore,

one day is equivalent to 360/365 = 0.986o. Then, a well-fitted vM distribution

with a single peak (mode) (indicating a prevalent date of onset) would indicate

a seasonal influence on such data. Furthermore, note that a significant difference

between the peak dates of onset for the groups corresponding to the different lev-

els of an attribute (e.g., age group, gender etc.) indicates an interaction between

the seasonal effect and the attribute under consideration.

Gender, adverse environmental conditions, and amount of sunlight are known

to be influential factors in causing APACG (Ivanisevic et al. (2002); Hillman and

Turner (1977), Sharpec et al. (2010)). Because the latter two factors vary with

the season, a seasonal impact on the onset of APACG is expected. This may vary

by gender and age group, perhaps, owing to differing capabilities of sustaining

the adverse conditions.

GAO give data on the exact dates of onset, converted to angles, for 132

APACG patients from Singapore, along with information on other attributes

such as age group, gender and so on. The data set D1 is extracted from this

database and displays the dates of onset of APACG for male patients, partitioned

into four age groups: below 50; 50 to 59; 60 to 69; and above 70. Referring to

Table 1 for D1, the estimated concentration under H0 (κ̂0 = 0.2563) is very

small, as are the group sizes. Following the recommendations of Section 3.3,
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the inference based on the ILRT is the most reliable. The ILRT clearly rejects

the hypothesis of no difference (p-value: 0.0151), as did the next favored HKG

((B) (i); Section 3.3) (p-value: 0.0132). This indicates that the seasonal impact

varies among the age groups (i.e., the mean dates of onset across the age groups

are significantly different). The strength with which WW and LRT rejected the

hypothesis (p-value < 10−3) is untrustworthy owing to their large type-I errors

((A) (i), Section 3.3), although they do agree with the ILRT. The least powerful

test, AW, accepted the null, perhaps incorrectly. Note that in some situations,

such a decision could be risky, for example, in case-control studies that assess

the effectiveness of a treatment on a gait pattern, under Cerebral Palsy, where

even small angular differences with respect to a gait pattern are of great clinical

importance.

A similar hypothesis for female patients (data set D2), extracted from the

same database under the same age groups, was unanimously accepted by all the

tests except WW (which rejected the hypothesis (p-value: 0.0391), conforming

to its aforementioned tendency of false alarms under small concentrations). Such

a decision can also be undesirable, for example, in drug testing, where falsely

declaring a drug to be superior to others could be harmful.

In conclusion, males are prone to age-dependent seasonal effects, whereas

seasonal influence does not depend on age for females. This also indicates a

three-way interaction between gender, age group-and seasonal influence on the

dates of onset of APACG. GAO observed such differences, but were not able

to establish them statistically using a circular regression, possibly because the

interaction effects were not accounted for in their regression model. Further

clinical investigation and research is needed in this context, because the results

observed here may offer important clues and insights.

5.2. Light pulse treatment on the pineal melatonin rhythm: D3

It is widely assumed that the circadian system adapts to local environmen-

tal cues, such as light and temperature, which vary enormously across habi-

tats.Moore and Menaker (2012) examined the effect of light pulse treatment on

the pineal melatonin rhythm of five Anolis lizard species. The data set D3, with

small group sizes from a control group and a treatment group, was analyzed

in a similar manner to that of the A. gundlachi species. As reported in Table

1, the light pulse treatment caused a significant phase delay in the circadian

rhythm. This indicates that the circadian system of the species under consider-

ation adapts itself to the light pulse treatment. This is highly concentrated data
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Table 1. Computational details for the three data sets.

Data Group sizes Resultant lengths κ̂0 p-values
D1 n1 = 5 R1 = 4.0986 0.2563 ILRT: 0.0151
p=4 n2 = 9 R2 = 3.9193 AW: 0.0869

n3 = 12 R3 = 6.146 HKG: 0.0132
n4 = 9 R4 = 3.104 WW: 0.0007
N = 35 R0 = 4.4494 LRT: 0.0007

D2 n1 = 8 R1 = 4.7977 0.4116 ILRT: 0.1815
p=4 n2 = 22 R2 = 3.7932 AW: 0.1414

n3 = 36 R3 = 6.8435 HKG: 0.1284
n4 = 31 R4 = 10.7446 WW: 0.0391
N = 97 R = 19.5524 LRT: 0.0923

D3 n1 = 9 R1 = 8.73 9.0186 ILRT: 0.0006
p=2 n2 = 7 R2 = 6.65 AW: 0.0211; HKG: 0.0154

N = 16 R = 15.085 WW: 0.0196; LRT: 0.0115

(κ̂0 = 9.0176); the analysis as per the recommendations of Section 3.3 ((B) (v),

Section 3.3) shows that all tests are equally competent. This is reflected in the

unanimous decision to reject the null hypothesis by all tests (all p-values < 0.05).

However, here too, the ILRT rejects the hypothesis more strongly than the other

tests do (p-value = 0.0006), favoring the conjectured behavior.

6. Conclusion

Our motivation for this study was to develop an efficient parametric test for

the homogeneity of the mean directions of several independent circular popula-

tions, which can be universally implemented in practice. The need for such a test

emerged from the fact that there is no universal test in the existing literature

that shows acceptable performance and can be applied to diverse realistic situ-

ations, for example low concentrations and a large number of small size groups.

We have derived a universal, yet simple and elegant test statistic. We have

demonstrated that our method can be extended in a straightforward manner

to a rich class of distributions, including asymmetric, bimodal, sharply peaked,

and flat-topped distributions among others, as modeled by, for example gener-

alized vM and Batschelet distributions. The difficulty of the non-location-scale

nuisance parameters κκκ was overcome by introducing a new approach based on

the integrated likelihood ratio test. Furthermore, extensive simulations showed

that our test outperforms existing tests in the usual parametric region, and com-
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petes uniformly well with the best of these other tests. Finally, our approach is

amenable to elegant and almost straightforward generalizations to higher dimen-

sions (i.e., to hyper-spherical, e.g., Langevin, populations). This last observation

is currently being studied further.
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A. Appendix

A.1. Corrective adjustments for small concentrations

The corrective multiplicative adjustment cfIlrt given below for controlling

the sizes of ILRT under small and equal concentrations was derived by regress-

ing the ratio of theoretical 95th quantile of the desired χ2
p−1 distribution to the

simulated 95th quantiles of TILRT under H0 based on 200,000 simulations. A

large number of parametric combinations of input parameters n, p and κ were

used and then κ was replaced by its estimate κ̂0. The densely clustered sizes

around the target level of the multiplicatively adjusted ILRT as seen in the cor-

responding box-plot in Figure 1 are indicative of a closer conformation to the

desired χ2
p−1 distributional assumption.

cfIlrt=


0.563− 0.0029.n1 + 0.029p+ 0.93.κ0 − 0.32.

√
p

−0.12 log(N)+0.32. log(p)−0.186. log(κ0) + 0.019n1.κ0) if κ0<0.4,

(1.92−0.0186
√
p+0.0544 log(N)−0.985

√
.κ0+log(.κ0)

−0.002.
√
N + 0.001.n1− 0.01

√
n1). if 0.4<κ0<1.
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Table 2. Details of the piece-wise approximation c+ bω, ω = 1/κ for A(κ).

Domain for κ c b
[ 1 , 1.45) 0.391 1.84
[ 1.45, 3 ) 0.235 1.95
[ 3 , 4.25) 0.149 1.98
[ 4.25, 10 ) 0.0805 1.99
[10 , 15 ) 0.046 2
[15 , 50 ) 0.0181 2

>50 0.007 2

Furthermore, as mentioned in the proof of Theorem 1 a little fine-tuning for

moderate values of κ ∈ (1, 9) namely, 1.11 for {1 < κ0 < 1.25}∪{3 < κ0 < 4.25};
1.17 for 1.25 < κ0 < 3; 1.04 for 4.25 < κ0 < 9 gave excellent results. Also for

κ0 > 15, an = n− 1.5 in place of n− 1 gave more accurate results.

A.2 Piece-wise approximation of A(κ):

Note that for κ ∈ [1,∞), ω = 1/κ ∈ (0, 1]. By computing A(ω) on a very

fine mesh of (0, 1] and regressing A(ω) verses ω piece-wise on the partition given

in Table 2, (chosen selectively) the approximation of A(κ) with error less than

10(−3) reported in Table 2 was obtained.
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